1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
22 #include <linux/if.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/ip.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/aer.h>
32 #include <linux/prefetch.h>
33 #include <linux/bpf.h>
34 #include <linux/bpf_trace.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/etherdevice.h>
37 #ifdef CONFIG_IGB_DCA
38 #include <linux/dca.h>
39 #endif
40 #include <linux/i2c.h>
41 #include "igb.h"
42
43 enum queue_mode {
44 QUEUE_MODE_STRICT_PRIORITY,
45 QUEUE_MODE_STREAM_RESERVATION,
46 };
47
48 enum tx_queue_prio {
49 TX_QUEUE_PRIO_HIGH,
50 TX_QUEUE_PRIO_LOW,
51 };
52
53 char igb_driver_name[] = "igb";
54 static const char igb_driver_string[] =
55 "Intel(R) Gigabit Ethernet Network Driver";
56 static const char igb_copyright[] =
57 "Copyright (c) 2007-2014 Intel Corporation.";
58
59 static const struct e1000_info *igb_info_tbl[] = {
60 [board_82575] = &e1000_82575_info,
61 };
62
63 static const struct pci_device_id igb_pci_tbl[] = {
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
74 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
99 /* required last entry */
100 {0, }
101 };
102
103 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
104
105 static int igb_setup_all_tx_resources(struct igb_adapter *);
106 static int igb_setup_all_rx_resources(struct igb_adapter *);
107 static void igb_free_all_tx_resources(struct igb_adapter *);
108 static void igb_free_all_rx_resources(struct igb_adapter *);
109 static void igb_setup_mrqc(struct igb_adapter *);
110 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
111 static void igb_remove(struct pci_dev *pdev);
112 static int igb_sw_init(struct igb_adapter *);
113 int igb_open(struct net_device *);
114 int igb_close(struct net_device *);
115 static void igb_configure(struct igb_adapter *);
116 static void igb_configure_tx(struct igb_adapter *);
117 static void igb_configure_rx(struct igb_adapter *);
118 static void igb_clean_all_tx_rings(struct igb_adapter *);
119 static void igb_clean_all_rx_rings(struct igb_adapter *);
120 static void igb_clean_tx_ring(struct igb_ring *);
121 static void igb_clean_rx_ring(struct igb_ring *);
122 static void igb_set_rx_mode(struct net_device *);
123 static void igb_update_phy_info(struct timer_list *);
124 static void igb_watchdog(struct timer_list *);
125 static void igb_watchdog_task(struct work_struct *);
126 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
127 static void igb_get_stats64(struct net_device *dev,
128 struct rtnl_link_stats64 *stats);
129 static int igb_change_mtu(struct net_device *, int);
130 static int igb_set_mac(struct net_device *, void *);
131 static void igb_set_uta(struct igb_adapter *adapter, bool set);
132 static irqreturn_t igb_intr(int irq, void *);
133 static irqreturn_t igb_intr_msi(int irq, void *);
134 static irqreturn_t igb_msix_other(int irq, void *);
135 static irqreturn_t igb_msix_ring(int irq, void *);
136 #ifdef CONFIG_IGB_DCA
137 static void igb_update_dca(struct igb_q_vector *);
138 static void igb_setup_dca(struct igb_adapter *);
139 #endif /* CONFIG_IGB_DCA */
140 static int igb_poll(struct napi_struct *, int);
141 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
142 static int igb_clean_rx_irq(struct igb_q_vector *, int);
143 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
144 static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
145 static void igb_reset_task(struct work_struct *);
146 static void igb_vlan_mode(struct net_device *netdev,
147 netdev_features_t features);
148 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
149 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
150 static void igb_restore_vlan(struct igb_adapter *);
151 static void igb_rar_set_index(struct igb_adapter *, u32);
152 static void igb_ping_all_vfs(struct igb_adapter *);
153 static void igb_msg_task(struct igb_adapter *);
154 static void igb_vmm_control(struct igb_adapter *);
155 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
156 static void igb_flush_mac_table(struct igb_adapter *);
157 static int igb_available_rars(struct igb_adapter *, u8);
158 static void igb_set_default_mac_filter(struct igb_adapter *);
159 static int igb_uc_sync(struct net_device *, const unsigned char *);
160 static int igb_uc_unsync(struct net_device *, const unsigned char *);
161 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
162 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
163 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
164 int vf, u16 vlan, u8 qos, __be16 vlan_proto);
165 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
166 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
167 bool setting);
168 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
169 bool setting);
170 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
171 struct ifla_vf_info *ivi);
172 static void igb_check_vf_rate_limit(struct igb_adapter *);
173 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
174 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
175
176 #ifdef CONFIG_PCI_IOV
177 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
178 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
179 static int igb_disable_sriov(struct pci_dev *dev);
180 static int igb_pci_disable_sriov(struct pci_dev *dev);
181 #endif
182
183 static int igb_suspend(struct device *);
184 static int igb_resume(struct device *);
185 static int igb_runtime_suspend(struct device *dev);
186 static int igb_runtime_resume(struct device *dev);
187 static int igb_runtime_idle(struct device *dev);
188 static const struct dev_pm_ops igb_pm_ops = {
189 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
190 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
191 igb_runtime_idle)
192 };
193 static void igb_shutdown(struct pci_dev *);
194 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
195 #ifdef CONFIG_IGB_DCA
196 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
197 static struct notifier_block dca_notifier = {
198 .notifier_call = igb_notify_dca,
199 .next = NULL,
200 .priority = 0
201 };
202 #endif
203 #ifdef CONFIG_PCI_IOV
204 static unsigned int max_vfs;
205 module_param(max_vfs, uint, 0);
206 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
207 #endif /* CONFIG_PCI_IOV */
208
209 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
210 pci_channel_state_t);
211 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
212 static void igb_io_resume(struct pci_dev *);
213
214 static const struct pci_error_handlers igb_err_handler = {
215 .error_detected = igb_io_error_detected,
216 .slot_reset = igb_io_slot_reset,
217 .resume = igb_io_resume,
218 };
219
220 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
221
222 static struct pci_driver igb_driver = {
223 .name = igb_driver_name,
224 .id_table = igb_pci_tbl,
225 .probe = igb_probe,
226 .remove = igb_remove,
227 #ifdef CONFIG_PM
228 .driver.pm = &igb_pm_ops,
229 #endif
230 .shutdown = igb_shutdown,
231 .sriov_configure = igb_pci_sriov_configure,
232 .err_handler = &igb_err_handler
233 };
234
235 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
236 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
237 MODULE_LICENSE("GPL v2");
238
239 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
240 static int debug = -1;
241 module_param(debug, int, 0);
242 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
243
244 struct igb_reg_info {
245 u32 ofs;
246 char *name;
247 };
248
249 static const struct igb_reg_info igb_reg_info_tbl[] = {
250
251 /* General Registers */
252 {E1000_CTRL, "CTRL"},
253 {E1000_STATUS, "STATUS"},
254 {E1000_CTRL_EXT, "CTRL_EXT"},
255
256 /* Interrupt Registers */
257 {E1000_ICR, "ICR"},
258
259 /* RX Registers */
260 {E1000_RCTL, "RCTL"},
261 {E1000_RDLEN(0), "RDLEN"},
262 {E1000_RDH(0), "RDH"},
263 {E1000_RDT(0), "RDT"},
264 {E1000_RXDCTL(0), "RXDCTL"},
265 {E1000_RDBAL(0), "RDBAL"},
266 {E1000_RDBAH(0), "RDBAH"},
267
268 /* TX Registers */
269 {E1000_TCTL, "TCTL"},
270 {E1000_TDBAL(0), "TDBAL"},
271 {E1000_TDBAH(0), "TDBAH"},
272 {E1000_TDLEN(0), "TDLEN"},
273 {E1000_TDH(0), "TDH"},
274 {E1000_TDT(0), "TDT"},
275 {E1000_TXDCTL(0), "TXDCTL"},
276 {E1000_TDFH, "TDFH"},
277 {E1000_TDFT, "TDFT"},
278 {E1000_TDFHS, "TDFHS"},
279 {E1000_TDFPC, "TDFPC"},
280
281 /* List Terminator */
282 {}
283 };
284
285 /* igb_regdump - register printout routine */
igb_regdump(struct e1000_hw * hw,struct igb_reg_info * reginfo)286 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
287 {
288 int n = 0;
289 char rname[16];
290 u32 regs[8];
291
292 switch (reginfo->ofs) {
293 case E1000_RDLEN(0):
294 for (n = 0; n < 4; n++)
295 regs[n] = rd32(E1000_RDLEN(n));
296 break;
297 case E1000_RDH(0):
298 for (n = 0; n < 4; n++)
299 regs[n] = rd32(E1000_RDH(n));
300 break;
301 case E1000_RDT(0):
302 for (n = 0; n < 4; n++)
303 regs[n] = rd32(E1000_RDT(n));
304 break;
305 case E1000_RXDCTL(0):
306 for (n = 0; n < 4; n++)
307 regs[n] = rd32(E1000_RXDCTL(n));
308 break;
309 case E1000_RDBAL(0):
310 for (n = 0; n < 4; n++)
311 regs[n] = rd32(E1000_RDBAL(n));
312 break;
313 case E1000_RDBAH(0):
314 for (n = 0; n < 4; n++)
315 regs[n] = rd32(E1000_RDBAH(n));
316 break;
317 case E1000_TDBAL(0):
318 for (n = 0; n < 4; n++)
319 regs[n] = rd32(E1000_TDBAL(n));
320 break;
321 case E1000_TDBAH(0):
322 for (n = 0; n < 4; n++)
323 regs[n] = rd32(E1000_TDBAH(n));
324 break;
325 case E1000_TDLEN(0):
326 for (n = 0; n < 4; n++)
327 regs[n] = rd32(E1000_TDLEN(n));
328 break;
329 case E1000_TDH(0):
330 for (n = 0; n < 4; n++)
331 regs[n] = rd32(E1000_TDH(n));
332 break;
333 case E1000_TDT(0):
334 for (n = 0; n < 4; n++)
335 regs[n] = rd32(E1000_TDT(n));
336 break;
337 case E1000_TXDCTL(0):
338 for (n = 0; n < 4; n++)
339 regs[n] = rd32(E1000_TXDCTL(n));
340 break;
341 default:
342 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
343 return;
344 }
345
346 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
347 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
348 regs[2], regs[3]);
349 }
350
351 /* igb_dump - Print registers, Tx-rings and Rx-rings */
igb_dump(struct igb_adapter * adapter)352 static void igb_dump(struct igb_adapter *adapter)
353 {
354 struct net_device *netdev = adapter->netdev;
355 struct e1000_hw *hw = &adapter->hw;
356 struct igb_reg_info *reginfo;
357 struct igb_ring *tx_ring;
358 union e1000_adv_tx_desc *tx_desc;
359 struct my_u0 { __le64 a; __le64 b; } *u0;
360 struct igb_ring *rx_ring;
361 union e1000_adv_rx_desc *rx_desc;
362 u32 staterr;
363 u16 i, n;
364
365 if (!netif_msg_hw(adapter))
366 return;
367
368 /* Print netdevice Info */
369 if (netdev) {
370 dev_info(&adapter->pdev->dev, "Net device Info\n");
371 pr_info("Device Name state trans_start\n");
372 pr_info("%-15s %016lX %016lX\n", netdev->name,
373 netdev->state, dev_trans_start(netdev));
374 }
375
376 /* Print Registers */
377 dev_info(&adapter->pdev->dev, "Register Dump\n");
378 pr_info(" Register Name Value\n");
379 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
380 reginfo->name; reginfo++) {
381 igb_regdump(hw, reginfo);
382 }
383
384 /* Print TX Ring Summary */
385 if (!netdev || !netif_running(netdev))
386 goto exit;
387
388 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
389 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
390 for (n = 0; n < adapter->num_tx_queues; n++) {
391 struct igb_tx_buffer *buffer_info;
392 tx_ring = adapter->tx_ring[n];
393 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
394 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
395 n, tx_ring->next_to_use, tx_ring->next_to_clean,
396 (u64)dma_unmap_addr(buffer_info, dma),
397 dma_unmap_len(buffer_info, len),
398 buffer_info->next_to_watch,
399 (u64)buffer_info->time_stamp);
400 }
401
402 /* Print TX Rings */
403 if (!netif_msg_tx_done(adapter))
404 goto rx_ring_summary;
405
406 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
407
408 /* Transmit Descriptor Formats
409 *
410 * Advanced Transmit Descriptor
411 * +--------------------------------------------------------------+
412 * 0 | Buffer Address [63:0] |
413 * +--------------------------------------------------------------+
414 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
415 * +--------------------------------------------------------------+
416 * 63 46 45 40 39 38 36 35 32 31 24 15 0
417 */
418
419 for (n = 0; n < adapter->num_tx_queues; n++) {
420 tx_ring = adapter->tx_ring[n];
421 pr_info("------------------------------------\n");
422 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
423 pr_info("------------------------------------\n");
424 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
425
426 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
427 const char *next_desc;
428 struct igb_tx_buffer *buffer_info;
429 tx_desc = IGB_TX_DESC(tx_ring, i);
430 buffer_info = &tx_ring->tx_buffer_info[i];
431 u0 = (struct my_u0 *)tx_desc;
432 if (i == tx_ring->next_to_use &&
433 i == tx_ring->next_to_clean)
434 next_desc = " NTC/U";
435 else if (i == tx_ring->next_to_use)
436 next_desc = " NTU";
437 else if (i == tx_ring->next_to_clean)
438 next_desc = " NTC";
439 else
440 next_desc = "";
441
442 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
443 i, le64_to_cpu(u0->a),
444 le64_to_cpu(u0->b),
445 (u64)dma_unmap_addr(buffer_info, dma),
446 dma_unmap_len(buffer_info, len),
447 buffer_info->next_to_watch,
448 (u64)buffer_info->time_stamp,
449 buffer_info->skb, next_desc);
450
451 if (netif_msg_pktdata(adapter) && buffer_info->skb)
452 print_hex_dump(KERN_INFO, "",
453 DUMP_PREFIX_ADDRESS,
454 16, 1, buffer_info->skb->data,
455 dma_unmap_len(buffer_info, len),
456 true);
457 }
458 }
459
460 /* Print RX Rings Summary */
461 rx_ring_summary:
462 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
463 pr_info("Queue [NTU] [NTC]\n");
464 for (n = 0; n < adapter->num_rx_queues; n++) {
465 rx_ring = adapter->rx_ring[n];
466 pr_info(" %5d %5X %5X\n",
467 n, rx_ring->next_to_use, rx_ring->next_to_clean);
468 }
469
470 /* Print RX Rings */
471 if (!netif_msg_rx_status(adapter))
472 goto exit;
473
474 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
475
476 /* Advanced Receive Descriptor (Read) Format
477 * 63 1 0
478 * +-----------------------------------------------------+
479 * 0 | Packet Buffer Address [63:1] |A0/NSE|
480 * +----------------------------------------------+------+
481 * 8 | Header Buffer Address [63:1] | DD |
482 * +-----------------------------------------------------+
483 *
484 *
485 * Advanced Receive Descriptor (Write-Back) Format
486 *
487 * 63 48 47 32 31 30 21 20 17 16 4 3 0
488 * +------------------------------------------------------+
489 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
490 * | Checksum Ident | | | | Type | Type |
491 * +------------------------------------------------------+
492 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
493 * +------------------------------------------------------+
494 * 63 48 47 32 31 20 19 0
495 */
496
497 for (n = 0; n < adapter->num_rx_queues; n++) {
498 rx_ring = adapter->rx_ring[n];
499 pr_info("------------------------------------\n");
500 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
501 pr_info("------------------------------------\n");
502 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
503 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
504
505 for (i = 0; i < rx_ring->count; i++) {
506 const char *next_desc;
507 struct igb_rx_buffer *buffer_info;
508 buffer_info = &rx_ring->rx_buffer_info[i];
509 rx_desc = IGB_RX_DESC(rx_ring, i);
510 u0 = (struct my_u0 *)rx_desc;
511 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
512
513 if (i == rx_ring->next_to_use)
514 next_desc = " NTU";
515 else if (i == rx_ring->next_to_clean)
516 next_desc = " NTC";
517 else
518 next_desc = "";
519
520 if (staterr & E1000_RXD_STAT_DD) {
521 /* Descriptor Done */
522 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
523 "RWB", i,
524 le64_to_cpu(u0->a),
525 le64_to_cpu(u0->b),
526 next_desc);
527 } else {
528 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
529 "R ", i,
530 le64_to_cpu(u0->a),
531 le64_to_cpu(u0->b),
532 (u64)buffer_info->dma,
533 next_desc);
534
535 if (netif_msg_pktdata(adapter) &&
536 buffer_info->dma && buffer_info->page) {
537 print_hex_dump(KERN_INFO, "",
538 DUMP_PREFIX_ADDRESS,
539 16, 1,
540 page_address(buffer_info->page) +
541 buffer_info->page_offset,
542 igb_rx_bufsz(rx_ring), true);
543 }
544 }
545 }
546 }
547
548 exit:
549 return;
550 }
551
552 /**
553 * igb_get_i2c_data - Reads the I2C SDA data bit
554 * @data: opaque pointer to adapter struct
555 *
556 * Returns the I2C data bit value
557 **/
igb_get_i2c_data(void * data)558 static int igb_get_i2c_data(void *data)
559 {
560 struct igb_adapter *adapter = (struct igb_adapter *)data;
561 struct e1000_hw *hw = &adapter->hw;
562 s32 i2cctl = rd32(E1000_I2CPARAMS);
563
564 return !!(i2cctl & E1000_I2C_DATA_IN);
565 }
566
567 /**
568 * igb_set_i2c_data - Sets the I2C data bit
569 * @data: pointer to hardware structure
570 * @state: I2C data value (0 or 1) to set
571 *
572 * Sets the I2C data bit
573 **/
igb_set_i2c_data(void * data,int state)574 static void igb_set_i2c_data(void *data, int state)
575 {
576 struct igb_adapter *adapter = (struct igb_adapter *)data;
577 struct e1000_hw *hw = &adapter->hw;
578 s32 i2cctl = rd32(E1000_I2CPARAMS);
579
580 if (state) {
581 i2cctl |= E1000_I2C_DATA_OUT | E1000_I2C_DATA_OE_N;
582 } else {
583 i2cctl &= ~E1000_I2C_DATA_OE_N;
584 i2cctl &= ~E1000_I2C_DATA_OUT;
585 }
586
587 wr32(E1000_I2CPARAMS, i2cctl);
588 wrfl();
589 }
590
591 /**
592 * igb_set_i2c_clk - Sets the I2C SCL clock
593 * @data: pointer to hardware structure
594 * @state: state to set clock
595 *
596 * Sets the I2C clock line to state
597 **/
igb_set_i2c_clk(void * data,int state)598 static void igb_set_i2c_clk(void *data, int state)
599 {
600 struct igb_adapter *adapter = (struct igb_adapter *)data;
601 struct e1000_hw *hw = &adapter->hw;
602 s32 i2cctl = rd32(E1000_I2CPARAMS);
603
604 if (state) {
605 i2cctl |= E1000_I2C_CLK_OUT | E1000_I2C_CLK_OE_N;
606 } else {
607 i2cctl &= ~E1000_I2C_CLK_OUT;
608 i2cctl &= ~E1000_I2C_CLK_OE_N;
609 }
610 wr32(E1000_I2CPARAMS, i2cctl);
611 wrfl();
612 }
613
614 /**
615 * igb_get_i2c_clk - Gets the I2C SCL clock state
616 * @data: pointer to hardware structure
617 *
618 * Gets the I2C clock state
619 **/
igb_get_i2c_clk(void * data)620 static int igb_get_i2c_clk(void *data)
621 {
622 struct igb_adapter *adapter = (struct igb_adapter *)data;
623 struct e1000_hw *hw = &adapter->hw;
624 s32 i2cctl = rd32(E1000_I2CPARAMS);
625
626 return !!(i2cctl & E1000_I2C_CLK_IN);
627 }
628
629 static const struct i2c_algo_bit_data igb_i2c_algo = {
630 .setsda = igb_set_i2c_data,
631 .setscl = igb_set_i2c_clk,
632 .getsda = igb_get_i2c_data,
633 .getscl = igb_get_i2c_clk,
634 .udelay = 5,
635 .timeout = 20,
636 };
637
638 /**
639 * igb_get_hw_dev - return device
640 * @hw: pointer to hardware structure
641 *
642 * used by hardware layer to print debugging information
643 **/
igb_get_hw_dev(struct e1000_hw * hw)644 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
645 {
646 struct igb_adapter *adapter = hw->back;
647 return adapter->netdev;
648 }
649
650 /**
651 * igb_init_module - Driver Registration Routine
652 *
653 * igb_init_module is the first routine called when the driver is
654 * loaded. All it does is register with the PCI subsystem.
655 **/
igb_init_module(void)656 static int __init igb_init_module(void)
657 {
658 int ret;
659
660 pr_info("%s\n", igb_driver_string);
661 pr_info("%s\n", igb_copyright);
662
663 #ifdef CONFIG_IGB_DCA
664 dca_register_notify(&dca_notifier);
665 #endif
666 ret = pci_register_driver(&igb_driver);
667 return ret;
668 }
669
670 module_init(igb_init_module);
671
672 /**
673 * igb_exit_module - Driver Exit Cleanup Routine
674 *
675 * igb_exit_module is called just before the driver is removed
676 * from memory.
677 **/
igb_exit_module(void)678 static void __exit igb_exit_module(void)
679 {
680 #ifdef CONFIG_IGB_DCA
681 dca_unregister_notify(&dca_notifier);
682 #endif
683 pci_unregister_driver(&igb_driver);
684 }
685
686 module_exit(igb_exit_module);
687
688 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
689 /**
690 * igb_cache_ring_register - Descriptor ring to register mapping
691 * @adapter: board private structure to initialize
692 *
693 * Once we know the feature-set enabled for the device, we'll cache
694 * the register offset the descriptor ring is assigned to.
695 **/
igb_cache_ring_register(struct igb_adapter * adapter)696 static void igb_cache_ring_register(struct igb_adapter *adapter)
697 {
698 int i = 0, j = 0;
699 u32 rbase_offset = adapter->vfs_allocated_count;
700
701 switch (adapter->hw.mac.type) {
702 case e1000_82576:
703 /* The queues are allocated for virtualization such that VF 0
704 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
705 * In order to avoid collision we start at the first free queue
706 * and continue consuming queues in the same sequence
707 */
708 if (adapter->vfs_allocated_count) {
709 for (; i < adapter->rss_queues; i++)
710 adapter->rx_ring[i]->reg_idx = rbase_offset +
711 Q_IDX_82576(i);
712 }
713 fallthrough;
714 case e1000_82575:
715 case e1000_82580:
716 case e1000_i350:
717 case e1000_i354:
718 case e1000_i210:
719 case e1000_i211:
720 default:
721 for (; i < adapter->num_rx_queues; i++)
722 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
723 for (; j < adapter->num_tx_queues; j++)
724 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
725 break;
726 }
727 }
728
igb_rd32(struct e1000_hw * hw,u32 reg)729 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
730 {
731 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
732 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
733 u32 value = 0;
734
735 if (E1000_REMOVED(hw_addr))
736 return ~value;
737
738 value = readl(&hw_addr[reg]);
739
740 /* reads should not return all F's */
741 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
742 struct net_device *netdev = igb->netdev;
743 hw->hw_addr = NULL;
744 netdev_err(netdev, "PCIe link lost\n");
745 WARN(pci_device_is_present(igb->pdev),
746 "igb: Failed to read reg 0x%x!\n", reg);
747 }
748
749 return value;
750 }
751
752 /**
753 * igb_write_ivar - configure ivar for given MSI-X vector
754 * @hw: pointer to the HW structure
755 * @msix_vector: vector number we are allocating to a given ring
756 * @index: row index of IVAR register to write within IVAR table
757 * @offset: column offset of in IVAR, should be multiple of 8
758 *
759 * This function is intended to handle the writing of the IVAR register
760 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
761 * each containing an cause allocation for an Rx and Tx ring, and a
762 * variable number of rows depending on the number of queues supported.
763 **/
igb_write_ivar(struct e1000_hw * hw,int msix_vector,int index,int offset)764 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
765 int index, int offset)
766 {
767 u32 ivar = array_rd32(E1000_IVAR0, index);
768
769 /* clear any bits that are currently set */
770 ivar &= ~((u32)0xFF << offset);
771
772 /* write vector and valid bit */
773 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
774
775 array_wr32(E1000_IVAR0, index, ivar);
776 }
777
778 #define IGB_N0_QUEUE -1
igb_assign_vector(struct igb_q_vector * q_vector,int msix_vector)779 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
780 {
781 struct igb_adapter *adapter = q_vector->adapter;
782 struct e1000_hw *hw = &adapter->hw;
783 int rx_queue = IGB_N0_QUEUE;
784 int tx_queue = IGB_N0_QUEUE;
785 u32 msixbm = 0;
786
787 if (q_vector->rx.ring)
788 rx_queue = q_vector->rx.ring->reg_idx;
789 if (q_vector->tx.ring)
790 tx_queue = q_vector->tx.ring->reg_idx;
791
792 switch (hw->mac.type) {
793 case e1000_82575:
794 /* The 82575 assigns vectors using a bitmask, which matches the
795 * bitmask for the EICR/EIMS/EIMC registers. To assign one
796 * or more queues to a vector, we write the appropriate bits
797 * into the MSIXBM register for that vector.
798 */
799 if (rx_queue > IGB_N0_QUEUE)
800 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
801 if (tx_queue > IGB_N0_QUEUE)
802 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
803 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
804 msixbm |= E1000_EIMS_OTHER;
805 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
806 q_vector->eims_value = msixbm;
807 break;
808 case e1000_82576:
809 /* 82576 uses a table that essentially consists of 2 columns
810 * with 8 rows. The ordering is column-major so we use the
811 * lower 3 bits as the row index, and the 4th bit as the
812 * column offset.
813 */
814 if (rx_queue > IGB_N0_QUEUE)
815 igb_write_ivar(hw, msix_vector,
816 rx_queue & 0x7,
817 (rx_queue & 0x8) << 1);
818 if (tx_queue > IGB_N0_QUEUE)
819 igb_write_ivar(hw, msix_vector,
820 tx_queue & 0x7,
821 ((tx_queue & 0x8) << 1) + 8);
822 q_vector->eims_value = BIT(msix_vector);
823 break;
824 case e1000_82580:
825 case e1000_i350:
826 case e1000_i354:
827 case e1000_i210:
828 case e1000_i211:
829 /* On 82580 and newer adapters the scheme is similar to 82576
830 * however instead of ordering column-major we have things
831 * ordered row-major. So we traverse the table by using
832 * bit 0 as the column offset, and the remaining bits as the
833 * row index.
834 */
835 if (rx_queue > IGB_N0_QUEUE)
836 igb_write_ivar(hw, msix_vector,
837 rx_queue >> 1,
838 (rx_queue & 0x1) << 4);
839 if (tx_queue > IGB_N0_QUEUE)
840 igb_write_ivar(hw, msix_vector,
841 tx_queue >> 1,
842 ((tx_queue & 0x1) << 4) + 8);
843 q_vector->eims_value = BIT(msix_vector);
844 break;
845 default:
846 BUG();
847 break;
848 }
849
850 /* add q_vector eims value to global eims_enable_mask */
851 adapter->eims_enable_mask |= q_vector->eims_value;
852
853 /* configure q_vector to set itr on first interrupt */
854 q_vector->set_itr = 1;
855 }
856
857 /**
858 * igb_configure_msix - Configure MSI-X hardware
859 * @adapter: board private structure to initialize
860 *
861 * igb_configure_msix sets up the hardware to properly
862 * generate MSI-X interrupts.
863 **/
igb_configure_msix(struct igb_adapter * adapter)864 static void igb_configure_msix(struct igb_adapter *adapter)
865 {
866 u32 tmp;
867 int i, vector = 0;
868 struct e1000_hw *hw = &adapter->hw;
869
870 adapter->eims_enable_mask = 0;
871
872 /* set vector for other causes, i.e. link changes */
873 switch (hw->mac.type) {
874 case e1000_82575:
875 tmp = rd32(E1000_CTRL_EXT);
876 /* enable MSI-X PBA support*/
877 tmp |= E1000_CTRL_EXT_PBA_CLR;
878
879 /* Auto-Mask interrupts upon ICR read. */
880 tmp |= E1000_CTRL_EXT_EIAME;
881 tmp |= E1000_CTRL_EXT_IRCA;
882
883 wr32(E1000_CTRL_EXT, tmp);
884
885 /* enable msix_other interrupt */
886 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
887 adapter->eims_other = E1000_EIMS_OTHER;
888
889 break;
890
891 case e1000_82576:
892 case e1000_82580:
893 case e1000_i350:
894 case e1000_i354:
895 case e1000_i210:
896 case e1000_i211:
897 /* Turn on MSI-X capability first, or our settings
898 * won't stick. And it will take days to debug.
899 */
900 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
901 E1000_GPIE_PBA | E1000_GPIE_EIAME |
902 E1000_GPIE_NSICR);
903
904 /* enable msix_other interrupt */
905 adapter->eims_other = BIT(vector);
906 tmp = (vector++ | E1000_IVAR_VALID) << 8;
907
908 wr32(E1000_IVAR_MISC, tmp);
909 break;
910 default:
911 /* do nothing, since nothing else supports MSI-X */
912 break;
913 } /* switch (hw->mac.type) */
914
915 adapter->eims_enable_mask |= adapter->eims_other;
916
917 for (i = 0; i < adapter->num_q_vectors; i++)
918 igb_assign_vector(adapter->q_vector[i], vector++);
919
920 wrfl();
921 }
922
923 /**
924 * igb_request_msix - Initialize MSI-X interrupts
925 * @adapter: board private structure to initialize
926 *
927 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
928 * kernel.
929 **/
igb_request_msix(struct igb_adapter * adapter)930 static int igb_request_msix(struct igb_adapter *adapter)
931 {
932 unsigned int num_q_vectors = adapter->num_q_vectors;
933 struct net_device *netdev = adapter->netdev;
934 int i, err = 0, vector = 0, free_vector = 0;
935
936 err = request_irq(adapter->msix_entries[vector].vector,
937 igb_msix_other, 0, netdev->name, adapter);
938 if (err)
939 goto err_out;
940
941 if (num_q_vectors > MAX_Q_VECTORS) {
942 num_q_vectors = MAX_Q_VECTORS;
943 dev_warn(&adapter->pdev->dev,
944 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
945 adapter->num_q_vectors, MAX_Q_VECTORS);
946 }
947 for (i = 0; i < num_q_vectors; i++) {
948 struct igb_q_vector *q_vector = adapter->q_vector[i];
949
950 vector++;
951
952 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
953
954 if (q_vector->rx.ring && q_vector->tx.ring)
955 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
956 q_vector->rx.ring->queue_index);
957 else if (q_vector->tx.ring)
958 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
959 q_vector->tx.ring->queue_index);
960 else if (q_vector->rx.ring)
961 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
962 q_vector->rx.ring->queue_index);
963 else
964 sprintf(q_vector->name, "%s-unused", netdev->name);
965
966 err = request_irq(adapter->msix_entries[vector].vector,
967 igb_msix_ring, 0, q_vector->name,
968 q_vector);
969 if (err)
970 goto err_free;
971 }
972
973 igb_configure_msix(adapter);
974 return 0;
975
976 err_free:
977 /* free already assigned IRQs */
978 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
979
980 vector--;
981 for (i = 0; i < vector; i++) {
982 free_irq(adapter->msix_entries[free_vector++].vector,
983 adapter->q_vector[i]);
984 }
985 err_out:
986 return err;
987 }
988
989 /**
990 * igb_free_q_vector - Free memory allocated for specific interrupt vector
991 * @adapter: board private structure to initialize
992 * @v_idx: Index of vector to be freed
993 *
994 * This function frees the memory allocated to the q_vector.
995 **/
igb_free_q_vector(struct igb_adapter * adapter,int v_idx)996 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
997 {
998 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
999
1000 adapter->q_vector[v_idx] = NULL;
1001
1002 /* igb_get_stats64() might access the rings on this vector,
1003 * we must wait a grace period before freeing it.
1004 */
1005 if (q_vector)
1006 kfree_rcu(q_vector, rcu);
1007 }
1008
1009 /**
1010 * igb_reset_q_vector - Reset config for interrupt vector
1011 * @adapter: board private structure to initialize
1012 * @v_idx: Index of vector to be reset
1013 *
1014 * If NAPI is enabled it will delete any references to the
1015 * NAPI struct. This is preparation for igb_free_q_vector.
1016 **/
igb_reset_q_vector(struct igb_adapter * adapter,int v_idx)1017 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1018 {
1019 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1020
1021 /* Coming from igb_set_interrupt_capability, the vectors are not yet
1022 * allocated. So, q_vector is NULL so we should stop here.
1023 */
1024 if (!q_vector)
1025 return;
1026
1027 if (q_vector->tx.ring)
1028 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1029
1030 if (q_vector->rx.ring)
1031 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1032
1033 netif_napi_del(&q_vector->napi);
1034
1035 }
1036
igb_reset_interrupt_capability(struct igb_adapter * adapter)1037 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1038 {
1039 int v_idx = adapter->num_q_vectors;
1040
1041 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1042 pci_disable_msix(adapter->pdev);
1043 else if (adapter->flags & IGB_FLAG_HAS_MSI)
1044 pci_disable_msi(adapter->pdev);
1045
1046 while (v_idx--)
1047 igb_reset_q_vector(adapter, v_idx);
1048 }
1049
1050 /**
1051 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1052 * @adapter: board private structure to initialize
1053 *
1054 * This function frees the memory allocated to the q_vectors. In addition if
1055 * NAPI is enabled it will delete any references to the NAPI struct prior
1056 * to freeing the q_vector.
1057 **/
igb_free_q_vectors(struct igb_adapter * adapter)1058 static void igb_free_q_vectors(struct igb_adapter *adapter)
1059 {
1060 int v_idx = adapter->num_q_vectors;
1061
1062 adapter->num_tx_queues = 0;
1063 adapter->num_rx_queues = 0;
1064 adapter->num_q_vectors = 0;
1065
1066 while (v_idx--) {
1067 igb_reset_q_vector(adapter, v_idx);
1068 igb_free_q_vector(adapter, v_idx);
1069 }
1070 }
1071
1072 /**
1073 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1074 * @adapter: board private structure to initialize
1075 *
1076 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1077 * MSI-X interrupts allocated.
1078 */
igb_clear_interrupt_scheme(struct igb_adapter * adapter)1079 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1080 {
1081 igb_free_q_vectors(adapter);
1082 igb_reset_interrupt_capability(adapter);
1083 }
1084
1085 /**
1086 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1087 * @adapter: board private structure to initialize
1088 * @msix: boolean value of MSIX capability
1089 *
1090 * Attempt to configure interrupts using the best available
1091 * capabilities of the hardware and kernel.
1092 **/
igb_set_interrupt_capability(struct igb_adapter * adapter,bool msix)1093 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1094 {
1095 int err;
1096 int numvecs, i;
1097
1098 if (!msix)
1099 goto msi_only;
1100 adapter->flags |= IGB_FLAG_HAS_MSIX;
1101
1102 /* Number of supported queues. */
1103 adapter->num_rx_queues = adapter->rss_queues;
1104 if (adapter->vfs_allocated_count)
1105 adapter->num_tx_queues = 1;
1106 else
1107 adapter->num_tx_queues = adapter->rss_queues;
1108
1109 /* start with one vector for every Rx queue */
1110 numvecs = adapter->num_rx_queues;
1111
1112 /* if Tx handler is separate add 1 for every Tx queue */
1113 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1114 numvecs += adapter->num_tx_queues;
1115
1116 /* store the number of vectors reserved for queues */
1117 adapter->num_q_vectors = numvecs;
1118
1119 /* add 1 vector for link status interrupts */
1120 numvecs++;
1121 for (i = 0; i < numvecs; i++)
1122 adapter->msix_entries[i].entry = i;
1123
1124 err = pci_enable_msix_range(adapter->pdev,
1125 adapter->msix_entries,
1126 numvecs,
1127 numvecs);
1128 if (err > 0)
1129 return;
1130
1131 igb_reset_interrupt_capability(adapter);
1132
1133 /* If we can't do MSI-X, try MSI */
1134 msi_only:
1135 adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1136 #ifdef CONFIG_PCI_IOV
1137 /* disable SR-IOV for non MSI-X configurations */
1138 if (adapter->vf_data) {
1139 struct e1000_hw *hw = &adapter->hw;
1140 /* disable iov and allow time for transactions to clear */
1141 pci_disable_sriov(adapter->pdev);
1142 msleep(500);
1143
1144 kfree(adapter->vf_mac_list);
1145 adapter->vf_mac_list = NULL;
1146 kfree(adapter->vf_data);
1147 adapter->vf_data = NULL;
1148 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1149 wrfl();
1150 msleep(100);
1151 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1152 }
1153 #endif
1154 adapter->vfs_allocated_count = 0;
1155 adapter->rss_queues = 1;
1156 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1157 adapter->num_rx_queues = 1;
1158 adapter->num_tx_queues = 1;
1159 adapter->num_q_vectors = 1;
1160 if (!pci_enable_msi(adapter->pdev))
1161 adapter->flags |= IGB_FLAG_HAS_MSI;
1162 }
1163
igb_add_ring(struct igb_ring * ring,struct igb_ring_container * head)1164 static void igb_add_ring(struct igb_ring *ring,
1165 struct igb_ring_container *head)
1166 {
1167 head->ring = ring;
1168 head->count++;
1169 }
1170
1171 /**
1172 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1173 * @adapter: board private structure to initialize
1174 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1175 * @v_idx: index of vector in adapter struct
1176 * @txr_count: total number of Tx rings to allocate
1177 * @txr_idx: index of first Tx ring to allocate
1178 * @rxr_count: total number of Rx rings to allocate
1179 * @rxr_idx: index of first Rx ring to allocate
1180 *
1181 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1182 **/
igb_alloc_q_vector(struct igb_adapter * adapter,int v_count,int v_idx,int txr_count,int txr_idx,int rxr_count,int rxr_idx)1183 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1184 int v_count, int v_idx,
1185 int txr_count, int txr_idx,
1186 int rxr_count, int rxr_idx)
1187 {
1188 struct igb_q_vector *q_vector;
1189 struct igb_ring *ring;
1190 int ring_count;
1191 size_t size;
1192
1193 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1194 if (txr_count > 1 || rxr_count > 1)
1195 return -ENOMEM;
1196
1197 ring_count = txr_count + rxr_count;
1198 size = struct_size(q_vector, ring, ring_count);
1199
1200 /* allocate q_vector and rings */
1201 q_vector = adapter->q_vector[v_idx];
1202 if (!q_vector) {
1203 q_vector = kzalloc(size, GFP_KERNEL);
1204 } else if (size > ksize(q_vector)) {
1205 kfree_rcu(q_vector, rcu);
1206 q_vector = kzalloc(size, GFP_KERNEL);
1207 } else {
1208 memset(q_vector, 0, size);
1209 }
1210 if (!q_vector)
1211 return -ENOMEM;
1212
1213 /* initialize NAPI */
1214 netif_napi_add(adapter->netdev, &q_vector->napi,
1215 igb_poll, 64);
1216
1217 /* tie q_vector and adapter together */
1218 adapter->q_vector[v_idx] = q_vector;
1219 q_vector->adapter = adapter;
1220
1221 /* initialize work limits */
1222 q_vector->tx.work_limit = adapter->tx_work_limit;
1223
1224 /* initialize ITR configuration */
1225 q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1226 q_vector->itr_val = IGB_START_ITR;
1227
1228 /* initialize pointer to rings */
1229 ring = q_vector->ring;
1230
1231 /* intialize ITR */
1232 if (rxr_count) {
1233 /* rx or rx/tx vector */
1234 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1235 q_vector->itr_val = adapter->rx_itr_setting;
1236 } else {
1237 /* tx only vector */
1238 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1239 q_vector->itr_val = adapter->tx_itr_setting;
1240 }
1241
1242 if (txr_count) {
1243 /* assign generic ring traits */
1244 ring->dev = &adapter->pdev->dev;
1245 ring->netdev = adapter->netdev;
1246
1247 /* configure backlink on ring */
1248 ring->q_vector = q_vector;
1249
1250 /* update q_vector Tx values */
1251 igb_add_ring(ring, &q_vector->tx);
1252
1253 /* For 82575, context index must be unique per ring. */
1254 if (adapter->hw.mac.type == e1000_82575)
1255 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1256
1257 /* apply Tx specific ring traits */
1258 ring->count = adapter->tx_ring_count;
1259 ring->queue_index = txr_idx;
1260
1261 ring->cbs_enable = false;
1262 ring->idleslope = 0;
1263 ring->sendslope = 0;
1264 ring->hicredit = 0;
1265 ring->locredit = 0;
1266
1267 u64_stats_init(&ring->tx_syncp);
1268 u64_stats_init(&ring->tx_syncp2);
1269
1270 /* assign ring to adapter */
1271 adapter->tx_ring[txr_idx] = ring;
1272
1273 /* push pointer to next ring */
1274 ring++;
1275 }
1276
1277 if (rxr_count) {
1278 /* assign generic ring traits */
1279 ring->dev = &adapter->pdev->dev;
1280 ring->netdev = adapter->netdev;
1281
1282 /* configure backlink on ring */
1283 ring->q_vector = q_vector;
1284
1285 /* update q_vector Rx values */
1286 igb_add_ring(ring, &q_vector->rx);
1287
1288 /* set flag indicating ring supports SCTP checksum offload */
1289 if (adapter->hw.mac.type >= e1000_82576)
1290 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1291
1292 /* On i350, i354, i210, and i211, loopback VLAN packets
1293 * have the tag byte-swapped.
1294 */
1295 if (adapter->hw.mac.type >= e1000_i350)
1296 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1297
1298 /* apply Rx specific ring traits */
1299 ring->count = adapter->rx_ring_count;
1300 ring->queue_index = rxr_idx;
1301
1302 u64_stats_init(&ring->rx_syncp);
1303
1304 /* assign ring to adapter */
1305 adapter->rx_ring[rxr_idx] = ring;
1306 }
1307
1308 return 0;
1309 }
1310
1311
1312 /**
1313 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1314 * @adapter: board private structure to initialize
1315 *
1316 * We allocate one q_vector per queue interrupt. If allocation fails we
1317 * return -ENOMEM.
1318 **/
igb_alloc_q_vectors(struct igb_adapter * adapter)1319 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1320 {
1321 int q_vectors = adapter->num_q_vectors;
1322 int rxr_remaining = adapter->num_rx_queues;
1323 int txr_remaining = adapter->num_tx_queues;
1324 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1325 int err;
1326
1327 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1328 for (; rxr_remaining; v_idx++) {
1329 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1330 0, 0, 1, rxr_idx);
1331
1332 if (err)
1333 goto err_out;
1334
1335 /* update counts and index */
1336 rxr_remaining--;
1337 rxr_idx++;
1338 }
1339 }
1340
1341 for (; v_idx < q_vectors; v_idx++) {
1342 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1343 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1344
1345 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1346 tqpv, txr_idx, rqpv, rxr_idx);
1347
1348 if (err)
1349 goto err_out;
1350
1351 /* update counts and index */
1352 rxr_remaining -= rqpv;
1353 txr_remaining -= tqpv;
1354 rxr_idx++;
1355 txr_idx++;
1356 }
1357
1358 return 0;
1359
1360 err_out:
1361 adapter->num_tx_queues = 0;
1362 adapter->num_rx_queues = 0;
1363 adapter->num_q_vectors = 0;
1364
1365 while (v_idx--)
1366 igb_free_q_vector(adapter, v_idx);
1367
1368 return -ENOMEM;
1369 }
1370
1371 /**
1372 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1373 * @adapter: board private structure to initialize
1374 * @msix: boolean value of MSIX capability
1375 *
1376 * This function initializes the interrupts and allocates all of the queues.
1377 **/
igb_init_interrupt_scheme(struct igb_adapter * adapter,bool msix)1378 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1379 {
1380 struct pci_dev *pdev = adapter->pdev;
1381 int err;
1382
1383 igb_set_interrupt_capability(adapter, msix);
1384
1385 err = igb_alloc_q_vectors(adapter);
1386 if (err) {
1387 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1388 goto err_alloc_q_vectors;
1389 }
1390
1391 igb_cache_ring_register(adapter);
1392
1393 return 0;
1394
1395 err_alloc_q_vectors:
1396 igb_reset_interrupt_capability(adapter);
1397 return err;
1398 }
1399
1400 /**
1401 * igb_request_irq - initialize interrupts
1402 * @adapter: board private structure to initialize
1403 *
1404 * Attempts to configure interrupts using the best available
1405 * capabilities of the hardware and kernel.
1406 **/
igb_request_irq(struct igb_adapter * adapter)1407 static int igb_request_irq(struct igb_adapter *adapter)
1408 {
1409 struct net_device *netdev = adapter->netdev;
1410 struct pci_dev *pdev = adapter->pdev;
1411 int err = 0;
1412
1413 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1414 err = igb_request_msix(adapter);
1415 if (!err)
1416 goto request_done;
1417 /* fall back to MSI */
1418 igb_free_all_tx_resources(adapter);
1419 igb_free_all_rx_resources(adapter);
1420
1421 igb_clear_interrupt_scheme(adapter);
1422 err = igb_init_interrupt_scheme(adapter, false);
1423 if (err)
1424 goto request_done;
1425
1426 igb_setup_all_tx_resources(adapter);
1427 igb_setup_all_rx_resources(adapter);
1428 igb_configure(adapter);
1429 }
1430
1431 igb_assign_vector(adapter->q_vector[0], 0);
1432
1433 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1434 err = request_irq(pdev->irq, igb_intr_msi, 0,
1435 netdev->name, adapter);
1436 if (!err)
1437 goto request_done;
1438
1439 /* fall back to legacy interrupts */
1440 igb_reset_interrupt_capability(adapter);
1441 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1442 }
1443
1444 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1445 netdev->name, adapter);
1446
1447 if (err)
1448 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1449 err);
1450
1451 request_done:
1452 return err;
1453 }
1454
igb_free_irq(struct igb_adapter * adapter)1455 static void igb_free_irq(struct igb_adapter *adapter)
1456 {
1457 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1458 int vector = 0, i;
1459
1460 free_irq(adapter->msix_entries[vector++].vector, adapter);
1461
1462 for (i = 0; i < adapter->num_q_vectors; i++)
1463 free_irq(adapter->msix_entries[vector++].vector,
1464 adapter->q_vector[i]);
1465 } else {
1466 free_irq(adapter->pdev->irq, adapter);
1467 }
1468 }
1469
1470 /**
1471 * igb_irq_disable - Mask off interrupt generation on the NIC
1472 * @adapter: board private structure
1473 **/
igb_irq_disable(struct igb_adapter * adapter)1474 static void igb_irq_disable(struct igb_adapter *adapter)
1475 {
1476 struct e1000_hw *hw = &adapter->hw;
1477
1478 /* we need to be careful when disabling interrupts. The VFs are also
1479 * mapped into these registers and so clearing the bits can cause
1480 * issues on the VF drivers so we only need to clear what we set
1481 */
1482 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1483 u32 regval = rd32(E1000_EIAM);
1484
1485 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1486 wr32(E1000_EIMC, adapter->eims_enable_mask);
1487 regval = rd32(E1000_EIAC);
1488 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1489 }
1490
1491 wr32(E1000_IAM, 0);
1492 wr32(E1000_IMC, ~0);
1493 wrfl();
1494 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1495 int i;
1496
1497 for (i = 0; i < adapter->num_q_vectors; i++)
1498 synchronize_irq(adapter->msix_entries[i].vector);
1499 } else {
1500 synchronize_irq(adapter->pdev->irq);
1501 }
1502 }
1503
1504 /**
1505 * igb_irq_enable - Enable default interrupt generation settings
1506 * @adapter: board private structure
1507 **/
igb_irq_enable(struct igb_adapter * adapter)1508 static void igb_irq_enable(struct igb_adapter *adapter)
1509 {
1510 struct e1000_hw *hw = &adapter->hw;
1511
1512 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1513 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1514 u32 regval = rd32(E1000_EIAC);
1515
1516 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1517 regval = rd32(E1000_EIAM);
1518 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1519 wr32(E1000_EIMS, adapter->eims_enable_mask);
1520 if (adapter->vfs_allocated_count) {
1521 wr32(E1000_MBVFIMR, 0xFF);
1522 ims |= E1000_IMS_VMMB;
1523 }
1524 wr32(E1000_IMS, ims);
1525 } else {
1526 wr32(E1000_IMS, IMS_ENABLE_MASK |
1527 E1000_IMS_DRSTA);
1528 wr32(E1000_IAM, IMS_ENABLE_MASK |
1529 E1000_IMS_DRSTA);
1530 }
1531 }
1532
igb_update_mng_vlan(struct igb_adapter * adapter)1533 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1534 {
1535 struct e1000_hw *hw = &adapter->hw;
1536 u16 pf_id = adapter->vfs_allocated_count;
1537 u16 vid = adapter->hw.mng_cookie.vlan_id;
1538 u16 old_vid = adapter->mng_vlan_id;
1539
1540 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1541 /* add VID to filter table */
1542 igb_vfta_set(hw, vid, pf_id, true, true);
1543 adapter->mng_vlan_id = vid;
1544 } else {
1545 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1546 }
1547
1548 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1549 (vid != old_vid) &&
1550 !test_bit(old_vid, adapter->active_vlans)) {
1551 /* remove VID from filter table */
1552 igb_vfta_set(hw, vid, pf_id, false, true);
1553 }
1554 }
1555
1556 /**
1557 * igb_release_hw_control - release control of the h/w to f/w
1558 * @adapter: address of board private structure
1559 *
1560 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1561 * For ASF and Pass Through versions of f/w this means that the
1562 * driver is no longer loaded.
1563 **/
igb_release_hw_control(struct igb_adapter * adapter)1564 static void igb_release_hw_control(struct igb_adapter *adapter)
1565 {
1566 struct e1000_hw *hw = &adapter->hw;
1567 u32 ctrl_ext;
1568
1569 /* Let firmware take over control of h/w */
1570 ctrl_ext = rd32(E1000_CTRL_EXT);
1571 wr32(E1000_CTRL_EXT,
1572 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1573 }
1574
1575 /**
1576 * igb_get_hw_control - get control of the h/w from f/w
1577 * @adapter: address of board private structure
1578 *
1579 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1580 * For ASF and Pass Through versions of f/w this means that
1581 * the driver is loaded.
1582 **/
igb_get_hw_control(struct igb_adapter * adapter)1583 static void igb_get_hw_control(struct igb_adapter *adapter)
1584 {
1585 struct e1000_hw *hw = &adapter->hw;
1586 u32 ctrl_ext;
1587
1588 /* Let firmware know the driver has taken over */
1589 ctrl_ext = rd32(E1000_CTRL_EXT);
1590 wr32(E1000_CTRL_EXT,
1591 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1592 }
1593
enable_fqtss(struct igb_adapter * adapter,bool enable)1594 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1595 {
1596 struct net_device *netdev = adapter->netdev;
1597 struct e1000_hw *hw = &adapter->hw;
1598
1599 WARN_ON(hw->mac.type != e1000_i210);
1600
1601 if (enable)
1602 adapter->flags |= IGB_FLAG_FQTSS;
1603 else
1604 adapter->flags &= ~IGB_FLAG_FQTSS;
1605
1606 if (netif_running(netdev))
1607 schedule_work(&adapter->reset_task);
1608 }
1609
is_fqtss_enabled(struct igb_adapter * adapter)1610 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1611 {
1612 return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1613 }
1614
set_tx_desc_fetch_prio(struct e1000_hw * hw,int queue,enum tx_queue_prio prio)1615 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1616 enum tx_queue_prio prio)
1617 {
1618 u32 val;
1619
1620 WARN_ON(hw->mac.type != e1000_i210);
1621 WARN_ON(queue < 0 || queue > 4);
1622
1623 val = rd32(E1000_I210_TXDCTL(queue));
1624
1625 if (prio == TX_QUEUE_PRIO_HIGH)
1626 val |= E1000_TXDCTL_PRIORITY;
1627 else
1628 val &= ~E1000_TXDCTL_PRIORITY;
1629
1630 wr32(E1000_I210_TXDCTL(queue), val);
1631 }
1632
set_queue_mode(struct e1000_hw * hw,int queue,enum queue_mode mode)1633 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1634 {
1635 u32 val;
1636
1637 WARN_ON(hw->mac.type != e1000_i210);
1638 WARN_ON(queue < 0 || queue > 1);
1639
1640 val = rd32(E1000_I210_TQAVCC(queue));
1641
1642 if (mode == QUEUE_MODE_STREAM_RESERVATION)
1643 val |= E1000_TQAVCC_QUEUEMODE;
1644 else
1645 val &= ~E1000_TQAVCC_QUEUEMODE;
1646
1647 wr32(E1000_I210_TQAVCC(queue), val);
1648 }
1649
is_any_cbs_enabled(struct igb_adapter * adapter)1650 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1651 {
1652 int i;
1653
1654 for (i = 0; i < adapter->num_tx_queues; i++) {
1655 if (adapter->tx_ring[i]->cbs_enable)
1656 return true;
1657 }
1658
1659 return false;
1660 }
1661
is_any_txtime_enabled(struct igb_adapter * adapter)1662 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1663 {
1664 int i;
1665
1666 for (i = 0; i < adapter->num_tx_queues; i++) {
1667 if (adapter->tx_ring[i]->launchtime_enable)
1668 return true;
1669 }
1670
1671 return false;
1672 }
1673
1674 /**
1675 * igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1676 * @adapter: pointer to adapter struct
1677 * @queue: queue number
1678 *
1679 * Configure CBS and Launchtime for a given hardware queue.
1680 * Parameters are retrieved from the correct Tx ring, so
1681 * igb_save_cbs_params() and igb_save_txtime_params() should be used
1682 * for setting those correctly prior to this function being called.
1683 **/
igb_config_tx_modes(struct igb_adapter * adapter,int queue)1684 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1685 {
1686 struct net_device *netdev = adapter->netdev;
1687 struct e1000_hw *hw = &adapter->hw;
1688 struct igb_ring *ring;
1689 u32 tqavcc, tqavctrl;
1690 u16 value;
1691
1692 WARN_ON(hw->mac.type != e1000_i210);
1693 WARN_ON(queue < 0 || queue > 1);
1694 ring = adapter->tx_ring[queue];
1695
1696 /* If any of the Qav features is enabled, configure queues as SR and
1697 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1698 * as SP.
1699 */
1700 if (ring->cbs_enable || ring->launchtime_enable) {
1701 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1702 set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1703 } else {
1704 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1705 set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1706 }
1707
1708 /* If CBS is enabled, set DataTranARB and config its parameters. */
1709 if (ring->cbs_enable || queue == 0) {
1710 /* i210 does not allow the queue 0 to be in the Strict
1711 * Priority mode while the Qav mode is enabled, so,
1712 * instead of disabling strict priority mode, we give
1713 * queue 0 the maximum of credits possible.
1714 *
1715 * See section 8.12.19 of the i210 datasheet, "Note:
1716 * Queue0 QueueMode must be set to 1b when
1717 * TransmitMode is set to Qav."
1718 */
1719 if (queue == 0 && !ring->cbs_enable) {
1720 /* max "linkspeed" idleslope in kbps */
1721 ring->idleslope = 1000000;
1722 ring->hicredit = ETH_FRAME_LEN;
1723 }
1724
1725 /* Always set data transfer arbitration to credit-based
1726 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1727 * the queues.
1728 */
1729 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1730 tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1731 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1732
1733 /* According to i210 datasheet section 7.2.7.7, we should set
1734 * the 'idleSlope' field from TQAVCC register following the
1735 * equation:
1736 *
1737 * For 100 Mbps link speed:
1738 *
1739 * value = BW * 0x7735 * 0.2 (E1)
1740 *
1741 * For 1000Mbps link speed:
1742 *
1743 * value = BW * 0x7735 * 2 (E2)
1744 *
1745 * E1 and E2 can be merged into one equation as shown below.
1746 * Note that 'link-speed' is in Mbps.
1747 *
1748 * value = BW * 0x7735 * 2 * link-speed
1749 * -------------- (E3)
1750 * 1000
1751 *
1752 * 'BW' is the percentage bandwidth out of full link speed
1753 * which can be found with the following equation. Note that
1754 * idleSlope here is the parameter from this function which
1755 * is in kbps.
1756 *
1757 * BW = idleSlope
1758 * ----------------- (E4)
1759 * link-speed * 1000
1760 *
1761 * That said, we can come up with a generic equation to
1762 * calculate the value we should set it TQAVCC register by
1763 * replacing 'BW' in E3 by E4. The resulting equation is:
1764 *
1765 * value = idleSlope * 0x7735 * 2 * link-speed
1766 * ----------------- -------------- (E5)
1767 * link-speed * 1000 1000
1768 *
1769 * 'link-speed' is present in both sides of the fraction so
1770 * it is canceled out. The final equation is the following:
1771 *
1772 * value = idleSlope * 61034
1773 * ----------------- (E6)
1774 * 1000000
1775 *
1776 * NOTE: For i210, given the above, we can see that idleslope
1777 * is represented in 16.38431 kbps units by the value at
1778 * the TQAVCC register (1Gbps / 61034), which reduces
1779 * the granularity for idleslope increments.
1780 * For instance, if you want to configure a 2576kbps
1781 * idleslope, the value to be written on the register
1782 * would have to be 157.23. If rounded down, you end
1783 * up with less bandwidth available than originally
1784 * required (~2572 kbps). If rounded up, you end up
1785 * with a higher bandwidth (~2589 kbps). Below the
1786 * approach we take is to always round up the
1787 * calculated value, so the resulting bandwidth might
1788 * be slightly higher for some configurations.
1789 */
1790 value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1791
1792 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1793 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1794 tqavcc |= value;
1795 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1796
1797 wr32(E1000_I210_TQAVHC(queue),
1798 0x80000000 + ring->hicredit * 0x7735);
1799 } else {
1800
1801 /* Set idleSlope to zero. */
1802 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1803 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1804 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1805
1806 /* Set hiCredit to zero. */
1807 wr32(E1000_I210_TQAVHC(queue), 0);
1808
1809 /* If CBS is not enabled for any queues anymore, then return to
1810 * the default state of Data Transmission Arbitration on
1811 * TQAVCTRL.
1812 */
1813 if (!is_any_cbs_enabled(adapter)) {
1814 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1815 tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1816 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1817 }
1818 }
1819
1820 /* If LaunchTime is enabled, set DataTranTIM. */
1821 if (ring->launchtime_enable) {
1822 /* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1823 * for any of the SR queues, and configure fetchtime delta.
1824 * XXX NOTE:
1825 * - LaunchTime will be enabled for all SR queues.
1826 * - A fixed offset can be added relative to the launch
1827 * time of all packets if configured at reg LAUNCH_OS0.
1828 * We are keeping it as 0 for now (default value).
1829 */
1830 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1831 tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1832 E1000_TQAVCTRL_FETCHTIME_DELTA;
1833 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1834 } else {
1835 /* If Launchtime is not enabled for any SR queues anymore,
1836 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1837 * effectively disabling Launchtime.
1838 */
1839 if (!is_any_txtime_enabled(adapter)) {
1840 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1841 tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1842 tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1843 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1844 }
1845 }
1846
1847 /* XXX: In i210 controller the sendSlope and loCredit parameters from
1848 * CBS are not configurable by software so we don't do any 'controller
1849 * configuration' in respect to these parameters.
1850 */
1851
1852 netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1853 ring->cbs_enable ? "enabled" : "disabled",
1854 ring->launchtime_enable ? "enabled" : "disabled",
1855 queue,
1856 ring->idleslope, ring->sendslope,
1857 ring->hicredit, ring->locredit);
1858 }
1859
igb_save_txtime_params(struct igb_adapter * adapter,int queue,bool enable)1860 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1861 bool enable)
1862 {
1863 struct igb_ring *ring;
1864
1865 if (queue < 0 || queue > adapter->num_tx_queues)
1866 return -EINVAL;
1867
1868 ring = adapter->tx_ring[queue];
1869 ring->launchtime_enable = enable;
1870
1871 return 0;
1872 }
1873
igb_save_cbs_params(struct igb_adapter * adapter,int queue,bool enable,int idleslope,int sendslope,int hicredit,int locredit)1874 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1875 bool enable, int idleslope, int sendslope,
1876 int hicredit, int locredit)
1877 {
1878 struct igb_ring *ring;
1879
1880 if (queue < 0 || queue > adapter->num_tx_queues)
1881 return -EINVAL;
1882
1883 ring = adapter->tx_ring[queue];
1884
1885 ring->cbs_enable = enable;
1886 ring->idleslope = idleslope;
1887 ring->sendslope = sendslope;
1888 ring->hicredit = hicredit;
1889 ring->locredit = locredit;
1890
1891 return 0;
1892 }
1893
1894 /**
1895 * igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1896 * @adapter: pointer to adapter struct
1897 *
1898 * Configure TQAVCTRL register switching the controller's Tx mode
1899 * if FQTSS mode is enabled or disabled. Additionally, will issue
1900 * a call to igb_config_tx_modes() per queue so any previously saved
1901 * Tx parameters are applied.
1902 **/
igb_setup_tx_mode(struct igb_adapter * adapter)1903 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1904 {
1905 struct net_device *netdev = adapter->netdev;
1906 struct e1000_hw *hw = &adapter->hw;
1907 u32 val;
1908
1909 /* Only i210 controller supports changing the transmission mode. */
1910 if (hw->mac.type != e1000_i210)
1911 return;
1912
1913 if (is_fqtss_enabled(adapter)) {
1914 int i, max_queue;
1915
1916 /* Configure TQAVCTRL register: set transmit mode to 'Qav',
1917 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1918 * so SP queues wait for SR ones.
1919 */
1920 val = rd32(E1000_I210_TQAVCTRL);
1921 val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1922 val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1923 wr32(E1000_I210_TQAVCTRL, val);
1924
1925 /* Configure Tx and Rx packet buffers sizes as described in
1926 * i210 datasheet section 7.2.7.7.
1927 */
1928 val = rd32(E1000_TXPBS);
1929 val &= ~I210_TXPBSIZE_MASK;
1930 val |= I210_TXPBSIZE_PB0_6KB | I210_TXPBSIZE_PB1_6KB |
1931 I210_TXPBSIZE_PB2_6KB | I210_TXPBSIZE_PB3_6KB;
1932 wr32(E1000_TXPBS, val);
1933
1934 val = rd32(E1000_RXPBS);
1935 val &= ~I210_RXPBSIZE_MASK;
1936 val |= I210_RXPBSIZE_PB_30KB;
1937 wr32(E1000_RXPBS, val);
1938
1939 /* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1940 * register should not exceed the buffer size programmed in
1941 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1942 * so according to the datasheet we should set MAX_TPKT_SIZE to
1943 * 4kB / 64.
1944 *
1945 * However, when we do so, no frame from queue 2 and 3 are
1946 * transmitted. It seems the MAX_TPKT_SIZE should not be great
1947 * or _equal_ to the buffer size programmed in TXPBS. For this
1948 * reason, we set set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1949 */
1950 val = (4096 - 1) / 64;
1951 wr32(E1000_I210_DTXMXPKTSZ, val);
1952
1953 /* Since FQTSS mode is enabled, apply any CBS configuration
1954 * previously set. If no previous CBS configuration has been
1955 * done, then the initial configuration is applied, which means
1956 * CBS is disabled.
1957 */
1958 max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1959 adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1960
1961 for (i = 0; i < max_queue; i++) {
1962 igb_config_tx_modes(adapter, i);
1963 }
1964 } else {
1965 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1966 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1967 wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1968
1969 val = rd32(E1000_I210_TQAVCTRL);
1970 /* According to Section 8.12.21, the other flags we've set when
1971 * enabling FQTSS are not relevant when disabling FQTSS so we
1972 * don't set they here.
1973 */
1974 val &= ~E1000_TQAVCTRL_XMIT_MODE;
1975 wr32(E1000_I210_TQAVCTRL, val);
1976 }
1977
1978 netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1979 "enabled" : "disabled");
1980 }
1981
1982 /**
1983 * igb_configure - configure the hardware for RX and TX
1984 * @adapter: private board structure
1985 **/
igb_configure(struct igb_adapter * adapter)1986 static void igb_configure(struct igb_adapter *adapter)
1987 {
1988 struct net_device *netdev = adapter->netdev;
1989 int i;
1990
1991 igb_get_hw_control(adapter);
1992 igb_set_rx_mode(netdev);
1993 igb_setup_tx_mode(adapter);
1994
1995 igb_restore_vlan(adapter);
1996
1997 igb_setup_tctl(adapter);
1998 igb_setup_mrqc(adapter);
1999 igb_setup_rctl(adapter);
2000
2001 igb_nfc_filter_restore(adapter);
2002 igb_configure_tx(adapter);
2003 igb_configure_rx(adapter);
2004
2005 igb_rx_fifo_flush_82575(&adapter->hw);
2006
2007 /* call igb_desc_unused which always leaves
2008 * at least 1 descriptor unused to make sure
2009 * next_to_use != next_to_clean
2010 */
2011 for (i = 0; i < adapter->num_rx_queues; i++) {
2012 struct igb_ring *ring = adapter->rx_ring[i];
2013 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2014 }
2015 }
2016
2017 /**
2018 * igb_power_up_link - Power up the phy/serdes link
2019 * @adapter: address of board private structure
2020 **/
igb_power_up_link(struct igb_adapter * adapter)2021 void igb_power_up_link(struct igb_adapter *adapter)
2022 {
2023 igb_reset_phy(&adapter->hw);
2024
2025 if (adapter->hw.phy.media_type == e1000_media_type_copper)
2026 igb_power_up_phy_copper(&adapter->hw);
2027 else
2028 igb_power_up_serdes_link_82575(&adapter->hw);
2029
2030 igb_setup_link(&adapter->hw);
2031 }
2032
2033 /**
2034 * igb_power_down_link - Power down the phy/serdes link
2035 * @adapter: address of board private structure
2036 */
igb_power_down_link(struct igb_adapter * adapter)2037 static void igb_power_down_link(struct igb_adapter *adapter)
2038 {
2039 if (adapter->hw.phy.media_type == e1000_media_type_copper)
2040 igb_power_down_phy_copper_82575(&adapter->hw);
2041 else
2042 igb_shutdown_serdes_link_82575(&adapter->hw);
2043 }
2044
2045 /**
2046 * igb_check_swap_media - Detect and switch function for Media Auto Sense
2047 * @adapter: address of the board private structure
2048 **/
igb_check_swap_media(struct igb_adapter * adapter)2049 static void igb_check_swap_media(struct igb_adapter *adapter)
2050 {
2051 struct e1000_hw *hw = &adapter->hw;
2052 u32 ctrl_ext, connsw;
2053 bool swap_now = false;
2054
2055 ctrl_ext = rd32(E1000_CTRL_EXT);
2056 connsw = rd32(E1000_CONNSW);
2057
2058 /* need to live swap if current media is copper and we have fiber/serdes
2059 * to go to.
2060 */
2061
2062 if ((hw->phy.media_type == e1000_media_type_copper) &&
2063 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2064 swap_now = true;
2065 } else if ((hw->phy.media_type != e1000_media_type_copper) &&
2066 !(connsw & E1000_CONNSW_SERDESD)) {
2067 /* copper signal takes time to appear */
2068 if (adapter->copper_tries < 4) {
2069 adapter->copper_tries++;
2070 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2071 wr32(E1000_CONNSW, connsw);
2072 return;
2073 } else {
2074 adapter->copper_tries = 0;
2075 if ((connsw & E1000_CONNSW_PHYSD) &&
2076 (!(connsw & E1000_CONNSW_PHY_PDN))) {
2077 swap_now = true;
2078 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2079 wr32(E1000_CONNSW, connsw);
2080 }
2081 }
2082 }
2083
2084 if (!swap_now)
2085 return;
2086
2087 switch (hw->phy.media_type) {
2088 case e1000_media_type_copper:
2089 netdev_info(adapter->netdev,
2090 "MAS: changing media to fiber/serdes\n");
2091 ctrl_ext |=
2092 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2093 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2094 adapter->copper_tries = 0;
2095 break;
2096 case e1000_media_type_internal_serdes:
2097 case e1000_media_type_fiber:
2098 netdev_info(adapter->netdev,
2099 "MAS: changing media to copper\n");
2100 ctrl_ext &=
2101 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2102 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2103 break;
2104 default:
2105 /* shouldn't get here during regular operation */
2106 netdev_err(adapter->netdev,
2107 "AMS: Invalid media type found, returning\n");
2108 break;
2109 }
2110 wr32(E1000_CTRL_EXT, ctrl_ext);
2111 }
2112
2113 /**
2114 * igb_up - Open the interface and prepare it to handle traffic
2115 * @adapter: board private structure
2116 **/
igb_up(struct igb_adapter * adapter)2117 int igb_up(struct igb_adapter *adapter)
2118 {
2119 struct e1000_hw *hw = &adapter->hw;
2120 int i;
2121
2122 /* hardware has been reset, we need to reload some things */
2123 igb_configure(adapter);
2124
2125 clear_bit(__IGB_DOWN, &adapter->state);
2126
2127 for (i = 0; i < adapter->num_q_vectors; i++)
2128 napi_enable(&(adapter->q_vector[i]->napi));
2129
2130 if (adapter->flags & IGB_FLAG_HAS_MSIX)
2131 igb_configure_msix(adapter);
2132 else
2133 igb_assign_vector(adapter->q_vector[0], 0);
2134
2135 /* Clear any pending interrupts. */
2136 rd32(E1000_TSICR);
2137 rd32(E1000_ICR);
2138 igb_irq_enable(adapter);
2139
2140 /* notify VFs that reset has been completed */
2141 if (adapter->vfs_allocated_count) {
2142 u32 reg_data = rd32(E1000_CTRL_EXT);
2143
2144 reg_data |= E1000_CTRL_EXT_PFRSTD;
2145 wr32(E1000_CTRL_EXT, reg_data);
2146 }
2147
2148 netif_tx_start_all_queues(adapter->netdev);
2149
2150 /* start the watchdog. */
2151 hw->mac.get_link_status = 1;
2152 schedule_work(&adapter->watchdog_task);
2153
2154 if ((adapter->flags & IGB_FLAG_EEE) &&
2155 (!hw->dev_spec._82575.eee_disable))
2156 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2157
2158 return 0;
2159 }
2160
igb_down(struct igb_adapter * adapter)2161 void igb_down(struct igb_adapter *adapter)
2162 {
2163 struct net_device *netdev = adapter->netdev;
2164 struct e1000_hw *hw = &adapter->hw;
2165 u32 tctl, rctl;
2166 int i;
2167
2168 /* signal that we're down so the interrupt handler does not
2169 * reschedule our watchdog timer
2170 */
2171 set_bit(__IGB_DOWN, &adapter->state);
2172
2173 /* disable receives in the hardware */
2174 rctl = rd32(E1000_RCTL);
2175 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2176 /* flush and sleep below */
2177
2178 igb_nfc_filter_exit(adapter);
2179
2180 netif_carrier_off(netdev);
2181 netif_tx_stop_all_queues(netdev);
2182
2183 /* disable transmits in the hardware */
2184 tctl = rd32(E1000_TCTL);
2185 tctl &= ~E1000_TCTL_EN;
2186 wr32(E1000_TCTL, tctl);
2187 /* flush both disables and wait for them to finish */
2188 wrfl();
2189 usleep_range(10000, 11000);
2190
2191 igb_irq_disable(adapter);
2192
2193 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2194
2195 for (i = 0; i < adapter->num_q_vectors; i++) {
2196 if (adapter->q_vector[i]) {
2197 napi_synchronize(&adapter->q_vector[i]->napi);
2198 napi_disable(&adapter->q_vector[i]->napi);
2199 }
2200 }
2201
2202 del_timer_sync(&adapter->watchdog_timer);
2203 del_timer_sync(&adapter->phy_info_timer);
2204
2205 /* record the stats before reset*/
2206 spin_lock(&adapter->stats64_lock);
2207 igb_update_stats(adapter);
2208 spin_unlock(&adapter->stats64_lock);
2209
2210 adapter->link_speed = 0;
2211 adapter->link_duplex = 0;
2212
2213 if (!pci_channel_offline(adapter->pdev))
2214 igb_reset(adapter);
2215
2216 /* clear VLAN promisc flag so VFTA will be updated if necessary */
2217 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2218
2219 igb_clean_all_tx_rings(adapter);
2220 igb_clean_all_rx_rings(adapter);
2221 #ifdef CONFIG_IGB_DCA
2222
2223 /* since we reset the hardware DCA settings were cleared */
2224 igb_setup_dca(adapter);
2225 #endif
2226 }
2227
igb_reinit_locked(struct igb_adapter * adapter)2228 void igb_reinit_locked(struct igb_adapter *adapter)
2229 {
2230 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2231 usleep_range(1000, 2000);
2232 igb_down(adapter);
2233 igb_up(adapter);
2234 clear_bit(__IGB_RESETTING, &adapter->state);
2235 }
2236
2237 /** igb_enable_mas - Media Autosense re-enable after swap
2238 *
2239 * @adapter: adapter struct
2240 **/
igb_enable_mas(struct igb_adapter * adapter)2241 static void igb_enable_mas(struct igb_adapter *adapter)
2242 {
2243 struct e1000_hw *hw = &adapter->hw;
2244 u32 connsw = rd32(E1000_CONNSW);
2245
2246 /* configure for SerDes media detect */
2247 if ((hw->phy.media_type == e1000_media_type_copper) &&
2248 (!(connsw & E1000_CONNSW_SERDESD))) {
2249 connsw |= E1000_CONNSW_ENRGSRC;
2250 connsw |= E1000_CONNSW_AUTOSENSE_EN;
2251 wr32(E1000_CONNSW, connsw);
2252 wrfl();
2253 }
2254 }
2255
igb_reset(struct igb_adapter * adapter)2256 void igb_reset(struct igb_adapter *adapter)
2257 {
2258 struct pci_dev *pdev = adapter->pdev;
2259 struct e1000_hw *hw = &adapter->hw;
2260 struct e1000_mac_info *mac = &hw->mac;
2261 struct e1000_fc_info *fc = &hw->fc;
2262 u32 pba, hwm;
2263
2264 /* Repartition Pba for greater than 9k mtu
2265 * To take effect CTRL.RST is required.
2266 */
2267 switch (mac->type) {
2268 case e1000_i350:
2269 case e1000_i354:
2270 case e1000_82580:
2271 pba = rd32(E1000_RXPBS);
2272 pba = igb_rxpbs_adjust_82580(pba);
2273 break;
2274 case e1000_82576:
2275 pba = rd32(E1000_RXPBS);
2276 pba &= E1000_RXPBS_SIZE_MASK_82576;
2277 break;
2278 case e1000_82575:
2279 case e1000_i210:
2280 case e1000_i211:
2281 default:
2282 pba = E1000_PBA_34K;
2283 break;
2284 }
2285
2286 if (mac->type == e1000_82575) {
2287 u32 min_rx_space, min_tx_space, needed_tx_space;
2288
2289 /* write Rx PBA so that hardware can report correct Tx PBA */
2290 wr32(E1000_PBA, pba);
2291
2292 /* To maintain wire speed transmits, the Tx FIFO should be
2293 * large enough to accommodate two full transmit packets,
2294 * rounded up to the next 1KB and expressed in KB. Likewise,
2295 * the Rx FIFO should be large enough to accommodate at least
2296 * one full receive packet and is similarly rounded up and
2297 * expressed in KB.
2298 */
2299 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2300
2301 /* The Tx FIFO also stores 16 bytes of information about the Tx
2302 * but don't include Ethernet FCS because hardware appends it.
2303 * We only need to round down to the nearest 512 byte block
2304 * count since the value we care about is 2 frames, not 1.
2305 */
2306 min_tx_space = adapter->max_frame_size;
2307 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2308 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2309
2310 /* upper 16 bits has Tx packet buffer allocation size in KB */
2311 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2312
2313 /* If current Tx allocation is less than the min Tx FIFO size,
2314 * and the min Tx FIFO size is less than the current Rx FIFO
2315 * allocation, take space away from current Rx allocation.
2316 */
2317 if (needed_tx_space < pba) {
2318 pba -= needed_tx_space;
2319
2320 /* if short on Rx space, Rx wins and must trump Tx
2321 * adjustment
2322 */
2323 if (pba < min_rx_space)
2324 pba = min_rx_space;
2325 }
2326
2327 /* adjust PBA for jumbo frames */
2328 wr32(E1000_PBA, pba);
2329 }
2330
2331 /* flow control settings
2332 * The high water mark must be low enough to fit one full frame
2333 * after transmitting the pause frame. As such we must have enough
2334 * space to allow for us to complete our current transmit and then
2335 * receive the frame that is in progress from the link partner.
2336 * Set it to:
2337 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2338 */
2339 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2340
2341 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
2342 fc->low_water = fc->high_water - 16;
2343 fc->pause_time = 0xFFFF;
2344 fc->send_xon = 1;
2345 fc->current_mode = fc->requested_mode;
2346
2347 /* disable receive for all VFs and wait one second */
2348 if (adapter->vfs_allocated_count) {
2349 int i;
2350
2351 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2352 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2353
2354 /* ping all the active vfs to let them know we are going down */
2355 igb_ping_all_vfs(adapter);
2356
2357 /* disable transmits and receives */
2358 wr32(E1000_VFRE, 0);
2359 wr32(E1000_VFTE, 0);
2360 }
2361
2362 /* Allow time for pending master requests to run */
2363 hw->mac.ops.reset_hw(hw);
2364 wr32(E1000_WUC, 0);
2365
2366 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2367 /* need to resetup here after media swap */
2368 adapter->ei.get_invariants(hw);
2369 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2370 }
2371 if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
2372 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2373 igb_enable_mas(adapter);
2374 }
2375 if (hw->mac.ops.init_hw(hw))
2376 dev_err(&pdev->dev, "Hardware Error\n");
2377
2378 /* RAR registers were cleared during init_hw, clear mac table */
2379 igb_flush_mac_table(adapter);
2380 __dev_uc_unsync(adapter->netdev, NULL);
2381
2382 /* Recover default RAR entry */
2383 igb_set_default_mac_filter(adapter);
2384
2385 /* Flow control settings reset on hardware reset, so guarantee flow
2386 * control is off when forcing speed.
2387 */
2388 if (!hw->mac.autoneg)
2389 igb_force_mac_fc(hw);
2390
2391 igb_init_dmac(adapter, pba);
2392 #ifdef CONFIG_IGB_HWMON
2393 /* Re-initialize the thermal sensor on i350 devices. */
2394 if (!test_bit(__IGB_DOWN, &adapter->state)) {
2395 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2396 /* If present, re-initialize the external thermal sensor
2397 * interface.
2398 */
2399 if (adapter->ets)
2400 mac->ops.init_thermal_sensor_thresh(hw);
2401 }
2402 }
2403 #endif
2404 /* Re-establish EEE setting */
2405 if (hw->phy.media_type == e1000_media_type_copper) {
2406 switch (mac->type) {
2407 case e1000_i350:
2408 case e1000_i210:
2409 case e1000_i211:
2410 igb_set_eee_i350(hw, true, true);
2411 break;
2412 case e1000_i354:
2413 igb_set_eee_i354(hw, true, true);
2414 break;
2415 default:
2416 break;
2417 }
2418 }
2419 if (!netif_running(adapter->netdev))
2420 igb_power_down_link(adapter);
2421
2422 igb_update_mng_vlan(adapter);
2423
2424 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2425 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2426
2427 /* Re-enable PTP, where applicable. */
2428 if (adapter->ptp_flags & IGB_PTP_ENABLED)
2429 igb_ptp_reset(adapter);
2430
2431 igb_get_phy_info(hw);
2432 }
2433
igb_fix_features(struct net_device * netdev,netdev_features_t features)2434 static netdev_features_t igb_fix_features(struct net_device *netdev,
2435 netdev_features_t features)
2436 {
2437 /* Since there is no support for separate Rx/Tx vlan accel
2438 * enable/disable make sure Tx flag is always in same state as Rx.
2439 */
2440 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2441 features |= NETIF_F_HW_VLAN_CTAG_TX;
2442 else
2443 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2444
2445 return features;
2446 }
2447
igb_set_features(struct net_device * netdev,netdev_features_t features)2448 static int igb_set_features(struct net_device *netdev,
2449 netdev_features_t features)
2450 {
2451 netdev_features_t changed = netdev->features ^ features;
2452 struct igb_adapter *adapter = netdev_priv(netdev);
2453
2454 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2455 igb_vlan_mode(netdev, features);
2456
2457 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2458 return 0;
2459
2460 if (!(features & NETIF_F_NTUPLE)) {
2461 struct hlist_node *node2;
2462 struct igb_nfc_filter *rule;
2463
2464 spin_lock(&adapter->nfc_lock);
2465 hlist_for_each_entry_safe(rule, node2,
2466 &adapter->nfc_filter_list, nfc_node) {
2467 igb_erase_filter(adapter, rule);
2468 hlist_del(&rule->nfc_node);
2469 kfree(rule);
2470 }
2471 spin_unlock(&adapter->nfc_lock);
2472 adapter->nfc_filter_count = 0;
2473 }
2474
2475 netdev->features = features;
2476
2477 if (netif_running(netdev))
2478 igb_reinit_locked(adapter);
2479 else
2480 igb_reset(adapter);
2481
2482 return 1;
2483 }
2484
igb_ndo_fdb_add(struct ndmsg * ndm,struct nlattr * tb[],struct net_device * dev,const unsigned char * addr,u16 vid,u16 flags,struct netlink_ext_ack * extack)2485 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2486 struct net_device *dev,
2487 const unsigned char *addr, u16 vid,
2488 u16 flags,
2489 struct netlink_ext_ack *extack)
2490 {
2491 /* guarantee we can provide a unique filter for the unicast address */
2492 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2493 struct igb_adapter *adapter = netdev_priv(dev);
2494 int vfn = adapter->vfs_allocated_count;
2495
2496 if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2497 return -ENOMEM;
2498 }
2499
2500 return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2501 }
2502
2503 #define IGB_MAX_MAC_HDR_LEN 127
2504 #define IGB_MAX_NETWORK_HDR_LEN 511
2505
2506 static netdev_features_t
igb_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)2507 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2508 netdev_features_t features)
2509 {
2510 unsigned int network_hdr_len, mac_hdr_len;
2511
2512 /* Make certain the headers can be described by a context descriptor */
2513 mac_hdr_len = skb_network_header(skb) - skb->data;
2514 if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2515 return features & ~(NETIF_F_HW_CSUM |
2516 NETIF_F_SCTP_CRC |
2517 NETIF_F_GSO_UDP_L4 |
2518 NETIF_F_HW_VLAN_CTAG_TX |
2519 NETIF_F_TSO |
2520 NETIF_F_TSO6);
2521
2522 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2523 if (unlikely(network_hdr_len > IGB_MAX_NETWORK_HDR_LEN))
2524 return features & ~(NETIF_F_HW_CSUM |
2525 NETIF_F_SCTP_CRC |
2526 NETIF_F_GSO_UDP_L4 |
2527 NETIF_F_TSO |
2528 NETIF_F_TSO6);
2529
2530 /* We can only support IPV4 TSO in tunnels if we can mangle the
2531 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2532 */
2533 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2534 features &= ~NETIF_F_TSO;
2535
2536 return features;
2537 }
2538
igb_offload_apply(struct igb_adapter * adapter,s32 queue)2539 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2540 {
2541 if (!is_fqtss_enabled(adapter)) {
2542 enable_fqtss(adapter, true);
2543 return;
2544 }
2545
2546 igb_config_tx_modes(adapter, queue);
2547
2548 if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2549 enable_fqtss(adapter, false);
2550 }
2551
igb_offload_cbs(struct igb_adapter * adapter,struct tc_cbs_qopt_offload * qopt)2552 static int igb_offload_cbs(struct igb_adapter *adapter,
2553 struct tc_cbs_qopt_offload *qopt)
2554 {
2555 struct e1000_hw *hw = &adapter->hw;
2556 int err;
2557
2558 /* CBS offloading is only supported by i210 controller. */
2559 if (hw->mac.type != e1000_i210)
2560 return -EOPNOTSUPP;
2561
2562 /* CBS offloading is only supported by queue 0 and queue 1. */
2563 if (qopt->queue < 0 || qopt->queue > 1)
2564 return -EINVAL;
2565
2566 err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2567 qopt->idleslope, qopt->sendslope,
2568 qopt->hicredit, qopt->locredit);
2569 if (err)
2570 return err;
2571
2572 igb_offload_apply(adapter, qopt->queue);
2573
2574 return 0;
2575 }
2576
2577 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2578 #define VLAN_PRIO_FULL_MASK (0x07)
2579
igb_parse_cls_flower(struct igb_adapter * adapter,struct flow_cls_offload * f,int traffic_class,struct igb_nfc_filter * input)2580 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2581 struct flow_cls_offload *f,
2582 int traffic_class,
2583 struct igb_nfc_filter *input)
2584 {
2585 struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2586 struct flow_dissector *dissector = rule->match.dissector;
2587 struct netlink_ext_ack *extack = f->common.extack;
2588
2589 if (dissector->used_keys &
2590 ~(BIT(FLOW_DISSECTOR_KEY_BASIC) |
2591 BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2592 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2593 BIT(FLOW_DISSECTOR_KEY_VLAN))) {
2594 NL_SET_ERR_MSG_MOD(extack,
2595 "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2596 return -EOPNOTSUPP;
2597 }
2598
2599 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2600 struct flow_match_eth_addrs match;
2601
2602 flow_rule_match_eth_addrs(rule, &match);
2603 if (!is_zero_ether_addr(match.mask->dst)) {
2604 if (!is_broadcast_ether_addr(match.mask->dst)) {
2605 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2606 return -EINVAL;
2607 }
2608
2609 input->filter.match_flags |=
2610 IGB_FILTER_FLAG_DST_MAC_ADDR;
2611 ether_addr_copy(input->filter.dst_addr, match.key->dst);
2612 }
2613
2614 if (!is_zero_ether_addr(match.mask->src)) {
2615 if (!is_broadcast_ether_addr(match.mask->src)) {
2616 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2617 return -EINVAL;
2618 }
2619
2620 input->filter.match_flags |=
2621 IGB_FILTER_FLAG_SRC_MAC_ADDR;
2622 ether_addr_copy(input->filter.src_addr, match.key->src);
2623 }
2624 }
2625
2626 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2627 struct flow_match_basic match;
2628
2629 flow_rule_match_basic(rule, &match);
2630 if (match.mask->n_proto) {
2631 if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2632 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2633 return -EINVAL;
2634 }
2635
2636 input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2637 input->filter.etype = match.key->n_proto;
2638 }
2639 }
2640
2641 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2642 struct flow_match_vlan match;
2643
2644 flow_rule_match_vlan(rule, &match);
2645 if (match.mask->vlan_priority) {
2646 if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2647 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2648 return -EINVAL;
2649 }
2650
2651 input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2652 input->filter.vlan_tci =
2653 (__force __be16)match.key->vlan_priority;
2654 }
2655 }
2656
2657 input->action = traffic_class;
2658 input->cookie = f->cookie;
2659
2660 return 0;
2661 }
2662
igb_configure_clsflower(struct igb_adapter * adapter,struct flow_cls_offload * cls_flower)2663 static int igb_configure_clsflower(struct igb_adapter *adapter,
2664 struct flow_cls_offload *cls_flower)
2665 {
2666 struct netlink_ext_ack *extack = cls_flower->common.extack;
2667 struct igb_nfc_filter *filter, *f;
2668 int err, tc;
2669
2670 tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2671 if (tc < 0) {
2672 NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2673 return -EINVAL;
2674 }
2675
2676 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2677 if (!filter)
2678 return -ENOMEM;
2679
2680 err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2681 if (err < 0)
2682 goto err_parse;
2683
2684 spin_lock(&adapter->nfc_lock);
2685
2686 hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2687 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2688 err = -EEXIST;
2689 NL_SET_ERR_MSG_MOD(extack,
2690 "This filter is already set in ethtool");
2691 goto err_locked;
2692 }
2693 }
2694
2695 hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2696 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2697 err = -EEXIST;
2698 NL_SET_ERR_MSG_MOD(extack,
2699 "This filter is already set in cls_flower");
2700 goto err_locked;
2701 }
2702 }
2703
2704 err = igb_add_filter(adapter, filter);
2705 if (err < 0) {
2706 NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2707 goto err_locked;
2708 }
2709
2710 hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2711
2712 spin_unlock(&adapter->nfc_lock);
2713
2714 return 0;
2715
2716 err_locked:
2717 spin_unlock(&adapter->nfc_lock);
2718
2719 err_parse:
2720 kfree(filter);
2721
2722 return err;
2723 }
2724
igb_delete_clsflower(struct igb_adapter * adapter,struct flow_cls_offload * cls_flower)2725 static int igb_delete_clsflower(struct igb_adapter *adapter,
2726 struct flow_cls_offload *cls_flower)
2727 {
2728 struct igb_nfc_filter *filter;
2729 int err;
2730
2731 spin_lock(&adapter->nfc_lock);
2732
2733 hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2734 if (filter->cookie == cls_flower->cookie)
2735 break;
2736
2737 if (!filter) {
2738 err = -ENOENT;
2739 goto out;
2740 }
2741
2742 err = igb_erase_filter(adapter, filter);
2743 if (err < 0)
2744 goto out;
2745
2746 hlist_del(&filter->nfc_node);
2747 kfree(filter);
2748
2749 out:
2750 spin_unlock(&adapter->nfc_lock);
2751
2752 return err;
2753 }
2754
igb_setup_tc_cls_flower(struct igb_adapter * adapter,struct flow_cls_offload * cls_flower)2755 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2756 struct flow_cls_offload *cls_flower)
2757 {
2758 switch (cls_flower->command) {
2759 case FLOW_CLS_REPLACE:
2760 return igb_configure_clsflower(adapter, cls_flower);
2761 case FLOW_CLS_DESTROY:
2762 return igb_delete_clsflower(adapter, cls_flower);
2763 case FLOW_CLS_STATS:
2764 return -EOPNOTSUPP;
2765 default:
2766 return -EOPNOTSUPP;
2767 }
2768 }
2769
igb_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)2770 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2771 void *cb_priv)
2772 {
2773 struct igb_adapter *adapter = cb_priv;
2774
2775 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2776 return -EOPNOTSUPP;
2777
2778 switch (type) {
2779 case TC_SETUP_CLSFLOWER:
2780 return igb_setup_tc_cls_flower(adapter, type_data);
2781
2782 default:
2783 return -EOPNOTSUPP;
2784 }
2785 }
2786
igb_offload_txtime(struct igb_adapter * adapter,struct tc_etf_qopt_offload * qopt)2787 static int igb_offload_txtime(struct igb_adapter *adapter,
2788 struct tc_etf_qopt_offload *qopt)
2789 {
2790 struct e1000_hw *hw = &adapter->hw;
2791 int err;
2792
2793 /* Launchtime offloading is only supported by i210 controller. */
2794 if (hw->mac.type != e1000_i210)
2795 return -EOPNOTSUPP;
2796
2797 /* Launchtime offloading is only supported by queues 0 and 1. */
2798 if (qopt->queue < 0 || qopt->queue > 1)
2799 return -EINVAL;
2800
2801 err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2802 if (err)
2803 return err;
2804
2805 igb_offload_apply(adapter, qopt->queue);
2806
2807 return 0;
2808 }
2809
2810 static LIST_HEAD(igb_block_cb_list);
2811
igb_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)2812 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2813 void *type_data)
2814 {
2815 struct igb_adapter *adapter = netdev_priv(dev);
2816
2817 switch (type) {
2818 case TC_SETUP_QDISC_CBS:
2819 return igb_offload_cbs(adapter, type_data);
2820 case TC_SETUP_BLOCK:
2821 return flow_block_cb_setup_simple(type_data,
2822 &igb_block_cb_list,
2823 igb_setup_tc_block_cb,
2824 adapter, adapter, true);
2825
2826 case TC_SETUP_QDISC_ETF:
2827 return igb_offload_txtime(adapter, type_data);
2828
2829 default:
2830 return -EOPNOTSUPP;
2831 }
2832 }
2833
igb_xdp_setup(struct net_device * dev,struct netdev_bpf * bpf)2834 static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf)
2835 {
2836 int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD;
2837 struct igb_adapter *adapter = netdev_priv(dev);
2838 struct bpf_prog *prog = bpf->prog, *old_prog;
2839 bool running = netif_running(dev);
2840 bool need_reset;
2841
2842 /* verify igb ring attributes are sufficient for XDP */
2843 for (i = 0; i < adapter->num_rx_queues; i++) {
2844 struct igb_ring *ring = adapter->rx_ring[i];
2845
2846 if (frame_size > igb_rx_bufsz(ring)) {
2847 NL_SET_ERR_MSG_MOD(bpf->extack,
2848 "The RX buffer size is too small for the frame size");
2849 netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n",
2850 igb_rx_bufsz(ring), frame_size);
2851 return -EINVAL;
2852 }
2853 }
2854
2855 old_prog = xchg(&adapter->xdp_prog, prog);
2856 need_reset = (!!prog != !!old_prog);
2857
2858 /* device is up and bpf is added/removed, must setup the RX queues */
2859 if (need_reset && running) {
2860 igb_close(dev);
2861 } else {
2862 for (i = 0; i < adapter->num_rx_queues; i++)
2863 (void)xchg(&adapter->rx_ring[i]->xdp_prog,
2864 adapter->xdp_prog);
2865 }
2866
2867 if (old_prog)
2868 bpf_prog_put(old_prog);
2869
2870 /* bpf is just replaced, RXQ and MTU are already setup */
2871 if (!need_reset)
2872 return 0;
2873
2874 if (running)
2875 igb_open(dev);
2876
2877 return 0;
2878 }
2879
igb_xdp(struct net_device * dev,struct netdev_bpf * xdp)2880 static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2881 {
2882 switch (xdp->command) {
2883 case XDP_SETUP_PROG:
2884 return igb_xdp_setup(dev, xdp);
2885 default:
2886 return -EINVAL;
2887 }
2888 }
2889
igb_xdp_ring_update_tail(struct igb_ring * ring)2890 static void igb_xdp_ring_update_tail(struct igb_ring *ring)
2891 {
2892 /* Force memory writes to complete before letting h/w know there
2893 * are new descriptors to fetch.
2894 */
2895 wmb();
2896 writel(ring->next_to_use, ring->tail);
2897 }
2898
igb_xdp_tx_queue_mapping(struct igb_adapter * adapter)2899 static struct igb_ring *igb_xdp_tx_queue_mapping(struct igb_adapter *adapter)
2900 {
2901 unsigned int r_idx = smp_processor_id();
2902
2903 if (r_idx >= adapter->num_tx_queues)
2904 r_idx = r_idx % adapter->num_tx_queues;
2905
2906 return adapter->tx_ring[r_idx];
2907 }
2908
igb_xdp_xmit_back(struct igb_adapter * adapter,struct xdp_buff * xdp)2909 static int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp)
2910 {
2911 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2912 int cpu = smp_processor_id();
2913 struct igb_ring *tx_ring;
2914 struct netdev_queue *nq;
2915 u32 ret;
2916
2917 if (unlikely(!xdpf))
2918 return IGB_XDP_CONSUMED;
2919
2920 /* During program transitions its possible adapter->xdp_prog is assigned
2921 * but ring has not been configured yet. In this case simply abort xmit.
2922 */
2923 tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2924 if (unlikely(!tx_ring))
2925 return IGB_XDP_CONSUMED;
2926
2927 nq = txring_txq(tx_ring);
2928 __netif_tx_lock(nq, cpu);
2929 /* Avoid transmit queue timeout since we share it with the slow path */
2930 txq_trans_cond_update(nq);
2931 ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2932 __netif_tx_unlock(nq);
2933
2934 return ret;
2935 }
2936
igb_xdp_xmit(struct net_device * dev,int n,struct xdp_frame ** frames,u32 flags)2937 static int igb_xdp_xmit(struct net_device *dev, int n,
2938 struct xdp_frame **frames, u32 flags)
2939 {
2940 struct igb_adapter *adapter = netdev_priv(dev);
2941 int cpu = smp_processor_id();
2942 struct igb_ring *tx_ring;
2943 struct netdev_queue *nq;
2944 int nxmit = 0;
2945 int i;
2946
2947 if (unlikely(test_bit(__IGB_DOWN, &adapter->state)))
2948 return -ENETDOWN;
2949
2950 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2951 return -EINVAL;
2952
2953 /* During program transitions its possible adapter->xdp_prog is assigned
2954 * but ring has not been configured yet. In this case simply abort xmit.
2955 */
2956 tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2957 if (unlikely(!tx_ring))
2958 return -ENXIO;
2959
2960 nq = txring_txq(tx_ring);
2961 __netif_tx_lock(nq, cpu);
2962
2963 /* Avoid transmit queue timeout since we share it with the slow path */
2964 txq_trans_cond_update(nq);
2965
2966 for (i = 0; i < n; i++) {
2967 struct xdp_frame *xdpf = frames[i];
2968 int err;
2969
2970 err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2971 if (err != IGB_XDP_TX)
2972 break;
2973 nxmit++;
2974 }
2975
2976 __netif_tx_unlock(nq);
2977
2978 if (unlikely(flags & XDP_XMIT_FLUSH))
2979 igb_xdp_ring_update_tail(tx_ring);
2980
2981 return nxmit;
2982 }
2983
2984 static const struct net_device_ops igb_netdev_ops = {
2985 .ndo_open = igb_open,
2986 .ndo_stop = igb_close,
2987 .ndo_start_xmit = igb_xmit_frame,
2988 .ndo_get_stats64 = igb_get_stats64,
2989 .ndo_set_rx_mode = igb_set_rx_mode,
2990 .ndo_set_mac_address = igb_set_mac,
2991 .ndo_change_mtu = igb_change_mtu,
2992 .ndo_eth_ioctl = igb_ioctl,
2993 .ndo_tx_timeout = igb_tx_timeout,
2994 .ndo_validate_addr = eth_validate_addr,
2995 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
2996 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
2997 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
2998 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
2999 .ndo_set_vf_rate = igb_ndo_set_vf_bw,
3000 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
3001 .ndo_set_vf_trust = igb_ndo_set_vf_trust,
3002 .ndo_get_vf_config = igb_ndo_get_vf_config,
3003 .ndo_fix_features = igb_fix_features,
3004 .ndo_set_features = igb_set_features,
3005 .ndo_fdb_add = igb_ndo_fdb_add,
3006 .ndo_features_check = igb_features_check,
3007 .ndo_setup_tc = igb_setup_tc,
3008 .ndo_bpf = igb_xdp,
3009 .ndo_xdp_xmit = igb_xdp_xmit,
3010 };
3011
3012 /**
3013 * igb_set_fw_version - Configure version string for ethtool
3014 * @adapter: adapter struct
3015 **/
igb_set_fw_version(struct igb_adapter * adapter)3016 void igb_set_fw_version(struct igb_adapter *adapter)
3017 {
3018 struct e1000_hw *hw = &adapter->hw;
3019 struct e1000_fw_version fw;
3020
3021 igb_get_fw_version(hw, &fw);
3022
3023 switch (hw->mac.type) {
3024 case e1000_i210:
3025 case e1000_i211:
3026 if (!(igb_get_flash_presence_i210(hw))) {
3027 snprintf(adapter->fw_version,
3028 sizeof(adapter->fw_version),
3029 "%2d.%2d-%d",
3030 fw.invm_major, fw.invm_minor,
3031 fw.invm_img_type);
3032 break;
3033 }
3034 fallthrough;
3035 default:
3036 /* if option is rom valid, display its version too */
3037 if (fw.or_valid) {
3038 snprintf(adapter->fw_version,
3039 sizeof(adapter->fw_version),
3040 "%d.%d, 0x%08x, %d.%d.%d",
3041 fw.eep_major, fw.eep_minor, fw.etrack_id,
3042 fw.or_major, fw.or_build, fw.or_patch);
3043 /* no option rom */
3044 } else if (fw.etrack_id != 0X0000) {
3045 snprintf(adapter->fw_version,
3046 sizeof(adapter->fw_version),
3047 "%d.%d, 0x%08x",
3048 fw.eep_major, fw.eep_minor, fw.etrack_id);
3049 } else {
3050 snprintf(adapter->fw_version,
3051 sizeof(adapter->fw_version),
3052 "%d.%d.%d",
3053 fw.eep_major, fw.eep_minor, fw.eep_build);
3054 }
3055 break;
3056 }
3057 }
3058
3059 /**
3060 * igb_init_mas - init Media Autosense feature if enabled in the NVM
3061 *
3062 * @adapter: adapter struct
3063 **/
igb_init_mas(struct igb_adapter * adapter)3064 static void igb_init_mas(struct igb_adapter *adapter)
3065 {
3066 struct e1000_hw *hw = &adapter->hw;
3067 u16 eeprom_data;
3068
3069 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
3070 switch (hw->bus.func) {
3071 case E1000_FUNC_0:
3072 if (eeprom_data & IGB_MAS_ENABLE_0) {
3073 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3074 netdev_info(adapter->netdev,
3075 "MAS: Enabling Media Autosense for port %d\n",
3076 hw->bus.func);
3077 }
3078 break;
3079 case E1000_FUNC_1:
3080 if (eeprom_data & IGB_MAS_ENABLE_1) {
3081 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3082 netdev_info(adapter->netdev,
3083 "MAS: Enabling Media Autosense for port %d\n",
3084 hw->bus.func);
3085 }
3086 break;
3087 case E1000_FUNC_2:
3088 if (eeprom_data & IGB_MAS_ENABLE_2) {
3089 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3090 netdev_info(adapter->netdev,
3091 "MAS: Enabling Media Autosense for port %d\n",
3092 hw->bus.func);
3093 }
3094 break;
3095 case E1000_FUNC_3:
3096 if (eeprom_data & IGB_MAS_ENABLE_3) {
3097 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3098 netdev_info(adapter->netdev,
3099 "MAS: Enabling Media Autosense for port %d\n",
3100 hw->bus.func);
3101 }
3102 break;
3103 default:
3104 /* Shouldn't get here */
3105 netdev_err(adapter->netdev,
3106 "MAS: Invalid port configuration, returning\n");
3107 break;
3108 }
3109 }
3110
3111 /**
3112 * igb_init_i2c - Init I2C interface
3113 * @adapter: pointer to adapter structure
3114 **/
igb_init_i2c(struct igb_adapter * adapter)3115 static s32 igb_init_i2c(struct igb_adapter *adapter)
3116 {
3117 struct e1000_hw *hw = &adapter->hw;
3118 s32 status = 0;
3119 s32 i2cctl;
3120
3121 /* I2C interface supported on i350 devices */
3122 if (adapter->hw.mac.type != e1000_i350)
3123 return 0;
3124
3125 i2cctl = rd32(E1000_I2CPARAMS);
3126 i2cctl |= E1000_I2CBB_EN
3127 | E1000_I2C_CLK_OUT | E1000_I2C_CLK_OE_N
3128 | E1000_I2C_DATA_OUT | E1000_I2C_DATA_OE_N;
3129 wr32(E1000_I2CPARAMS, i2cctl);
3130 wrfl();
3131
3132 /* Initialize the i2c bus which is controlled by the registers.
3133 * This bus will use the i2c_algo_bit structure that implements
3134 * the protocol through toggling of the 4 bits in the register.
3135 */
3136 adapter->i2c_adap.owner = THIS_MODULE;
3137 adapter->i2c_algo = igb_i2c_algo;
3138 adapter->i2c_algo.data = adapter;
3139 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
3140 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
3141 strlcpy(adapter->i2c_adap.name, "igb BB",
3142 sizeof(adapter->i2c_adap.name));
3143 status = i2c_bit_add_bus(&adapter->i2c_adap);
3144 return status;
3145 }
3146
3147 /**
3148 * igb_probe - Device Initialization Routine
3149 * @pdev: PCI device information struct
3150 * @ent: entry in igb_pci_tbl
3151 *
3152 * Returns 0 on success, negative on failure
3153 *
3154 * igb_probe initializes an adapter identified by a pci_dev structure.
3155 * The OS initialization, configuring of the adapter private structure,
3156 * and a hardware reset occur.
3157 **/
igb_probe(struct pci_dev * pdev,const struct pci_device_id * ent)3158 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3159 {
3160 struct net_device *netdev;
3161 struct igb_adapter *adapter;
3162 struct e1000_hw *hw;
3163 u16 eeprom_data = 0;
3164 s32 ret_val;
3165 static int global_quad_port_a; /* global quad port a indication */
3166 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3167 u8 part_str[E1000_PBANUM_LENGTH];
3168 int err;
3169
3170 /* Catch broken hardware that put the wrong VF device ID in
3171 * the PCIe SR-IOV capability.
3172 */
3173 if (pdev->is_virtfn) {
3174 WARN(1, KERN_ERR "%s (%x:%x) should not be a VF!\n",
3175 pci_name(pdev), pdev->vendor, pdev->device);
3176 return -EINVAL;
3177 }
3178
3179 err = pci_enable_device_mem(pdev);
3180 if (err)
3181 return err;
3182
3183 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3184 if (err) {
3185 dev_err(&pdev->dev,
3186 "No usable DMA configuration, aborting\n");
3187 goto err_dma;
3188 }
3189
3190 err = pci_request_mem_regions(pdev, igb_driver_name);
3191 if (err)
3192 goto err_pci_reg;
3193
3194 pci_enable_pcie_error_reporting(pdev);
3195
3196 pci_set_master(pdev);
3197 pci_save_state(pdev);
3198
3199 err = -ENOMEM;
3200 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3201 IGB_MAX_TX_QUEUES);
3202 if (!netdev)
3203 goto err_alloc_etherdev;
3204
3205 SET_NETDEV_DEV(netdev, &pdev->dev);
3206
3207 pci_set_drvdata(pdev, netdev);
3208 adapter = netdev_priv(netdev);
3209 adapter->netdev = netdev;
3210 adapter->pdev = pdev;
3211 hw = &adapter->hw;
3212 hw->back = adapter;
3213 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3214
3215 err = -EIO;
3216 adapter->io_addr = pci_iomap(pdev, 0, 0);
3217 if (!adapter->io_addr)
3218 goto err_ioremap;
3219 /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3220 hw->hw_addr = adapter->io_addr;
3221
3222 netdev->netdev_ops = &igb_netdev_ops;
3223 igb_set_ethtool_ops(netdev);
3224 netdev->watchdog_timeo = 5 * HZ;
3225
3226 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3227
3228 netdev->mem_start = pci_resource_start(pdev, 0);
3229 netdev->mem_end = pci_resource_end(pdev, 0);
3230
3231 /* PCI config space info */
3232 hw->vendor_id = pdev->vendor;
3233 hw->device_id = pdev->device;
3234 hw->revision_id = pdev->revision;
3235 hw->subsystem_vendor_id = pdev->subsystem_vendor;
3236 hw->subsystem_device_id = pdev->subsystem_device;
3237
3238 /* Copy the default MAC, PHY and NVM function pointers */
3239 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3240 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3241 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3242 /* Initialize skew-specific constants */
3243 err = ei->get_invariants(hw);
3244 if (err)
3245 goto err_sw_init;
3246
3247 /* setup the private structure */
3248 err = igb_sw_init(adapter);
3249 if (err)
3250 goto err_sw_init;
3251
3252 igb_get_bus_info_pcie(hw);
3253
3254 hw->phy.autoneg_wait_to_complete = false;
3255
3256 /* Copper options */
3257 if (hw->phy.media_type == e1000_media_type_copper) {
3258 hw->phy.mdix = AUTO_ALL_MODES;
3259 hw->phy.disable_polarity_correction = false;
3260 hw->phy.ms_type = e1000_ms_hw_default;
3261 }
3262
3263 if (igb_check_reset_block(hw))
3264 dev_info(&pdev->dev,
3265 "PHY reset is blocked due to SOL/IDER session.\n");
3266
3267 /* features is initialized to 0 in allocation, it might have bits
3268 * set by igb_sw_init so we should use an or instead of an
3269 * assignment.
3270 */
3271 netdev->features |= NETIF_F_SG |
3272 NETIF_F_TSO |
3273 NETIF_F_TSO6 |
3274 NETIF_F_RXHASH |
3275 NETIF_F_RXCSUM |
3276 NETIF_F_HW_CSUM;
3277
3278 if (hw->mac.type >= e1000_82576)
3279 netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4;
3280
3281 if (hw->mac.type >= e1000_i350)
3282 netdev->features |= NETIF_F_HW_TC;
3283
3284 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3285 NETIF_F_GSO_GRE_CSUM | \
3286 NETIF_F_GSO_IPXIP4 | \
3287 NETIF_F_GSO_IPXIP6 | \
3288 NETIF_F_GSO_UDP_TUNNEL | \
3289 NETIF_F_GSO_UDP_TUNNEL_CSUM)
3290
3291 netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3292 netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3293
3294 /* copy netdev features into list of user selectable features */
3295 netdev->hw_features |= netdev->features |
3296 NETIF_F_HW_VLAN_CTAG_RX |
3297 NETIF_F_HW_VLAN_CTAG_TX |
3298 NETIF_F_RXALL;
3299
3300 if (hw->mac.type >= e1000_i350)
3301 netdev->hw_features |= NETIF_F_NTUPLE;
3302
3303 netdev->features |= NETIF_F_HIGHDMA;
3304
3305 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3306 netdev->mpls_features |= NETIF_F_HW_CSUM;
3307 netdev->hw_enc_features |= netdev->vlan_features;
3308
3309 /* set this bit last since it cannot be part of vlan_features */
3310 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3311 NETIF_F_HW_VLAN_CTAG_RX |
3312 NETIF_F_HW_VLAN_CTAG_TX;
3313
3314 netdev->priv_flags |= IFF_SUPP_NOFCS;
3315
3316 netdev->priv_flags |= IFF_UNICAST_FLT;
3317
3318 /* MTU range: 68 - 9216 */
3319 netdev->min_mtu = ETH_MIN_MTU;
3320 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3321
3322 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3323
3324 /* before reading the NVM, reset the controller to put the device in a
3325 * known good starting state
3326 */
3327 hw->mac.ops.reset_hw(hw);
3328
3329 /* make sure the NVM is good , i211/i210 parts can have special NVM
3330 * that doesn't contain a checksum
3331 */
3332 switch (hw->mac.type) {
3333 case e1000_i210:
3334 case e1000_i211:
3335 if (igb_get_flash_presence_i210(hw)) {
3336 if (hw->nvm.ops.validate(hw) < 0) {
3337 dev_err(&pdev->dev,
3338 "The NVM Checksum Is Not Valid\n");
3339 err = -EIO;
3340 goto err_eeprom;
3341 }
3342 }
3343 break;
3344 default:
3345 if (hw->nvm.ops.validate(hw) < 0) {
3346 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3347 err = -EIO;
3348 goto err_eeprom;
3349 }
3350 break;
3351 }
3352
3353 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3354 /* copy the MAC address out of the NVM */
3355 if (hw->mac.ops.read_mac_addr(hw))
3356 dev_err(&pdev->dev, "NVM Read Error\n");
3357 }
3358
3359 eth_hw_addr_set(netdev, hw->mac.addr);
3360
3361 if (!is_valid_ether_addr(netdev->dev_addr)) {
3362 dev_err(&pdev->dev, "Invalid MAC Address\n");
3363 err = -EIO;
3364 goto err_eeprom;
3365 }
3366
3367 igb_set_default_mac_filter(adapter);
3368
3369 /* get firmware version for ethtool -i */
3370 igb_set_fw_version(adapter);
3371
3372 /* configure RXPBSIZE and TXPBSIZE */
3373 if (hw->mac.type == e1000_i210) {
3374 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3375 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3376 }
3377
3378 timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3379 timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3380
3381 INIT_WORK(&adapter->reset_task, igb_reset_task);
3382 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3383
3384 /* Initialize link properties that are user-changeable */
3385 adapter->fc_autoneg = true;
3386 hw->mac.autoneg = true;
3387 hw->phy.autoneg_advertised = 0x2f;
3388
3389 hw->fc.requested_mode = e1000_fc_default;
3390 hw->fc.current_mode = e1000_fc_default;
3391
3392 igb_validate_mdi_setting(hw);
3393
3394 /* By default, support wake on port A */
3395 if (hw->bus.func == 0)
3396 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3397
3398 /* Check the NVM for wake support on non-port A ports */
3399 if (hw->mac.type >= e1000_82580)
3400 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3401 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3402 &eeprom_data);
3403 else if (hw->bus.func == 1)
3404 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3405
3406 if (eeprom_data & IGB_EEPROM_APME)
3407 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3408
3409 /* now that we have the eeprom settings, apply the special cases where
3410 * the eeprom may be wrong or the board simply won't support wake on
3411 * lan on a particular port
3412 */
3413 switch (pdev->device) {
3414 case E1000_DEV_ID_82575GB_QUAD_COPPER:
3415 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3416 break;
3417 case E1000_DEV_ID_82575EB_FIBER_SERDES:
3418 case E1000_DEV_ID_82576_FIBER:
3419 case E1000_DEV_ID_82576_SERDES:
3420 /* Wake events only supported on port A for dual fiber
3421 * regardless of eeprom setting
3422 */
3423 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3424 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3425 break;
3426 case E1000_DEV_ID_82576_QUAD_COPPER:
3427 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3428 /* if quad port adapter, disable WoL on all but port A */
3429 if (global_quad_port_a != 0)
3430 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3431 else
3432 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3433 /* Reset for multiple quad port adapters */
3434 if (++global_quad_port_a == 4)
3435 global_quad_port_a = 0;
3436 break;
3437 default:
3438 /* If the device can't wake, don't set software support */
3439 if (!device_can_wakeup(&adapter->pdev->dev))
3440 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3441 }
3442
3443 /* initialize the wol settings based on the eeprom settings */
3444 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3445 adapter->wol |= E1000_WUFC_MAG;
3446
3447 /* Some vendors want WoL disabled by default, but still supported */
3448 if ((hw->mac.type == e1000_i350) &&
3449 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3450 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3451 adapter->wol = 0;
3452 }
3453
3454 /* Some vendors want the ability to Use the EEPROM setting as
3455 * enable/disable only, and not for capability
3456 */
3457 if (((hw->mac.type == e1000_i350) ||
3458 (hw->mac.type == e1000_i354)) &&
3459 (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3460 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3461 adapter->wol = 0;
3462 }
3463 if (hw->mac.type == e1000_i350) {
3464 if (((pdev->subsystem_device == 0x5001) ||
3465 (pdev->subsystem_device == 0x5002)) &&
3466 (hw->bus.func == 0)) {
3467 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3468 adapter->wol = 0;
3469 }
3470 if (pdev->subsystem_device == 0x1F52)
3471 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3472 }
3473
3474 device_set_wakeup_enable(&adapter->pdev->dev,
3475 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3476
3477 /* reset the hardware with the new settings */
3478 igb_reset(adapter);
3479
3480 /* Init the I2C interface */
3481 err = igb_init_i2c(adapter);
3482 if (err) {
3483 dev_err(&pdev->dev, "failed to init i2c interface\n");
3484 goto err_eeprom;
3485 }
3486
3487 /* let the f/w know that the h/w is now under the control of the
3488 * driver.
3489 */
3490 igb_get_hw_control(adapter);
3491
3492 strcpy(netdev->name, "eth%d");
3493 err = register_netdev(netdev);
3494 if (err)
3495 goto err_register;
3496
3497 /* carrier off reporting is important to ethtool even BEFORE open */
3498 netif_carrier_off(netdev);
3499
3500 #ifdef CONFIG_IGB_DCA
3501 if (dca_add_requester(&pdev->dev) == 0) {
3502 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3503 dev_info(&pdev->dev, "DCA enabled\n");
3504 igb_setup_dca(adapter);
3505 }
3506
3507 #endif
3508 #ifdef CONFIG_IGB_HWMON
3509 /* Initialize the thermal sensor on i350 devices. */
3510 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3511 u16 ets_word;
3512
3513 /* Read the NVM to determine if this i350 device supports an
3514 * external thermal sensor.
3515 */
3516 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3517 if (ets_word != 0x0000 && ets_word != 0xFFFF)
3518 adapter->ets = true;
3519 else
3520 adapter->ets = false;
3521 if (igb_sysfs_init(adapter))
3522 dev_err(&pdev->dev,
3523 "failed to allocate sysfs resources\n");
3524 } else {
3525 adapter->ets = false;
3526 }
3527 #endif
3528 /* Check if Media Autosense is enabled */
3529 adapter->ei = *ei;
3530 if (hw->dev_spec._82575.mas_capable)
3531 igb_init_mas(adapter);
3532
3533 /* do hw tstamp init after resetting */
3534 igb_ptp_init(adapter);
3535
3536 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3537 /* print bus type/speed/width info, not applicable to i354 */
3538 if (hw->mac.type != e1000_i354) {
3539 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3540 netdev->name,
3541 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3542 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3543 "unknown"),
3544 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3545 "Width x4" :
3546 (hw->bus.width == e1000_bus_width_pcie_x2) ?
3547 "Width x2" :
3548 (hw->bus.width == e1000_bus_width_pcie_x1) ?
3549 "Width x1" : "unknown"), netdev->dev_addr);
3550 }
3551
3552 if ((hw->mac.type == e1000_82576 &&
3553 rd32(E1000_EECD) & E1000_EECD_PRES) ||
3554 (hw->mac.type >= e1000_i210 ||
3555 igb_get_flash_presence_i210(hw))) {
3556 ret_val = igb_read_part_string(hw, part_str,
3557 E1000_PBANUM_LENGTH);
3558 } else {
3559 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3560 }
3561
3562 if (ret_val)
3563 strcpy(part_str, "Unknown");
3564 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3565 dev_info(&pdev->dev,
3566 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3567 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3568 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3569 adapter->num_rx_queues, adapter->num_tx_queues);
3570 if (hw->phy.media_type == e1000_media_type_copper) {
3571 switch (hw->mac.type) {
3572 case e1000_i350:
3573 case e1000_i210:
3574 case e1000_i211:
3575 /* Enable EEE for internal copper PHY devices */
3576 err = igb_set_eee_i350(hw, true, true);
3577 if ((!err) &&
3578 (!hw->dev_spec._82575.eee_disable)) {
3579 adapter->eee_advert =
3580 MDIO_EEE_100TX | MDIO_EEE_1000T;
3581 adapter->flags |= IGB_FLAG_EEE;
3582 }
3583 break;
3584 case e1000_i354:
3585 if ((rd32(E1000_CTRL_EXT) &
3586 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3587 err = igb_set_eee_i354(hw, true, true);
3588 if ((!err) &&
3589 (!hw->dev_spec._82575.eee_disable)) {
3590 adapter->eee_advert =
3591 MDIO_EEE_100TX | MDIO_EEE_1000T;
3592 adapter->flags |= IGB_FLAG_EEE;
3593 }
3594 }
3595 break;
3596 default:
3597 break;
3598 }
3599 }
3600
3601 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
3602
3603 pm_runtime_put_noidle(&pdev->dev);
3604 return 0;
3605
3606 err_register:
3607 igb_release_hw_control(adapter);
3608 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3609 err_eeprom:
3610 if (!igb_check_reset_block(hw))
3611 igb_reset_phy(hw);
3612
3613 if (hw->flash_address)
3614 iounmap(hw->flash_address);
3615 err_sw_init:
3616 kfree(adapter->mac_table);
3617 kfree(adapter->shadow_vfta);
3618 igb_clear_interrupt_scheme(adapter);
3619 #ifdef CONFIG_PCI_IOV
3620 igb_disable_sriov(pdev);
3621 #endif
3622 pci_iounmap(pdev, adapter->io_addr);
3623 err_ioremap:
3624 free_netdev(netdev);
3625 err_alloc_etherdev:
3626 pci_disable_pcie_error_reporting(pdev);
3627 pci_release_mem_regions(pdev);
3628 err_pci_reg:
3629 err_dma:
3630 pci_disable_device(pdev);
3631 return err;
3632 }
3633
3634 #ifdef CONFIG_PCI_IOV
igb_disable_sriov(struct pci_dev * pdev)3635 static int igb_disable_sriov(struct pci_dev *pdev)
3636 {
3637 struct net_device *netdev = pci_get_drvdata(pdev);
3638 struct igb_adapter *adapter = netdev_priv(netdev);
3639 struct e1000_hw *hw = &adapter->hw;
3640 unsigned long flags;
3641
3642 /* reclaim resources allocated to VFs */
3643 if (adapter->vf_data) {
3644 /* disable iov and allow time for transactions to clear */
3645 if (pci_vfs_assigned(pdev)) {
3646 dev_warn(&pdev->dev,
3647 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3648 return -EPERM;
3649 } else {
3650 pci_disable_sriov(pdev);
3651 msleep(500);
3652 }
3653 spin_lock_irqsave(&adapter->vfs_lock, flags);
3654 kfree(adapter->vf_mac_list);
3655 adapter->vf_mac_list = NULL;
3656 kfree(adapter->vf_data);
3657 adapter->vf_data = NULL;
3658 adapter->vfs_allocated_count = 0;
3659 spin_unlock_irqrestore(&adapter->vfs_lock, flags);
3660 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3661 wrfl();
3662 msleep(100);
3663 dev_info(&pdev->dev, "IOV Disabled\n");
3664
3665 /* Re-enable DMA Coalescing flag since IOV is turned off */
3666 adapter->flags |= IGB_FLAG_DMAC;
3667 }
3668
3669 return 0;
3670 }
3671
igb_enable_sriov(struct pci_dev * pdev,int num_vfs)3672 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
3673 {
3674 struct net_device *netdev = pci_get_drvdata(pdev);
3675 struct igb_adapter *adapter = netdev_priv(netdev);
3676 int old_vfs = pci_num_vf(pdev);
3677 struct vf_mac_filter *mac_list;
3678 int err = 0;
3679 int num_vf_mac_filters, i;
3680
3681 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3682 err = -EPERM;
3683 goto out;
3684 }
3685 if (!num_vfs)
3686 goto out;
3687
3688 if (old_vfs) {
3689 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3690 old_vfs, max_vfs);
3691 adapter->vfs_allocated_count = old_vfs;
3692 } else
3693 adapter->vfs_allocated_count = num_vfs;
3694
3695 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3696 sizeof(struct vf_data_storage), GFP_KERNEL);
3697
3698 /* if allocation failed then we do not support SR-IOV */
3699 if (!adapter->vf_data) {
3700 adapter->vfs_allocated_count = 0;
3701 err = -ENOMEM;
3702 goto out;
3703 }
3704
3705 /* Due to the limited number of RAR entries calculate potential
3706 * number of MAC filters available for the VFs. Reserve entries
3707 * for PF default MAC, PF MAC filters and at least one RAR entry
3708 * for each VF for VF MAC.
3709 */
3710 num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3711 (1 + IGB_PF_MAC_FILTERS_RESERVED +
3712 adapter->vfs_allocated_count);
3713
3714 adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3715 sizeof(struct vf_mac_filter),
3716 GFP_KERNEL);
3717
3718 mac_list = adapter->vf_mac_list;
3719 INIT_LIST_HEAD(&adapter->vf_macs.l);
3720
3721 if (adapter->vf_mac_list) {
3722 /* Initialize list of VF MAC filters */
3723 for (i = 0; i < num_vf_mac_filters; i++) {
3724 mac_list->vf = -1;
3725 mac_list->free = true;
3726 list_add(&mac_list->l, &adapter->vf_macs.l);
3727 mac_list++;
3728 }
3729 } else {
3730 /* If we could not allocate memory for the VF MAC filters
3731 * we can continue without this feature but warn user.
3732 */
3733 dev_err(&pdev->dev,
3734 "Unable to allocate memory for VF MAC filter list\n");
3735 }
3736
3737 /* only call pci_enable_sriov() if no VFs are allocated already */
3738 if (!old_vfs) {
3739 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3740 if (err)
3741 goto err_out;
3742 }
3743 dev_info(&pdev->dev, "%d VFs allocated\n",
3744 adapter->vfs_allocated_count);
3745 for (i = 0; i < adapter->vfs_allocated_count; i++)
3746 igb_vf_configure(adapter, i);
3747
3748 /* DMA Coalescing is not supported in IOV mode. */
3749 adapter->flags &= ~IGB_FLAG_DMAC;
3750 goto out;
3751
3752 err_out:
3753 kfree(adapter->vf_mac_list);
3754 adapter->vf_mac_list = NULL;
3755 kfree(adapter->vf_data);
3756 adapter->vf_data = NULL;
3757 adapter->vfs_allocated_count = 0;
3758 out:
3759 return err;
3760 }
3761
3762 #endif
3763 /**
3764 * igb_remove_i2c - Cleanup I2C interface
3765 * @adapter: pointer to adapter structure
3766 **/
igb_remove_i2c(struct igb_adapter * adapter)3767 static void igb_remove_i2c(struct igb_adapter *adapter)
3768 {
3769 /* free the adapter bus structure */
3770 i2c_del_adapter(&adapter->i2c_adap);
3771 }
3772
3773 /**
3774 * igb_remove - Device Removal Routine
3775 * @pdev: PCI device information struct
3776 *
3777 * igb_remove is called by the PCI subsystem to alert the driver
3778 * that it should release a PCI device. The could be caused by a
3779 * Hot-Plug event, or because the driver is going to be removed from
3780 * memory.
3781 **/
igb_remove(struct pci_dev * pdev)3782 static void igb_remove(struct pci_dev *pdev)
3783 {
3784 struct net_device *netdev = pci_get_drvdata(pdev);
3785 struct igb_adapter *adapter = netdev_priv(netdev);
3786 struct e1000_hw *hw = &adapter->hw;
3787
3788 pm_runtime_get_noresume(&pdev->dev);
3789 #ifdef CONFIG_IGB_HWMON
3790 igb_sysfs_exit(adapter);
3791 #endif
3792 igb_remove_i2c(adapter);
3793 igb_ptp_stop(adapter);
3794 /* The watchdog timer may be rescheduled, so explicitly
3795 * disable watchdog from being rescheduled.
3796 */
3797 set_bit(__IGB_DOWN, &adapter->state);
3798 del_timer_sync(&adapter->watchdog_timer);
3799 del_timer_sync(&adapter->phy_info_timer);
3800
3801 cancel_work_sync(&adapter->reset_task);
3802 cancel_work_sync(&adapter->watchdog_task);
3803
3804 #ifdef CONFIG_IGB_DCA
3805 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3806 dev_info(&pdev->dev, "DCA disabled\n");
3807 dca_remove_requester(&pdev->dev);
3808 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3809 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3810 }
3811 #endif
3812
3813 /* Release control of h/w to f/w. If f/w is AMT enabled, this
3814 * would have already happened in close and is redundant.
3815 */
3816 igb_release_hw_control(adapter);
3817
3818 #ifdef CONFIG_PCI_IOV
3819 rtnl_lock();
3820 igb_disable_sriov(pdev);
3821 rtnl_unlock();
3822 #endif
3823
3824 unregister_netdev(netdev);
3825
3826 igb_clear_interrupt_scheme(adapter);
3827
3828 pci_iounmap(pdev, adapter->io_addr);
3829 if (hw->flash_address)
3830 iounmap(hw->flash_address);
3831 pci_release_mem_regions(pdev);
3832
3833 kfree(adapter->mac_table);
3834 kfree(adapter->shadow_vfta);
3835 free_netdev(netdev);
3836
3837 pci_disable_pcie_error_reporting(pdev);
3838
3839 pci_disable_device(pdev);
3840 }
3841
3842 /**
3843 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3844 * @adapter: board private structure to initialize
3845 *
3846 * This function initializes the vf specific data storage and then attempts to
3847 * allocate the VFs. The reason for ordering it this way is because it is much
3848 * mor expensive time wise to disable SR-IOV than it is to allocate and free
3849 * the memory for the VFs.
3850 **/
igb_probe_vfs(struct igb_adapter * adapter)3851 static void igb_probe_vfs(struct igb_adapter *adapter)
3852 {
3853 #ifdef CONFIG_PCI_IOV
3854 struct pci_dev *pdev = adapter->pdev;
3855 struct e1000_hw *hw = &adapter->hw;
3856
3857 /* Virtualization features not supported on i210 family. */
3858 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
3859 return;
3860
3861 /* Of the below we really only want the effect of getting
3862 * IGB_FLAG_HAS_MSIX set (if available), without which
3863 * igb_enable_sriov() has no effect.
3864 */
3865 igb_set_interrupt_capability(adapter, true);
3866 igb_reset_interrupt_capability(adapter);
3867
3868 pci_sriov_set_totalvfs(pdev, 7);
3869 igb_enable_sriov(pdev, max_vfs);
3870
3871 #endif /* CONFIG_PCI_IOV */
3872 }
3873
igb_get_max_rss_queues(struct igb_adapter * adapter)3874 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3875 {
3876 struct e1000_hw *hw = &adapter->hw;
3877 unsigned int max_rss_queues;
3878
3879 /* Determine the maximum number of RSS queues supported. */
3880 switch (hw->mac.type) {
3881 case e1000_i211:
3882 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3883 break;
3884 case e1000_82575:
3885 case e1000_i210:
3886 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3887 break;
3888 case e1000_i350:
3889 /* I350 cannot do RSS and SR-IOV at the same time */
3890 if (!!adapter->vfs_allocated_count) {
3891 max_rss_queues = 1;
3892 break;
3893 }
3894 fallthrough;
3895 case e1000_82576:
3896 if (!!adapter->vfs_allocated_count) {
3897 max_rss_queues = 2;
3898 break;
3899 }
3900 fallthrough;
3901 case e1000_82580:
3902 case e1000_i354:
3903 default:
3904 max_rss_queues = IGB_MAX_RX_QUEUES;
3905 break;
3906 }
3907
3908 return max_rss_queues;
3909 }
3910
igb_init_queue_configuration(struct igb_adapter * adapter)3911 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3912 {
3913 u32 max_rss_queues;
3914
3915 max_rss_queues = igb_get_max_rss_queues(adapter);
3916 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3917
3918 igb_set_flag_queue_pairs(adapter, max_rss_queues);
3919 }
3920
igb_set_flag_queue_pairs(struct igb_adapter * adapter,const u32 max_rss_queues)3921 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3922 const u32 max_rss_queues)
3923 {
3924 struct e1000_hw *hw = &adapter->hw;
3925
3926 /* Determine if we need to pair queues. */
3927 switch (hw->mac.type) {
3928 case e1000_82575:
3929 case e1000_i211:
3930 /* Device supports enough interrupts without queue pairing. */
3931 break;
3932 case e1000_82576:
3933 case e1000_82580:
3934 case e1000_i350:
3935 case e1000_i354:
3936 case e1000_i210:
3937 default:
3938 /* If rss_queues > half of max_rss_queues, pair the queues in
3939 * order to conserve interrupts due to limited supply.
3940 */
3941 if (adapter->rss_queues > (max_rss_queues / 2))
3942 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3943 else
3944 adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3945 break;
3946 }
3947 }
3948
3949 /**
3950 * igb_sw_init - Initialize general software structures (struct igb_adapter)
3951 * @adapter: board private structure to initialize
3952 *
3953 * igb_sw_init initializes the Adapter private data structure.
3954 * Fields are initialized based on PCI device information and
3955 * OS network device settings (MTU size).
3956 **/
igb_sw_init(struct igb_adapter * adapter)3957 static int igb_sw_init(struct igb_adapter *adapter)
3958 {
3959 struct e1000_hw *hw = &adapter->hw;
3960 struct net_device *netdev = adapter->netdev;
3961 struct pci_dev *pdev = adapter->pdev;
3962
3963 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3964
3965 /* set default ring sizes */
3966 adapter->tx_ring_count = IGB_DEFAULT_TXD;
3967 adapter->rx_ring_count = IGB_DEFAULT_RXD;
3968
3969 /* set default ITR values */
3970 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3971 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3972
3973 /* set default work limits */
3974 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3975
3976 adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD;
3977 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3978
3979 spin_lock_init(&adapter->nfc_lock);
3980 spin_lock_init(&adapter->stats64_lock);
3981
3982 /* init spinlock to avoid concurrency of VF resources */
3983 spin_lock_init(&adapter->vfs_lock);
3984 #ifdef CONFIG_PCI_IOV
3985 switch (hw->mac.type) {
3986 case e1000_82576:
3987 case e1000_i350:
3988 if (max_vfs > 7) {
3989 dev_warn(&pdev->dev,
3990 "Maximum of 7 VFs per PF, using max\n");
3991 max_vfs = adapter->vfs_allocated_count = 7;
3992 } else
3993 adapter->vfs_allocated_count = max_vfs;
3994 if (adapter->vfs_allocated_count)
3995 dev_warn(&pdev->dev,
3996 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3997 break;
3998 default:
3999 break;
4000 }
4001 #endif /* CONFIG_PCI_IOV */
4002
4003 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
4004 adapter->flags |= IGB_FLAG_HAS_MSIX;
4005
4006 adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
4007 sizeof(struct igb_mac_addr),
4008 GFP_KERNEL);
4009 if (!adapter->mac_table)
4010 return -ENOMEM;
4011
4012 igb_probe_vfs(adapter);
4013
4014 igb_init_queue_configuration(adapter);
4015
4016 /* Setup and initialize a copy of the hw vlan table array */
4017 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
4018 GFP_KERNEL);
4019 if (!adapter->shadow_vfta)
4020 return -ENOMEM;
4021
4022 /* This call may decrease the number of queues */
4023 if (igb_init_interrupt_scheme(adapter, true)) {
4024 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4025 return -ENOMEM;
4026 }
4027
4028 /* Explicitly disable IRQ since the NIC can be in any state. */
4029 igb_irq_disable(adapter);
4030
4031 if (hw->mac.type >= e1000_i350)
4032 adapter->flags &= ~IGB_FLAG_DMAC;
4033
4034 set_bit(__IGB_DOWN, &adapter->state);
4035 return 0;
4036 }
4037
4038 /**
4039 * __igb_open - Called when a network interface is made active
4040 * @netdev: network interface device structure
4041 * @resuming: indicates whether we are in a resume call
4042 *
4043 * Returns 0 on success, negative value on failure
4044 *
4045 * The open entry point is called when a network interface is made
4046 * active by the system (IFF_UP). At this point all resources needed
4047 * for transmit and receive operations are allocated, the interrupt
4048 * handler is registered with the OS, the watchdog timer is started,
4049 * and the stack is notified that the interface is ready.
4050 **/
__igb_open(struct net_device * netdev,bool resuming)4051 static int __igb_open(struct net_device *netdev, bool resuming)
4052 {
4053 struct igb_adapter *adapter = netdev_priv(netdev);
4054 struct e1000_hw *hw = &adapter->hw;
4055 struct pci_dev *pdev = adapter->pdev;
4056 int err;
4057 int i;
4058
4059 /* disallow open during test */
4060 if (test_bit(__IGB_TESTING, &adapter->state)) {
4061 WARN_ON(resuming);
4062 return -EBUSY;
4063 }
4064
4065 if (!resuming)
4066 pm_runtime_get_sync(&pdev->dev);
4067
4068 netif_carrier_off(netdev);
4069
4070 /* allocate transmit descriptors */
4071 err = igb_setup_all_tx_resources(adapter);
4072 if (err)
4073 goto err_setup_tx;
4074
4075 /* allocate receive descriptors */
4076 err = igb_setup_all_rx_resources(adapter);
4077 if (err)
4078 goto err_setup_rx;
4079
4080 igb_power_up_link(adapter);
4081
4082 /* before we allocate an interrupt, we must be ready to handle it.
4083 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4084 * as soon as we call pci_request_irq, so we have to setup our
4085 * clean_rx handler before we do so.
4086 */
4087 igb_configure(adapter);
4088
4089 err = igb_request_irq(adapter);
4090 if (err)
4091 goto err_req_irq;
4092
4093 /* Notify the stack of the actual queue counts. */
4094 err = netif_set_real_num_tx_queues(adapter->netdev,
4095 adapter->num_tx_queues);
4096 if (err)
4097 goto err_set_queues;
4098
4099 err = netif_set_real_num_rx_queues(adapter->netdev,
4100 adapter->num_rx_queues);
4101 if (err)
4102 goto err_set_queues;
4103
4104 /* From here on the code is the same as igb_up() */
4105 clear_bit(__IGB_DOWN, &adapter->state);
4106
4107 for (i = 0; i < adapter->num_q_vectors; i++)
4108 napi_enable(&(adapter->q_vector[i]->napi));
4109
4110 /* Clear any pending interrupts. */
4111 rd32(E1000_TSICR);
4112 rd32(E1000_ICR);
4113
4114 igb_irq_enable(adapter);
4115
4116 /* notify VFs that reset has been completed */
4117 if (adapter->vfs_allocated_count) {
4118 u32 reg_data = rd32(E1000_CTRL_EXT);
4119
4120 reg_data |= E1000_CTRL_EXT_PFRSTD;
4121 wr32(E1000_CTRL_EXT, reg_data);
4122 }
4123
4124 netif_tx_start_all_queues(netdev);
4125
4126 if (!resuming)
4127 pm_runtime_put(&pdev->dev);
4128
4129 /* start the watchdog. */
4130 hw->mac.get_link_status = 1;
4131 schedule_work(&adapter->watchdog_task);
4132
4133 return 0;
4134
4135 err_set_queues:
4136 igb_free_irq(adapter);
4137 err_req_irq:
4138 igb_release_hw_control(adapter);
4139 igb_power_down_link(adapter);
4140 igb_free_all_rx_resources(adapter);
4141 err_setup_rx:
4142 igb_free_all_tx_resources(adapter);
4143 err_setup_tx:
4144 igb_reset(adapter);
4145 if (!resuming)
4146 pm_runtime_put(&pdev->dev);
4147
4148 return err;
4149 }
4150
igb_open(struct net_device * netdev)4151 int igb_open(struct net_device *netdev)
4152 {
4153 return __igb_open(netdev, false);
4154 }
4155
4156 /**
4157 * __igb_close - Disables a network interface
4158 * @netdev: network interface device structure
4159 * @suspending: indicates we are in a suspend call
4160 *
4161 * Returns 0, this is not allowed to fail
4162 *
4163 * The close entry point is called when an interface is de-activated
4164 * by the OS. The hardware is still under the driver's control, but
4165 * needs to be disabled. A global MAC reset is issued to stop the
4166 * hardware, and all transmit and receive resources are freed.
4167 **/
__igb_close(struct net_device * netdev,bool suspending)4168 static int __igb_close(struct net_device *netdev, bool suspending)
4169 {
4170 struct igb_adapter *adapter = netdev_priv(netdev);
4171 struct pci_dev *pdev = adapter->pdev;
4172
4173 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4174
4175 if (!suspending)
4176 pm_runtime_get_sync(&pdev->dev);
4177
4178 igb_down(adapter);
4179 igb_free_irq(adapter);
4180
4181 igb_free_all_tx_resources(adapter);
4182 igb_free_all_rx_resources(adapter);
4183
4184 if (!suspending)
4185 pm_runtime_put_sync(&pdev->dev);
4186 return 0;
4187 }
4188
igb_close(struct net_device * netdev)4189 int igb_close(struct net_device *netdev)
4190 {
4191 if (netif_device_present(netdev) || netdev->dismantle)
4192 return __igb_close(netdev, false);
4193 return 0;
4194 }
4195
4196 /**
4197 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
4198 * @tx_ring: tx descriptor ring (for a specific queue) to setup
4199 *
4200 * Return 0 on success, negative on failure
4201 **/
igb_setup_tx_resources(struct igb_ring * tx_ring)4202 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4203 {
4204 struct device *dev = tx_ring->dev;
4205 int size;
4206
4207 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4208
4209 tx_ring->tx_buffer_info = vmalloc(size);
4210 if (!tx_ring->tx_buffer_info)
4211 goto err;
4212
4213 /* round up to nearest 4K */
4214 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4215 tx_ring->size = ALIGN(tx_ring->size, 4096);
4216
4217 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4218 &tx_ring->dma, GFP_KERNEL);
4219 if (!tx_ring->desc)
4220 goto err;
4221
4222 tx_ring->next_to_use = 0;
4223 tx_ring->next_to_clean = 0;
4224
4225 return 0;
4226
4227 err:
4228 vfree(tx_ring->tx_buffer_info);
4229 tx_ring->tx_buffer_info = NULL;
4230 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4231 return -ENOMEM;
4232 }
4233
4234 /**
4235 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
4236 * (Descriptors) for all queues
4237 * @adapter: board private structure
4238 *
4239 * Return 0 on success, negative on failure
4240 **/
igb_setup_all_tx_resources(struct igb_adapter * adapter)4241 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4242 {
4243 struct pci_dev *pdev = adapter->pdev;
4244 int i, err = 0;
4245
4246 for (i = 0; i < adapter->num_tx_queues; i++) {
4247 err = igb_setup_tx_resources(adapter->tx_ring[i]);
4248 if (err) {
4249 dev_err(&pdev->dev,
4250 "Allocation for Tx Queue %u failed\n", i);
4251 for (i--; i >= 0; i--)
4252 igb_free_tx_resources(adapter->tx_ring[i]);
4253 break;
4254 }
4255 }
4256
4257 return err;
4258 }
4259
4260 /**
4261 * igb_setup_tctl - configure the transmit control registers
4262 * @adapter: Board private structure
4263 **/
igb_setup_tctl(struct igb_adapter * adapter)4264 void igb_setup_tctl(struct igb_adapter *adapter)
4265 {
4266 struct e1000_hw *hw = &adapter->hw;
4267 u32 tctl;
4268
4269 /* disable queue 0 which is enabled by default on 82575 and 82576 */
4270 wr32(E1000_TXDCTL(0), 0);
4271
4272 /* Program the Transmit Control Register */
4273 tctl = rd32(E1000_TCTL);
4274 tctl &= ~E1000_TCTL_CT;
4275 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4276 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4277
4278 igb_config_collision_dist(hw);
4279
4280 /* Enable transmits */
4281 tctl |= E1000_TCTL_EN;
4282
4283 wr32(E1000_TCTL, tctl);
4284 }
4285
4286 /**
4287 * igb_configure_tx_ring - Configure transmit ring after Reset
4288 * @adapter: board private structure
4289 * @ring: tx ring to configure
4290 *
4291 * Configure a transmit ring after a reset.
4292 **/
igb_configure_tx_ring(struct igb_adapter * adapter,struct igb_ring * ring)4293 void igb_configure_tx_ring(struct igb_adapter *adapter,
4294 struct igb_ring *ring)
4295 {
4296 struct e1000_hw *hw = &adapter->hw;
4297 u32 txdctl = 0;
4298 u64 tdba = ring->dma;
4299 int reg_idx = ring->reg_idx;
4300
4301 wr32(E1000_TDLEN(reg_idx),
4302 ring->count * sizeof(union e1000_adv_tx_desc));
4303 wr32(E1000_TDBAL(reg_idx),
4304 tdba & 0x00000000ffffffffULL);
4305 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4306
4307 ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4308 wr32(E1000_TDH(reg_idx), 0);
4309 writel(0, ring->tail);
4310
4311 txdctl |= IGB_TX_PTHRESH;
4312 txdctl |= IGB_TX_HTHRESH << 8;
4313 txdctl |= IGB_TX_WTHRESH << 16;
4314
4315 /* reinitialize tx_buffer_info */
4316 memset(ring->tx_buffer_info, 0,
4317 sizeof(struct igb_tx_buffer) * ring->count);
4318
4319 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4320 wr32(E1000_TXDCTL(reg_idx), txdctl);
4321 }
4322
4323 /**
4324 * igb_configure_tx - Configure transmit Unit after Reset
4325 * @adapter: board private structure
4326 *
4327 * Configure the Tx unit of the MAC after a reset.
4328 **/
igb_configure_tx(struct igb_adapter * adapter)4329 static void igb_configure_tx(struct igb_adapter *adapter)
4330 {
4331 struct e1000_hw *hw = &adapter->hw;
4332 int i;
4333
4334 /* disable the queues */
4335 for (i = 0; i < adapter->num_tx_queues; i++)
4336 wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4337
4338 wrfl();
4339 usleep_range(10000, 20000);
4340
4341 for (i = 0; i < adapter->num_tx_queues; i++)
4342 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4343 }
4344
4345 /**
4346 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
4347 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
4348 *
4349 * Returns 0 on success, negative on failure
4350 **/
igb_setup_rx_resources(struct igb_ring * rx_ring)4351 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4352 {
4353 struct igb_adapter *adapter = netdev_priv(rx_ring->netdev);
4354 struct device *dev = rx_ring->dev;
4355 int size, res;
4356
4357 /* XDP RX-queue info */
4358 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
4359 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4360 res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
4361 rx_ring->queue_index, 0);
4362 if (res < 0) {
4363 dev_err(dev, "Failed to register xdp_rxq index %u\n",
4364 rx_ring->queue_index);
4365 return res;
4366 }
4367
4368 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4369
4370 rx_ring->rx_buffer_info = vmalloc(size);
4371 if (!rx_ring->rx_buffer_info)
4372 goto err;
4373
4374 /* Round up to nearest 4K */
4375 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4376 rx_ring->size = ALIGN(rx_ring->size, 4096);
4377
4378 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4379 &rx_ring->dma, GFP_KERNEL);
4380 if (!rx_ring->desc)
4381 goto err;
4382
4383 rx_ring->next_to_alloc = 0;
4384 rx_ring->next_to_clean = 0;
4385 rx_ring->next_to_use = 0;
4386
4387 rx_ring->xdp_prog = adapter->xdp_prog;
4388
4389 return 0;
4390
4391 err:
4392 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4393 vfree(rx_ring->rx_buffer_info);
4394 rx_ring->rx_buffer_info = NULL;
4395 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4396 return -ENOMEM;
4397 }
4398
4399 /**
4400 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
4401 * (Descriptors) for all queues
4402 * @adapter: board private structure
4403 *
4404 * Return 0 on success, negative on failure
4405 **/
igb_setup_all_rx_resources(struct igb_adapter * adapter)4406 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4407 {
4408 struct pci_dev *pdev = adapter->pdev;
4409 int i, err = 0;
4410
4411 for (i = 0; i < adapter->num_rx_queues; i++) {
4412 err = igb_setup_rx_resources(adapter->rx_ring[i]);
4413 if (err) {
4414 dev_err(&pdev->dev,
4415 "Allocation for Rx Queue %u failed\n", i);
4416 for (i--; i >= 0; i--)
4417 igb_free_rx_resources(adapter->rx_ring[i]);
4418 break;
4419 }
4420 }
4421
4422 return err;
4423 }
4424
4425 /**
4426 * igb_setup_mrqc - configure the multiple receive queue control registers
4427 * @adapter: Board private structure
4428 **/
igb_setup_mrqc(struct igb_adapter * adapter)4429 static void igb_setup_mrqc(struct igb_adapter *adapter)
4430 {
4431 struct e1000_hw *hw = &adapter->hw;
4432 u32 mrqc, rxcsum;
4433 u32 j, num_rx_queues;
4434 u32 rss_key[10];
4435
4436 netdev_rss_key_fill(rss_key, sizeof(rss_key));
4437 for (j = 0; j < 10; j++)
4438 wr32(E1000_RSSRK(j), rss_key[j]);
4439
4440 num_rx_queues = adapter->rss_queues;
4441
4442 switch (hw->mac.type) {
4443 case e1000_82576:
4444 /* 82576 supports 2 RSS queues for SR-IOV */
4445 if (adapter->vfs_allocated_count)
4446 num_rx_queues = 2;
4447 break;
4448 default:
4449 break;
4450 }
4451
4452 if (adapter->rss_indir_tbl_init != num_rx_queues) {
4453 for (j = 0; j < IGB_RETA_SIZE; j++)
4454 adapter->rss_indir_tbl[j] =
4455 (j * num_rx_queues) / IGB_RETA_SIZE;
4456 adapter->rss_indir_tbl_init = num_rx_queues;
4457 }
4458 igb_write_rss_indir_tbl(adapter);
4459
4460 /* Disable raw packet checksumming so that RSS hash is placed in
4461 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
4462 * offloads as they are enabled by default
4463 */
4464 rxcsum = rd32(E1000_RXCSUM);
4465 rxcsum |= E1000_RXCSUM_PCSD;
4466
4467 if (adapter->hw.mac.type >= e1000_82576)
4468 /* Enable Receive Checksum Offload for SCTP */
4469 rxcsum |= E1000_RXCSUM_CRCOFL;
4470
4471 /* Don't need to set TUOFL or IPOFL, they default to 1 */
4472 wr32(E1000_RXCSUM, rxcsum);
4473
4474 /* Generate RSS hash based on packet types, TCP/UDP
4475 * port numbers and/or IPv4/v6 src and dst addresses
4476 */
4477 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4478 E1000_MRQC_RSS_FIELD_IPV4_TCP |
4479 E1000_MRQC_RSS_FIELD_IPV6 |
4480 E1000_MRQC_RSS_FIELD_IPV6_TCP |
4481 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4482
4483 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4484 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4485 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4486 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4487
4488 /* If VMDq is enabled then we set the appropriate mode for that, else
4489 * we default to RSS so that an RSS hash is calculated per packet even
4490 * if we are only using one queue
4491 */
4492 if (adapter->vfs_allocated_count) {
4493 if (hw->mac.type > e1000_82575) {
4494 /* Set the default pool for the PF's first queue */
4495 u32 vtctl = rd32(E1000_VT_CTL);
4496
4497 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4498 E1000_VT_CTL_DISABLE_DEF_POOL);
4499 vtctl |= adapter->vfs_allocated_count <<
4500 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4501 wr32(E1000_VT_CTL, vtctl);
4502 }
4503 if (adapter->rss_queues > 1)
4504 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4505 else
4506 mrqc |= E1000_MRQC_ENABLE_VMDQ;
4507 } else {
4508 mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4509 }
4510 igb_vmm_control(adapter);
4511
4512 wr32(E1000_MRQC, mrqc);
4513 }
4514
4515 /**
4516 * igb_setup_rctl - configure the receive control registers
4517 * @adapter: Board private structure
4518 **/
igb_setup_rctl(struct igb_adapter * adapter)4519 void igb_setup_rctl(struct igb_adapter *adapter)
4520 {
4521 struct e1000_hw *hw = &adapter->hw;
4522 u32 rctl;
4523
4524 rctl = rd32(E1000_RCTL);
4525
4526 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4527 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4528
4529 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4530 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4531
4532 /* enable stripping of CRC. It's unlikely this will break BMC
4533 * redirection as it did with e1000. Newer features require
4534 * that the HW strips the CRC.
4535 */
4536 rctl |= E1000_RCTL_SECRC;
4537
4538 /* disable store bad packets and clear size bits. */
4539 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4540
4541 /* enable LPE to allow for reception of jumbo frames */
4542 rctl |= E1000_RCTL_LPE;
4543
4544 /* disable queue 0 to prevent tail write w/o re-config */
4545 wr32(E1000_RXDCTL(0), 0);
4546
4547 /* Attention!!! For SR-IOV PF driver operations you must enable
4548 * queue drop for all VF and PF queues to prevent head of line blocking
4549 * if an un-trusted VF does not provide descriptors to hardware.
4550 */
4551 if (adapter->vfs_allocated_count) {
4552 /* set all queue drop enable bits */
4553 wr32(E1000_QDE, ALL_QUEUES);
4554 }
4555
4556 /* This is useful for sniffing bad packets. */
4557 if (adapter->netdev->features & NETIF_F_RXALL) {
4558 /* UPE and MPE will be handled by normal PROMISC logic
4559 * in e1000e_set_rx_mode
4560 */
4561 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4562 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4563 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4564
4565 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4566 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4567 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4568 * and that breaks VLANs.
4569 */
4570 }
4571
4572 wr32(E1000_RCTL, rctl);
4573 }
4574
igb_set_vf_rlpml(struct igb_adapter * adapter,int size,int vfn)4575 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4576 int vfn)
4577 {
4578 struct e1000_hw *hw = &adapter->hw;
4579 u32 vmolr;
4580
4581 if (size > MAX_JUMBO_FRAME_SIZE)
4582 size = MAX_JUMBO_FRAME_SIZE;
4583
4584 vmolr = rd32(E1000_VMOLR(vfn));
4585 vmolr &= ~E1000_VMOLR_RLPML_MASK;
4586 vmolr |= size | E1000_VMOLR_LPE;
4587 wr32(E1000_VMOLR(vfn), vmolr);
4588
4589 return 0;
4590 }
4591
igb_set_vf_vlan_strip(struct igb_adapter * adapter,int vfn,bool enable)4592 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4593 int vfn, bool enable)
4594 {
4595 struct e1000_hw *hw = &adapter->hw;
4596 u32 val, reg;
4597
4598 if (hw->mac.type < e1000_82576)
4599 return;
4600
4601 if (hw->mac.type == e1000_i350)
4602 reg = E1000_DVMOLR(vfn);
4603 else
4604 reg = E1000_VMOLR(vfn);
4605
4606 val = rd32(reg);
4607 if (enable)
4608 val |= E1000_VMOLR_STRVLAN;
4609 else
4610 val &= ~(E1000_VMOLR_STRVLAN);
4611 wr32(reg, val);
4612 }
4613
igb_set_vmolr(struct igb_adapter * adapter,int vfn,bool aupe)4614 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4615 int vfn, bool aupe)
4616 {
4617 struct e1000_hw *hw = &adapter->hw;
4618 u32 vmolr;
4619
4620 /* This register exists only on 82576 and newer so if we are older then
4621 * we should exit and do nothing
4622 */
4623 if (hw->mac.type < e1000_82576)
4624 return;
4625
4626 vmolr = rd32(E1000_VMOLR(vfn));
4627 if (aupe)
4628 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4629 else
4630 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4631
4632 /* clear all bits that might not be set */
4633 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4634
4635 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4636 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4637 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
4638 * multicast packets
4639 */
4640 if (vfn <= adapter->vfs_allocated_count)
4641 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4642
4643 wr32(E1000_VMOLR(vfn), vmolr);
4644 }
4645
4646 /**
4647 * igb_setup_srrctl - configure the split and replication receive control
4648 * registers
4649 * @adapter: Board private structure
4650 * @ring: receive ring to be configured
4651 **/
igb_setup_srrctl(struct igb_adapter * adapter,struct igb_ring * ring)4652 void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring)
4653 {
4654 struct e1000_hw *hw = &adapter->hw;
4655 int reg_idx = ring->reg_idx;
4656 u32 srrctl = 0;
4657
4658 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4659 if (ring_uses_large_buffer(ring))
4660 srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4661 else
4662 srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4663 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4664 if (hw->mac.type >= e1000_82580)
4665 srrctl |= E1000_SRRCTL_TIMESTAMP;
4666 /* Only set Drop Enable if VFs allocated, or we are supporting multiple
4667 * queues and rx flow control is disabled
4668 */
4669 if (adapter->vfs_allocated_count ||
4670 (!(hw->fc.current_mode & e1000_fc_rx_pause) &&
4671 adapter->num_rx_queues > 1))
4672 srrctl |= E1000_SRRCTL_DROP_EN;
4673
4674 wr32(E1000_SRRCTL(reg_idx), srrctl);
4675 }
4676
4677 /**
4678 * igb_configure_rx_ring - Configure a receive ring after Reset
4679 * @adapter: board private structure
4680 * @ring: receive ring to be configured
4681 *
4682 * Configure the Rx unit of the MAC after a reset.
4683 **/
igb_configure_rx_ring(struct igb_adapter * adapter,struct igb_ring * ring)4684 void igb_configure_rx_ring(struct igb_adapter *adapter,
4685 struct igb_ring *ring)
4686 {
4687 struct e1000_hw *hw = &adapter->hw;
4688 union e1000_adv_rx_desc *rx_desc;
4689 u64 rdba = ring->dma;
4690 int reg_idx = ring->reg_idx;
4691 u32 rxdctl = 0;
4692
4693 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
4694 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
4695 MEM_TYPE_PAGE_SHARED, NULL));
4696
4697 /* disable the queue */
4698 wr32(E1000_RXDCTL(reg_idx), 0);
4699
4700 /* Set DMA base address registers */
4701 wr32(E1000_RDBAL(reg_idx),
4702 rdba & 0x00000000ffffffffULL);
4703 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4704 wr32(E1000_RDLEN(reg_idx),
4705 ring->count * sizeof(union e1000_adv_rx_desc));
4706
4707 /* initialize head and tail */
4708 ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4709 wr32(E1000_RDH(reg_idx), 0);
4710 writel(0, ring->tail);
4711
4712 /* set descriptor configuration */
4713 igb_setup_srrctl(adapter, ring);
4714
4715 /* set filtering for VMDQ pools */
4716 igb_set_vmolr(adapter, reg_idx & 0x7, true);
4717
4718 rxdctl |= IGB_RX_PTHRESH;
4719 rxdctl |= IGB_RX_HTHRESH << 8;
4720 rxdctl |= IGB_RX_WTHRESH << 16;
4721
4722 /* initialize rx_buffer_info */
4723 memset(ring->rx_buffer_info, 0,
4724 sizeof(struct igb_rx_buffer) * ring->count);
4725
4726 /* initialize Rx descriptor 0 */
4727 rx_desc = IGB_RX_DESC(ring, 0);
4728 rx_desc->wb.upper.length = 0;
4729
4730 /* enable receive descriptor fetching */
4731 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4732 wr32(E1000_RXDCTL(reg_idx), rxdctl);
4733 }
4734
igb_set_rx_buffer_len(struct igb_adapter * adapter,struct igb_ring * rx_ring)4735 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4736 struct igb_ring *rx_ring)
4737 {
4738 /* set build_skb and buffer size flags */
4739 clear_ring_build_skb_enabled(rx_ring);
4740 clear_ring_uses_large_buffer(rx_ring);
4741
4742 if (adapter->flags & IGB_FLAG_RX_LEGACY)
4743 return;
4744
4745 set_ring_build_skb_enabled(rx_ring);
4746
4747 #if (PAGE_SIZE < 8192)
4748 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4749 return;
4750
4751 set_ring_uses_large_buffer(rx_ring);
4752 #endif
4753 }
4754
4755 /**
4756 * igb_configure_rx - Configure receive Unit after Reset
4757 * @adapter: board private structure
4758 *
4759 * Configure the Rx unit of the MAC after a reset.
4760 **/
igb_configure_rx(struct igb_adapter * adapter)4761 static void igb_configure_rx(struct igb_adapter *adapter)
4762 {
4763 int i;
4764
4765 /* set the correct pool for the PF default MAC address in entry 0 */
4766 igb_set_default_mac_filter(adapter);
4767
4768 /* Setup the HW Rx Head and Tail Descriptor Pointers and
4769 * the Base and Length of the Rx Descriptor Ring
4770 */
4771 for (i = 0; i < adapter->num_rx_queues; i++) {
4772 struct igb_ring *rx_ring = adapter->rx_ring[i];
4773
4774 igb_set_rx_buffer_len(adapter, rx_ring);
4775 igb_configure_rx_ring(adapter, rx_ring);
4776 }
4777 }
4778
4779 /**
4780 * igb_free_tx_resources - Free Tx Resources per Queue
4781 * @tx_ring: Tx descriptor ring for a specific queue
4782 *
4783 * Free all transmit software resources
4784 **/
igb_free_tx_resources(struct igb_ring * tx_ring)4785 void igb_free_tx_resources(struct igb_ring *tx_ring)
4786 {
4787 igb_clean_tx_ring(tx_ring);
4788
4789 vfree(tx_ring->tx_buffer_info);
4790 tx_ring->tx_buffer_info = NULL;
4791
4792 /* if not set, then don't free */
4793 if (!tx_ring->desc)
4794 return;
4795
4796 dma_free_coherent(tx_ring->dev, tx_ring->size,
4797 tx_ring->desc, tx_ring->dma);
4798
4799 tx_ring->desc = NULL;
4800 }
4801
4802 /**
4803 * igb_free_all_tx_resources - Free Tx Resources for All Queues
4804 * @adapter: board private structure
4805 *
4806 * Free all transmit software resources
4807 **/
igb_free_all_tx_resources(struct igb_adapter * adapter)4808 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4809 {
4810 int i;
4811
4812 for (i = 0; i < adapter->num_tx_queues; i++)
4813 if (adapter->tx_ring[i])
4814 igb_free_tx_resources(adapter->tx_ring[i]);
4815 }
4816
4817 /**
4818 * igb_clean_tx_ring - Free Tx Buffers
4819 * @tx_ring: ring to be cleaned
4820 **/
igb_clean_tx_ring(struct igb_ring * tx_ring)4821 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4822 {
4823 u16 i = tx_ring->next_to_clean;
4824 struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4825
4826 while (i != tx_ring->next_to_use) {
4827 union e1000_adv_tx_desc *eop_desc, *tx_desc;
4828
4829 /* Free all the Tx ring sk_buffs or xdp frames */
4830 if (tx_buffer->type == IGB_TYPE_SKB)
4831 dev_kfree_skb_any(tx_buffer->skb);
4832 else
4833 xdp_return_frame(tx_buffer->xdpf);
4834
4835 /* unmap skb header data */
4836 dma_unmap_single(tx_ring->dev,
4837 dma_unmap_addr(tx_buffer, dma),
4838 dma_unmap_len(tx_buffer, len),
4839 DMA_TO_DEVICE);
4840
4841 /* check for eop_desc to determine the end of the packet */
4842 eop_desc = tx_buffer->next_to_watch;
4843 tx_desc = IGB_TX_DESC(tx_ring, i);
4844
4845 /* unmap remaining buffers */
4846 while (tx_desc != eop_desc) {
4847 tx_buffer++;
4848 tx_desc++;
4849 i++;
4850 if (unlikely(i == tx_ring->count)) {
4851 i = 0;
4852 tx_buffer = tx_ring->tx_buffer_info;
4853 tx_desc = IGB_TX_DESC(tx_ring, 0);
4854 }
4855
4856 /* unmap any remaining paged data */
4857 if (dma_unmap_len(tx_buffer, len))
4858 dma_unmap_page(tx_ring->dev,
4859 dma_unmap_addr(tx_buffer, dma),
4860 dma_unmap_len(tx_buffer, len),
4861 DMA_TO_DEVICE);
4862 }
4863
4864 tx_buffer->next_to_watch = NULL;
4865
4866 /* move us one more past the eop_desc for start of next pkt */
4867 tx_buffer++;
4868 i++;
4869 if (unlikely(i == tx_ring->count)) {
4870 i = 0;
4871 tx_buffer = tx_ring->tx_buffer_info;
4872 }
4873 }
4874
4875 /* reset BQL for queue */
4876 netdev_tx_reset_queue(txring_txq(tx_ring));
4877
4878 /* reset next_to_use and next_to_clean */
4879 tx_ring->next_to_use = 0;
4880 tx_ring->next_to_clean = 0;
4881 }
4882
4883 /**
4884 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
4885 * @adapter: board private structure
4886 **/
igb_clean_all_tx_rings(struct igb_adapter * adapter)4887 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4888 {
4889 int i;
4890
4891 for (i = 0; i < adapter->num_tx_queues; i++)
4892 if (adapter->tx_ring[i])
4893 igb_clean_tx_ring(adapter->tx_ring[i]);
4894 }
4895
4896 /**
4897 * igb_free_rx_resources - Free Rx Resources
4898 * @rx_ring: ring to clean the resources from
4899 *
4900 * Free all receive software resources
4901 **/
igb_free_rx_resources(struct igb_ring * rx_ring)4902 void igb_free_rx_resources(struct igb_ring *rx_ring)
4903 {
4904 igb_clean_rx_ring(rx_ring);
4905
4906 rx_ring->xdp_prog = NULL;
4907 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4908 vfree(rx_ring->rx_buffer_info);
4909 rx_ring->rx_buffer_info = NULL;
4910
4911 /* if not set, then don't free */
4912 if (!rx_ring->desc)
4913 return;
4914
4915 dma_free_coherent(rx_ring->dev, rx_ring->size,
4916 rx_ring->desc, rx_ring->dma);
4917
4918 rx_ring->desc = NULL;
4919 }
4920
4921 /**
4922 * igb_free_all_rx_resources - Free Rx Resources for All Queues
4923 * @adapter: board private structure
4924 *
4925 * Free all receive software resources
4926 **/
igb_free_all_rx_resources(struct igb_adapter * adapter)4927 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4928 {
4929 int i;
4930
4931 for (i = 0; i < adapter->num_rx_queues; i++)
4932 if (adapter->rx_ring[i])
4933 igb_free_rx_resources(adapter->rx_ring[i]);
4934 }
4935
4936 /**
4937 * igb_clean_rx_ring - Free Rx Buffers per Queue
4938 * @rx_ring: ring to free buffers from
4939 **/
igb_clean_rx_ring(struct igb_ring * rx_ring)4940 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
4941 {
4942 u16 i = rx_ring->next_to_clean;
4943
4944 dev_kfree_skb(rx_ring->skb);
4945 rx_ring->skb = NULL;
4946
4947 /* Free all the Rx ring sk_buffs */
4948 while (i != rx_ring->next_to_alloc) {
4949 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4950
4951 /* Invalidate cache lines that may have been written to by
4952 * device so that we avoid corrupting memory.
4953 */
4954 dma_sync_single_range_for_cpu(rx_ring->dev,
4955 buffer_info->dma,
4956 buffer_info->page_offset,
4957 igb_rx_bufsz(rx_ring),
4958 DMA_FROM_DEVICE);
4959
4960 /* free resources associated with mapping */
4961 dma_unmap_page_attrs(rx_ring->dev,
4962 buffer_info->dma,
4963 igb_rx_pg_size(rx_ring),
4964 DMA_FROM_DEVICE,
4965 IGB_RX_DMA_ATTR);
4966 __page_frag_cache_drain(buffer_info->page,
4967 buffer_info->pagecnt_bias);
4968
4969 i++;
4970 if (i == rx_ring->count)
4971 i = 0;
4972 }
4973
4974 rx_ring->next_to_alloc = 0;
4975 rx_ring->next_to_clean = 0;
4976 rx_ring->next_to_use = 0;
4977 }
4978
4979 /**
4980 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
4981 * @adapter: board private structure
4982 **/
igb_clean_all_rx_rings(struct igb_adapter * adapter)4983 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4984 {
4985 int i;
4986
4987 for (i = 0; i < adapter->num_rx_queues; i++)
4988 if (adapter->rx_ring[i])
4989 igb_clean_rx_ring(adapter->rx_ring[i]);
4990 }
4991
4992 /**
4993 * igb_set_mac - Change the Ethernet Address of the NIC
4994 * @netdev: network interface device structure
4995 * @p: pointer to an address structure
4996 *
4997 * Returns 0 on success, negative on failure
4998 **/
igb_set_mac(struct net_device * netdev,void * p)4999 static int igb_set_mac(struct net_device *netdev, void *p)
5000 {
5001 struct igb_adapter *adapter = netdev_priv(netdev);
5002 struct e1000_hw *hw = &adapter->hw;
5003 struct sockaddr *addr = p;
5004
5005 if (!is_valid_ether_addr(addr->sa_data))
5006 return -EADDRNOTAVAIL;
5007
5008 eth_hw_addr_set(netdev, addr->sa_data);
5009 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
5010
5011 /* set the correct pool for the new PF MAC address in entry 0 */
5012 igb_set_default_mac_filter(adapter);
5013
5014 return 0;
5015 }
5016
5017 /**
5018 * igb_write_mc_addr_list - write multicast addresses to MTA
5019 * @netdev: network interface device structure
5020 *
5021 * Writes multicast address list to the MTA hash table.
5022 * Returns: -ENOMEM on failure
5023 * 0 on no addresses written
5024 * X on writing X addresses to MTA
5025 **/
igb_write_mc_addr_list(struct net_device * netdev)5026 static int igb_write_mc_addr_list(struct net_device *netdev)
5027 {
5028 struct igb_adapter *adapter = netdev_priv(netdev);
5029 struct e1000_hw *hw = &adapter->hw;
5030 struct netdev_hw_addr *ha;
5031 u8 *mta_list;
5032 int i;
5033
5034 if (netdev_mc_empty(netdev)) {
5035 /* nothing to program, so clear mc list */
5036 igb_update_mc_addr_list(hw, NULL, 0);
5037 igb_restore_vf_multicasts(adapter);
5038 return 0;
5039 }
5040
5041 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
5042 if (!mta_list)
5043 return -ENOMEM;
5044
5045 /* The shared function expects a packed array of only addresses. */
5046 i = 0;
5047 netdev_for_each_mc_addr(ha, netdev)
5048 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
5049
5050 igb_update_mc_addr_list(hw, mta_list, i);
5051 kfree(mta_list);
5052
5053 return netdev_mc_count(netdev);
5054 }
5055
igb_vlan_promisc_enable(struct igb_adapter * adapter)5056 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
5057 {
5058 struct e1000_hw *hw = &adapter->hw;
5059 u32 i, pf_id;
5060
5061 switch (hw->mac.type) {
5062 case e1000_i210:
5063 case e1000_i211:
5064 case e1000_i350:
5065 /* VLAN filtering needed for VLAN prio filter */
5066 if (adapter->netdev->features & NETIF_F_NTUPLE)
5067 break;
5068 fallthrough;
5069 case e1000_82576:
5070 case e1000_82580:
5071 case e1000_i354:
5072 /* VLAN filtering needed for pool filtering */
5073 if (adapter->vfs_allocated_count)
5074 break;
5075 fallthrough;
5076 default:
5077 return 1;
5078 }
5079
5080 /* We are already in VLAN promisc, nothing to do */
5081 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
5082 return 0;
5083
5084 if (!adapter->vfs_allocated_count)
5085 goto set_vfta;
5086
5087 /* Add PF to all active pools */
5088 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5089
5090 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5091 u32 vlvf = rd32(E1000_VLVF(i));
5092
5093 vlvf |= BIT(pf_id);
5094 wr32(E1000_VLVF(i), vlvf);
5095 }
5096
5097 set_vfta:
5098 /* Set all bits in the VLAN filter table array */
5099 for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
5100 hw->mac.ops.write_vfta(hw, i, ~0U);
5101
5102 /* Set flag so we don't redo unnecessary work */
5103 adapter->flags |= IGB_FLAG_VLAN_PROMISC;
5104
5105 return 0;
5106 }
5107
5108 #define VFTA_BLOCK_SIZE 8
igb_scrub_vfta(struct igb_adapter * adapter,u32 vfta_offset)5109 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
5110 {
5111 struct e1000_hw *hw = &adapter->hw;
5112 u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
5113 u32 vid_start = vfta_offset * 32;
5114 u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
5115 u32 i, vid, word, bits, pf_id;
5116
5117 /* guarantee that we don't scrub out management VLAN */
5118 vid = adapter->mng_vlan_id;
5119 if (vid >= vid_start && vid < vid_end)
5120 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5121
5122 if (!adapter->vfs_allocated_count)
5123 goto set_vfta;
5124
5125 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5126
5127 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5128 u32 vlvf = rd32(E1000_VLVF(i));
5129
5130 /* pull VLAN ID from VLVF */
5131 vid = vlvf & VLAN_VID_MASK;
5132
5133 /* only concern ourselves with a certain range */
5134 if (vid < vid_start || vid >= vid_end)
5135 continue;
5136
5137 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
5138 /* record VLAN ID in VFTA */
5139 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5140
5141 /* if PF is part of this then continue */
5142 if (test_bit(vid, adapter->active_vlans))
5143 continue;
5144 }
5145
5146 /* remove PF from the pool */
5147 bits = ~BIT(pf_id);
5148 bits &= rd32(E1000_VLVF(i));
5149 wr32(E1000_VLVF(i), bits);
5150 }
5151
5152 set_vfta:
5153 /* extract values from active_vlans and write back to VFTA */
5154 for (i = VFTA_BLOCK_SIZE; i--;) {
5155 vid = (vfta_offset + i) * 32;
5156 word = vid / BITS_PER_LONG;
5157 bits = vid % BITS_PER_LONG;
5158
5159 vfta[i] |= adapter->active_vlans[word] >> bits;
5160
5161 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
5162 }
5163 }
5164
igb_vlan_promisc_disable(struct igb_adapter * adapter)5165 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
5166 {
5167 u32 i;
5168
5169 /* We are not in VLAN promisc, nothing to do */
5170 if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
5171 return;
5172
5173 /* Set flag so we don't redo unnecessary work */
5174 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
5175
5176 for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
5177 igb_scrub_vfta(adapter, i);
5178 }
5179
5180 /**
5181 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
5182 * @netdev: network interface device structure
5183 *
5184 * The set_rx_mode entry point is called whenever the unicast or multicast
5185 * address lists or the network interface flags are updated. This routine is
5186 * responsible for configuring the hardware for proper unicast, multicast,
5187 * promiscuous mode, and all-multi behavior.
5188 **/
igb_set_rx_mode(struct net_device * netdev)5189 static void igb_set_rx_mode(struct net_device *netdev)
5190 {
5191 struct igb_adapter *adapter = netdev_priv(netdev);
5192 struct e1000_hw *hw = &adapter->hw;
5193 unsigned int vfn = adapter->vfs_allocated_count;
5194 u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
5195 int count;
5196
5197 /* Check for Promiscuous and All Multicast modes */
5198 if (netdev->flags & IFF_PROMISC) {
5199 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5200 vmolr |= E1000_VMOLR_MPME;
5201
5202 /* enable use of UTA filter to force packets to default pool */
5203 if (hw->mac.type == e1000_82576)
5204 vmolr |= E1000_VMOLR_ROPE;
5205 } else {
5206 if (netdev->flags & IFF_ALLMULTI) {
5207 rctl |= E1000_RCTL_MPE;
5208 vmolr |= E1000_VMOLR_MPME;
5209 } else {
5210 /* Write addresses to the MTA, if the attempt fails
5211 * then we should just turn on promiscuous mode so
5212 * that we can at least receive multicast traffic
5213 */
5214 count = igb_write_mc_addr_list(netdev);
5215 if (count < 0) {
5216 rctl |= E1000_RCTL_MPE;
5217 vmolr |= E1000_VMOLR_MPME;
5218 } else if (count) {
5219 vmolr |= E1000_VMOLR_ROMPE;
5220 }
5221 }
5222 }
5223
5224 /* Write addresses to available RAR registers, if there is not
5225 * sufficient space to store all the addresses then enable
5226 * unicast promiscuous mode
5227 */
5228 if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5229 rctl |= E1000_RCTL_UPE;
5230 vmolr |= E1000_VMOLR_ROPE;
5231 }
5232
5233 /* enable VLAN filtering by default */
5234 rctl |= E1000_RCTL_VFE;
5235
5236 /* disable VLAN filtering for modes that require it */
5237 if ((netdev->flags & IFF_PROMISC) ||
5238 (netdev->features & NETIF_F_RXALL)) {
5239 /* if we fail to set all rules then just clear VFE */
5240 if (igb_vlan_promisc_enable(adapter))
5241 rctl &= ~E1000_RCTL_VFE;
5242 } else {
5243 igb_vlan_promisc_disable(adapter);
5244 }
5245
5246 /* update state of unicast, multicast, and VLAN filtering modes */
5247 rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5248 E1000_RCTL_VFE);
5249 wr32(E1000_RCTL, rctl);
5250
5251 #if (PAGE_SIZE < 8192)
5252 if (!adapter->vfs_allocated_count) {
5253 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5254 rlpml = IGB_MAX_FRAME_BUILD_SKB;
5255 }
5256 #endif
5257 wr32(E1000_RLPML, rlpml);
5258
5259 /* In order to support SR-IOV and eventually VMDq it is necessary to set
5260 * the VMOLR to enable the appropriate modes. Without this workaround
5261 * we will have issues with VLAN tag stripping not being done for frames
5262 * that are only arriving because we are the default pool
5263 */
5264 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5265 return;
5266
5267 /* set UTA to appropriate mode */
5268 igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5269
5270 vmolr |= rd32(E1000_VMOLR(vfn)) &
5271 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5272
5273 /* enable Rx jumbo frames, restrict as needed to support build_skb */
5274 vmolr &= ~E1000_VMOLR_RLPML_MASK;
5275 #if (PAGE_SIZE < 8192)
5276 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5277 vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5278 else
5279 #endif
5280 vmolr |= MAX_JUMBO_FRAME_SIZE;
5281 vmolr |= E1000_VMOLR_LPE;
5282
5283 wr32(E1000_VMOLR(vfn), vmolr);
5284
5285 igb_restore_vf_multicasts(adapter);
5286 }
5287
igb_check_wvbr(struct igb_adapter * adapter)5288 static void igb_check_wvbr(struct igb_adapter *adapter)
5289 {
5290 struct e1000_hw *hw = &adapter->hw;
5291 u32 wvbr = 0;
5292
5293 switch (hw->mac.type) {
5294 case e1000_82576:
5295 case e1000_i350:
5296 wvbr = rd32(E1000_WVBR);
5297 if (!wvbr)
5298 return;
5299 break;
5300 default:
5301 break;
5302 }
5303
5304 adapter->wvbr |= wvbr;
5305 }
5306
5307 #define IGB_STAGGERED_QUEUE_OFFSET 8
5308
igb_spoof_check(struct igb_adapter * adapter)5309 static void igb_spoof_check(struct igb_adapter *adapter)
5310 {
5311 int j;
5312
5313 if (!adapter->wvbr)
5314 return;
5315
5316 for (j = 0; j < adapter->vfs_allocated_count; j++) {
5317 if (adapter->wvbr & BIT(j) ||
5318 adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5319 dev_warn(&adapter->pdev->dev,
5320 "Spoof event(s) detected on VF %d\n", j);
5321 adapter->wvbr &=
5322 ~(BIT(j) |
5323 BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5324 }
5325 }
5326 }
5327
5328 /* Need to wait a few seconds after link up to get diagnostic information from
5329 * the phy
5330 */
igb_update_phy_info(struct timer_list * t)5331 static void igb_update_phy_info(struct timer_list *t)
5332 {
5333 struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5334 igb_get_phy_info(&adapter->hw);
5335 }
5336
5337 /**
5338 * igb_has_link - check shared code for link and determine up/down
5339 * @adapter: pointer to driver private info
5340 **/
igb_has_link(struct igb_adapter * adapter)5341 bool igb_has_link(struct igb_adapter *adapter)
5342 {
5343 struct e1000_hw *hw = &adapter->hw;
5344 bool link_active = false;
5345
5346 /* get_link_status is set on LSC (link status) interrupt or
5347 * rx sequence error interrupt. get_link_status will stay
5348 * false until the e1000_check_for_link establishes link
5349 * for copper adapters ONLY
5350 */
5351 switch (hw->phy.media_type) {
5352 case e1000_media_type_copper:
5353 if (!hw->mac.get_link_status)
5354 return true;
5355 fallthrough;
5356 case e1000_media_type_internal_serdes:
5357 hw->mac.ops.check_for_link(hw);
5358 link_active = !hw->mac.get_link_status;
5359 break;
5360 default:
5361 case e1000_media_type_unknown:
5362 break;
5363 }
5364
5365 if (((hw->mac.type == e1000_i210) ||
5366 (hw->mac.type == e1000_i211)) &&
5367 (hw->phy.id == I210_I_PHY_ID)) {
5368 if (!netif_carrier_ok(adapter->netdev)) {
5369 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5370 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5371 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5372 adapter->link_check_timeout = jiffies;
5373 }
5374 }
5375
5376 return link_active;
5377 }
5378
igb_thermal_sensor_event(struct e1000_hw * hw,u32 event)5379 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5380 {
5381 bool ret = false;
5382 u32 ctrl_ext, thstat;
5383
5384 /* check for thermal sensor event on i350 copper only */
5385 if (hw->mac.type == e1000_i350) {
5386 thstat = rd32(E1000_THSTAT);
5387 ctrl_ext = rd32(E1000_CTRL_EXT);
5388
5389 if ((hw->phy.media_type == e1000_media_type_copper) &&
5390 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5391 ret = !!(thstat & event);
5392 }
5393
5394 return ret;
5395 }
5396
5397 /**
5398 * igb_check_lvmmc - check for malformed packets received
5399 * and indicated in LVMMC register
5400 * @adapter: pointer to adapter
5401 **/
igb_check_lvmmc(struct igb_adapter * adapter)5402 static void igb_check_lvmmc(struct igb_adapter *adapter)
5403 {
5404 struct e1000_hw *hw = &adapter->hw;
5405 u32 lvmmc;
5406
5407 lvmmc = rd32(E1000_LVMMC);
5408 if (lvmmc) {
5409 if (unlikely(net_ratelimit())) {
5410 netdev_warn(adapter->netdev,
5411 "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5412 lvmmc);
5413 }
5414 }
5415 }
5416
5417 /**
5418 * igb_watchdog - Timer Call-back
5419 * @t: pointer to timer_list containing our private info pointer
5420 **/
igb_watchdog(struct timer_list * t)5421 static void igb_watchdog(struct timer_list *t)
5422 {
5423 struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5424 /* Do the rest outside of interrupt context */
5425 schedule_work(&adapter->watchdog_task);
5426 }
5427
igb_watchdog_task(struct work_struct * work)5428 static void igb_watchdog_task(struct work_struct *work)
5429 {
5430 struct igb_adapter *adapter = container_of(work,
5431 struct igb_adapter,
5432 watchdog_task);
5433 struct e1000_hw *hw = &adapter->hw;
5434 struct e1000_phy_info *phy = &hw->phy;
5435 struct net_device *netdev = adapter->netdev;
5436 u32 link;
5437 int i;
5438 u32 connsw;
5439 u16 phy_data, retry_count = 20;
5440
5441 link = igb_has_link(adapter);
5442
5443 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5444 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5445 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5446 else
5447 link = false;
5448 }
5449
5450 /* Force link down if we have fiber to swap to */
5451 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5452 if (hw->phy.media_type == e1000_media_type_copper) {
5453 connsw = rd32(E1000_CONNSW);
5454 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5455 link = 0;
5456 }
5457 }
5458 if (link) {
5459 /* Perform a reset if the media type changed. */
5460 if (hw->dev_spec._82575.media_changed) {
5461 hw->dev_spec._82575.media_changed = false;
5462 adapter->flags |= IGB_FLAG_MEDIA_RESET;
5463 igb_reset(adapter);
5464 }
5465 /* Cancel scheduled suspend requests. */
5466 pm_runtime_resume(netdev->dev.parent);
5467
5468 if (!netif_carrier_ok(netdev)) {
5469 u32 ctrl;
5470
5471 hw->mac.ops.get_speed_and_duplex(hw,
5472 &adapter->link_speed,
5473 &adapter->link_duplex);
5474
5475 ctrl = rd32(E1000_CTRL);
5476 /* Links status message must follow this format */
5477 netdev_info(netdev,
5478 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5479 netdev->name,
5480 adapter->link_speed,
5481 adapter->link_duplex == FULL_DUPLEX ?
5482 "Full" : "Half",
5483 (ctrl & E1000_CTRL_TFCE) &&
5484 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5485 (ctrl & E1000_CTRL_RFCE) ? "RX" :
5486 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
5487
5488 /* disable EEE if enabled */
5489 if ((adapter->flags & IGB_FLAG_EEE) &&
5490 (adapter->link_duplex == HALF_DUPLEX)) {
5491 dev_info(&adapter->pdev->dev,
5492 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5493 adapter->hw.dev_spec._82575.eee_disable = true;
5494 adapter->flags &= ~IGB_FLAG_EEE;
5495 }
5496
5497 /* check if SmartSpeed worked */
5498 igb_check_downshift(hw);
5499 if (phy->speed_downgraded)
5500 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5501
5502 /* check for thermal sensor event */
5503 if (igb_thermal_sensor_event(hw,
5504 E1000_THSTAT_LINK_THROTTLE))
5505 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5506
5507 /* adjust timeout factor according to speed/duplex */
5508 adapter->tx_timeout_factor = 1;
5509 switch (adapter->link_speed) {
5510 case SPEED_10:
5511 adapter->tx_timeout_factor = 14;
5512 break;
5513 case SPEED_100:
5514 /* maybe add some timeout factor ? */
5515 break;
5516 }
5517
5518 if (adapter->link_speed != SPEED_1000 ||
5519 !hw->phy.ops.read_reg)
5520 goto no_wait;
5521
5522 /* wait for Remote receiver status OK */
5523 retry_read_status:
5524 if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5525 &phy_data)) {
5526 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5527 retry_count) {
5528 msleep(100);
5529 retry_count--;
5530 goto retry_read_status;
5531 } else if (!retry_count) {
5532 dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5533 }
5534 } else {
5535 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5536 }
5537 no_wait:
5538 netif_carrier_on(netdev);
5539
5540 igb_ping_all_vfs(adapter);
5541 igb_check_vf_rate_limit(adapter);
5542
5543 /* link state has changed, schedule phy info update */
5544 if (!test_bit(__IGB_DOWN, &adapter->state))
5545 mod_timer(&adapter->phy_info_timer,
5546 round_jiffies(jiffies + 2 * HZ));
5547 }
5548 } else {
5549 if (netif_carrier_ok(netdev)) {
5550 adapter->link_speed = 0;
5551 adapter->link_duplex = 0;
5552
5553 /* check for thermal sensor event */
5554 if (igb_thermal_sensor_event(hw,
5555 E1000_THSTAT_PWR_DOWN)) {
5556 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5557 }
5558
5559 /* Links status message must follow this format */
5560 netdev_info(netdev, "igb: %s NIC Link is Down\n",
5561 netdev->name);
5562 netif_carrier_off(netdev);
5563
5564 igb_ping_all_vfs(adapter);
5565
5566 /* link state has changed, schedule phy info update */
5567 if (!test_bit(__IGB_DOWN, &adapter->state))
5568 mod_timer(&adapter->phy_info_timer,
5569 round_jiffies(jiffies + 2 * HZ));
5570
5571 /* link is down, time to check for alternate media */
5572 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5573 igb_check_swap_media(adapter);
5574 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5575 schedule_work(&adapter->reset_task);
5576 /* return immediately */
5577 return;
5578 }
5579 }
5580 pm_schedule_suspend(netdev->dev.parent,
5581 MSEC_PER_SEC * 5);
5582
5583 /* also check for alternate media here */
5584 } else if (!netif_carrier_ok(netdev) &&
5585 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5586 igb_check_swap_media(adapter);
5587 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5588 schedule_work(&adapter->reset_task);
5589 /* return immediately */
5590 return;
5591 }
5592 }
5593 }
5594
5595 spin_lock(&adapter->stats64_lock);
5596 igb_update_stats(adapter);
5597 spin_unlock(&adapter->stats64_lock);
5598
5599 for (i = 0; i < adapter->num_tx_queues; i++) {
5600 struct igb_ring *tx_ring = adapter->tx_ring[i];
5601 if (!netif_carrier_ok(netdev)) {
5602 /* We've lost link, so the controller stops DMA,
5603 * but we've got queued Tx work that's never going
5604 * to get done, so reset controller to flush Tx.
5605 * (Do the reset outside of interrupt context).
5606 */
5607 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5608 adapter->tx_timeout_count++;
5609 schedule_work(&adapter->reset_task);
5610 /* return immediately since reset is imminent */
5611 return;
5612 }
5613 }
5614
5615 /* Force detection of hung controller every watchdog period */
5616 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5617 }
5618
5619 /* Cause software interrupt to ensure Rx ring is cleaned */
5620 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5621 u32 eics = 0;
5622
5623 for (i = 0; i < adapter->num_q_vectors; i++)
5624 eics |= adapter->q_vector[i]->eims_value;
5625 wr32(E1000_EICS, eics);
5626 } else {
5627 wr32(E1000_ICS, E1000_ICS_RXDMT0);
5628 }
5629
5630 igb_spoof_check(adapter);
5631 igb_ptp_rx_hang(adapter);
5632 igb_ptp_tx_hang(adapter);
5633
5634 /* Check LVMMC register on i350/i354 only */
5635 if ((adapter->hw.mac.type == e1000_i350) ||
5636 (adapter->hw.mac.type == e1000_i354))
5637 igb_check_lvmmc(adapter);
5638
5639 /* Reset the timer */
5640 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5641 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5642 mod_timer(&adapter->watchdog_timer,
5643 round_jiffies(jiffies + HZ));
5644 else
5645 mod_timer(&adapter->watchdog_timer,
5646 round_jiffies(jiffies + 2 * HZ));
5647 }
5648 }
5649
5650 enum latency_range {
5651 lowest_latency = 0,
5652 low_latency = 1,
5653 bulk_latency = 2,
5654 latency_invalid = 255
5655 };
5656
5657 /**
5658 * igb_update_ring_itr - update the dynamic ITR value based on packet size
5659 * @q_vector: pointer to q_vector
5660 *
5661 * Stores a new ITR value based on strictly on packet size. This
5662 * algorithm is less sophisticated than that used in igb_update_itr,
5663 * due to the difficulty of synchronizing statistics across multiple
5664 * receive rings. The divisors and thresholds used by this function
5665 * were determined based on theoretical maximum wire speed and testing
5666 * data, in order to minimize response time while increasing bulk
5667 * throughput.
5668 * This functionality is controlled by ethtool's coalescing settings.
5669 * NOTE: This function is called only when operating in a multiqueue
5670 * receive environment.
5671 **/
igb_update_ring_itr(struct igb_q_vector * q_vector)5672 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5673 {
5674 int new_val = q_vector->itr_val;
5675 int avg_wire_size = 0;
5676 struct igb_adapter *adapter = q_vector->adapter;
5677 unsigned int packets;
5678
5679 /* For non-gigabit speeds, just fix the interrupt rate at 4000
5680 * ints/sec - ITR timer value of 120 ticks.
5681 */
5682 if (adapter->link_speed != SPEED_1000) {
5683 new_val = IGB_4K_ITR;
5684 goto set_itr_val;
5685 }
5686
5687 packets = q_vector->rx.total_packets;
5688 if (packets)
5689 avg_wire_size = q_vector->rx.total_bytes / packets;
5690
5691 packets = q_vector->tx.total_packets;
5692 if (packets)
5693 avg_wire_size = max_t(u32, avg_wire_size,
5694 q_vector->tx.total_bytes / packets);
5695
5696 /* if avg_wire_size isn't set no work was done */
5697 if (!avg_wire_size)
5698 goto clear_counts;
5699
5700 /* Add 24 bytes to size to account for CRC, preamble, and gap */
5701 avg_wire_size += 24;
5702
5703 /* Don't starve jumbo frames */
5704 avg_wire_size = min(avg_wire_size, 3000);
5705
5706 /* Give a little boost to mid-size frames */
5707 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5708 new_val = avg_wire_size / 3;
5709 else
5710 new_val = avg_wire_size / 2;
5711
5712 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5713 if (new_val < IGB_20K_ITR &&
5714 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5715 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5716 new_val = IGB_20K_ITR;
5717
5718 set_itr_val:
5719 if (new_val != q_vector->itr_val) {
5720 q_vector->itr_val = new_val;
5721 q_vector->set_itr = 1;
5722 }
5723 clear_counts:
5724 q_vector->rx.total_bytes = 0;
5725 q_vector->rx.total_packets = 0;
5726 q_vector->tx.total_bytes = 0;
5727 q_vector->tx.total_packets = 0;
5728 }
5729
5730 /**
5731 * igb_update_itr - update the dynamic ITR value based on statistics
5732 * @q_vector: pointer to q_vector
5733 * @ring_container: ring info to update the itr for
5734 *
5735 * Stores a new ITR value based on packets and byte
5736 * counts during the last interrupt. The advantage of per interrupt
5737 * computation is faster updates and more accurate ITR for the current
5738 * traffic pattern. Constants in this function were computed
5739 * based on theoretical maximum wire speed and thresholds were set based
5740 * on testing data as well as attempting to minimize response time
5741 * while increasing bulk throughput.
5742 * This functionality is controlled by ethtool's coalescing settings.
5743 * NOTE: These calculations are only valid when operating in a single-
5744 * queue environment.
5745 **/
igb_update_itr(struct igb_q_vector * q_vector,struct igb_ring_container * ring_container)5746 static void igb_update_itr(struct igb_q_vector *q_vector,
5747 struct igb_ring_container *ring_container)
5748 {
5749 unsigned int packets = ring_container->total_packets;
5750 unsigned int bytes = ring_container->total_bytes;
5751 u8 itrval = ring_container->itr;
5752
5753 /* no packets, exit with status unchanged */
5754 if (packets == 0)
5755 return;
5756
5757 switch (itrval) {
5758 case lowest_latency:
5759 /* handle TSO and jumbo frames */
5760 if (bytes/packets > 8000)
5761 itrval = bulk_latency;
5762 else if ((packets < 5) && (bytes > 512))
5763 itrval = low_latency;
5764 break;
5765 case low_latency: /* 50 usec aka 20000 ints/s */
5766 if (bytes > 10000) {
5767 /* this if handles the TSO accounting */
5768 if (bytes/packets > 8000)
5769 itrval = bulk_latency;
5770 else if ((packets < 10) || ((bytes/packets) > 1200))
5771 itrval = bulk_latency;
5772 else if ((packets > 35))
5773 itrval = lowest_latency;
5774 } else if (bytes/packets > 2000) {
5775 itrval = bulk_latency;
5776 } else if (packets <= 2 && bytes < 512) {
5777 itrval = lowest_latency;
5778 }
5779 break;
5780 case bulk_latency: /* 250 usec aka 4000 ints/s */
5781 if (bytes > 25000) {
5782 if (packets > 35)
5783 itrval = low_latency;
5784 } else if (bytes < 1500) {
5785 itrval = low_latency;
5786 }
5787 break;
5788 }
5789
5790 /* clear work counters since we have the values we need */
5791 ring_container->total_bytes = 0;
5792 ring_container->total_packets = 0;
5793
5794 /* write updated itr to ring container */
5795 ring_container->itr = itrval;
5796 }
5797
igb_set_itr(struct igb_q_vector * q_vector)5798 static void igb_set_itr(struct igb_q_vector *q_vector)
5799 {
5800 struct igb_adapter *adapter = q_vector->adapter;
5801 u32 new_itr = q_vector->itr_val;
5802 u8 current_itr = 0;
5803
5804 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5805 if (adapter->link_speed != SPEED_1000) {
5806 current_itr = 0;
5807 new_itr = IGB_4K_ITR;
5808 goto set_itr_now;
5809 }
5810
5811 igb_update_itr(q_vector, &q_vector->tx);
5812 igb_update_itr(q_vector, &q_vector->rx);
5813
5814 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5815
5816 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5817 if (current_itr == lowest_latency &&
5818 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5819 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5820 current_itr = low_latency;
5821
5822 switch (current_itr) {
5823 /* counts and packets in update_itr are dependent on these numbers */
5824 case lowest_latency:
5825 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5826 break;
5827 case low_latency:
5828 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5829 break;
5830 case bulk_latency:
5831 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
5832 break;
5833 default:
5834 break;
5835 }
5836
5837 set_itr_now:
5838 if (new_itr != q_vector->itr_val) {
5839 /* this attempts to bias the interrupt rate towards Bulk
5840 * by adding intermediate steps when interrupt rate is
5841 * increasing
5842 */
5843 new_itr = new_itr > q_vector->itr_val ?
5844 max((new_itr * q_vector->itr_val) /
5845 (new_itr + (q_vector->itr_val >> 2)),
5846 new_itr) : new_itr;
5847 /* Don't write the value here; it resets the adapter's
5848 * internal timer, and causes us to delay far longer than
5849 * we should between interrupts. Instead, we write the ITR
5850 * value at the beginning of the next interrupt so the timing
5851 * ends up being correct.
5852 */
5853 q_vector->itr_val = new_itr;
5854 q_vector->set_itr = 1;
5855 }
5856 }
5857
igb_tx_ctxtdesc(struct igb_ring * tx_ring,struct igb_tx_buffer * first,u32 vlan_macip_lens,u32 type_tucmd,u32 mss_l4len_idx)5858 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5859 struct igb_tx_buffer *first,
5860 u32 vlan_macip_lens, u32 type_tucmd,
5861 u32 mss_l4len_idx)
5862 {
5863 struct e1000_adv_tx_context_desc *context_desc;
5864 u16 i = tx_ring->next_to_use;
5865 struct timespec64 ts;
5866
5867 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5868
5869 i++;
5870 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5871
5872 /* set bits to identify this as an advanced context descriptor */
5873 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5874
5875 /* For 82575, context index must be unique per ring. */
5876 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5877 mss_l4len_idx |= tx_ring->reg_idx << 4;
5878
5879 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
5880 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
5881 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
5882
5883 /* We assume there is always a valid tx time available. Invalid times
5884 * should have been handled by the upper layers.
5885 */
5886 if (tx_ring->launchtime_enable) {
5887 ts = ktime_to_timespec64(first->skb->tstamp);
5888 skb_txtime_consumed(first->skb);
5889 context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5890 } else {
5891 context_desc->seqnum_seed = 0;
5892 }
5893 }
5894
igb_tso(struct igb_ring * tx_ring,struct igb_tx_buffer * first,u8 * hdr_len)5895 static int igb_tso(struct igb_ring *tx_ring,
5896 struct igb_tx_buffer *first,
5897 u8 *hdr_len)
5898 {
5899 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5900 struct sk_buff *skb = first->skb;
5901 union {
5902 struct iphdr *v4;
5903 struct ipv6hdr *v6;
5904 unsigned char *hdr;
5905 } ip;
5906 union {
5907 struct tcphdr *tcp;
5908 struct udphdr *udp;
5909 unsigned char *hdr;
5910 } l4;
5911 u32 paylen, l4_offset;
5912 int err;
5913
5914 if (skb->ip_summed != CHECKSUM_PARTIAL)
5915 return 0;
5916
5917 if (!skb_is_gso(skb))
5918 return 0;
5919
5920 err = skb_cow_head(skb, 0);
5921 if (err < 0)
5922 return err;
5923
5924 ip.hdr = skb_network_header(skb);
5925 l4.hdr = skb_checksum_start(skb);
5926
5927 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5928 type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
5929 E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP;
5930
5931 /* initialize outer IP header fields */
5932 if (ip.v4->version == 4) {
5933 unsigned char *csum_start = skb_checksum_start(skb);
5934 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5935
5936 /* IP header will have to cancel out any data that
5937 * is not a part of the outer IP header
5938 */
5939 ip.v4->check = csum_fold(csum_partial(trans_start,
5940 csum_start - trans_start,
5941 0));
5942 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5943
5944 ip.v4->tot_len = 0;
5945 first->tx_flags |= IGB_TX_FLAGS_TSO |
5946 IGB_TX_FLAGS_CSUM |
5947 IGB_TX_FLAGS_IPV4;
5948 } else {
5949 ip.v6->payload_len = 0;
5950 first->tx_flags |= IGB_TX_FLAGS_TSO |
5951 IGB_TX_FLAGS_CSUM;
5952 }
5953
5954 /* determine offset of inner transport header */
5955 l4_offset = l4.hdr - skb->data;
5956
5957 /* remove payload length from inner checksum */
5958 paylen = skb->len - l4_offset;
5959 if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) {
5960 /* compute length of segmentation header */
5961 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
5962 csum_replace_by_diff(&l4.tcp->check,
5963 (__force __wsum)htonl(paylen));
5964 } else {
5965 /* compute length of segmentation header */
5966 *hdr_len = sizeof(*l4.udp) + l4_offset;
5967 csum_replace_by_diff(&l4.udp->check,
5968 (__force __wsum)htonl(paylen));
5969 }
5970
5971 /* update gso size and bytecount with header size */
5972 first->gso_segs = skb_shinfo(skb)->gso_segs;
5973 first->bytecount += (first->gso_segs - 1) * *hdr_len;
5974
5975 /* MSS L4LEN IDX */
5976 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
5977 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5978
5979 /* VLAN MACLEN IPLEN */
5980 vlan_macip_lens = l4.hdr - ip.hdr;
5981 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
5982 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5983
5984 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
5985 type_tucmd, mss_l4len_idx);
5986
5987 return 1;
5988 }
5989
igb_tx_csum(struct igb_ring * tx_ring,struct igb_tx_buffer * first)5990 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
5991 {
5992 struct sk_buff *skb = first->skb;
5993 u32 vlan_macip_lens = 0;
5994 u32 type_tucmd = 0;
5995
5996 if (skb->ip_summed != CHECKSUM_PARTIAL) {
5997 csum_failed:
5998 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
5999 !tx_ring->launchtime_enable)
6000 return;
6001 goto no_csum;
6002 }
6003
6004 switch (skb->csum_offset) {
6005 case offsetof(struct tcphdr, check):
6006 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
6007 fallthrough;
6008 case offsetof(struct udphdr, check):
6009 break;
6010 case offsetof(struct sctphdr, checksum):
6011 /* validate that this is actually an SCTP request */
6012 if (skb_csum_is_sctp(skb)) {
6013 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
6014 break;
6015 }
6016 fallthrough;
6017 default:
6018 skb_checksum_help(skb);
6019 goto csum_failed;
6020 }
6021
6022 /* update TX checksum flag */
6023 first->tx_flags |= IGB_TX_FLAGS_CSUM;
6024 vlan_macip_lens = skb_checksum_start_offset(skb) -
6025 skb_network_offset(skb);
6026 no_csum:
6027 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
6028 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6029
6030 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
6031 }
6032
6033 #define IGB_SET_FLAG(_input, _flag, _result) \
6034 ((_flag <= _result) ? \
6035 ((u32)(_input & _flag) * (_result / _flag)) : \
6036 ((u32)(_input & _flag) / (_flag / _result)))
6037
igb_tx_cmd_type(struct sk_buff * skb,u32 tx_flags)6038 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
6039 {
6040 /* set type for advanced descriptor with frame checksum insertion */
6041 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
6042 E1000_ADVTXD_DCMD_DEXT |
6043 E1000_ADVTXD_DCMD_IFCS;
6044
6045 /* set HW vlan bit if vlan is present */
6046 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
6047 (E1000_ADVTXD_DCMD_VLE));
6048
6049 /* set segmentation bits for TSO */
6050 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
6051 (E1000_ADVTXD_DCMD_TSE));
6052
6053 /* set timestamp bit if present */
6054 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
6055 (E1000_ADVTXD_MAC_TSTAMP));
6056
6057 /* insert frame checksum */
6058 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
6059
6060 return cmd_type;
6061 }
6062
igb_tx_olinfo_status(struct igb_ring * tx_ring,union e1000_adv_tx_desc * tx_desc,u32 tx_flags,unsigned int paylen)6063 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
6064 union e1000_adv_tx_desc *tx_desc,
6065 u32 tx_flags, unsigned int paylen)
6066 {
6067 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
6068
6069 /* 82575 requires a unique index per ring */
6070 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6071 olinfo_status |= tx_ring->reg_idx << 4;
6072
6073 /* insert L4 checksum */
6074 olinfo_status |= IGB_SET_FLAG(tx_flags,
6075 IGB_TX_FLAGS_CSUM,
6076 (E1000_TXD_POPTS_TXSM << 8));
6077
6078 /* insert IPv4 checksum */
6079 olinfo_status |= IGB_SET_FLAG(tx_flags,
6080 IGB_TX_FLAGS_IPV4,
6081 (E1000_TXD_POPTS_IXSM << 8));
6082
6083 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6084 }
6085
__igb_maybe_stop_tx(struct igb_ring * tx_ring,const u16 size)6086 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6087 {
6088 struct net_device *netdev = tx_ring->netdev;
6089
6090 netif_stop_subqueue(netdev, tx_ring->queue_index);
6091
6092 /* Herbert's original patch had:
6093 * smp_mb__after_netif_stop_queue();
6094 * but since that doesn't exist yet, just open code it.
6095 */
6096 smp_mb();
6097
6098 /* We need to check again in a case another CPU has just
6099 * made room available.
6100 */
6101 if (igb_desc_unused(tx_ring) < size)
6102 return -EBUSY;
6103
6104 /* A reprieve! */
6105 netif_wake_subqueue(netdev, tx_ring->queue_index);
6106
6107 u64_stats_update_begin(&tx_ring->tx_syncp2);
6108 tx_ring->tx_stats.restart_queue2++;
6109 u64_stats_update_end(&tx_ring->tx_syncp2);
6110
6111 return 0;
6112 }
6113
igb_maybe_stop_tx(struct igb_ring * tx_ring,const u16 size)6114 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6115 {
6116 if (igb_desc_unused(tx_ring) >= size)
6117 return 0;
6118 return __igb_maybe_stop_tx(tx_ring, size);
6119 }
6120
igb_tx_map(struct igb_ring * tx_ring,struct igb_tx_buffer * first,const u8 hdr_len)6121 static int igb_tx_map(struct igb_ring *tx_ring,
6122 struct igb_tx_buffer *first,
6123 const u8 hdr_len)
6124 {
6125 struct sk_buff *skb = first->skb;
6126 struct igb_tx_buffer *tx_buffer;
6127 union e1000_adv_tx_desc *tx_desc;
6128 skb_frag_t *frag;
6129 dma_addr_t dma;
6130 unsigned int data_len, size;
6131 u32 tx_flags = first->tx_flags;
6132 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
6133 u16 i = tx_ring->next_to_use;
6134
6135 tx_desc = IGB_TX_DESC(tx_ring, i);
6136
6137 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
6138
6139 size = skb_headlen(skb);
6140 data_len = skb->data_len;
6141
6142 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
6143
6144 tx_buffer = first;
6145
6146 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
6147 if (dma_mapping_error(tx_ring->dev, dma))
6148 goto dma_error;
6149
6150 /* record length, and DMA address */
6151 dma_unmap_len_set(tx_buffer, len, size);
6152 dma_unmap_addr_set(tx_buffer, dma, dma);
6153
6154 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6155
6156 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
6157 tx_desc->read.cmd_type_len =
6158 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
6159
6160 i++;
6161 tx_desc++;
6162 if (i == tx_ring->count) {
6163 tx_desc = IGB_TX_DESC(tx_ring, 0);
6164 i = 0;
6165 }
6166 tx_desc->read.olinfo_status = 0;
6167
6168 dma += IGB_MAX_DATA_PER_TXD;
6169 size -= IGB_MAX_DATA_PER_TXD;
6170
6171 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6172 }
6173
6174 if (likely(!data_len))
6175 break;
6176
6177 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
6178
6179 i++;
6180 tx_desc++;
6181 if (i == tx_ring->count) {
6182 tx_desc = IGB_TX_DESC(tx_ring, 0);
6183 i = 0;
6184 }
6185 tx_desc->read.olinfo_status = 0;
6186
6187 size = skb_frag_size(frag);
6188 data_len -= size;
6189
6190 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6191 size, DMA_TO_DEVICE);
6192
6193 tx_buffer = &tx_ring->tx_buffer_info[i];
6194 }
6195
6196 /* write last descriptor with RS and EOP bits */
6197 cmd_type |= size | IGB_TXD_DCMD;
6198 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6199
6200 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6201
6202 /* set the timestamp */
6203 first->time_stamp = jiffies;
6204
6205 skb_tx_timestamp(skb);
6206
6207 /* Force memory writes to complete before letting h/w know there
6208 * are new descriptors to fetch. (Only applicable for weak-ordered
6209 * memory model archs, such as IA-64).
6210 *
6211 * We also need this memory barrier to make certain all of the
6212 * status bits have been updated before next_to_watch is written.
6213 */
6214 dma_wmb();
6215
6216 /* set next_to_watch value indicating a packet is present */
6217 first->next_to_watch = tx_desc;
6218
6219 i++;
6220 if (i == tx_ring->count)
6221 i = 0;
6222
6223 tx_ring->next_to_use = i;
6224
6225 /* Make sure there is space in the ring for the next send. */
6226 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6227
6228 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6229 writel(i, tx_ring->tail);
6230 }
6231 return 0;
6232
6233 dma_error:
6234 dev_err(tx_ring->dev, "TX DMA map failed\n");
6235 tx_buffer = &tx_ring->tx_buffer_info[i];
6236
6237 /* clear dma mappings for failed tx_buffer_info map */
6238 while (tx_buffer != first) {
6239 if (dma_unmap_len(tx_buffer, len))
6240 dma_unmap_page(tx_ring->dev,
6241 dma_unmap_addr(tx_buffer, dma),
6242 dma_unmap_len(tx_buffer, len),
6243 DMA_TO_DEVICE);
6244 dma_unmap_len_set(tx_buffer, len, 0);
6245
6246 if (i-- == 0)
6247 i += tx_ring->count;
6248 tx_buffer = &tx_ring->tx_buffer_info[i];
6249 }
6250
6251 if (dma_unmap_len(tx_buffer, len))
6252 dma_unmap_single(tx_ring->dev,
6253 dma_unmap_addr(tx_buffer, dma),
6254 dma_unmap_len(tx_buffer, len),
6255 DMA_TO_DEVICE);
6256 dma_unmap_len_set(tx_buffer, len, 0);
6257
6258 dev_kfree_skb_any(tx_buffer->skb);
6259 tx_buffer->skb = NULL;
6260
6261 tx_ring->next_to_use = i;
6262
6263 return -1;
6264 }
6265
igb_xmit_xdp_ring(struct igb_adapter * adapter,struct igb_ring * tx_ring,struct xdp_frame * xdpf)6266 int igb_xmit_xdp_ring(struct igb_adapter *adapter,
6267 struct igb_ring *tx_ring,
6268 struct xdp_frame *xdpf)
6269 {
6270 union e1000_adv_tx_desc *tx_desc;
6271 u32 len, cmd_type, olinfo_status;
6272 struct igb_tx_buffer *tx_buffer;
6273 dma_addr_t dma;
6274 u16 i;
6275
6276 len = xdpf->len;
6277
6278 if (unlikely(!igb_desc_unused(tx_ring)))
6279 return IGB_XDP_CONSUMED;
6280
6281 dma = dma_map_single(tx_ring->dev, xdpf->data, len, DMA_TO_DEVICE);
6282 if (dma_mapping_error(tx_ring->dev, dma))
6283 return IGB_XDP_CONSUMED;
6284
6285 /* record the location of the first descriptor for this packet */
6286 tx_buffer = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6287 tx_buffer->bytecount = len;
6288 tx_buffer->gso_segs = 1;
6289 tx_buffer->protocol = 0;
6290
6291 i = tx_ring->next_to_use;
6292 tx_desc = IGB_TX_DESC(tx_ring, i);
6293
6294 dma_unmap_len_set(tx_buffer, len, len);
6295 dma_unmap_addr_set(tx_buffer, dma, dma);
6296 tx_buffer->type = IGB_TYPE_XDP;
6297 tx_buffer->xdpf = xdpf;
6298
6299 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6300
6301 /* put descriptor type bits */
6302 cmd_type = E1000_ADVTXD_DTYP_DATA |
6303 E1000_ADVTXD_DCMD_DEXT |
6304 E1000_ADVTXD_DCMD_IFCS;
6305 cmd_type |= len | IGB_TXD_DCMD;
6306 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6307
6308 olinfo_status = len << E1000_ADVTXD_PAYLEN_SHIFT;
6309 /* 82575 requires a unique index per ring */
6310 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6311 olinfo_status |= tx_ring->reg_idx << 4;
6312
6313 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6314
6315 netdev_tx_sent_queue(txring_txq(tx_ring), tx_buffer->bytecount);
6316
6317 /* set the timestamp */
6318 tx_buffer->time_stamp = jiffies;
6319
6320 /* Avoid any potential race with xdp_xmit and cleanup */
6321 smp_wmb();
6322
6323 /* set next_to_watch value indicating a packet is present */
6324 i++;
6325 if (i == tx_ring->count)
6326 i = 0;
6327
6328 tx_buffer->next_to_watch = tx_desc;
6329 tx_ring->next_to_use = i;
6330
6331 /* Make sure there is space in the ring for the next send. */
6332 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6333
6334 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
6335 writel(i, tx_ring->tail);
6336
6337 return IGB_XDP_TX;
6338 }
6339
igb_xmit_frame_ring(struct sk_buff * skb,struct igb_ring * tx_ring)6340 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6341 struct igb_ring *tx_ring)
6342 {
6343 struct igb_tx_buffer *first;
6344 int tso;
6345 u32 tx_flags = 0;
6346 unsigned short f;
6347 u16 count = TXD_USE_COUNT(skb_headlen(skb));
6348 __be16 protocol = vlan_get_protocol(skb);
6349 u8 hdr_len = 0;
6350
6351 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6352 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6353 * + 2 desc gap to keep tail from touching head,
6354 * + 1 desc for context descriptor,
6355 * otherwise try next time
6356 */
6357 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6358 count += TXD_USE_COUNT(skb_frag_size(
6359 &skb_shinfo(skb)->frags[f]));
6360
6361 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6362 /* this is a hard error */
6363 return NETDEV_TX_BUSY;
6364 }
6365
6366 /* record the location of the first descriptor for this packet */
6367 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6368 first->type = IGB_TYPE_SKB;
6369 first->skb = skb;
6370 first->bytecount = skb->len;
6371 first->gso_segs = 1;
6372
6373 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6374 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6375
6376 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6377 !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6378 &adapter->state)) {
6379 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6380 tx_flags |= IGB_TX_FLAGS_TSTAMP;
6381
6382 adapter->ptp_tx_skb = skb_get(skb);
6383 adapter->ptp_tx_start = jiffies;
6384 if (adapter->hw.mac.type == e1000_82576)
6385 schedule_work(&adapter->ptp_tx_work);
6386 } else {
6387 adapter->tx_hwtstamp_skipped++;
6388 }
6389 }
6390
6391 if (skb_vlan_tag_present(skb)) {
6392 tx_flags |= IGB_TX_FLAGS_VLAN;
6393 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6394 }
6395
6396 /* record initial flags and protocol */
6397 first->tx_flags = tx_flags;
6398 first->protocol = protocol;
6399
6400 tso = igb_tso(tx_ring, first, &hdr_len);
6401 if (tso < 0)
6402 goto out_drop;
6403 else if (!tso)
6404 igb_tx_csum(tx_ring, first);
6405
6406 if (igb_tx_map(tx_ring, first, hdr_len))
6407 goto cleanup_tx_tstamp;
6408
6409 return NETDEV_TX_OK;
6410
6411 out_drop:
6412 dev_kfree_skb_any(first->skb);
6413 first->skb = NULL;
6414 cleanup_tx_tstamp:
6415 if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6416 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6417
6418 dev_kfree_skb_any(adapter->ptp_tx_skb);
6419 adapter->ptp_tx_skb = NULL;
6420 if (adapter->hw.mac.type == e1000_82576)
6421 cancel_work_sync(&adapter->ptp_tx_work);
6422 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6423 }
6424
6425 return NETDEV_TX_OK;
6426 }
6427
igb_tx_queue_mapping(struct igb_adapter * adapter,struct sk_buff * skb)6428 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6429 struct sk_buff *skb)
6430 {
6431 unsigned int r_idx = skb->queue_mapping;
6432
6433 if (r_idx >= adapter->num_tx_queues)
6434 r_idx = r_idx % adapter->num_tx_queues;
6435
6436 return adapter->tx_ring[r_idx];
6437 }
6438
igb_xmit_frame(struct sk_buff * skb,struct net_device * netdev)6439 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6440 struct net_device *netdev)
6441 {
6442 struct igb_adapter *adapter = netdev_priv(netdev);
6443
6444 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6445 * in order to meet this minimum size requirement.
6446 */
6447 if (skb_put_padto(skb, 17))
6448 return NETDEV_TX_OK;
6449
6450 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6451 }
6452
6453 /**
6454 * igb_tx_timeout - Respond to a Tx Hang
6455 * @netdev: network interface device structure
6456 * @txqueue: number of the Tx queue that hung (unused)
6457 **/
igb_tx_timeout(struct net_device * netdev,unsigned int __always_unused txqueue)6458 static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
6459 {
6460 struct igb_adapter *adapter = netdev_priv(netdev);
6461 struct e1000_hw *hw = &adapter->hw;
6462
6463 /* Do the reset outside of interrupt context */
6464 adapter->tx_timeout_count++;
6465
6466 if (hw->mac.type >= e1000_82580)
6467 hw->dev_spec._82575.global_device_reset = true;
6468
6469 schedule_work(&adapter->reset_task);
6470 wr32(E1000_EICS,
6471 (adapter->eims_enable_mask & ~adapter->eims_other));
6472 }
6473
igb_reset_task(struct work_struct * work)6474 static void igb_reset_task(struct work_struct *work)
6475 {
6476 struct igb_adapter *adapter;
6477 adapter = container_of(work, struct igb_adapter, reset_task);
6478
6479 rtnl_lock();
6480 /* If we're already down or resetting, just bail */
6481 if (test_bit(__IGB_DOWN, &adapter->state) ||
6482 test_bit(__IGB_RESETTING, &adapter->state)) {
6483 rtnl_unlock();
6484 return;
6485 }
6486
6487 igb_dump(adapter);
6488 netdev_err(adapter->netdev, "Reset adapter\n");
6489 igb_reinit_locked(adapter);
6490 rtnl_unlock();
6491 }
6492
6493 /**
6494 * igb_get_stats64 - Get System Network Statistics
6495 * @netdev: network interface device structure
6496 * @stats: rtnl_link_stats64 pointer
6497 **/
igb_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)6498 static void igb_get_stats64(struct net_device *netdev,
6499 struct rtnl_link_stats64 *stats)
6500 {
6501 struct igb_adapter *adapter = netdev_priv(netdev);
6502
6503 spin_lock(&adapter->stats64_lock);
6504 igb_update_stats(adapter);
6505 memcpy(stats, &adapter->stats64, sizeof(*stats));
6506 spin_unlock(&adapter->stats64_lock);
6507 }
6508
6509 /**
6510 * igb_change_mtu - Change the Maximum Transfer Unit
6511 * @netdev: network interface device structure
6512 * @new_mtu: new value for maximum frame size
6513 *
6514 * Returns 0 on success, negative on failure
6515 **/
igb_change_mtu(struct net_device * netdev,int new_mtu)6516 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6517 {
6518 struct igb_adapter *adapter = netdev_priv(netdev);
6519 int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD;
6520
6521 if (adapter->xdp_prog) {
6522 int i;
6523
6524 for (i = 0; i < adapter->num_rx_queues; i++) {
6525 struct igb_ring *ring = adapter->rx_ring[i];
6526
6527 if (max_frame > igb_rx_bufsz(ring)) {
6528 netdev_warn(adapter->netdev,
6529 "Requested MTU size is not supported with XDP. Max frame size is %d\n",
6530 max_frame);
6531 return -EINVAL;
6532 }
6533 }
6534 }
6535
6536 /* adjust max frame to be at least the size of a standard frame */
6537 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6538 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6539
6540 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6541 usleep_range(1000, 2000);
6542
6543 /* igb_down has a dependency on max_frame_size */
6544 adapter->max_frame_size = max_frame;
6545
6546 if (netif_running(netdev))
6547 igb_down(adapter);
6548
6549 netdev_dbg(netdev, "changing MTU from %d to %d\n",
6550 netdev->mtu, new_mtu);
6551 netdev->mtu = new_mtu;
6552
6553 if (netif_running(netdev))
6554 igb_up(adapter);
6555 else
6556 igb_reset(adapter);
6557
6558 clear_bit(__IGB_RESETTING, &adapter->state);
6559
6560 return 0;
6561 }
6562
6563 /**
6564 * igb_update_stats - Update the board statistics counters
6565 * @adapter: board private structure
6566 **/
igb_update_stats(struct igb_adapter * adapter)6567 void igb_update_stats(struct igb_adapter *adapter)
6568 {
6569 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6570 struct e1000_hw *hw = &adapter->hw;
6571 struct pci_dev *pdev = adapter->pdev;
6572 u32 reg, mpc;
6573 int i;
6574 u64 bytes, packets;
6575 unsigned int start;
6576 u64 _bytes, _packets;
6577
6578 /* Prevent stats update while adapter is being reset, or if the pci
6579 * connection is down.
6580 */
6581 if (adapter->link_speed == 0)
6582 return;
6583 if (pci_channel_offline(pdev))
6584 return;
6585
6586 bytes = 0;
6587 packets = 0;
6588
6589 rcu_read_lock();
6590 for (i = 0; i < adapter->num_rx_queues; i++) {
6591 struct igb_ring *ring = adapter->rx_ring[i];
6592 u32 rqdpc = rd32(E1000_RQDPC(i));
6593 if (hw->mac.type >= e1000_i210)
6594 wr32(E1000_RQDPC(i), 0);
6595
6596 if (rqdpc) {
6597 ring->rx_stats.drops += rqdpc;
6598 net_stats->rx_fifo_errors += rqdpc;
6599 }
6600
6601 do {
6602 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
6603 _bytes = ring->rx_stats.bytes;
6604 _packets = ring->rx_stats.packets;
6605 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
6606 bytes += _bytes;
6607 packets += _packets;
6608 }
6609
6610 net_stats->rx_bytes = bytes;
6611 net_stats->rx_packets = packets;
6612
6613 bytes = 0;
6614 packets = 0;
6615 for (i = 0; i < adapter->num_tx_queues; i++) {
6616 struct igb_ring *ring = adapter->tx_ring[i];
6617 do {
6618 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
6619 _bytes = ring->tx_stats.bytes;
6620 _packets = ring->tx_stats.packets;
6621 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
6622 bytes += _bytes;
6623 packets += _packets;
6624 }
6625 net_stats->tx_bytes = bytes;
6626 net_stats->tx_packets = packets;
6627 rcu_read_unlock();
6628
6629 /* read stats registers */
6630 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6631 adapter->stats.gprc += rd32(E1000_GPRC);
6632 adapter->stats.gorc += rd32(E1000_GORCL);
6633 rd32(E1000_GORCH); /* clear GORCL */
6634 adapter->stats.bprc += rd32(E1000_BPRC);
6635 adapter->stats.mprc += rd32(E1000_MPRC);
6636 adapter->stats.roc += rd32(E1000_ROC);
6637
6638 adapter->stats.prc64 += rd32(E1000_PRC64);
6639 adapter->stats.prc127 += rd32(E1000_PRC127);
6640 adapter->stats.prc255 += rd32(E1000_PRC255);
6641 adapter->stats.prc511 += rd32(E1000_PRC511);
6642 adapter->stats.prc1023 += rd32(E1000_PRC1023);
6643 adapter->stats.prc1522 += rd32(E1000_PRC1522);
6644 adapter->stats.symerrs += rd32(E1000_SYMERRS);
6645 adapter->stats.sec += rd32(E1000_SEC);
6646
6647 mpc = rd32(E1000_MPC);
6648 adapter->stats.mpc += mpc;
6649 net_stats->rx_fifo_errors += mpc;
6650 adapter->stats.scc += rd32(E1000_SCC);
6651 adapter->stats.ecol += rd32(E1000_ECOL);
6652 adapter->stats.mcc += rd32(E1000_MCC);
6653 adapter->stats.latecol += rd32(E1000_LATECOL);
6654 adapter->stats.dc += rd32(E1000_DC);
6655 adapter->stats.rlec += rd32(E1000_RLEC);
6656 adapter->stats.xonrxc += rd32(E1000_XONRXC);
6657 adapter->stats.xontxc += rd32(E1000_XONTXC);
6658 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6659 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6660 adapter->stats.fcruc += rd32(E1000_FCRUC);
6661 adapter->stats.gptc += rd32(E1000_GPTC);
6662 adapter->stats.gotc += rd32(E1000_GOTCL);
6663 rd32(E1000_GOTCH); /* clear GOTCL */
6664 adapter->stats.rnbc += rd32(E1000_RNBC);
6665 adapter->stats.ruc += rd32(E1000_RUC);
6666 adapter->stats.rfc += rd32(E1000_RFC);
6667 adapter->stats.rjc += rd32(E1000_RJC);
6668 adapter->stats.tor += rd32(E1000_TORH);
6669 adapter->stats.tot += rd32(E1000_TOTH);
6670 adapter->stats.tpr += rd32(E1000_TPR);
6671
6672 adapter->stats.ptc64 += rd32(E1000_PTC64);
6673 adapter->stats.ptc127 += rd32(E1000_PTC127);
6674 adapter->stats.ptc255 += rd32(E1000_PTC255);
6675 adapter->stats.ptc511 += rd32(E1000_PTC511);
6676 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6677 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6678
6679 adapter->stats.mptc += rd32(E1000_MPTC);
6680 adapter->stats.bptc += rd32(E1000_BPTC);
6681
6682 adapter->stats.tpt += rd32(E1000_TPT);
6683 adapter->stats.colc += rd32(E1000_COLC);
6684
6685 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6686 /* read internal phy specific stats */
6687 reg = rd32(E1000_CTRL_EXT);
6688 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6689 adapter->stats.rxerrc += rd32(E1000_RXERRC);
6690
6691 /* this stat has invalid values on i210/i211 */
6692 if ((hw->mac.type != e1000_i210) &&
6693 (hw->mac.type != e1000_i211))
6694 adapter->stats.tncrs += rd32(E1000_TNCRS);
6695 }
6696
6697 adapter->stats.tsctc += rd32(E1000_TSCTC);
6698 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6699
6700 adapter->stats.iac += rd32(E1000_IAC);
6701 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6702 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6703 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6704 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6705 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6706 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6707 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6708 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6709
6710 /* Fill out the OS statistics structure */
6711 net_stats->multicast = adapter->stats.mprc;
6712 net_stats->collisions = adapter->stats.colc;
6713
6714 /* Rx Errors */
6715
6716 /* RLEC on some newer hardware can be incorrect so build
6717 * our own version based on RUC and ROC
6718 */
6719 net_stats->rx_errors = adapter->stats.rxerrc +
6720 adapter->stats.crcerrs + adapter->stats.algnerrc +
6721 adapter->stats.ruc + adapter->stats.roc +
6722 adapter->stats.cexterr;
6723 net_stats->rx_length_errors = adapter->stats.ruc +
6724 adapter->stats.roc;
6725 net_stats->rx_crc_errors = adapter->stats.crcerrs;
6726 net_stats->rx_frame_errors = adapter->stats.algnerrc;
6727 net_stats->rx_missed_errors = adapter->stats.mpc;
6728
6729 /* Tx Errors */
6730 net_stats->tx_errors = adapter->stats.ecol +
6731 adapter->stats.latecol;
6732 net_stats->tx_aborted_errors = adapter->stats.ecol;
6733 net_stats->tx_window_errors = adapter->stats.latecol;
6734 net_stats->tx_carrier_errors = adapter->stats.tncrs;
6735
6736 /* Tx Dropped needs to be maintained elsewhere */
6737
6738 /* Management Stats */
6739 adapter->stats.mgptc += rd32(E1000_MGTPTC);
6740 adapter->stats.mgprc += rd32(E1000_MGTPRC);
6741 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6742
6743 /* OS2BMC Stats */
6744 reg = rd32(E1000_MANC);
6745 if (reg & E1000_MANC_EN_BMC2OS) {
6746 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6747 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6748 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6749 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6750 }
6751 }
6752
igb_perout(struct igb_adapter * adapter,int tsintr_tt)6753 static void igb_perout(struct igb_adapter *adapter, int tsintr_tt)
6754 {
6755 int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_PEROUT, tsintr_tt);
6756 struct e1000_hw *hw = &adapter->hw;
6757 struct timespec64 ts;
6758 u32 tsauxc;
6759
6760 if (pin < 0 || pin >= IGB_N_PEROUT)
6761 return;
6762
6763 spin_lock(&adapter->tmreg_lock);
6764
6765 if (hw->mac.type == e1000_82580 ||
6766 hw->mac.type == e1000_i354 ||
6767 hw->mac.type == e1000_i350) {
6768 s64 ns = timespec64_to_ns(&adapter->perout[pin].period);
6769 u32 systiml, systimh, level_mask, level, rem;
6770 u64 systim, now;
6771
6772 /* read systim registers in sequence */
6773 rd32(E1000_SYSTIMR);
6774 systiml = rd32(E1000_SYSTIML);
6775 systimh = rd32(E1000_SYSTIMH);
6776 systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml);
6777 now = timecounter_cyc2time(&adapter->tc, systim);
6778
6779 if (pin < 2) {
6780 level_mask = (tsintr_tt == 1) ? 0x80000 : 0x40000;
6781 level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0;
6782 } else {
6783 level_mask = (tsintr_tt == 1) ? 0x80 : 0x40;
6784 level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0;
6785 }
6786
6787 div_u64_rem(now, ns, &rem);
6788 systim = systim + (ns - rem);
6789
6790 /* synchronize pin level with rising/falling edges */
6791 div_u64_rem(now, ns << 1, &rem);
6792 if (rem < ns) {
6793 /* first half of period */
6794 if (level == 0) {
6795 /* output is already low, skip this period */
6796 systim += ns;
6797 pr_notice("igb: periodic output on %s missed falling edge\n",
6798 adapter->sdp_config[pin].name);
6799 }
6800 } else {
6801 /* second half of period */
6802 if (level == 1) {
6803 /* output is already high, skip this period */
6804 systim += ns;
6805 pr_notice("igb: periodic output on %s missed rising edge\n",
6806 adapter->sdp_config[pin].name);
6807 }
6808 }
6809
6810 /* for this chip family tv_sec is the upper part of the binary value,
6811 * so not seconds
6812 */
6813 ts.tv_nsec = (u32)systim;
6814 ts.tv_sec = ((u32)(systim >> 32)) & 0xFF;
6815 } else {
6816 ts = timespec64_add(adapter->perout[pin].start,
6817 adapter->perout[pin].period);
6818 }
6819
6820 /* u32 conversion of tv_sec is safe until y2106 */
6821 wr32((tsintr_tt == 1) ? E1000_TRGTTIML1 : E1000_TRGTTIML0, ts.tv_nsec);
6822 wr32((tsintr_tt == 1) ? E1000_TRGTTIMH1 : E1000_TRGTTIMH0, (u32)ts.tv_sec);
6823 tsauxc = rd32(E1000_TSAUXC);
6824 tsauxc |= TSAUXC_EN_TT0;
6825 wr32(E1000_TSAUXC, tsauxc);
6826 adapter->perout[pin].start = ts;
6827
6828 spin_unlock(&adapter->tmreg_lock);
6829 }
6830
igb_extts(struct igb_adapter * adapter,int tsintr_tt)6831 static void igb_extts(struct igb_adapter *adapter, int tsintr_tt)
6832 {
6833 int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_EXTTS, tsintr_tt);
6834 int auxstmpl = (tsintr_tt == 1) ? E1000_AUXSTMPL1 : E1000_AUXSTMPL0;
6835 int auxstmph = (tsintr_tt == 1) ? E1000_AUXSTMPH1 : E1000_AUXSTMPH0;
6836 struct e1000_hw *hw = &adapter->hw;
6837 struct ptp_clock_event event;
6838 struct timespec64 ts;
6839
6840 if (pin < 0 || pin >= IGB_N_EXTTS)
6841 return;
6842
6843 if (hw->mac.type == e1000_82580 ||
6844 hw->mac.type == e1000_i354 ||
6845 hw->mac.type == e1000_i350) {
6846 s64 ns = rd32(auxstmpl);
6847
6848 ns += ((s64)(rd32(auxstmph) & 0xFF)) << 32;
6849 ts = ns_to_timespec64(ns);
6850 } else {
6851 ts.tv_nsec = rd32(auxstmpl);
6852 ts.tv_sec = rd32(auxstmph);
6853 }
6854
6855 event.type = PTP_CLOCK_EXTTS;
6856 event.index = tsintr_tt;
6857 event.timestamp = ts.tv_sec * 1000000000ULL + ts.tv_nsec;
6858 ptp_clock_event(adapter->ptp_clock, &event);
6859 }
6860
igb_tsync_interrupt(struct igb_adapter * adapter)6861 static void igb_tsync_interrupt(struct igb_adapter *adapter)
6862 {
6863 struct e1000_hw *hw = &adapter->hw;
6864 u32 ack = 0, tsicr = rd32(E1000_TSICR);
6865 struct ptp_clock_event event;
6866
6867 if (tsicr & TSINTR_SYS_WRAP) {
6868 event.type = PTP_CLOCK_PPS;
6869 if (adapter->ptp_caps.pps)
6870 ptp_clock_event(adapter->ptp_clock, &event);
6871 ack |= TSINTR_SYS_WRAP;
6872 }
6873
6874 if (tsicr & E1000_TSICR_TXTS) {
6875 /* retrieve hardware timestamp */
6876 schedule_work(&adapter->ptp_tx_work);
6877 ack |= E1000_TSICR_TXTS;
6878 }
6879
6880 if (tsicr & TSINTR_TT0) {
6881 igb_perout(adapter, 0);
6882 ack |= TSINTR_TT0;
6883 }
6884
6885 if (tsicr & TSINTR_TT1) {
6886 igb_perout(adapter, 1);
6887 ack |= TSINTR_TT1;
6888 }
6889
6890 if (tsicr & TSINTR_AUTT0) {
6891 igb_extts(adapter, 0);
6892 ack |= TSINTR_AUTT0;
6893 }
6894
6895 if (tsicr & TSINTR_AUTT1) {
6896 igb_extts(adapter, 1);
6897 ack |= TSINTR_AUTT1;
6898 }
6899
6900 /* acknowledge the interrupts */
6901 wr32(E1000_TSICR, ack);
6902 }
6903
igb_msix_other(int irq,void * data)6904 static irqreturn_t igb_msix_other(int irq, void *data)
6905 {
6906 struct igb_adapter *adapter = data;
6907 struct e1000_hw *hw = &adapter->hw;
6908 u32 icr = rd32(E1000_ICR);
6909 /* reading ICR causes bit 31 of EICR to be cleared */
6910
6911 if (icr & E1000_ICR_DRSTA)
6912 schedule_work(&adapter->reset_task);
6913
6914 if (icr & E1000_ICR_DOUTSYNC) {
6915 /* HW is reporting DMA is out of sync */
6916 adapter->stats.doosync++;
6917 /* The DMA Out of Sync is also indication of a spoof event
6918 * in IOV mode. Check the Wrong VM Behavior register to
6919 * see if it is really a spoof event.
6920 */
6921 igb_check_wvbr(adapter);
6922 }
6923
6924 /* Check for a mailbox event */
6925 if (icr & E1000_ICR_VMMB)
6926 igb_msg_task(adapter);
6927
6928 if (icr & E1000_ICR_LSC) {
6929 hw->mac.get_link_status = 1;
6930 /* guard against interrupt when we're going down */
6931 if (!test_bit(__IGB_DOWN, &adapter->state))
6932 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6933 }
6934
6935 if (icr & E1000_ICR_TS)
6936 igb_tsync_interrupt(adapter);
6937
6938 wr32(E1000_EIMS, adapter->eims_other);
6939
6940 return IRQ_HANDLED;
6941 }
6942
igb_write_itr(struct igb_q_vector * q_vector)6943 static void igb_write_itr(struct igb_q_vector *q_vector)
6944 {
6945 struct igb_adapter *adapter = q_vector->adapter;
6946 u32 itr_val = q_vector->itr_val & 0x7FFC;
6947
6948 if (!q_vector->set_itr)
6949 return;
6950
6951 if (!itr_val)
6952 itr_val = 0x4;
6953
6954 if (adapter->hw.mac.type == e1000_82575)
6955 itr_val |= itr_val << 16;
6956 else
6957 itr_val |= E1000_EITR_CNT_IGNR;
6958
6959 writel(itr_val, q_vector->itr_register);
6960 q_vector->set_itr = 0;
6961 }
6962
igb_msix_ring(int irq,void * data)6963 static irqreturn_t igb_msix_ring(int irq, void *data)
6964 {
6965 struct igb_q_vector *q_vector = data;
6966
6967 /* Write the ITR value calculated from the previous interrupt. */
6968 igb_write_itr(q_vector);
6969
6970 napi_schedule(&q_vector->napi);
6971
6972 return IRQ_HANDLED;
6973 }
6974
6975 #ifdef CONFIG_IGB_DCA
igb_update_tx_dca(struct igb_adapter * adapter,struct igb_ring * tx_ring,int cpu)6976 static void igb_update_tx_dca(struct igb_adapter *adapter,
6977 struct igb_ring *tx_ring,
6978 int cpu)
6979 {
6980 struct e1000_hw *hw = &adapter->hw;
6981 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
6982
6983 if (hw->mac.type != e1000_82575)
6984 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
6985
6986 /* We can enable relaxed ordering for reads, but not writes when
6987 * DCA is enabled. This is due to a known issue in some chipsets
6988 * which will cause the DCA tag to be cleared.
6989 */
6990 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
6991 E1000_DCA_TXCTRL_DATA_RRO_EN |
6992 E1000_DCA_TXCTRL_DESC_DCA_EN;
6993
6994 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
6995 }
6996
igb_update_rx_dca(struct igb_adapter * adapter,struct igb_ring * rx_ring,int cpu)6997 static void igb_update_rx_dca(struct igb_adapter *adapter,
6998 struct igb_ring *rx_ring,
6999 int cpu)
7000 {
7001 struct e1000_hw *hw = &adapter->hw;
7002 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
7003
7004 if (hw->mac.type != e1000_82575)
7005 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
7006
7007 /* We can enable relaxed ordering for reads, but not writes when
7008 * DCA is enabled. This is due to a known issue in some chipsets
7009 * which will cause the DCA tag to be cleared.
7010 */
7011 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
7012 E1000_DCA_RXCTRL_DESC_DCA_EN;
7013
7014 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
7015 }
7016
igb_update_dca(struct igb_q_vector * q_vector)7017 static void igb_update_dca(struct igb_q_vector *q_vector)
7018 {
7019 struct igb_adapter *adapter = q_vector->adapter;
7020 int cpu = get_cpu();
7021
7022 if (q_vector->cpu == cpu)
7023 goto out_no_update;
7024
7025 if (q_vector->tx.ring)
7026 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
7027
7028 if (q_vector->rx.ring)
7029 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
7030
7031 q_vector->cpu = cpu;
7032 out_no_update:
7033 put_cpu();
7034 }
7035
igb_setup_dca(struct igb_adapter * adapter)7036 static void igb_setup_dca(struct igb_adapter *adapter)
7037 {
7038 struct e1000_hw *hw = &adapter->hw;
7039 int i;
7040
7041 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
7042 return;
7043
7044 /* Always use CB2 mode, difference is masked in the CB driver. */
7045 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
7046
7047 for (i = 0; i < adapter->num_q_vectors; i++) {
7048 adapter->q_vector[i]->cpu = -1;
7049 igb_update_dca(adapter->q_vector[i]);
7050 }
7051 }
7052
__igb_notify_dca(struct device * dev,void * data)7053 static int __igb_notify_dca(struct device *dev, void *data)
7054 {
7055 struct net_device *netdev = dev_get_drvdata(dev);
7056 struct igb_adapter *adapter = netdev_priv(netdev);
7057 struct pci_dev *pdev = adapter->pdev;
7058 struct e1000_hw *hw = &adapter->hw;
7059 unsigned long event = *(unsigned long *)data;
7060
7061 switch (event) {
7062 case DCA_PROVIDER_ADD:
7063 /* if already enabled, don't do it again */
7064 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
7065 break;
7066 if (dca_add_requester(dev) == 0) {
7067 adapter->flags |= IGB_FLAG_DCA_ENABLED;
7068 dev_info(&pdev->dev, "DCA enabled\n");
7069 igb_setup_dca(adapter);
7070 break;
7071 }
7072 fallthrough; /* since DCA is disabled. */
7073 case DCA_PROVIDER_REMOVE:
7074 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
7075 /* without this a class_device is left
7076 * hanging around in the sysfs model
7077 */
7078 dca_remove_requester(dev);
7079 dev_info(&pdev->dev, "DCA disabled\n");
7080 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
7081 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
7082 }
7083 break;
7084 }
7085
7086 return 0;
7087 }
7088
igb_notify_dca(struct notifier_block * nb,unsigned long event,void * p)7089 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
7090 void *p)
7091 {
7092 int ret_val;
7093
7094 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
7095 __igb_notify_dca);
7096
7097 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
7098 }
7099 #endif /* CONFIG_IGB_DCA */
7100
7101 #ifdef CONFIG_PCI_IOV
igb_vf_configure(struct igb_adapter * adapter,int vf)7102 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
7103 {
7104 unsigned char mac_addr[ETH_ALEN];
7105
7106 eth_zero_addr(mac_addr);
7107 igb_set_vf_mac(adapter, vf, mac_addr);
7108
7109 /* By default spoof check is enabled for all VFs */
7110 adapter->vf_data[vf].spoofchk_enabled = true;
7111
7112 /* By default VFs are not trusted */
7113 adapter->vf_data[vf].trusted = false;
7114
7115 return 0;
7116 }
7117
7118 #endif
igb_ping_all_vfs(struct igb_adapter * adapter)7119 static void igb_ping_all_vfs(struct igb_adapter *adapter)
7120 {
7121 struct e1000_hw *hw = &adapter->hw;
7122 u32 ping;
7123 int i;
7124
7125 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
7126 ping = E1000_PF_CONTROL_MSG;
7127 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
7128 ping |= E1000_VT_MSGTYPE_CTS;
7129 igb_write_mbx(hw, &ping, 1, i);
7130 }
7131 }
7132
igb_set_vf_promisc(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)7133 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7134 {
7135 struct e1000_hw *hw = &adapter->hw;
7136 u32 vmolr = rd32(E1000_VMOLR(vf));
7137 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7138
7139 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7140 IGB_VF_FLAG_MULTI_PROMISC);
7141 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7142
7143 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
7144 vmolr |= E1000_VMOLR_MPME;
7145 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7146 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
7147 } else {
7148 /* if we have hashes and we are clearing a multicast promisc
7149 * flag we need to write the hashes to the MTA as this step
7150 * was previously skipped
7151 */
7152 if (vf_data->num_vf_mc_hashes > 30) {
7153 vmolr |= E1000_VMOLR_MPME;
7154 } else if (vf_data->num_vf_mc_hashes) {
7155 int j;
7156
7157 vmolr |= E1000_VMOLR_ROMPE;
7158 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7159 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7160 }
7161 }
7162
7163 wr32(E1000_VMOLR(vf), vmolr);
7164
7165 /* there are flags left unprocessed, likely not supported */
7166 if (*msgbuf & E1000_VT_MSGINFO_MASK)
7167 return -EINVAL;
7168
7169 return 0;
7170 }
7171
igb_set_vf_multicasts(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)7172 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
7173 u32 *msgbuf, u32 vf)
7174 {
7175 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7176 u16 *hash_list = (u16 *)&msgbuf[1];
7177 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7178 int i;
7179
7180 /* salt away the number of multicast addresses assigned
7181 * to this VF for later use to restore when the PF multi cast
7182 * list changes
7183 */
7184 vf_data->num_vf_mc_hashes = n;
7185
7186 /* only up to 30 hash values supported */
7187 if (n > 30)
7188 n = 30;
7189
7190 /* store the hashes for later use */
7191 for (i = 0; i < n; i++)
7192 vf_data->vf_mc_hashes[i] = hash_list[i];
7193
7194 /* Flush and reset the mta with the new values */
7195 igb_set_rx_mode(adapter->netdev);
7196
7197 return 0;
7198 }
7199
igb_restore_vf_multicasts(struct igb_adapter * adapter)7200 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
7201 {
7202 struct e1000_hw *hw = &adapter->hw;
7203 struct vf_data_storage *vf_data;
7204 int i, j;
7205
7206 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7207 u32 vmolr = rd32(E1000_VMOLR(i));
7208
7209 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7210
7211 vf_data = &adapter->vf_data[i];
7212
7213 if ((vf_data->num_vf_mc_hashes > 30) ||
7214 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
7215 vmolr |= E1000_VMOLR_MPME;
7216 } else if (vf_data->num_vf_mc_hashes) {
7217 vmolr |= E1000_VMOLR_ROMPE;
7218 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7219 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7220 }
7221 wr32(E1000_VMOLR(i), vmolr);
7222 }
7223 }
7224
igb_clear_vf_vfta(struct igb_adapter * adapter,u32 vf)7225 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
7226 {
7227 struct e1000_hw *hw = &adapter->hw;
7228 u32 pool_mask, vlvf_mask, i;
7229
7230 /* create mask for VF and other pools */
7231 pool_mask = E1000_VLVF_POOLSEL_MASK;
7232 vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
7233
7234 /* drop PF from pool bits */
7235 pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
7236 adapter->vfs_allocated_count);
7237
7238 /* Find the vlan filter for this id */
7239 for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
7240 u32 vlvf = rd32(E1000_VLVF(i));
7241 u32 vfta_mask, vid, vfta;
7242
7243 /* remove the vf from the pool */
7244 if (!(vlvf & vlvf_mask))
7245 continue;
7246
7247 /* clear out bit from VLVF */
7248 vlvf ^= vlvf_mask;
7249
7250 /* if other pools are present, just remove ourselves */
7251 if (vlvf & pool_mask)
7252 goto update_vlvfb;
7253
7254 /* if PF is present, leave VFTA */
7255 if (vlvf & E1000_VLVF_POOLSEL_MASK)
7256 goto update_vlvf;
7257
7258 vid = vlvf & E1000_VLVF_VLANID_MASK;
7259 vfta_mask = BIT(vid % 32);
7260
7261 /* clear bit from VFTA */
7262 vfta = adapter->shadow_vfta[vid / 32];
7263 if (vfta & vfta_mask)
7264 hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
7265 update_vlvf:
7266 /* clear pool selection enable */
7267 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7268 vlvf &= E1000_VLVF_POOLSEL_MASK;
7269 else
7270 vlvf = 0;
7271 update_vlvfb:
7272 /* clear pool bits */
7273 wr32(E1000_VLVF(i), vlvf);
7274 }
7275 }
7276
igb_find_vlvf_entry(struct e1000_hw * hw,u32 vlan)7277 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
7278 {
7279 u32 vlvf;
7280 int idx;
7281
7282 /* short cut the special case */
7283 if (vlan == 0)
7284 return 0;
7285
7286 /* Search for the VLAN id in the VLVF entries */
7287 for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
7288 vlvf = rd32(E1000_VLVF(idx));
7289 if ((vlvf & VLAN_VID_MASK) == vlan)
7290 break;
7291 }
7292
7293 return idx;
7294 }
7295
igb_update_pf_vlvf(struct igb_adapter * adapter,u32 vid)7296 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
7297 {
7298 struct e1000_hw *hw = &adapter->hw;
7299 u32 bits, pf_id;
7300 int idx;
7301
7302 idx = igb_find_vlvf_entry(hw, vid);
7303 if (!idx)
7304 return;
7305
7306 /* See if any other pools are set for this VLAN filter
7307 * entry other than the PF.
7308 */
7309 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
7310 bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
7311 bits &= rd32(E1000_VLVF(idx));
7312
7313 /* Disable the filter so this falls into the default pool. */
7314 if (!bits) {
7315 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7316 wr32(E1000_VLVF(idx), BIT(pf_id));
7317 else
7318 wr32(E1000_VLVF(idx), 0);
7319 }
7320 }
7321
igb_set_vf_vlan(struct igb_adapter * adapter,u32 vid,bool add,u32 vf)7322 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
7323 bool add, u32 vf)
7324 {
7325 int pf_id = adapter->vfs_allocated_count;
7326 struct e1000_hw *hw = &adapter->hw;
7327 int err;
7328
7329 /* If VLAN overlaps with one the PF is currently monitoring make
7330 * sure that we are able to allocate a VLVF entry. This may be
7331 * redundant but it guarantees PF will maintain visibility to
7332 * the VLAN.
7333 */
7334 if (add && test_bit(vid, adapter->active_vlans)) {
7335 err = igb_vfta_set(hw, vid, pf_id, true, false);
7336 if (err)
7337 return err;
7338 }
7339
7340 err = igb_vfta_set(hw, vid, vf, add, false);
7341
7342 if (add && !err)
7343 return err;
7344
7345 /* If we failed to add the VF VLAN or we are removing the VF VLAN
7346 * we may need to drop the PF pool bit in order to allow us to free
7347 * up the VLVF resources.
7348 */
7349 if (test_bit(vid, adapter->active_vlans) ||
7350 (adapter->flags & IGB_FLAG_VLAN_PROMISC))
7351 igb_update_pf_vlvf(adapter, vid);
7352
7353 return err;
7354 }
7355
igb_set_vmvir(struct igb_adapter * adapter,u32 vid,u32 vf)7356 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7357 {
7358 struct e1000_hw *hw = &adapter->hw;
7359
7360 if (vid)
7361 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7362 else
7363 wr32(E1000_VMVIR(vf), 0);
7364 }
7365
igb_enable_port_vlan(struct igb_adapter * adapter,int vf,u16 vlan,u8 qos)7366 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7367 u16 vlan, u8 qos)
7368 {
7369 int err;
7370
7371 err = igb_set_vf_vlan(adapter, vlan, true, vf);
7372 if (err)
7373 return err;
7374
7375 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7376 igb_set_vmolr(adapter, vf, !vlan);
7377
7378 /* revoke access to previous VLAN */
7379 if (vlan != adapter->vf_data[vf].pf_vlan)
7380 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7381 false, vf);
7382
7383 adapter->vf_data[vf].pf_vlan = vlan;
7384 adapter->vf_data[vf].pf_qos = qos;
7385 igb_set_vf_vlan_strip(adapter, vf, true);
7386 dev_info(&adapter->pdev->dev,
7387 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7388 if (test_bit(__IGB_DOWN, &adapter->state)) {
7389 dev_warn(&adapter->pdev->dev,
7390 "The VF VLAN has been set, but the PF device is not up.\n");
7391 dev_warn(&adapter->pdev->dev,
7392 "Bring the PF device up before attempting to use the VF device.\n");
7393 }
7394
7395 return err;
7396 }
7397
igb_disable_port_vlan(struct igb_adapter * adapter,int vf)7398 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7399 {
7400 /* Restore tagless access via VLAN 0 */
7401 igb_set_vf_vlan(adapter, 0, true, vf);
7402
7403 igb_set_vmvir(adapter, 0, vf);
7404 igb_set_vmolr(adapter, vf, true);
7405
7406 /* Remove any PF assigned VLAN */
7407 if (adapter->vf_data[vf].pf_vlan)
7408 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7409 false, vf);
7410
7411 adapter->vf_data[vf].pf_vlan = 0;
7412 adapter->vf_data[vf].pf_qos = 0;
7413 igb_set_vf_vlan_strip(adapter, vf, false);
7414
7415 return 0;
7416 }
7417
igb_ndo_set_vf_vlan(struct net_device * netdev,int vf,u16 vlan,u8 qos,__be16 vlan_proto)7418 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7419 u16 vlan, u8 qos, __be16 vlan_proto)
7420 {
7421 struct igb_adapter *adapter = netdev_priv(netdev);
7422
7423 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7424 return -EINVAL;
7425
7426 if (vlan_proto != htons(ETH_P_8021Q))
7427 return -EPROTONOSUPPORT;
7428
7429 return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7430 igb_disable_port_vlan(adapter, vf);
7431 }
7432
igb_set_vf_vlan_msg(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)7433 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7434 {
7435 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7436 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7437 int ret;
7438
7439 if (adapter->vf_data[vf].pf_vlan)
7440 return -1;
7441
7442 /* VLAN 0 is a special case, don't allow it to be removed */
7443 if (!vid && !add)
7444 return 0;
7445
7446 ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7447 if (!ret)
7448 igb_set_vf_vlan_strip(adapter, vf, !!vid);
7449 return ret;
7450 }
7451
igb_vf_reset(struct igb_adapter * adapter,u32 vf)7452 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7453 {
7454 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7455
7456 /* clear flags - except flag that indicates PF has set the MAC */
7457 vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7458 vf_data->last_nack = jiffies;
7459
7460 /* reset vlans for device */
7461 igb_clear_vf_vfta(adapter, vf);
7462 igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7463 igb_set_vmvir(adapter, vf_data->pf_vlan |
7464 (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7465 igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7466 igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7467
7468 /* reset multicast table array for vf */
7469 adapter->vf_data[vf].num_vf_mc_hashes = 0;
7470
7471 /* Flush and reset the mta with the new values */
7472 igb_set_rx_mode(adapter->netdev);
7473 }
7474
igb_vf_reset_event(struct igb_adapter * adapter,u32 vf)7475 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7476 {
7477 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7478
7479 /* clear mac address as we were hotplug removed/added */
7480 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7481 eth_zero_addr(vf_mac);
7482
7483 /* process remaining reset events */
7484 igb_vf_reset(adapter, vf);
7485 }
7486
igb_vf_reset_msg(struct igb_adapter * adapter,u32 vf)7487 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7488 {
7489 struct e1000_hw *hw = &adapter->hw;
7490 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7491 u32 reg, msgbuf[3];
7492 u8 *addr = (u8 *)(&msgbuf[1]);
7493
7494 /* process all the same items cleared in a function level reset */
7495 igb_vf_reset(adapter, vf);
7496
7497 /* set vf mac address */
7498 igb_set_vf_mac(adapter, vf, vf_mac);
7499
7500 /* enable transmit and receive for vf */
7501 reg = rd32(E1000_VFTE);
7502 wr32(E1000_VFTE, reg | BIT(vf));
7503 reg = rd32(E1000_VFRE);
7504 wr32(E1000_VFRE, reg | BIT(vf));
7505
7506 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7507
7508 /* reply to reset with ack and vf mac address */
7509 if (!is_zero_ether_addr(vf_mac)) {
7510 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7511 memcpy(addr, vf_mac, ETH_ALEN);
7512 } else {
7513 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7514 }
7515 igb_write_mbx(hw, msgbuf, 3, vf);
7516 }
7517
igb_flush_mac_table(struct igb_adapter * adapter)7518 static void igb_flush_mac_table(struct igb_adapter *adapter)
7519 {
7520 struct e1000_hw *hw = &adapter->hw;
7521 int i;
7522
7523 for (i = 0; i < hw->mac.rar_entry_count; i++) {
7524 adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7525 eth_zero_addr(adapter->mac_table[i].addr);
7526 adapter->mac_table[i].queue = 0;
7527 igb_rar_set_index(adapter, i);
7528 }
7529 }
7530
igb_available_rars(struct igb_adapter * adapter,u8 queue)7531 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7532 {
7533 struct e1000_hw *hw = &adapter->hw;
7534 /* do not count rar entries reserved for VFs MAC addresses */
7535 int rar_entries = hw->mac.rar_entry_count -
7536 adapter->vfs_allocated_count;
7537 int i, count = 0;
7538
7539 for (i = 0; i < rar_entries; i++) {
7540 /* do not count default entries */
7541 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7542 continue;
7543
7544 /* do not count "in use" entries for different queues */
7545 if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7546 (adapter->mac_table[i].queue != queue))
7547 continue;
7548
7549 count++;
7550 }
7551
7552 return count;
7553 }
7554
7555 /* Set default MAC address for the PF in the first RAR entry */
igb_set_default_mac_filter(struct igb_adapter * adapter)7556 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7557 {
7558 struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7559
7560 ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7561 mac_table->queue = adapter->vfs_allocated_count;
7562 mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7563
7564 igb_rar_set_index(adapter, 0);
7565 }
7566
7567 /* If the filter to be added and an already existing filter express
7568 * the same address and address type, it should be possible to only
7569 * override the other configurations, for example the queue to steer
7570 * traffic.
7571 */
igb_mac_entry_can_be_used(const struct igb_mac_addr * entry,const u8 * addr,const u8 flags)7572 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7573 const u8 *addr, const u8 flags)
7574 {
7575 if (!(entry->state & IGB_MAC_STATE_IN_USE))
7576 return true;
7577
7578 if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7579 (flags & IGB_MAC_STATE_SRC_ADDR))
7580 return false;
7581
7582 if (!ether_addr_equal(addr, entry->addr))
7583 return false;
7584
7585 return true;
7586 }
7587
7588 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7589 * 'flags' is used to indicate what kind of match is made, match is by
7590 * default for the destination address, if matching by source address
7591 * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7592 */
igb_add_mac_filter_flags(struct igb_adapter * adapter,const u8 * addr,const u8 queue,const u8 flags)7593 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7594 const u8 *addr, const u8 queue,
7595 const u8 flags)
7596 {
7597 struct e1000_hw *hw = &adapter->hw;
7598 int rar_entries = hw->mac.rar_entry_count -
7599 adapter->vfs_allocated_count;
7600 int i;
7601
7602 if (is_zero_ether_addr(addr))
7603 return -EINVAL;
7604
7605 /* Search for the first empty entry in the MAC table.
7606 * Do not touch entries at the end of the table reserved for the VF MAC
7607 * addresses.
7608 */
7609 for (i = 0; i < rar_entries; i++) {
7610 if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7611 addr, flags))
7612 continue;
7613
7614 ether_addr_copy(adapter->mac_table[i].addr, addr);
7615 adapter->mac_table[i].queue = queue;
7616 adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7617
7618 igb_rar_set_index(adapter, i);
7619 return i;
7620 }
7621
7622 return -ENOSPC;
7623 }
7624
igb_add_mac_filter(struct igb_adapter * adapter,const u8 * addr,const u8 queue)7625 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7626 const u8 queue)
7627 {
7628 return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7629 }
7630
7631 /* Remove a MAC filter for 'addr' directing matching traffic to
7632 * 'queue', 'flags' is used to indicate what kind of match need to be
7633 * removed, match is by default for the destination address, if
7634 * matching by source address is to be removed the flag
7635 * IGB_MAC_STATE_SRC_ADDR can be used.
7636 */
igb_del_mac_filter_flags(struct igb_adapter * adapter,const u8 * addr,const u8 queue,const u8 flags)7637 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7638 const u8 *addr, const u8 queue,
7639 const u8 flags)
7640 {
7641 struct e1000_hw *hw = &adapter->hw;
7642 int rar_entries = hw->mac.rar_entry_count -
7643 adapter->vfs_allocated_count;
7644 int i;
7645
7646 if (is_zero_ether_addr(addr))
7647 return -EINVAL;
7648
7649 /* Search for matching entry in the MAC table based on given address
7650 * and queue. Do not touch entries at the end of the table reserved
7651 * for the VF MAC addresses.
7652 */
7653 for (i = 0; i < rar_entries; i++) {
7654 if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7655 continue;
7656 if ((adapter->mac_table[i].state & flags) != flags)
7657 continue;
7658 if (adapter->mac_table[i].queue != queue)
7659 continue;
7660 if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7661 continue;
7662
7663 /* When a filter for the default address is "deleted",
7664 * we return it to its initial configuration
7665 */
7666 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7667 adapter->mac_table[i].state =
7668 IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7669 adapter->mac_table[i].queue =
7670 adapter->vfs_allocated_count;
7671 } else {
7672 adapter->mac_table[i].state = 0;
7673 adapter->mac_table[i].queue = 0;
7674 eth_zero_addr(adapter->mac_table[i].addr);
7675 }
7676
7677 igb_rar_set_index(adapter, i);
7678 return 0;
7679 }
7680
7681 return -ENOENT;
7682 }
7683
igb_del_mac_filter(struct igb_adapter * adapter,const u8 * addr,const u8 queue)7684 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7685 const u8 queue)
7686 {
7687 return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7688 }
7689
igb_add_mac_steering_filter(struct igb_adapter * adapter,const u8 * addr,u8 queue,u8 flags)7690 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7691 const u8 *addr, u8 queue, u8 flags)
7692 {
7693 struct e1000_hw *hw = &adapter->hw;
7694
7695 /* In theory, this should be supported on 82575 as well, but
7696 * that part wasn't easily accessible during development.
7697 */
7698 if (hw->mac.type != e1000_i210)
7699 return -EOPNOTSUPP;
7700
7701 return igb_add_mac_filter_flags(adapter, addr, queue,
7702 IGB_MAC_STATE_QUEUE_STEERING | flags);
7703 }
7704
igb_del_mac_steering_filter(struct igb_adapter * adapter,const u8 * addr,u8 queue,u8 flags)7705 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7706 const u8 *addr, u8 queue, u8 flags)
7707 {
7708 return igb_del_mac_filter_flags(adapter, addr, queue,
7709 IGB_MAC_STATE_QUEUE_STEERING | flags);
7710 }
7711
igb_uc_sync(struct net_device * netdev,const unsigned char * addr)7712 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7713 {
7714 struct igb_adapter *adapter = netdev_priv(netdev);
7715 int ret;
7716
7717 ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7718
7719 return min_t(int, ret, 0);
7720 }
7721
igb_uc_unsync(struct net_device * netdev,const unsigned char * addr)7722 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7723 {
7724 struct igb_adapter *adapter = netdev_priv(netdev);
7725
7726 igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7727
7728 return 0;
7729 }
7730
igb_set_vf_mac_filter(struct igb_adapter * adapter,const int vf,const u32 info,const u8 * addr)7731 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7732 const u32 info, const u8 *addr)
7733 {
7734 struct pci_dev *pdev = adapter->pdev;
7735 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7736 struct list_head *pos;
7737 struct vf_mac_filter *entry = NULL;
7738 int ret = 0;
7739
7740 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7741 !vf_data->trusted) {
7742 dev_warn(&pdev->dev,
7743 "VF %d requested MAC filter but is administratively denied\n",
7744 vf);
7745 return -EINVAL;
7746 }
7747 if (!is_valid_ether_addr(addr)) {
7748 dev_warn(&pdev->dev,
7749 "VF %d attempted to set invalid MAC filter\n",
7750 vf);
7751 return -EINVAL;
7752 }
7753
7754 switch (info) {
7755 case E1000_VF_MAC_FILTER_CLR:
7756 /* remove all unicast MAC filters related to the current VF */
7757 list_for_each(pos, &adapter->vf_macs.l) {
7758 entry = list_entry(pos, struct vf_mac_filter, l);
7759 if (entry->vf == vf) {
7760 entry->vf = -1;
7761 entry->free = true;
7762 igb_del_mac_filter(adapter, entry->vf_mac, vf);
7763 }
7764 }
7765 break;
7766 case E1000_VF_MAC_FILTER_ADD:
7767 /* try to find empty slot in the list */
7768 list_for_each(pos, &adapter->vf_macs.l) {
7769 entry = list_entry(pos, struct vf_mac_filter, l);
7770 if (entry->free)
7771 break;
7772 }
7773
7774 if (entry && entry->free) {
7775 entry->free = false;
7776 entry->vf = vf;
7777 ether_addr_copy(entry->vf_mac, addr);
7778
7779 ret = igb_add_mac_filter(adapter, addr, vf);
7780 ret = min_t(int, ret, 0);
7781 } else {
7782 ret = -ENOSPC;
7783 }
7784
7785 if (ret == -ENOSPC)
7786 dev_warn(&pdev->dev,
7787 "VF %d has requested MAC filter but there is no space for it\n",
7788 vf);
7789 break;
7790 default:
7791 ret = -EINVAL;
7792 break;
7793 }
7794
7795 return ret;
7796 }
7797
igb_set_vf_mac_addr(struct igb_adapter * adapter,u32 * msg,int vf)7798 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7799 {
7800 struct pci_dev *pdev = adapter->pdev;
7801 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7802 u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7803
7804 /* The VF MAC Address is stored in a packed array of bytes
7805 * starting at the second 32 bit word of the msg array
7806 */
7807 unsigned char *addr = (unsigned char *)&msg[1];
7808 int ret = 0;
7809
7810 if (!info) {
7811 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7812 !vf_data->trusted) {
7813 dev_warn(&pdev->dev,
7814 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7815 vf);
7816 return -EINVAL;
7817 }
7818
7819 if (!is_valid_ether_addr(addr)) {
7820 dev_warn(&pdev->dev,
7821 "VF %d attempted to set invalid MAC\n",
7822 vf);
7823 return -EINVAL;
7824 }
7825
7826 ret = igb_set_vf_mac(adapter, vf, addr);
7827 } else {
7828 ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7829 }
7830
7831 return ret;
7832 }
7833
igb_rcv_ack_from_vf(struct igb_adapter * adapter,u32 vf)7834 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7835 {
7836 struct e1000_hw *hw = &adapter->hw;
7837 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7838 u32 msg = E1000_VT_MSGTYPE_NACK;
7839
7840 /* if device isn't clear to send it shouldn't be reading either */
7841 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7842 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7843 igb_write_mbx(hw, &msg, 1, vf);
7844 vf_data->last_nack = jiffies;
7845 }
7846 }
7847
igb_rcv_msg_from_vf(struct igb_adapter * adapter,u32 vf)7848 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7849 {
7850 struct pci_dev *pdev = adapter->pdev;
7851 u32 msgbuf[E1000_VFMAILBOX_SIZE];
7852 struct e1000_hw *hw = &adapter->hw;
7853 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7854 s32 retval;
7855
7856 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7857
7858 if (retval) {
7859 /* if receive failed revoke VF CTS stats and restart init */
7860 dev_err(&pdev->dev, "Error receiving message from VF\n");
7861 vf_data->flags &= ~IGB_VF_FLAG_CTS;
7862 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7863 goto unlock;
7864 goto out;
7865 }
7866
7867 /* this is a message we already processed, do nothing */
7868 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7869 goto unlock;
7870
7871 /* until the vf completes a reset it should not be
7872 * allowed to start any configuration.
7873 */
7874 if (msgbuf[0] == E1000_VF_RESET) {
7875 /* unlocks mailbox */
7876 igb_vf_reset_msg(adapter, vf);
7877 return;
7878 }
7879
7880 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7881 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7882 goto unlock;
7883 retval = -1;
7884 goto out;
7885 }
7886
7887 switch ((msgbuf[0] & 0xFFFF)) {
7888 case E1000_VF_SET_MAC_ADDR:
7889 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7890 break;
7891 case E1000_VF_SET_PROMISC:
7892 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7893 break;
7894 case E1000_VF_SET_MULTICAST:
7895 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7896 break;
7897 case E1000_VF_SET_LPE:
7898 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7899 break;
7900 case E1000_VF_SET_VLAN:
7901 retval = -1;
7902 if (vf_data->pf_vlan)
7903 dev_warn(&pdev->dev,
7904 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7905 vf);
7906 else
7907 retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
7908 break;
7909 default:
7910 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
7911 retval = -1;
7912 break;
7913 }
7914
7915 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
7916 out:
7917 /* notify the VF of the results of what it sent us */
7918 if (retval)
7919 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
7920 else
7921 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
7922
7923 /* unlocks mailbox */
7924 igb_write_mbx(hw, msgbuf, 1, vf);
7925 return;
7926
7927 unlock:
7928 igb_unlock_mbx(hw, vf);
7929 }
7930
igb_msg_task(struct igb_adapter * adapter)7931 static void igb_msg_task(struct igb_adapter *adapter)
7932 {
7933 struct e1000_hw *hw = &adapter->hw;
7934 unsigned long flags;
7935 u32 vf;
7936
7937 spin_lock_irqsave(&adapter->vfs_lock, flags);
7938 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
7939 /* process any reset requests */
7940 if (!igb_check_for_rst(hw, vf))
7941 igb_vf_reset_event(adapter, vf);
7942
7943 /* process any messages pending */
7944 if (!igb_check_for_msg(hw, vf))
7945 igb_rcv_msg_from_vf(adapter, vf);
7946
7947 /* process any acks */
7948 if (!igb_check_for_ack(hw, vf))
7949 igb_rcv_ack_from_vf(adapter, vf);
7950 }
7951 spin_unlock_irqrestore(&adapter->vfs_lock, flags);
7952 }
7953
7954 /**
7955 * igb_set_uta - Set unicast filter table address
7956 * @adapter: board private structure
7957 * @set: boolean indicating if we are setting or clearing bits
7958 *
7959 * The unicast table address is a register array of 32-bit registers.
7960 * The table is meant to be used in a way similar to how the MTA is used
7961 * however due to certain limitations in the hardware it is necessary to
7962 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
7963 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
7964 **/
igb_set_uta(struct igb_adapter * adapter,bool set)7965 static void igb_set_uta(struct igb_adapter *adapter, bool set)
7966 {
7967 struct e1000_hw *hw = &adapter->hw;
7968 u32 uta = set ? ~0 : 0;
7969 int i;
7970
7971 /* we only need to do this if VMDq is enabled */
7972 if (!adapter->vfs_allocated_count)
7973 return;
7974
7975 for (i = hw->mac.uta_reg_count; i--;)
7976 array_wr32(E1000_UTA, i, uta);
7977 }
7978
7979 /**
7980 * igb_intr_msi - Interrupt Handler
7981 * @irq: interrupt number
7982 * @data: pointer to a network interface device structure
7983 **/
igb_intr_msi(int irq,void * data)7984 static irqreturn_t igb_intr_msi(int irq, void *data)
7985 {
7986 struct igb_adapter *adapter = data;
7987 struct igb_q_vector *q_vector = adapter->q_vector[0];
7988 struct e1000_hw *hw = &adapter->hw;
7989 /* read ICR disables interrupts using IAM */
7990 u32 icr = rd32(E1000_ICR);
7991
7992 igb_write_itr(q_vector);
7993
7994 if (icr & E1000_ICR_DRSTA)
7995 schedule_work(&adapter->reset_task);
7996
7997 if (icr & E1000_ICR_DOUTSYNC) {
7998 /* HW is reporting DMA is out of sync */
7999 adapter->stats.doosync++;
8000 }
8001
8002 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8003 hw->mac.get_link_status = 1;
8004 if (!test_bit(__IGB_DOWN, &adapter->state))
8005 mod_timer(&adapter->watchdog_timer, jiffies + 1);
8006 }
8007
8008 if (icr & E1000_ICR_TS)
8009 igb_tsync_interrupt(adapter);
8010
8011 napi_schedule(&q_vector->napi);
8012
8013 return IRQ_HANDLED;
8014 }
8015
8016 /**
8017 * igb_intr - Legacy Interrupt Handler
8018 * @irq: interrupt number
8019 * @data: pointer to a network interface device structure
8020 **/
igb_intr(int irq,void * data)8021 static irqreturn_t igb_intr(int irq, void *data)
8022 {
8023 struct igb_adapter *adapter = data;
8024 struct igb_q_vector *q_vector = adapter->q_vector[0];
8025 struct e1000_hw *hw = &adapter->hw;
8026 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
8027 * need for the IMC write
8028 */
8029 u32 icr = rd32(E1000_ICR);
8030
8031 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
8032 * not set, then the adapter didn't send an interrupt
8033 */
8034 if (!(icr & E1000_ICR_INT_ASSERTED))
8035 return IRQ_NONE;
8036
8037 igb_write_itr(q_vector);
8038
8039 if (icr & E1000_ICR_DRSTA)
8040 schedule_work(&adapter->reset_task);
8041
8042 if (icr & E1000_ICR_DOUTSYNC) {
8043 /* HW is reporting DMA is out of sync */
8044 adapter->stats.doosync++;
8045 }
8046
8047 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8048 hw->mac.get_link_status = 1;
8049 /* guard against interrupt when we're going down */
8050 if (!test_bit(__IGB_DOWN, &adapter->state))
8051 mod_timer(&adapter->watchdog_timer, jiffies + 1);
8052 }
8053
8054 if (icr & E1000_ICR_TS)
8055 igb_tsync_interrupt(adapter);
8056
8057 napi_schedule(&q_vector->napi);
8058
8059 return IRQ_HANDLED;
8060 }
8061
igb_ring_irq_enable(struct igb_q_vector * q_vector)8062 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
8063 {
8064 struct igb_adapter *adapter = q_vector->adapter;
8065 struct e1000_hw *hw = &adapter->hw;
8066
8067 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
8068 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
8069 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
8070 igb_set_itr(q_vector);
8071 else
8072 igb_update_ring_itr(q_vector);
8073 }
8074
8075 if (!test_bit(__IGB_DOWN, &adapter->state)) {
8076 if (adapter->flags & IGB_FLAG_HAS_MSIX)
8077 wr32(E1000_EIMS, q_vector->eims_value);
8078 else
8079 igb_irq_enable(adapter);
8080 }
8081 }
8082
8083 /**
8084 * igb_poll - NAPI Rx polling callback
8085 * @napi: napi polling structure
8086 * @budget: count of how many packets we should handle
8087 **/
igb_poll(struct napi_struct * napi,int budget)8088 static int igb_poll(struct napi_struct *napi, int budget)
8089 {
8090 struct igb_q_vector *q_vector = container_of(napi,
8091 struct igb_q_vector,
8092 napi);
8093 bool clean_complete = true;
8094 int work_done = 0;
8095
8096 #ifdef CONFIG_IGB_DCA
8097 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
8098 igb_update_dca(q_vector);
8099 #endif
8100 if (q_vector->tx.ring)
8101 clean_complete = igb_clean_tx_irq(q_vector, budget);
8102
8103 if (q_vector->rx.ring) {
8104 int cleaned = igb_clean_rx_irq(q_vector, budget);
8105
8106 work_done += cleaned;
8107 if (cleaned >= budget)
8108 clean_complete = false;
8109 }
8110
8111 /* If all work not completed, return budget and keep polling */
8112 if (!clean_complete)
8113 return budget;
8114
8115 /* Exit the polling mode, but don't re-enable interrupts if stack might
8116 * poll us due to busy-polling
8117 */
8118 if (likely(napi_complete_done(napi, work_done)))
8119 igb_ring_irq_enable(q_vector);
8120
8121 return work_done;
8122 }
8123
8124 /**
8125 * igb_clean_tx_irq - Reclaim resources after transmit completes
8126 * @q_vector: pointer to q_vector containing needed info
8127 * @napi_budget: Used to determine if we are in netpoll
8128 *
8129 * returns true if ring is completely cleaned
8130 **/
igb_clean_tx_irq(struct igb_q_vector * q_vector,int napi_budget)8131 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
8132 {
8133 struct igb_adapter *adapter = q_vector->adapter;
8134 struct igb_ring *tx_ring = q_vector->tx.ring;
8135 struct igb_tx_buffer *tx_buffer;
8136 union e1000_adv_tx_desc *tx_desc;
8137 unsigned int total_bytes = 0, total_packets = 0;
8138 unsigned int budget = q_vector->tx.work_limit;
8139 unsigned int i = tx_ring->next_to_clean;
8140
8141 if (test_bit(__IGB_DOWN, &adapter->state))
8142 return true;
8143
8144 tx_buffer = &tx_ring->tx_buffer_info[i];
8145 tx_desc = IGB_TX_DESC(tx_ring, i);
8146 i -= tx_ring->count;
8147
8148 do {
8149 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8150
8151 /* if next_to_watch is not set then there is no work pending */
8152 if (!eop_desc)
8153 break;
8154
8155 /* prevent any other reads prior to eop_desc */
8156 smp_rmb();
8157
8158 /* if DD is not set pending work has not been completed */
8159 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
8160 break;
8161
8162 /* clear next_to_watch to prevent false hangs */
8163 tx_buffer->next_to_watch = NULL;
8164
8165 /* update the statistics for this packet */
8166 total_bytes += tx_buffer->bytecount;
8167 total_packets += tx_buffer->gso_segs;
8168
8169 /* free the skb */
8170 if (tx_buffer->type == IGB_TYPE_SKB)
8171 napi_consume_skb(tx_buffer->skb, napi_budget);
8172 else
8173 xdp_return_frame(tx_buffer->xdpf);
8174
8175 /* unmap skb header data */
8176 dma_unmap_single(tx_ring->dev,
8177 dma_unmap_addr(tx_buffer, dma),
8178 dma_unmap_len(tx_buffer, len),
8179 DMA_TO_DEVICE);
8180
8181 /* clear tx_buffer data */
8182 dma_unmap_len_set(tx_buffer, len, 0);
8183
8184 /* clear last DMA location and unmap remaining buffers */
8185 while (tx_desc != eop_desc) {
8186 tx_buffer++;
8187 tx_desc++;
8188 i++;
8189 if (unlikely(!i)) {
8190 i -= tx_ring->count;
8191 tx_buffer = tx_ring->tx_buffer_info;
8192 tx_desc = IGB_TX_DESC(tx_ring, 0);
8193 }
8194
8195 /* unmap any remaining paged data */
8196 if (dma_unmap_len(tx_buffer, len)) {
8197 dma_unmap_page(tx_ring->dev,
8198 dma_unmap_addr(tx_buffer, dma),
8199 dma_unmap_len(tx_buffer, len),
8200 DMA_TO_DEVICE);
8201 dma_unmap_len_set(tx_buffer, len, 0);
8202 }
8203 }
8204
8205 /* move us one more past the eop_desc for start of next pkt */
8206 tx_buffer++;
8207 tx_desc++;
8208 i++;
8209 if (unlikely(!i)) {
8210 i -= tx_ring->count;
8211 tx_buffer = tx_ring->tx_buffer_info;
8212 tx_desc = IGB_TX_DESC(tx_ring, 0);
8213 }
8214
8215 /* issue prefetch for next Tx descriptor */
8216 prefetch(tx_desc);
8217
8218 /* update budget accounting */
8219 budget--;
8220 } while (likely(budget));
8221
8222 netdev_tx_completed_queue(txring_txq(tx_ring),
8223 total_packets, total_bytes);
8224 i += tx_ring->count;
8225 tx_ring->next_to_clean = i;
8226 u64_stats_update_begin(&tx_ring->tx_syncp);
8227 tx_ring->tx_stats.bytes += total_bytes;
8228 tx_ring->tx_stats.packets += total_packets;
8229 u64_stats_update_end(&tx_ring->tx_syncp);
8230 q_vector->tx.total_bytes += total_bytes;
8231 q_vector->tx.total_packets += total_packets;
8232
8233 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
8234 struct e1000_hw *hw = &adapter->hw;
8235
8236 /* Detect a transmit hang in hardware, this serializes the
8237 * check with the clearing of time_stamp and movement of i
8238 */
8239 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
8240 if (tx_buffer->next_to_watch &&
8241 time_after(jiffies, tx_buffer->time_stamp +
8242 (adapter->tx_timeout_factor * HZ)) &&
8243 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
8244
8245 /* detected Tx unit hang */
8246 dev_err(tx_ring->dev,
8247 "Detected Tx Unit Hang\n"
8248 " Tx Queue <%d>\n"
8249 " TDH <%x>\n"
8250 " TDT <%x>\n"
8251 " next_to_use <%x>\n"
8252 " next_to_clean <%x>\n"
8253 "buffer_info[next_to_clean]\n"
8254 " time_stamp <%lx>\n"
8255 " next_to_watch <%p>\n"
8256 " jiffies <%lx>\n"
8257 " desc.status <%x>\n",
8258 tx_ring->queue_index,
8259 rd32(E1000_TDH(tx_ring->reg_idx)),
8260 readl(tx_ring->tail),
8261 tx_ring->next_to_use,
8262 tx_ring->next_to_clean,
8263 tx_buffer->time_stamp,
8264 tx_buffer->next_to_watch,
8265 jiffies,
8266 tx_buffer->next_to_watch->wb.status);
8267 netif_stop_subqueue(tx_ring->netdev,
8268 tx_ring->queue_index);
8269
8270 /* we are about to reset, no point in enabling stuff */
8271 return true;
8272 }
8273 }
8274
8275 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
8276 if (unlikely(total_packets &&
8277 netif_carrier_ok(tx_ring->netdev) &&
8278 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
8279 /* Make sure that anybody stopping the queue after this
8280 * sees the new next_to_clean.
8281 */
8282 smp_mb();
8283 if (__netif_subqueue_stopped(tx_ring->netdev,
8284 tx_ring->queue_index) &&
8285 !(test_bit(__IGB_DOWN, &adapter->state))) {
8286 netif_wake_subqueue(tx_ring->netdev,
8287 tx_ring->queue_index);
8288
8289 u64_stats_update_begin(&tx_ring->tx_syncp);
8290 tx_ring->tx_stats.restart_queue++;
8291 u64_stats_update_end(&tx_ring->tx_syncp);
8292 }
8293 }
8294
8295 return !!budget;
8296 }
8297
8298 /**
8299 * igb_reuse_rx_page - page flip buffer and store it back on the ring
8300 * @rx_ring: rx descriptor ring to store buffers on
8301 * @old_buff: donor buffer to have page reused
8302 *
8303 * Synchronizes page for reuse by the adapter
8304 **/
igb_reuse_rx_page(struct igb_ring * rx_ring,struct igb_rx_buffer * old_buff)8305 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
8306 struct igb_rx_buffer *old_buff)
8307 {
8308 struct igb_rx_buffer *new_buff;
8309 u16 nta = rx_ring->next_to_alloc;
8310
8311 new_buff = &rx_ring->rx_buffer_info[nta];
8312
8313 /* update, and store next to alloc */
8314 nta++;
8315 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
8316
8317 /* Transfer page from old buffer to new buffer.
8318 * Move each member individually to avoid possible store
8319 * forwarding stalls.
8320 */
8321 new_buff->dma = old_buff->dma;
8322 new_buff->page = old_buff->page;
8323 new_buff->page_offset = old_buff->page_offset;
8324 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
8325 }
8326
igb_can_reuse_rx_page(struct igb_rx_buffer * rx_buffer,int rx_buf_pgcnt)8327 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
8328 int rx_buf_pgcnt)
8329 {
8330 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
8331 struct page *page = rx_buffer->page;
8332
8333 /* avoid re-using remote and pfmemalloc pages */
8334 if (!dev_page_is_reusable(page))
8335 return false;
8336
8337 #if (PAGE_SIZE < 8192)
8338 /* if we are only owner of page we can reuse it */
8339 if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
8340 return false;
8341 #else
8342 #define IGB_LAST_OFFSET \
8343 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
8344
8345 if (rx_buffer->page_offset > IGB_LAST_OFFSET)
8346 return false;
8347 #endif
8348
8349 /* If we have drained the page fragment pool we need to update
8350 * the pagecnt_bias and page count so that we fully restock the
8351 * number of references the driver holds.
8352 */
8353 if (unlikely(pagecnt_bias == 1)) {
8354 page_ref_add(page, USHRT_MAX - 1);
8355 rx_buffer->pagecnt_bias = USHRT_MAX;
8356 }
8357
8358 return true;
8359 }
8360
8361 /**
8362 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8363 * @rx_ring: rx descriptor ring to transact packets on
8364 * @rx_buffer: buffer containing page to add
8365 * @skb: sk_buff to place the data into
8366 * @size: size of buffer to be added
8367 *
8368 * This function will add the data contained in rx_buffer->page to the skb.
8369 **/
igb_add_rx_frag(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,struct sk_buff * skb,unsigned int size)8370 static void igb_add_rx_frag(struct igb_ring *rx_ring,
8371 struct igb_rx_buffer *rx_buffer,
8372 struct sk_buff *skb,
8373 unsigned int size)
8374 {
8375 #if (PAGE_SIZE < 8192)
8376 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8377 #else
8378 unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8379 SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8380 SKB_DATA_ALIGN(size);
8381 #endif
8382 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8383 rx_buffer->page_offset, size, truesize);
8384 #if (PAGE_SIZE < 8192)
8385 rx_buffer->page_offset ^= truesize;
8386 #else
8387 rx_buffer->page_offset += truesize;
8388 #endif
8389 }
8390
igb_construct_skb(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,struct xdp_buff * xdp,ktime_t timestamp)8391 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8392 struct igb_rx_buffer *rx_buffer,
8393 struct xdp_buff *xdp,
8394 ktime_t timestamp)
8395 {
8396 #if (PAGE_SIZE < 8192)
8397 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8398 #else
8399 unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
8400 xdp->data_hard_start);
8401 #endif
8402 unsigned int size = xdp->data_end - xdp->data;
8403 unsigned int headlen;
8404 struct sk_buff *skb;
8405
8406 /* prefetch first cache line of first page */
8407 net_prefetch(xdp->data);
8408
8409 /* allocate a skb to store the frags */
8410 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8411 if (unlikely(!skb))
8412 return NULL;
8413
8414 if (timestamp)
8415 skb_hwtstamps(skb)->hwtstamp = timestamp;
8416
8417 /* Determine available headroom for copy */
8418 headlen = size;
8419 if (headlen > IGB_RX_HDR_LEN)
8420 headlen = eth_get_headlen(skb->dev, xdp->data, IGB_RX_HDR_LEN);
8421
8422 /* align pull length to size of long to optimize memcpy performance */
8423 memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long)));
8424
8425 /* update all of the pointers */
8426 size -= headlen;
8427 if (size) {
8428 skb_add_rx_frag(skb, 0, rx_buffer->page,
8429 (xdp->data + headlen) - page_address(rx_buffer->page),
8430 size, truesize);
8431 #if (PAGE_SIZE < 8192)
8432 rx_buffer->page_offset ^= truesize;
8433 #else
8434 rx_buffer->page_offset += truesize;
8435 #endif
8436 } else {
8437 rx_buffer->pagecnt_bias++;
8438 }
8439
8440 return skb;
8441 }
8442
igb_build_skb(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,struct xdp_buff * xdp,ktime_t timestamp)8443 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8444 struct igb_rx_buffer *rx_buffer,
8445 struct xdp_buff *xdp,
8446 ktime_t timestamp)
8447 {
8448 #if (PAGE_SIZE < 8192)
8449 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8450 #else
8451 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8452 SKB_DATA_ALIGN(xdp->data_end -
8453 xdp->data_hard_start);
8454 #endif
8455 unsigned int metasize = xdp->data - xdp->data_meta;
8456 struct sk_buff *skb;
8457
8458 /* prefetch first cache line of first page */
8459 net_prefetch(xdp->data_meta);
8460
8461 /* build an skb around the page buffer */
8462 skb = napi_build_skb(xdp->data_hard_start, truesize);
8463 if (unlikely(!skb))
8464 return NULL;
8465
8466 /* update pointers within the skb to store the data */
8467 skb_reserve(skb, xdp->data - xdp->data_hard_start);
8468 __skb_put(skb, xdp->data_end - xdp->data);
8469
8470 if (metasize)
8471 skb_metadata_set(skb, metasize);
8472
8473 if (timestamp)
8474 skb_hwtstamps(skb)->hwtstamp = timestamp;
8475
8476 /* update buffer offset */
8477 #if (PAGE_SIZE < 8192)
8478 rx_buffer->page_offset ^= truesize;
8479 #else
8480 rx_buffer->page_offset += truesize;
8481 #endif
8482
8483 return skb;
8484 }
8485
igb_run_xdp(struct igb_adapter * adapter,struct igb_ring * rx_ring,struct xdp_buff * xdp)8486 static struct sk_buff *igb_run_xdp(struct igb_adapter *adapter,
8487 struct igb_ring *rx_ring,
8488 struct xdp_buff *xdp)
8489 {
8490 int err, result = IGB_XDP_PASS;
8491 struct bpf_prog *xdp_prog;
8492 u32 act;
8493
8494 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
8495
8496 if (!xdp_prog)
8497 goto xdp_out;
8498
8499 prefetchw(xdp->data_hard_start); /* xdp_frame write */
8500
8501 act = bpf_prog_run_xdp(xdp_prog, xdp);
8502 switch (act) {
8503 case XDP_PASS:
8504 break;
8505 case XDP_TX:
8506 result = igb_xdp_xmit_back(adapter, xdp);
8507 if (result == IGB_XDP_CONSUMED)
8508 goto out_failure;
8509 break;
8510 case XDP_REDIRECT:
8511 err = xdp_do_redirect(adapter->netdev, xdp, xdp_prog);
8512 if (err)
8513 goto out_failure;
8514 result = IGB_XDP_REDIR;
8515 break;
8516 default:
8517 bpf_warn_invalid_xdp_action(adapter->netdev, xdp_prog, act);
8518 fallthrough;
8519 case XDP_ABORTED:
8520 out_failure:
8521 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
8522 fallthrough;
8523 case XDP_DROP:
8524 result = IGB_XDP_CONSUMED;
8525 break;
8526 }
8527 xdp_out:
8528 return ERR_PTR(-result);
8529 }
8530
igb_rx_frame_truesize(struct igb_ring * rx_ring,unsigned int size)8531 static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring,
8532 unsigned int size)
8533 {
8534 unsigned int truesize;
8535
8536 #if (PAGE_SIZE < 8192)
8537 truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
8538 #else
8539 truesize = ring_uses_build_skb(rx_ring) ?
8540 SKB_DATA_ALIGN(IGB_SKB_PAD + size) +
8541 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
8542 SKB_DATA_ALIGN(size);
8543 #endif
8544 return truesize;
8545 }
8546
igb_rx_buffer_flip(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,unsigned int size)8547 static void igb_rx_buffer_flip(struct igb_ring *rx_ring,
8548 struct igb_rx_buffer *rx_buffer,
8549 unsigned int size)
8550 {
8551 unsigned int truesize = igb_rx_frame_truesize(rx_ring, size);
8552 #if (PAGE_SIZE < 8192)
8553 rx_buffer->page_offset ^= truesize;
8554 #else
8555 rx_buffer->page_offset += truesize;
8556 #endif
8557 }
8558
igb_rx_checksum(struct igb_ring * ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8559 static inline void igb_rx_checksum(struct igb_ring *ring,
8560 union e1000_adv_rx_desc *rx_desc,
8561 struct sk_buff *skb)
8562 {
8563 skb_checksum_none_assert(skb);
8564
8565 /* Ignore Checksum bit is set */
8566 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8567 return;
8568
8569 /* Rx checksum disabled via ethtool */
8570 if (!(ring->netdev->features & NETIF_F_RXCSUM))
8571 return;
8572
8573 /* TCP/UDP checksum error bit is set */
8574 if (igb_test_staterr(rx_desc,
8575 E1000_RXDEXT_STATERR_TCPE |
8576 E1000_RXDEXT_STATERR_IPE)) {
8577 /* work around errata with sctp packets where the TCPE aka
8578 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8579 * packets, (aka let the stack check the crc32c)
8580 */
8581 if (!((skb->len == 60) &&
8582 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8583 u64_stats_update_begin(&ring->rx_syncp);
8584 ring->rx_stats.csum_err++;
8585 u64_stats_update_end(&ring->rx_syncp);
8586 }
8587 /* let the stack verify checksum errors */
8588 return;
8589 }
8590 /* It must be a TCP or UDP packet with a valid checksum */
8591 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8592 E1000_RXD_STAT_UDPCS))
8593 skb->ip_summed = CHECKSUM_UNNECESSARY;
8594
8595 dev_dbg(ring->dev, "cksum success: bits %08X\n",
8596 le32_to_cpu(rx_desc->wb.upper.status_error));
8597 }
8598
igb_rx_hash(struct igb_ring * ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8599 static inline void igb_rx_hash(struct igb_ring *ring,
8600 union e1000_adv_rx_desc *rx_desc,
8601 struct sk_buff *skb)
8602 {
8603 if (ring->netdev->features & NETIF_F_RXHASH)
8604 skb_set_hash(skb,
8605 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8606 PKT_HASH_TYPE_L3);
8607 }
8608
8609 /**
8610 * igb_is_non_eop - process handling of non-EOP buffers
8611 * @rx_ring: Rx ring being processed
8612 * @rx_desc: Rx descriptor for current buffer
8613 *
8614 * This function updates next to clean. If the buffer is an EOP buffer
8615 * this function exits returning false, otherwise it will place the
8616 * sk_buff in the next buffer to be chained and return true indicating
8617 * that this is in fact a non-EOP buffer.
8618 **/
igb_is_non_eop(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc)8619 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8620 union e1000_adv_rx_desc *rx_desc)
8621 {
8622 u32 ntc = rx_ring->next_to_clean + 1;
8623
8624 /* fetch, update, and store next to clean */
8625 ntc = (ntc < rx_ring->count) ? ntc : 0;
8626 rx_ring->next_to_clean = ntc;
8627
8628 prefetch(IGB_RX_DESC(rx_ring, ntc));
8629
8630 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8631 return false;
8632
8633 return true;
8634 }
8635
8636 /**
8637 * igb_cleanup_headers - Correct corrupted or empty headers
8638 * @rx_ring: rx descriptor ring packet is being transacted on
8639 * @rx_desc: pointer to the EOP Rx descriptor
8640 * @skb: pointer to current skb being fixed
8641 *
8642 * Address the case where we are pulling data in on pages only
8643 * and as such no data is present in the skb header.
8644 *
8645 * In addition if skb is not at least 60 bytes we need to pad it so that
8646 * it is large enough to qualify as a valid Ethernet frame.
8647 *
8648 * Returns true if an error was encountered and skb was freed.
8649 **/
igb_cleanup_headers(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8650 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8651 union e1000_adv_rx_desc *rx_desc,
8652 struct sk_buff *skb)
8653 {
8654 /* XDP packets use error pointer so abort at this point */
8655 if (IS_ERR(skb))
8656 return true;
8657
8658 if (unlikely((igb_test_staterr(rx_desc,
8659 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8660 struct net_device *netdev = rx_ring->netdev;
8661 if (!(netdev->features & NETIF_F_RXALL)) {
8662 dev_kfree_skb_any(skb);
8663 return true;
8664 }
8665 }
8666
8667 /* if eth_skb_pad returns an error the skb was freed */
8668 if (eth_skb_pad(skb))
8669 return true;
8670
8671 return false;
8672 }
8673
8674 /**
8675 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
8676 * @rx_ring: rx descriptor ring packet is being transacted on
8677 * @rx_desc: pointer to the EOP Rx descriptor
8678 * @skb: pointer to current skb being populated
8679 *
8680 * This function checks the ring, descriptor, and packet information in
8681 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
8682 * other fields within the skb.
8683 **/
igb_process_skb_fields(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8684 static void igb_process_skb_fields(struct igb_ring *rx_ring,
8685 union e1000_adv_rx_desc *rx_desc,
8686 struct sk_buff *skb)
8687 {
8688 struct net_device *dev = rx_ring->netdev;
8689
8690 igb_rx_hash(rx_ring, rx_desc, skb);
8691
8692 igb_rx_checksum(rx_ring, rx_desc, skb);
8693
8694 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8695 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8696 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8697
8698 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8699 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8700 u16 vid;
8701
8702 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8703 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8704 vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
8705 else
8706 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8707
8708 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8709 }
8710
8711 skb_record_rx_queue(skb, rx_ring->queue_index);
8712
8713 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8714 }
8715
igb_rx_offset(struct igb_ring * rx_ring)8716 static unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8717 {
8718 return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8719 }
8720
igb_get_rx_buffer(struct igb_ring * rx_ring,const unsigned int size,int * rx_buf_pgcnt)8721 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8722 const unsigned int size, int *rx_buf_pgcnt)
8723 {
8724 struct igb_rx_buffer *rx_buffer;
8725
8726 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8727 *rx_buf_pgcnt =
8728 #if (PAGE_SIZE < 8192)
8729 page_count(rx_buffer->page);
8730 #else
8731 0;
8732 #endif
8733 prefetchw(rx_buffer->page);
8734
8735 /* we are reusing so sync this buffer for CPU use */
8736 dma_sync_single_range_for_cpu(rx_ring->dev,
8737 rx_buffer->dma,
8738 rx_buffer->page_offset,
8739 size,
8740 DMA_FROM_DEVICE);
8741
8742 rx_buffer->pagecnt_bias--;
8743
8744 return rx_buffer;
8745 }
8746
igb_put_rx_buffer(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,int rx_buf_pgcnt)8747 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8748 struct igb_rx_buffer *rx_buffer, int rx_buf_pgcnt)
8749 {
8750 if (igb_can_reuse_rx_page(rx_buffer, rx_buf_pgcnt)) {
8751 /* hand second half of page back to the ring */
8752 igb_reuse_rx_page(rx_ring, rx_buffer);
8753 } else {
8754 /* We are not reusing the buffer so unmap it and free
8755 * any references we are holding to it
8756 */
8757 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8758 igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8759 IGB_RX_DMA_ATTR);
8760 __page_frag_cache_drain(rx_buffer->page,
8761 rx_buffer->pagecnt_bias);
8762 }
8763
8764 /* clear contents of rx_buffer */
8765 rx_buffer->page = NULL;
8766 }
8767
igb_clean_rx_irq(struct igb_q_vector * q_vector,const int budget)8768 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8769 {
8770 struct igb_adapter *adapter = q_vector->adapter;
8771 struct igb_ring *rx_ring = q_vector->rx.ring;
8772 struct sk_buff *skb = rx_ring->skb;
8773 unsigned int total_bytes = 0, total_packets = 0;
8774 u16 cleaned_count = igb_desc_unused(rx_ring);
8775 unsigned int xdp_xmit = 0;
8776 struct xdp_buff xdp;
8777 u32 frame_sz = 0;
8778 int rx_buf_pgcnt;
8779
8780 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
8781 #if (PAGE_SIZE < 8192)
8782 frame_sz = igb_rx_frame_truesize(rx_ring, 0);
8783 #endif
8784 xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
8785
8786 while (likely(total_packets < budget)) {
8787 union e1000_adv_rx_desc *rx_desc;
8788 struct igb_rx_buffer *rx_buffer;
8789 ktime_t timestamp = 0;
8790 int pkt_offset = 0;
8791 unsigned int size;
8792 void *pktbuf;
8793
8794 /* return some buffers to hardware, one at a time is too slow */
8795 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8796 igb_alloc_rx_buffers(rx_ring, cleaned_count);
8797 cleaned_count = 0;
8798 }
8799
8800 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8801 size = le16_to_cpu(rx_desc->wb.upper.length);
8802 if (!size)
8803 break;
8804
8805 /* This memory barrier is needed to keep us from reading
8806 * any other fields out of the rx_desc until we know the
8807 * descriptor has been written back
8808 */
8809 dma_rmb();
8810
8811 rx_buffer = igb_get_rx_buffer(rx_ring, size, &rx_buf_pgcnt);
8812 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
8813
8814 /* pull rx packet timestamp if available and valid */
8815 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8816 int ts_hdr_len;
8817
8818 ts_hdr_len = igb_ptp_rx_pktstamp(rx_ring->q_vector,
8819 pktbuf, ×tamp);
8820
8821 pkt_offset += ts_hdr_len;
8822 size -= ts_hdr_len;
8823 }
8824
8825 /* retrieve a buffer from the ring */
8826 if (!skb) {
8827 unsigned char *hard_start = pktbuf - igb_rx_offset(rx_ring);
8828 unsigned int offset = pkt_offset + igb_rx_offset(rx_ring);
8829
8830 xdp_prepare_buff(&xdp, hard_start, offset, size, true);
8831 #if (PAGE_SIZE > 4096)
8832 /* At larger PAGE_SIZE, frame_sz depend on len size */
8833 xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size);
8834 #endif
8835 skb = igb_run_xdp(adapter, rx_ring, &xdp);
8836 }
8837
8838 if (IS_ERR(skb)) {
8839 unsigned int xdp_res = -PTR_ERR(skb);
8840
8841 if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) {
8842 xdp_xmit |= xdp_res;
8843 igb_rx_buffer_flip(rx_ring, rx_buffer, size);
8844 } else {
8845 rx_buffer->pagecnt_bias++;
8846 }
8847 total_packets++;
8848 total_bytes += size;
8849 } else if (skb)
8850 igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8851 else if (ring_uses_build_skb(rx_ring))
8852 skb = igb_build_skb(rx_ring, rx_buffer, &xdp,
8853 timestamp);
8854 else
8855 skb = igb_construct_skb(rx_ring, rx_buffer,
8856 &xdp, timestamp);
8857
8858 /* exit if we failed to retrieve a buffer */
8859 if (!skb) {
8860 rx_ring->rx_stats.alloc_failed++;
8861 rx_buffer->pagecnt_bias++;
8862 break;
8863 }
8864
8865 igb_put_rx_buffer(rx_ring, rx_buffer, rx_buf_pgcnt);
8866 cleaned_count++;
8867
8868 /* fetch next buffer in frame if non-eop */
8869 if (igb_is_non_eop(rx_ring, rx_desc))
8870 continue;
8871
8872 /* verify the packet layout is correct */
8873 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8874 skb = NULL;
8875 continue;
8876 }
8877
8878 /* probably a little skewed due to removing CRC */
8879 total_bytes += skb->len;
8880
8881 /* populate checksum, timestamp, VLAN, and protocol */
8882 igb_process_skb_fields(rx_ring, rx_desc, skb);
8883
8884 napi_gro_receive(&q_vector->napi, skb);
8885
8886 /* reset skb pointer */
8887 skb = NULL;
8888
8889 /* update budget accounting */
8890 total_packets++;
8891 }
8892
8893 /* place incomplete frames back on ring for completion */
8894 rx_ring->skb = skb;
8895
8896 if (xdp_xmit & IGB_XDP_REDIR)
8897 xdp_do_flush();
8898
8899 if (xdp_xmit & IGB_XDP_TX) {
8900 struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter);
8901
8902 igb_xdp_ring_update_tail(tx_ring);
8903 }
8904
8905 u64_stats_update_begin(&rx_ring->rx_syncp);
8906 rx_ring->rx_stats.packets += total_packets;
8907 rx_ring->rx_stats.bytes += total_bytes;
8908 u64_stats_update_end(&rx_ring->rx_syncp);
8909 q_vector->rx.total_packets += total_packets;
8910 q_vector->rx.total_bytes += total_bytes;
8911
8912 if (cleaned_count)
8913 igb_alloc_rx_buffers(rx_ring, cleaned_count);
8914
8915 return total_packets;
8916 }
8917
igb_alloc_mapped_page(struct igb_ring * rx_ring,struct igb_rx_buffer * bi)8918 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
8919 struct igb_rx_buffer *bi)
8920 {
8921 struct page *page = bi->page;
8922 dma_addr_t dma;
8923
8924 /* since we are recycling buffers we should seldom need to alloc */
8925 if (likely(page))
8926 return true;
8927
8928 /* alloc new page for storage */
8929 page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
8930 if (unlikely(!page)) {
8931 rx_ring->rx_stats.alloc_failed++;
8932 return false;
8933 }
8934
8935 /* map page for use */
8936 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
8937 igb_rx_pg_size(rx_ring),
8938 DMA_FROM_DEVICE,
8939 IGB_RX_DMA_ATTR);
8940
8941 /* if mapping failed free memory back to system since
8942 * there isn't much point in holding memory we can't use
8943 */
8944 if (dma_mapping_error(rx_ring->dev, dma)) {
8945 __free_pages(page, igb_rx_pg_order(rx_ring));
8946
8947 rx_ring->rx_stats.alloc_failed++;
8948 return false;
8949 }
8950
8951 bi->dma = dma;
8952 bi->page = page;
8953 bi->page_offset = igb_rx_offset(rx_ring);
8954 page_ref_add(page, USHRT_MAX - 1);
8955 bi->pagecnt_bias = USHRT_MAX;
8956
8957 return true;
8958 }
8959
8960 /**
8961 * igb_alloc_rx_buffers - Replace used receive buffers
8962 * @rx_ring: rx descriptor ring to allocate new receive buffers
8963 * @cleaned_count: count of buffers to allocate
8964 **/
igb_alloc_rx_buffers(struct igb_ring * rx_ring,u16 cleaned_count)8965 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
8966 {
8967 union e1000_adv_rx_desc *rx_desc;
8968 struct igb_rx_buffer *bi;
8969 u16 i = rx_ring->next_to_use;
8970 u16 bufsz;
8971
8972 /* nothing to do */
8973 if (!cleaned_count)
8974 return;
8975
8976 rx_desc = IGB_RX_DESC(rx_ring, i);
8977 bi = &rx_ring->rx_buffer_info[i];
8978 i -= rx_ring->count;
8979
8980 bufsz = igb_rx_bufsz(rx_ring);
8981
8982 do {
8983 if (!igb_alloc_mapped_page(rx_ring, bi))
8984 break;
8985
8986 /* sync the buffer for use by the device */
8987 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
8988 bi->page_offset, bufsz,
8989 DMA_FROM_DEVICE);
8990
8991 /* Refresh the desc even if buffer_addrs didn't change
8992 * because each write-back erases this info.
8993 */
8994 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
8995
8996 rx_desc++;
8997 bi++;
8998 i++;
8999 if (unlikely(!i)) {
9000 rx_desc = IGB_RX_DESC(rx_ring, 0);
9001 bi = rx_ring->rx_buffer_info;
9002 i -= rx_ring->count;
9003 }
9004
9005 /* clear the length for the next_to_use descriptor */
9006 rx_desc->wb.upper.length = 0;
9007
9008 cleaned_count--;
9009 } while (cleaned_count);
9010
9011 i += rx_ring->count;
9012
9013 if (rx_ring->next_to_use != i) {
9014 /* record the next descriptor to use */
9015 rx_ring->next_to_use = i;
9016
9017 /* update next to alloc since we have filled the ring */
9018 rx_ring->next_to_alloc = i;
9019
9020 /* Force memory writes to complete before letting h/w
9021 * know there are new descriptors to fetch. (Only
9022 * applicable for weak-ordered memory model archs,
9023 * such as IA-64).
9024 */
9025 dma_wmb();
9026 writel(i, rx_ring->tail);
9027 }
9028 }
9029
9030 /**
9031 * igb_mii_ioctl -
9032 * @netdev: pointer to netdev struct
9033 * @ifr: interface structure
9034 * @cmd: ioctl command to execute
9035 **/
igb_mii_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)9036 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9037 {
9038 struct igb_adapter *adapter = netdev_priv(netdev);
9039 struct mii_ioctl_data *data = if_mii(ifr);
9040
9041 if (adapter->hw.phy.media_type != e1000_media_type_copper)
9042 return -EOPNOTSUPP;
9043
9044 switch (cmd) {
9045 case SIOCGMIIPHY:
9046 data->phy_id = adapter->hw.phy.addr;
9047 break;
9048 case SIOCGMIIREG:
9049 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
9050 &data->val_out))
9051 return -EIO;
9052 break;
9053 case SIOCSMIIREG:
9054 default:
9055 return -EOPNOTSUPP;
9056 }
9057 return 0;
9058 }
9059
9060 /**
9061 * igb_ioctl -
9062 * @netdev: pointer to netdev struct
9063 * @ifr: interface structure
9064 * @cmd: ioctl command to execute
9065 **/
igb_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)9066 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9067 {
9068 switch (cmd) {
9069 case SIOCGMIIPHY:
9070 case SIOCGMIIREG:
9071 case SIOCSMIIREG:
9072 return igb_mii_ioctl(netdev, ifr, cmd);
9073 case SIOCGHWTSTAMP:
9074 return igb_ptp_get_ts_config(netdev, ifr);
9075 case SIOCSHWTSTAMP:
9076 return igb_ptp_set_ts_config(netdev, ifr);
9077 default:
9078 return -EOPNOTSUPP;
9079 }
9080 }
9081
igb_read_pci_cfg(struct e1000_hw * hw,u32 reg,u16 * value)9082 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9083 {
9084 struct igb_adapter *adapter = hw->back;
9085
9086 pci_read_config_word(adapter->pdev, reg, value);
9087 }
9088
igb_write_pci_cfg(struct e1000_hw * hw,u32 reg,u16 * value)9089 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9090 {
9091 struct igb_adapter *adapter = hw->back;
9092
9093 pci_write_config_word(adapter->pdev, reg, *value);
9094 }
9095
igb_read_pcie_cap_reg(struct e1000_hw * hw,u32 reg,u16 * value)9096 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9097 {
9098 struct igb_adapter *adapter = hw->back;
9099
9100 if (pcie_capability_read_word(adapter->pdev, reg, value))
9101 return -E1000_ERR_CONFIG;
9102
9103 return 0;
9104 }
9105
igb_write_pcie_cap_reg(struct e1000_hw * hw,u32 reg,u16 * value)9106 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9107 {
9108 struct igb_adapter *adapter = hw->back;
9109
9110 if (pcie_capability_write_word(adapter->pdev, reg, *value))
9111 return -E1000_ERR_CONFIG;
9112
9113 return 0;
9114 }
9115
igb_vlan_mode(struct net_device * netdev,netdev_features_t features)9116 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9117 {
9118 struct igb_adapter *adapter = netdev_priv(netdev);
9119 struct e1000_hw *hw = &adapter->hw;
9120 u32 ctrl, rctl;
9121 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
9122
9123 if (enable) {
9124 /* enable VLAN tag insert/strip */
9125 ctrl = rd32(E1000_CTRL);
9126 ctrl |= E1000_CTRL_VME;
9127 wr32(E1000_CTRL, ctrl);
9128
9129 /* Disable CFI check */
9130 rctl = rd32(E1000_RCTL);
9131 rctl &= ~E1000_RCTL_CFIEN;
9132 wr32(E1000_RCTL, rctl);
9133 } else {
9134 /* disable VLAN tag insert/strip */
9135 ctrl = rd32(E1000_CTRL);
9136 ctrl &= ~E1000_CTRL_VME;
9137 wr32(E1000_CTRL, ctrl);
9138 }
9139
9140 igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
9141 }
9142
igb_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)9143 static int igb_vlan_rx_add_vid(struct net_device *netdev,
9144 __be16 proto, u16 vid)
9145 {
9146 struct igb_adapter *adapter = netdev_priv(netdev);
9147 struct e1000_hw *hw = &adapter->hw;
9148 int pf_id = adapter->vfs_allocated_count;
9149
9150 /* add the filter since PF can receive vlans w/o entry in vlvf */
9151 if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9152 igb_vfta_set(hw, vid, pf_id, true, !!vid);
9153
9154 set_bit(vid, adapter->active_vlans);
9155
9156 return 0;
9157 }
9158
igb_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)9159 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
9160 __be16 proto, u16 vid)
9161 {
9162 struct igb_adapter *adapter = netdev_priv(netdev);
9163 int pf_id = adapter->vfs_allocated_count;
9164 struct e1000_hw *hw = &adapter->hw;
9165
9166 /* remove VID from filter table */
9167 if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9168 igb_vfta_set(hw, vid, pf_id, false, true);
9169
9170 clear_bit(vid, adapter->active_vlans);
9171
9172 return 0;
9173 }
9174
igb_restore_vlan(struct igb_adapter * adapter)9175 static void igb_restore_vlan(struct igb_adapter *adapter)
9176 {
9177 u16 vid = 1;
9178
9179 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
9180 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
9181
9182 for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
9183 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
9184 }
9185
igb_set_spd_dplx(struct igb_adapter * adapter,u32 spd,u8 dplx)9186 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9187 {
9188 struct pci_dev *pdev = adapter->pdev;
9189 struct e1000_mac_info *mac = &adapter->hw.mac;
9190
9191 mac->autoneg = 0;
9192
9193 /* Make sure dplx is at most 1 bit and lsb of speed is not set
9194 * for the switch() below to work
9195 */
9196 if ((spd & 1) || (dplx & ~1))
9197 goto err_inval;
9198
9199 /* Fiber NIC's only allow 1000 gbps Full duplex
9200 * and 100Mbps Full duplex for 100baseFx sfp
9201 */
9202 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
9203 switch (spd + dplx) {
9204 case SPEED_10 + DUPLEX_HALF:
9205 case SPEED_10 + DUPLEX_FULL:
9206 case SPEED_100 + DUPLEX_HALF:
9207 goto err_inval;
9208 default:
9209 break;
9210 }
9211 }
9212
9213 switch (spd + dplx) {
9214 case SPEED_10 + DUPLEX_HALF:
9215 mac->forced_speed_duplex = ADVERTISE_10_HALF;
9216 break;
9217 case SPEED_10 + DUPLEX_FULL:
9218 mac->forced_speed_duplex = ADVERTISE_10_FULL;
9219 break;
9220 case SPEED_100 + DUPLEX_HALF:
9221 mac->forced_speed_duplex = ADVERTISE_100_HALF;
9222 break;
9223 case SPEED_100 + DUPLEX_FULL:
9224 mac->forced_speed_duplex = ADVERTISE_100_FULL;
9225 break;
9226 case SPEED_1000 + DUPLEX_FULL:
9227 mac->autoneg = 1;
9228 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
9229 break;
9230 case SPEED_1000 + DUPLEX_HALF: /* not supported */
9231 default:
9232 goto err_inval;
9233 }
9234
9235 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
9236 adapter->hw.phy.mdix = AUTO_ALL_MODES;
9237
9238 return 0;
9239
9240 err_inval:
9241 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
9242 return -EINVAL;
9243 }
9244
__igb_shutdown(struct pci_dev * pdev,bool * enable_wake,bool runtime)9245 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
9246 bool runtime)
9247 {
9248 struct net_device *netdev = pci_get_drvdata(pdev);
9249 struct igb_adapter *adapter = netdev_priv(netdev);
9250 struct e1000_hw *hw = &adapter->hw;
9251 u32 ctrl, rctl, status;
9252 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9253 bool wake;
9254
9255 rtnl_lock();
9256 netif_device_detach(netdev);
9257
9258 if (netif_running(netdev))
9259 __igb_close(netdev, true);
9260
9261 igb_ptp_suspend(adapter);
9262
9263 igb_clear_interrupt_scheme(adapter);
9264 rtnl_unlock();
9265
9266 status = rd32(E1000_STATUS);
9267 if (status & E1000_STATUS_LU)
9268 wufc &= ~E1000_WUFC_LNKC;
9269
9270 if (wufc) {
9271 igb_setup_rctl(adapter);
9272 igb_set_rx_mode(netdev);
9273
9274 /* turn on all-multi mode if wake on multicast is enabled */
9275 if (wufc & E1000_WUFC_MC) {
9276 rctl = rd32(E1000_RCTL);
9277 rctl |= E1000_RCTL_MPE;
9278 wr32(E1000_RCTL, rctl);
9279 }
9280
9281 ctrl = rd32(E1000_CTRL);
9282 ctrl |= E1000_CTRL_ADVD3WUC;
9283 wr32(E1000_CTRL, ctrl);
9284
9285 /* Allow time for pending master requests to run */
9286 igb_disable_pcie_master(hw);
9287
9288 wr32(E1000_WUC, E1000_WUC_PME_EN);
9289 wr32(E1000_WUFC, wufc);
9290 } else {
9291 wr32(E1000_WUC, 0);
9292 wr32(E1000_WUFC, 0);
9293 }
9294
9295 wake = wufc || adapter->en_mng_pt;
9296 if (!wake)
9297 igb_power_down_link(adapter);
9298 else
9299 igb_power_up_link(adapter);
9300
9301 if (enable_wake)
9302 *enable_wake = wake;
9303
9304 /* Release control of h/w to f/w. If f/w is AMT enabled, this
9305 * would have already happened in close and is redundant.
9306 */
9307 igb_release_hw_control(adapter);
9308
9309 pci_disable_device(pdev);
9310
9311 return 0;
9312 }
9313
igb_deliver_wake_packet(struct net_device * netdev)9314 static void igb_deliver_wake_packet(struct net_device *netdev)
9315 {
9316 struct igb_adapter *adapter = netdev_priv(netdev);
9317 struct e1000_hw *hw = &adapter->hw;
9318 struct sk_buff *skb;
9319 u32 wupl;
9320
9321 wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
9322
9323 /* WUPM stores only the first 128 bytes of the wake packet.
9324 * Read the packet only if we have the whole thing.
9325 */
9326 if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
9327 return;
9328
9329 skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
9330 if (!skb)
9331 return;
9332
9333 skb_put(skb, wupl);
9334
9335 /* Ensure reads are 32-bit aligned */
9336 wupl = roundup(wupl, 4);
9337
9338 memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
9339
9340 skb->protocol = eth_type_trans(skb, netdev);
9341 netif_rx(skb);
9342 }
9343
igb_suspend(struct device * dev)9344 static int __maybe_unused igb_suspend(struct device *dev)
9345 {
9346 return __igb_shutdown(to_pci_dev(dev), NULL, 0);
9347 }
9348
__igb_resume(struct device * dev,bool rpm)9349 static int __maybe_unused __igb_resume(struct device *dev, bool rpm)
9350 {
9351 struct pci_dev *pdev = to_pci_dev(dev);
9352 struct net_device *netdev = pci_get_drvdata(pdev);
9353 struct igb_adapter *adapter = netdev_priv(netdev);
9354 struct e1000_hw *hw = &adapter->hw;
9355 u32 err, val;
9356
9357 pci_set_power_state(pdev, PCI_D0);
9358 pci_restore_state(pdev);
9359 pci_save_state(pdev);
9360
9361 if (!pci_device_is_present(pdev))
9362 return -ENODEV;
9363 err = pci_enable_device_mem(pdev);
9364 if (err) {
9365 dev_err(&pdev->dev,
9366 "igb: Cannot enable PCI device from suspend\n");
9367 return err;
9368 }
9369 pci_set_master(pdev);
9370
9371 pci_enable_wake(pdev, PCI_D3hot, 0);
9372 pci_enable_wake(pdev, PCI_D3cold, 0);
9373
9374 if (igb_init_interrupt_scheme(adapter, true)) {
9375 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9376 return -ENOMEM;
9377 }
9378
9379 igb_reset(adapter);
9380
9381 /* let the f/w know that the h/w is now under the control of the
9382 * driver.
9383 */
9384 igb_get_hw_control(adapter);
9385
9386 val = rd32(E1000_WUS);
9387 if (val & WAKE_PKT_WUS)
9388 igb_deliver_wake_packet(netdev);
9389
9390 wr32(E1000_WUS, ~0);
9391
9392 if (!rpm)
9393 rtnl_lock();
9394 if (!err && netif_running(netdev))
9395 err = __igb_open(netdev, true);
9396
9397 if (!err)
9398 netif_device_attach(netdev);
9399 if (!rpm)
9400 rtnl_unlock();
9401
9402 return err;
9403 }
9404
igb_resume(struct device * dev)9405 static int __maybe_unused igb_resume(struct device *dev)
9406 {
9407 return __igb_resume(dev, false);
9408 }
9409
igb_runtime_idle(struct device * dev)9410 static int __maybe_unused igb_runtime_idle(struct device *dev)
9411 {
9412 struct net_device *netdev = dev_get_drvdata(dev);
9413 struct igb_adapter *adapter = netdev_priv(netdev);
9414
9415 if (!igb_has_link(adapter))
9416 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
9417
9418 return -EBUSY;
9419 }
9420
igb_runtime_suspend(struct device * dev)9421 static int __maybe_unused igb_runtime_suspend(struct device *dev)
9422 {
9423 return __igb_shutdown(to_pci_dev(dev), NULL, 1);
9424 }
9425
igb_runtime_resume(struct device * dev)9426 static int __maybe_unused igb_runtime_resume(struct device *dev)
9427 {
9428 return __igb_resume(dev, true);
9429 }
9430
igb_shutdown(struct pci_dev * pdev)9431 static void igb_shutdown(struct pci_dev *pdev)
9432 {
9433 bool wake;
9434
9435 __igb_shutdown(pdev, &wake, 0);
9436
9437 if (system_state == SYSTEM_POWER_OFF) {
9438 pci_wake_from_d3(pdev, wake);
9439 pci_set_power_state(pdev, PCI_D3hot);
9440 }
9441 }
9442
9443 #ifdef CONFIG_PCI_IOV
igb_sriov_reinit(struct pci_dev * dev)9444 static int igb_sriov_reinit(struct pci_dev *dev)
9445 {
9446 struct net_device *netdev = pci_get_drvdata(dev);
9447 struct igb_adapter *adapter = netdev_priv(netdev);
9448 struct pci_dev *pdev = adapter->pdev;
9449
9450 rtnl_lock();
9451
9452 if (netif_running(netdev))
9453 igb_close(netdev);
9454 else
9455 igb_reset(adapter);
9456
9457 igb_clear_interrupt_scheme(adapter);
9458
9459 igb_init_queue_configuration(adapter);
9460
9461 if (igb_init_interrupt_scheme(adapter, true)) {
9462 rtnl_unlock();
9463 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9464 return -ENOMEM;
9465 }
9466
9467 if (netif_running(netdev))
9468 igb_open(netdev);
9469
9470 rtnl_unlock();
9471
9472 return 0;
9473 }
9474
igb_pci_disable_sriov(struct pci_dev * dev)9475 static int igb_pci_disable_sriov(struct pci_dev *dev)
9476 {
9477 int err = igb_disable_sriov(dev);
9478
9479 if (!err)
9480 err = igb_sriov_reinit(dev);
9481
9482 return err;
9483 }
9484
igb_pci_enable_sriov(struct pci_dev * dev,int num_vfs)9485 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
9486 {
9487 int err = igb_enable_sriov(dev, num_vfs);
9488
9489 if (err)
9490 goto out;
9491
9492 err = igb_sriov_reinit(dev);
9493 if (!err)
9494 return num_vfs;
9495
9496 out:
9497 return err;
9498 }
9499
9500 #endif
igb_pci_sriov_configure(struct pci_dev * dev,int num_vfs)9501 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9502 {
9503 #ifdef CONFIG_PCI_IOV
9504 if (num_vfs == 0)
9505 return igb_pci_disable_sriov(dev);
9506 else
9507 return igb_pci_enable_sriov(dev, num_vfs);
9508 #endif
9509 return 0;
9510 }
9511
9512 /**
9513 * igb_io_error_detected - called when PCI error is detected
9514 * @pdev: Pointer to PCI device
9515 * @state: The current pci connection state
9516 *
9517 * This function is called after a PCI bus error affecting
9518 * this device has been detected.
9519 **/
igb_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)9520 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9521 pci_channel_state_t state)
9522 {
9523 struct net_device *netdev = pci_get_drvdata(pdev);
9524 struct igb_adapter *adapter = netdev_priv(netdev);
9525
9526 netif_device_detach(netdev);
9527
9528 if (state == pci_channel_io_perm_failure)
9529 return PCI_ERS_RESULT_DISCONNECT;
9530
9531 if (netif_running(netdev))
9532 igb_down(adapter);
9533 pci_disable_device(pdev);
9534
9535 /* Request a slot slot reset. */
9536 return PCI_ERS_RESULT_NEED_RESET;
9537 }
9538
9539 /**
9540 * igb_io_slot_reset - called after the pci bus has been reset.
9541 * @pdev: Pointer to PCI device
9542 *
9543 * Restart the card from scratch, as if from a cold-boot. Implementation
9544 * resembles the first-half of the __igb_resume routine.
9545 **/
igb_io_slot_reset(struct pci_dev * pdev)9546 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9547 {
9548 struct net_device *netdev = pci_get_drvdata(pdev);
9549 struct igb_adapter *adapter = netdev_priv(netdev);
9550 struct e1000_hw *hw = &adapter->hw;
9551 pci_ers_result_t result;
9552
9553 if (pci_enable_device_mem(pdev)) {
9554 dev_err(&pdev->dev,
9555 "Cannot re-enable PCI device after reset.\n");
9556 result = PCI_ERS_RESULT_DISCONNECT;
9557 } else {
9558 pci_set_master(pdev);
9559 pci_restore_state(pdev);
9560 pci_save_state(pdev);
9561
9562 pci_enable_wake(pdev, PCI_D3hot, 0);
9563 pci_enable_wake(pdev, PCI_D3cold, 0);
9564
9565 /* In case of PCI error, adapter lose its HW address
9566 * so we should re-assign it here.
9567 */
9568 hw->hw_addr = adapter->io_addr;
9569
9570 igb_reset(adapter);
9571 wr32(E1000_WUS, ~0);
9572 result = PCI_ERS_RESULT_RECOVERED;
9573 }
9574
9575 return result;
9576 }
9577
9578 /**
9579 * igb_io_resume - called when traffic can start flowing again.
9580 * @pdev: Pointer to PCI device
9581 *
9582 * This callback is called when the error recovery driver tells us that
9583 * its OK to resume normal operation. Implementation resembles the
9584 * second-half of the __igb_resume routine.
9585 */
igb_io_resume(struct pci_dev * pdev)9586 static void igb_io_resume(struct pci_dev *pdev)
9587 {
9588 struct net_device *netdev = pci_get_drvdata(pdev);
9589 struct igb_adapter *adapter = netdev_priv(netdev);
9590
9591 if (netif_running(netdev)) {
9592 if (igb_up(adapter)) {
9593 dev_err(&pdev->dev, "igb_up failed after reset\n");
9594 return;
9595 }
9596 }
9597
9598 netif_device_attach(netdev);
9599
9600 /* let the f/w know that the h/w is now under the control of the
9601 * driver.
9602 */
9603 igb_get_hw_control(adapter);
9604 }
9605
9606 /**
9607 * igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9608 * @adapter: Pointer to adapter structure
9609 * @index: Index of the RAR entry which need to be synced with MAC table
9610 **/
igb_rar_set_index(struct igb_adapter * adapter,u32 index)9611 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9612 {
9613 struct e1000_hw *hw = &adapter->hw;
9614 u32 rar_low, rar_high;
9615 u8 *addr = adapter->mac_table[index].addr;
9616
9617 /* HW expects these to be in network order when they are plugged
9618 * into the registers which are little endian. In order to guarantee
9619 * that ordering we need to do an leXX_to_cpup here in order to be
9620 * ready for the byteswap that occurs with writel
9621 */
9622 rar_low = le32_to_cpup((__le32 *)(addr));
9623 rar_high = le16_to_cpup((__le16 *)(addr + 4));
9624
9625 /* Indicate to hardware the Address is Valid. */
9626 if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9627 if (is_valid_ether_addr(addr))
9628 rar_high |= E1000_RAH_AV;
9629
9630 if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9631 rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9632
9633 switch (hw->mac.type) {
9634 case e1000_82575:
9635 case e1000_i210:
9636 if (adapter->mac_table[index].state &
9637 IGB_MAC_STATE_QUEUE_STEERING)
9638 rar_high |= E1000_RAH_QSEL_ENABLE;
9639
9640 rar_high |= E1000_RAH_POOL_1 *
9641 adapter->mac_table[index].queue;
9642 break;
9643 default:
9644 rar_high |= E1000_RAH_POOL_1 <<
9645 adapter->mac_table[index].queue;
9646 break;
9647 }
9648 }
9649
9650 wr32(E1000_RAL(index), rar_low);
9651 wrfl();
9652 wr32(E1000_RAH(index), rar_high);
9653 wrfl();
9654 }
9655
igb_set_vf_mac(struct igb_adapter * adapter,int vf,unsigned char * mac_addr)9656 static int igb_set_vf_mac(struct igb_adapter *adapter,
9657 int vf, unsigned char *mac_addr)
9658 {
9659 struct e1000_hw *hw = &adapter->hw;
9660 /* VF MAC addresses start at end of receive addresses and moves
9661 * towards the first, as a result a collision should not be possible
9662 */
9663 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9664 unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9665
9666 ether_addr_copy(vf_mac_addr, mac_addr);
9667 ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9668 adapter->mac_table[rar_entry].queue = vf;
9669 adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9670 igb_rar_set_index(adapter, rar_entry);
9671
9672 return 0;
9673 }
9674
igb_ndo_set_vf_mac(struct net_device * netdev,int vf,u8 * mac)9675 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9676 {
9677 struct igb_adapter *adapter = netdev_priv(netdev);
9678
9679 if (vf >= adapter->vfs_allocated_count)
9680 return -EINVAL;
9681
9682 /* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9683 * flag and allows to overwrite the MAC via VF netdev. This
9684 * is necessary to allow libvirt a way to restore the original
9685 * MAC after unbinding vfio-pci and reloading igbvf after shutting
9686 * down a VM.
9687 */
9688 if (is_zero_ether_addr(mac)) {
9689 adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9690 dev_info(&adapter->pdev->dev,
9691 "remove administratively set MAC on VF %d\n",
9692 vf);
9693 } else if (is_valid_ether_addr(mac)) {
9694 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9695 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9696 mac, vf);
9697 dev_info(&adapter->pdev->dev,
9698 "Reload the VF driver to make this change effective.");
9699 /* Generate additional warning if PF is down */
9700 if (test_bit(__IGB_DOWN, &adapter->state)) {
9701 dev_warn(&adapter->pdev->dev,
9702 "The VF MAC address has been set, but the PF device is not up.\n");
9703 dev_warn(&adapter->pdev->dev,
9704 "Bring the PF device up before attempting to use the VF device.\n");
9705 }
9706 } else {
9707 return -EINVAL;
9708 }
9709 return igb_set_vf_mac(adapter, vf, mac);
9710 }
9711
igb_link_mbps(int internal_link_speed)9712 static int igb_link_mbps(int internal_link_speed)
9713 {
9714 switch (internal_link_speed) {
9715 case SPEED_100:
9716 return 100;
9717 case SPEED_1000:
9718 return 1000;
9719 default:
9720 return 0;
9721 }
9722 }
9723
igb_set_vf_rate_limit(struct e1000_hw * hw,int vf,int tx_rate,int link_speed)9724 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9725 int link_speed)
9726 {
9727 int rf_dec, rf_int;
9728 u32 bcnrc_val;
9729
9730 if (tx_rate != 0) {
9731 /* Calculate the rate factor values to set */
9732 rf_int = link_speed / tx_rate;
9733 rf_dec = (link_speed - (rf_int * tx_rate));
9734 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9735 tx_rate;
9736
9737 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9738 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
9739 E1000_RTTBCNRC_RF_INT_MASK);
9740 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9741 } else {
9742 bcnrc_val = 0;
9743 }
9744
9745 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9746 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9747 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9748 */
9749 wr32(E1000_RTTBCNRM, 0x14);
9750 wr32(E1000_RTTBCNRC, bcnrc_val);
9751 }
9752
igb_check_vf_rate_limit(struct igb_adapter * adapter)9753 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9754 {
9755 int actual_link_speed, i;
9756 bool reset_rate = false;
9757
9758 /* VF TX rate limit was not set or not supported */
9759 if ((adapter->vf_rate_link_speed == 0) ||
9760 (adapter->hw.mac.type != e1000_82576))
9761 return;
9762
9763 actual_link_speed = igb_link_mbps(adapter->link_speed);
9764 if (actual_link_speed != adapter->vf_rate_link_speed) {
9765 reset_rate = true;
9766 adapter->vf_rate_link_speed = 0;
9767 dev_info(&adapter->pdev->dev,
9768 "Link speed has been changed. VF Transmit rate is disabled\n");
9769 }
9770
9771 for (i = 0; i < adapter->vfs_allocated_count; i++) {
9772 if (reset_rate)
9773 adapter->vf_data[i].tx_rate = 0;
9774
9775 igb_set_vf_rate_limit(&adapter->hw, i,
9776 adapter->vf_data[i].tx_rate,
9777 actual_link_speed);
9778 }
9779 }
9780
igb_ndo_set_vf_bw(struct net_device * netdev,int vf,int min_tx_rate,int max_tx_rate)9781 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9782 int min_tx_rate, int max_tx_rate)
9783 {
9784 struct igb_adapter *adapter = netdev_priv(netdev);
9785 struct e1000_hw *hw = &adapter->hw;
9786 int actual_link_speed;
9787
9788 if (hw->mac.type != e1000_82576)
9789 return -EOPNOTSUPP;
9790
9791 if (min_tx_rate)
9792 return -EINVAL;
9793
9794 actual_link_speed = igb_link_mbps(adapter->link_speed);
9795 if ((vf >= adapter->vfs_allocated_count) ||
9796 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9797 (max_tx_rate < 0) ||
9798 (max_tx_rate > actual_link_speed))
9799 return -EINVAL;
9800
9801 adapter->vf_rate_link_speed = actual_link_speed;
9802 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9803 igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9804
9805 return 0;
9806 }
9807
igb_ndo_set_vf_spoofchk(struct net_device * netdev,int vf,bool setting)9808 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9809 bool setting)
9810 {
9811 struct igb_adapter *adapter = netdev_priv(netdev);
9812 struct e1000_hw *hw = &adapter->hw;
9813 u32 reg_val, reg_offset;
9814
9815 if (!adapter->vfs_allocated_count)
9816 return -EOPNOTSUPP;
9817
9818 if (vf >= adapter->vfs_allocated_count)
9819 return -EINVAL;
9820
9821 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9822 reg_val = rd32(reg_offset);
9823 if (setting)
9824 reg_val |= (BIT(vf) |
9825 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9826 else
9827 reg_val &= ~(BIT(vf) |
9828 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9829 wr32(reg_offset, reg_val);
9830
9831 adapter->vf_data[vf].spoofchk_enabled = setting;
9832 return 0;
9833 }
9834
igb_ndo_set_vf_trust(struct net_device * netdev,int vf,bool setting)9835 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9836 {
9837 struct igb_adapter *adapter = netdev_priv(netdev);
9838
9839 if (vf >= adapter->vfs_allocated_count)
9840 return -EINVAL;
9841 if (adapter->vf_data[vf].trusted == setting)
9842 return 0;
9843
9844 adapter->vf_data[vf].trusted = setting;
9845
9846 dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9847 vf, setting ? "" : "not ");
9848 return 0;
9849 }
9850
igb_ndo_get_vf_config(struct net_device * netdev,int vf,struct ifla_vf_info * ivi)9851 static int igb_ndo_get_vf_config(struct net_device *netdev,
9852 int vf, struct ifla_vf_info *ivi)
9853 {
9854 struct igb_adapter *adapter = netdev_priv(netdev);
9855 if (vf >= adapter->vfs_allocated_count)
9856 return -EINVAL;
9857 ivi->vf = vf;
9858 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9859 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9860 ivi->min_tx_rate = 0;
9861 ivi->vlan = adapter->vf_data[vf].pf_vlan;
9862 ivi->qos = adapter->vf_data[vf].pf_qos;
9863 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9864 ivi->trusted = adapter->vf_data[vf].trusted;
9865 return 0;
9866 }
9867
igb_vmm_control(struct igb_adapter * adapter)9868 static void igb_vmm_control(struct igb_adapter *adapter)
9869 {
9870 struct e1000_hw *hw = &adapter->hw;
9871 u32 reg;
9872
9873 switch (hw->mac.type) {
9874 case e1000_82575:
9875 case e1000_i210:
9876 case e1000_i211:
9877 case e1000_i354:
9878 default:
9879 /* replication is not supported for 82575 */
9880 return;
9881 case e1000_82576:
9882 /* notify HW that the MAC is adding vlan tags */
9883 reg = rd32(E1000_DTXCTL);
9884 reg |= E1000_DTXCTL_VLAN_ADDED;
9885 wr32(E1000_DTXCTL, reg);
9886 fallthrough;
9887 case e1000_82580:
9888 /* enable replication vlan tag stripping */
9889 reg = rd32(E1000_RPLOLR);
9890 reg |= E1000_RPLOLR_STRVLAN;
9891 wr32(E1000_RPLOLR, reg);
9892 fallthrough;
9893 case e1000_i350:
9894 /* none of the above registers are supported by i350 */
9895 break;
9896 }
9897
9898 if (adapter->vfs_allocated_count) {
9899 igb_vmdq_set_loopback_pf(hw, true);
9900 igb_vmdq_set_replication_pf(hw, true);
9901 igb_vmdq_set_anti_spoofing_pf(hw, true,
9902 adapter->vfs_allocated_count);
9903 } else {
9904 igb_vmdq_set_loopback_pf(hw, false);
9905 igb_vmdq_set_replication_pf(hw, false);
9906 }
9907 }
9908
igb_init_dmac(struct igb_adapter * adapter,u32 pba)9909 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9910 {
9911 struct e1000_hw *hw = &adapter->hw;
9912 u32 dmac_thr;
9913 u16 hwm;
9914 u32 reg;
9915
9916 if (hw->mac.type > e1000_82580) {
9917 if (adapter->flags & IGB_FLAG_DMAC) {
9918 /* force threshold to 0. */
9919 wr32(E1000_DMCTXTH, 0);
9920
9921 /* DMA Coalescing high water mark needs to be greater
9922 * than the Rx threshold. Set hwm to PBA - max frame
9923 * size in 16B units, capping it at PBA - 6KB.
9924 */
9925 hwm = 64 * (pba - 6);
9926 reg = rd32(E1000_FCRTC);
9927 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9928 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9929 & E1000_FCRTC_RTH_COAL_MASK);
9930 wr32(E1000_FCRTC, reg);
9931
9932 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9933 * frame size, capping it at PBA - 10KB.
9934 */
9935 dmac_thr = pba - 10;
9936 reg = rd32(E1000_DMACR);
9937 reg &= ~E1000_DMACR_DMACTHR_MASK;
9938 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
9939 & E1000_DMACR_DMACTHR_MASK);
9940
9941 /* transition to L0x or L1 if available..*/
9942 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
9943
9944 /* watchdog timer= +-1000 usec in 32usec intervals */
9945 reg |= (1000 >> 5);
9946
9947 /* Disable BMC-to-OS Watchdog Enable */
9948 if (hw->mac.type != e1000_i354)
9949 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
9950 wr32(E1000_DMACR, reg);
9951
9952 /* no lower threshold to disable
9953 * coalescing(smart fifb)-UTRESH=0
9954 */
9955 wr32(E1000_DMCRTRH, 0);
9956
9957 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
9958
9959 wr32(E1000_DMCTLX, reg);
9960
9961 /* free space in tx packet buffer to wake from
9962 * DMA coal
9963 */
9964 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
9965 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
9966 }
9967
9968 if (hw->mac.type >= e1000_i210 ||
9969 (adapter->flags & IGB_FLAG_DMAC)) {
9970 reg = rd32(E1000_PCIEMISC);
9971 reg |= E1000_PCIEMISC_LX_DECISION;
9972 wr32(E1000_PCIEMISC, reg);
9973 } /* endif adapter->dmac is not disabled */
9974 } else if (hw->mac.type == e1000_82580) {
9975 u32 reg = rd32(E1000_PCIEMISC);
9976
9977 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
9978 wr32(E1000_DMACR, 0);
9979 }
9980 }
9981
9982 /**
9983 * igb_read_i2c_byte - Reads 8 bit word over I2C
9984 * @hw: pointer to hardware structure
9985 * @byte_offset: byte offset to read
9986 * @dev_addr: device address
9987 * @data: value read
9988 *
9989 * Performs byte read operation over I2C interface at
9990 * a specified device address.
9991 **/
igb_read_i2c_byte(struct e1000_hw * hw,u8 byte_offset,u8 dev_addr,u8 * data)9992 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9993 u8 dev_addr, u8 *data)
9994 {
9995 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9996 struct i2c_client *this_client = adapter->i2c_client;
9997 s32 status;
9998 u16 swfw_mask = 0;
9999
10000 if (!this_client)
10001 return E1000_ERR_I2C;
10002
10003 swfw_mask = E1000_SWFW_PHY0_SM;
10004
10005 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10006 return E1000_ERR_SWFW_SYNC;
10007
10008 status = i2c_smbus_read_byte_data(this_client, byte_offset);
10009 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10010
10011 if (status < 0)
10012 return E1000_ERR_I2C;
10013 else {
10014 *data = status;
10015 return 0;
10016 }
10017 }
10018
10019 /**
10020 * igb_write_i2c_byte - Writes 8 bit word over I2C
10021 * @hw: pointer to hardware structure
10022 * @byte_offset: byte offset to write
10023 * @dev_addr: device address
10024 * @data: value to write
10025 *
10026 * Performs byte write operation over I2C interface at
10027 * a specified device address.
10028 **/
igb_write_i2c_byte(struct e1000_hw * hw,u8 byte_offset,u8 dev_addr,u8 data)10029 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10030 u8 dev_addr, u8 data)
10031 {
10032 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10033 struct i2c_client *this_client = adapter->i2c_client;
10034 s32 status;
10035 u16 swfw_mask = E1000_SWFW_PHY0_SM;
10036
10037 if (!this_client)
10038 return E1000_ERR_I2C;
10039
10040 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10041 return E1000_ERR_SWFW_SYNC;
10042 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
10043 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10044
10045 if (status)
10046 return E1000_ERR_I2C;
10047 else
10048 return 0;
10049
10050 }
10051
igb_reinit_queues(struct igb_adapter * adapter)10052 int igb_reinit_queues(struct igb_adapter *adapter)
10053 {
10054 struct net_device *netdev = adapter->netdev;
10055 struct pci_dev *pdev = adapter->pdev;
10056 int err = 0;
10057
10058 if (netif_running(netdev))
10059 igb_close(netdev);
10060
10061 igb_reset_interrupt_capability(adapter);
10062
10063 if (igb_init_interrupt_scheme(adapter, true)) {
10064 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
10065 return -ENOMEM;
10066 }
10067
10068 if (netif_running(netdev))
10069 err = igb_open(netdev);
10070
10071 return err;
10072 }
10073
igb_nfc_filter_exit(struct igb_adapter * adapter)10074 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
10075 {
10076 struct igb_nfc_filter *rule;
10077
10078 spin_lock(&adapter->nfc_lock);
10079
10080 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10081 igb_erase_filter(adapter, rule);
10082
10083 hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
10084 igb_erase_filter(adapter, rule);
10085
10086 spin_unlock(&adapter->nfc_lock);
10087 }
10088
igb_nfc_filter_restore(struct igb_adapter * adapter)10089 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
10090 {
10091 struct igb_nfc_filter *rule;
10092
10093 spin_lock(&adapter->nfc_lock);
10094
10095 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10096 igb_add_filter(adapter, rule);
10097
10098 spin_unlock(&adapter->nfc_lock);
10099 }
10100 /* igb_main.c */
10101