1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Broadcom GENET (Gigabit Ethernet) controller driver
4 *
5 * Copyright (c) 2014-2020 Broadcom
6 */
7
8 #define pr_fmt(fmt) "bcmgenet: " fmt
9
10 #include <linux/acpi.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/types.h>
15 #include <linux/fcntl.h>
16 #include <linux/interrupt.h>
17 #include <linux/string.h>
18 #include <linux/if_ether.h>
19 #include <linux/init.h>
20 #include <linux/errno.h>
21 #include <linux/delay.h>
22 #include <linux/platform_device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/pm.h>
25 #include <linux/clk.h>
26 #include <net/arp.h>
27
28 #include <linux/mii.h>
29 #include <linux/ethtool.h>
30 #include <linux/netdevice.h>
31 #include <linux/inetdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/in.h>
35 #include <linux/ip.h>
36 #include <linux/ipv6.h>
37 #include <linux/phy.h>
38 #include <linux/platform_data/bcmgenet.h>
39
40 #include <asm/unaligned.h>
41
42 #include "bcmgenet.h"
43
44 /* Maximum number of hardware queues, downsized if needed */
45 #define GENET_MAX_MQ_CNT 4
46
47 /* Default highest priority queue for multi queue support */
48 #define GENET_Q0_PRIORITY 0
49
50 #define GENET_Q16_RX_BD_CNT \
51 (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
52 #define GENET_Q16_TX_BD_CNT \
53 (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
54
55 #define RX_BUF_LENGTH 2048
56 #define SKB_ALIGNMENT 32
57
58 /* Tx/Rx DMA register offset, skip 256 descriptors */
59 #define WORDS_PER_BD(p) (p->hw_params->words_per_bd)
60 #define DMA_DESC_SIZE (WORDS_PER_BD(priv) * sizeof(u32))
61
62 #define GENET_TDMA_REG_OFF (priv->hw_params->tdma_offset + \
63 TOTAL_DESC * DMA_DESC_SIZE)
64
65 #define GENET_RDMA_REG_OFF (priv->hw_params->rdma_offset + \
66 TOTAL_DESC * DMA_DESC_SIZE)
67
68 /* Forward declarations */
69 static void bcmgenet_set_rx_mode(struct net_device *dev);
70
bcmgenet_writel(u32 value,void __iomem * offset)71 static inline void bcmgenet_writel(u32 value, void __iomem *offset)
72 {
73 /* MIPS chips strapped for BE will automagically configure the
74 * peripheral registers for CPU-native byte order.
75 */
76 if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
77 __raw_writel(value, offset);
78 else
79 writel_relaxed(value, offset);
80 }
81
bcmgenet_readl(void __iomem * offset)82 static inline u32 bcmgenet_readl(void __iomem *offset)
83 {
84 if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
85 return __raw_readl(offset);
86 else
87 return readl_relaxed(offset);
88 }
89
dmadesc_set_length_status(struct bcmgenet_priv * priv,void __iomem * d,u32 value)90 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
91 void __iomem *d, u32 value)
92 {
93 bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS);
94 }
95
dmadesc_set_addr(struct bcmgenet_priv * priv,void __iomem * d,dma_addr_t addr)96 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
97 void __iomem *d,
98 dma_addr_t addr)
99 {
100 bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
101
102 /* Register writes to GISB bus can take couple hundred nanoseconds
103 * and are done for each packet, save these expensive writes unless
104 * the platform is explicitly configured for 64-bits/LPAE.
105 */
106 #ifdef CONFIG_PHYS_ADDR_T_64BIT
107 if (priv->hw_params->flags & GENET_HAS_40BITS)
108 bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
109 #endif
110 }
111
112 /* Combined address + length/status setter */
dmadesc_set(struct bcmgenet_priv * priv,void __iomem * d,dma_addr_t addr,u32 val)113 static inline void dmadesc_set(struct bcmgenet_priv *priv,
114 void __iomem *d, dma_addr_t addr, u32 val)
115 {
116 dmadesc_set_addr(priv, d, addr);
117 dmadesc_set_length_status(priv, d, val);
118 }
119
dmadesc_get_addr(struct bcmgenet_priv * priv,void __iomem * d)120 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
121 void __iomem *d)
122 {
123 dma_addr_t addr;
124
125 addr = bcmgenet_readl(d + DMA_DESC_ADDRESS_LO);
126
127 /* Register writes to GISB bus can take couple hundred nanoseconds
128 * and are done for each packet, save these expensive writes unless
129 * the platform is explicitly configured for 64-bits/LPAE.
130 */
131 #ifdef CONFIG_PHYS_ADDR_T_64BIT
132 if (priv->hw_params->flags & GENET_HAS_40BITS)
133 addr |= (u64)bcmgenet_readl(d + DMA_DESC_ADDRESS_HI) << 32;
134 #endif
135 return addr;
136 }
137
138 #define GENET_VER_FMT "%1d.%1d EPHY: 0x%04x"
139
140 #define GENET_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
141 NETIF_MSG_LINK)
142
bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv * priv)143 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
144 {
145 if (GENET_IS_V1(priv))
146 return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
147 else
148 return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
149 }
150
bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv * priv,u32 val)151 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
152 {
153 if (GENET_IS_V1(priv))
154 bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
155 else
156 bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
157 }
158
159 /* These macros are defined to deal with register map change
160 * between GENET1.1 and GENET2. Only those currently being used
161 * by driver are defined.
162 */
bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv * priv)163 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
164 {
165 if (GENET_IS_V1(priv))
166 return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
167 else
168 return bcmgenet_readl(priv->base +
169 priv->hw_params->tbuf_offset + TBUF_CTRL);
170 }
171
bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv * priv,u32 val)172 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
173 {
174 if (GENET_IS_V1(priv))
175 bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
176 else
177 bcmgenet_writel(val, priv->base +
178 priv->hw_params->tbuf_offset + TBUF_CTRL);
179 }
180
bcmgenet_bp_mc_get(struct bcmgenet_priv * priv)181 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
182 {
183 if (GENET_IS_V1(priv))
184 return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
185 else
186 return bcmgenet_readl(priv->base +
187 priv->hw_params->tbuf_offset + TBUF_BP_MC);
188 }
189
bcmgenet_bp_mc_set(struct bcmgenet_priv * priv,u32 val)190 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
191 {
192 if (GENET_IS_V1(priv))
193 bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
194 else
195 bcmgenet_writel(val, priv->base +
196 priv->hw_params->tbuf_offset + TBUF_BP_MC);
197 }
198
199 /* RX/TX DMA register accessors */
200 enum dma_reg {
201 DMA_RING_CFG = 0,
202 DMA_CTRL,
203 DMA_STATUS,
204 DMA_SCB_BURST_SIZE,
205 DMA_ARB_CTRL,
206 DMA_PRIORITY_0,
207 DMA_PRIORITY_1,
208 DMA_PRIORITY_2,
209 DMA_INDEX2RING_0,
210 DMA_INDEX2RING_1,
211 DMA_INDEX2RING_2,
212 DMA_INDEX2RING_3,
213 DMA_INDEX2RING_4,
214 DMA_INDEX2RING_5,
215 DMA_INDEX2RING_6,
216 DMA_INDEX2RING_7,
217 DMA_RING0_TIMEOUT,
218 DMA_RING1_TIMEOUT,
219 DMA_RING2_TIMEOUT,
220 DMA_RING3_TIMEOUT,
221 DMA_RING4_TIMEOUT,
222 DMA_RING5_TIMEOUT,
223 DMA_RING6_TIMEOUT,
224 DMA_RING7_TIMEOUT,
225 DMA_RING8_TIMEOUT,
226 DMA_RING9_TIMEOUT,
227 DMA_RING10_TIMEOUT,
228 DMA_RING11_TIMEOUT,
229 DMA_RING12_TIMEOUT,
230 DMA_RING13_TIMEOUT,
231 DMA_RING14_TIMEOUT,
232 DMA_RING15_TIMEOUT,
233 DMA_RING16_TIMEOUT,
234 };
235
236 static const u8 bcmgenet_dma_regs_v3plus[] = {
237 [DMA_RING_CFG] = 0x00,
238 [DMA_CTRL] = 0x04,
239 [DMA_STATUS] = 0x08,
240 [DMA_SCB_BURST_SIZE] = 0x0C,
241 [DMA_ARB_CTRL] = 0x2C,
242 [DMA_PRIORITY_0] = 0x30,
243 [DMA_PRIORITY_1] = 0x34,
244 [DMA_PRIORITY_2] = 0x38,
245 [DMA_RING0_TIMEOUT] = 0x2C,
246 [DMA_RING1_TIMEOUT] = 0x30,
247 [DMA_RING2_TIMEOUT] = 0x34,
248 [DMA_RING3_TIMEOUT] = 0x38,
249 [DMA_RING4_TIMEOUT] = 0x3c,
250 [DMA_RING5_TIMEOUT] = 0x40,
251 [DMA_RING6_TIMEOUT] = 0x44,
252 [DMA_RING7_TIMEOUT] = 0x48,
253 [DMA_RING8_TIMEOUT] = 0x4c,
254 [DMA_RING9_TIMEOUT] = 0x50,
255 [DMA_RING10_TIMEOUT] = 0x54,
256 [DMA_RING11_TIMEOUT] = 0x58,
257 [DMA_RING12_TIMEOUT] = 0x5c,
258 [DMA_RING13_TIMEOUT] = 0x60,
259 [DMA_RING14_TIMEOUT] = 0x64,
260 [DMA_RING15_TIMEOUT] = 0x68,
261 [DMA_RING16_TIMEOUT] = 0x6C,
262 [DMA_INDEX2RING_0] = 0x70,
263 [DMA_INDEX2RING_1] = 0x74,
264 [DMA_INDEX2RING_2] = 0x78,
265 [DMA_INDEX2RING_3] = 0x7C,
266 [DMA_INDEX2RING_4] = 0x80,
267 [DMA_INDEX2RING_5] = 0x84,
268 [DMA_INDEX2RING_6] = 0x88,
269 [DMA_INDEX2RING_7] = 0x8C,
270 };
271
272 static const u8 bcmgenet_dma_regs_v2[] = {
273 [DMA_RING_CFG] = 0x00,
274 [DMA_CTRL] = 0x04,
275 [DMA_STATUS] = 0x08,
276 [DMA_SCB_BURST_SIZE] = 0x0C,
277 [DMA_ARB_CTRL] = 0x30,
278 [DMA_PRIORITY_0] = 0x34,
279 [DMA_PRIORITY_1] = 0x38,
280 [DMA_PRIORITY_2] = 0x3C,
281 [DMA_RING0_TIMEOUT] = 0x2C,
282 [DMA_RING1_TIMEOUT] = 0x30,
283 [DMA_RING2_TIMEOUT] = 0x34,
284 [DMA_RING3_TIMEOUT] = 0x38,
285 [DMA_RING4_TIMEOUT] = 0x3c,
286 [DMA_RING5_TIMEOUT] = 0x40,
287 [DMA_RING6_TIMEOUT] = 0x44,
288 [DMA_RING7_TIMEOUT] = 0x48,
289 [DMA_RING8_TIMEOUT] = 0x4c,
290 [DMA_RING9_TIMEOUT] = 0x50,
291 [DMA_RING10_TIMEOUT] = 0x54,
292 [DMA_RING11_TIMEOUT] = 0x58,
293 [DMA_RING12_TIMEOUT] = 0x5c,
294 [DMA_RING13_TIMEOUT] = 0x60,
295 [DMA_RING14_TIMEOUT] = 0x64,
296 [DMA_RING15_TIMEOUT] = 0x68,
297 [DMA_RING16_TIMEOUT] = 0x6C,
298 };
299
300 static const u8 bcmgenet_dma_regs_v1[] = {
301 [DMA_CTRL] = 0x00,
302 [DMA_STATUS] = 0x04,
303 [DMA_SCB_BURST_SIZE] = 0x0C,
304 [DMA_ARB_CTRL] = 0x30,
305 [DMA_PRIORITY_0] = 0x34,
306 [DMA_PRIORITY_1] = 0x38,
307 [DMA_PRIORITY_2] = 0x3C,
308 [DMA_RING0_TIMEOUT] = 0x2C,
309 [DMA_RING1_TIMEOUT] = 0x30,
310 [DMA_RING2_TIMEOUT] = 0x34,
311 [DMA_RING3_TIMEOUT] = 0x38,
312 [DMA_RING4_TIMEOUT] = 0x3c,
313 [DMA_RING5_TIMEOUT] = 0x40,
314 [DMA_RING6_TIMEOUT] = 0x44,
315 [DMA_RING7_TIMEOUT] = 0x48,
316 [DMA_RING8_TIMEOUT] = 0x4c,
317 [DMA_RING9_TIMEOUT] = 0x50,
318 [DMA_RING10_TIMEOUT] = 0x54,
319 [DMA_RING11_TIMEOUT] = 0x58,
320 [DMA_RING12_TIMEOUT] = 0x5c,
321 [DMA_RING13_TIMEOUT] = 0x60,
322 [DMA_RING14_TIMEOUT] = 0x64,
323 [DMA_RING15_TIMEOUT] = 0x68,
324 [DMA_RING16_TIMEOUT] = 0x6C,
325 };
326
327 /* Set at runtime once bcmgenet version is known */
328 static const u8 *bcmgenet_dma_regs;
329
dev_to_priv(struct device * dev)330 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
331 {
332 return netdev_priv(dev_get_drvdata(dev));
333 }
334
bcmgenet_tdma_readl(struct bcmgenet_priv * priv,enum dma_reg r)335 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
336 enum dma_reg r)
337 {
338 return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
339 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
340 }
341
bcmgenet_tdma_writel(struct bcmgenet_priv * priv,u32 val,enum dma_reg r)342 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
343 u32 val, enum dma_reg r)
344 {
345 bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
346 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
347 }
348
bcmgenet_rdma_readl(struct bcmgenet_priv * priv,enum dma_reg r)349 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
350 enum dma_reg r)
351 {
352 return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
353 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
354 }
355
bcmgenet_rdma_writel(struct bcmgenet_priv * priv,u32 val,enum dma_reg r)356 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
357 u32 val, enum dma_reg r)
358 {
359 bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
360 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
361 }
362
363 /* RDMA/TDMA ring registers and accessors
364 * we merge the common fields and just prefix with T/D the registers
365 * having different meaning depending on the direction
366 */
367 enum dma_ring_reg {
368 TDMA_READ_PTR = 0,
369 RDMA_WRITE_PTR = TDMA_READ_PTR,
370 TDMA_READ_PTR_HI,
371 RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
372 TDMA_CONS_INDEX,
373 RDMA_PROD_INDEX = TDMA_CONS_INDEX,
374 TDMA_PROD_INDEX,
375 RDMA_CONS_INDEX = TDMA_PROD_INDEX,
376 DMA_RING_BUF_SIZE,
377 DMA_START_ADDR,
378 DMA_START_ADDR_HI,
379 DMA_END_ADDR,
380 DMA_END_ADDR_HI,
381 DMA_MBUF_DONE_THRESH,
382 TDMA_FLOW_PERIOD,
383 RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
384 TDMA_WRITE_PTR,
385 RDMA_READ_PTR = TDMA_WRITE_PTR,
386 TDMA_WRITE_PTR_HI,
387 RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
388 };
389
390 /* GENET v4 supports 40-bits pointer addressing
391 * for obvious reasons the LO and HI word parts
392 * are contiguous, but this offsets the other
393 * registers.
394 */
395 static const u8 genet_dma_ring_regs_v4[] = {
396 [TDMA_READ_PTR] = 0x00,
397 [TDMA_READ_PTR_HI] = 0x04,
398 [TDMA_CONS_INDEX] = 0x08,
399 [TDMA_PROD_INDEX] = 0x0C,
400 [DMA_RING_BUF_SIZE] = 0x10,
401 [DMA_START_ADDR] = 0x14,
402 [DMA_START_ADDR_HI] = 0x18,
403 [DMA_END_ADDR] = 0x1C,
404 [DMA_END_ADDR_HI] = 0x20,
405 [DMA_MBUF_DONE_THRESH] = 0x24,
406 [TDMA_FLOW_PERIOD] = 0x28,
407 [TDMA_WRITE_PTR] = 0x2C,
408 [TDMA_WRITE_PTR_HI] = 0x30,
409 };
410
411 static const u8 genet_dma_ring_regs_v123[] = {
412 [TDMA_READ_PTR] = 0x00,
413 [TDMA_CONS_INDEX] = 0x04,
414 [TDMA_PROD_INDEX] = 0x08,
415 [DMA_RING_BUF_SIZE] = 0x0C,
416 [DMA_START_ADDR] = 0x10,
417 [DMA_END_ADDR] = 0x14,
418 [DMA_MBUF_DONE_THRESH] = 0x18,
419 [TDMA_FLOW_PERIOD] = 0x1C,
420 [TDMA_WRITE_PTR] = 0x20,
421 };
422
423 /* Set at runtime once GENET version is known */
424 static const u8 *genet_dma_ring_regs;
425
bcmgenet_tdma_ring_readl(struct bcmgenet_priv * priv,unsigned int ring,enum dma_ring_reg r)426 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
427 unsigned int ring,
428 enum dma_ring_reg r)
429 {
430 return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
431 (DMA_RING_SIZE * ring) +
432 genet_dma_ring_regs[r]);
433 }
434
bcmgenet_tdma_ring_writel(struct bcmgenet_priv * priv,unsigned int ring,u32 val,enum dma_ring_reg r)435 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
436 unsigned int ring, u32 val,
437 enum dma_ring_reg r)
438 {
439 bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
440 (DMA_RING_SIZE * ring) +
441 genet_dma_ring_regs[r]);
442 }
443
bcmgenet_rdma_ring_readl(struct bcmgenet_priv * priv,unsigned int ring,enum dma_ring_reg r)444 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
445 unsigned int ring,
446 enum dma_ring_reg r)
447 {
448 return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
449 (DMA_RING_SIZE * ring) +
450 genet_dma_ring_regs[r]);
451 }
452
bcmgenet_rdma_ring_writel(struct bcmgenet_priv * priv,unsigned int ring,u32 val,enum dma_ring_reg r)453 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
454 unsigned int ring, u32 val,
455 enum dma_ring_reg r)
456 {
457 bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
458 (DMA_RING_SIZE * ring) +
459 genet_dma_ring_regs[r]);
460 }
461
bcmgenet_hfb_enable_filter(struct bcmgenet_priv * priv,u32 f_index)462 static void bcmgenet_hfb_enable_filter(struct bcmgenet_priv *priv, u32 f_index)
463 {
464 u32 offset;
465 u32 reg;
466
467 offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
468 reg = bcmgenet_hfb_reg_readl(priv, offset);
469 reg |= (1 << (f_index % 32));
470 bcmgenet_hfb_reg_writel(priv, reg, offset);
471 reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
472 reg |= RBUF_HFB_EN;
473 bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
474 }
475
bcmgenet_hfb_disable_filter(struct bcmgenet_priv * priv,u32 f_index)476 static void bcmgenet_hfb_disable_filter(struct bcmgenet_priv *priv, u32 f_index)
477 {
478 u32 offset, reg, reg1;
479
480 offset = HFB_FLT_ENABLE_V3PLUS;
481 reg = bcmgenet_hfb_reg_readl(priv, offset);
482 reg1 = bcmgenet_hfb_reg_readl(priv, offset + sizeof(u32));
483 if (f_index < 32) {
484 reg1 &= ~(1 << (f_index % 32));
485 bcmgenet_hfb_reg_writel(priv, reg1, offset + sizeof(u32));
486 } else {
487 reg &= ~(1 << (f_index % 32));
488 bcmgenet_hfb_reg_writel(priv, reg, offset);
489 }
490 if (!reg && !reg1) {
491 reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
492 reg &= ~RBUF_HFB_EN;
493 bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
494 }
495 }
496
bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv * priv,u32 f_index,u32 rx_queue)497 static void bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv *priv,
498 u32 f_index, u32 rx_queue)
499 {
500 u32 offset;
501 u32 reg;
502
503 offset = f_index / 8;
504 reg = bcmgenet_rdma_readl(priv, DMA_INDEX2RING_0 + offset);
505 reg &= ~(0xF << (4 * (f_index % 8)));
506 reg |= ((rx_queue & 0xF) << (4 * (f_index % 8)));
507 bcmgenet_rdma_writel(priv, reg, DMA_INDEX2RING_0 + offset);
508 }
509
bcmgenet_hfb_set_filter_length(struct bcmgenet_priv * priv,u32 f_index,u32 f_length)510 static void bcmgenet_hfb_set_filter_length(struct bcmgenet_priv *priv,
511 u32 f_index, u32 f_length)
512 {
513 u32 offset;
514 u32 reg;
515
516 offset = HFB_FLT_LEN_V3PLUS +
517 ((priv->hw_params->hfb_filter_cnt - 1 - f_index) / 4) *
518 sizeof(u32);
519 reg = bcmgenet_hfb_reg_readl(priv, offset);
520 reg &= ~(0xFF << (8 * (f_index % 4)));
521 reg |= ((f_length & 0xFF) << (8 * (f_index % 4)));
522 bcmgenet_hfb_reg_writel(priv, reg, offset);
523 }
524
bcmgenet_hfb_validate_mask(void * mask,size_t size)525 static int bcmgenet_hfb_validate_mask(void *mask, size_t size)
526 {
527 while (size) {
528 switch (*(unsigned char *)mask++) {
529 case 0x00:
530 case 0x0f:
531 case 0xf0:
532 case 0xff:
533 size--;
534 continue;
535 default:
536 return -EINVAL;
537 }
538 }
539
540 return 0;
541 }
542
543 #define VALIDATE_MASK(x) \
544 bcmgenet_hfb_validate_mask(&(x), sizeof(x))
545
bcmgenet_hfb_insert_data(struct bcmgenet_priv * priv,u32 f_index,u32 offset,void * val,void * mask,size_t size)546 static int bcmgenet_hfb_insert_data(struct bcmgenet_priv *priv, u32 f_index,
547 u32 offset, void *val, void *mask,
548 size_t size)
549 {
550 u32 index, tmp;
551
552 index = f_index * priv->hw_params->hfb_filter_size + offset / 2;
553 tmp = bcmgenet_hfb_readl(priv, index * sizeof(u32));
554
555 while (size--) {
556 if (offset++ & 1) {
557 tmp &= ~0x300FF;
558 tmp |= (*(unsigned char *)val++);
559 switch ((*(unsigned char *)mask++)) {
560 case 0xFF:
561 tmp |= 0x30000;
562 break;
563 case 0xF0:
564 tmp |= 0x20000;
565 break;
566 case 0x0F:
567 tmp |= 0x10000;
568 break;
569 }
570 bcmgenet_hfb_writel(priv, tmp, index++ * sizeof(u32));
571 if (size)
572 tmp = bcmgenet_hfb_readl(priv,
573 index * sizeof(u32));
574 } else {
575 tmp &= ~0xCFF00;
576 tmp |= (*(unsigned char *)val++) << 8;
577 switch ((*(unsigned char *)mask++)) {
578 case 0xFF:
579 tmp |= 0xC0000;
580 break;
581 case 0xF0:
582 tmp |= 0x80000;
583 break;
584 case 0x0F:
585 tmp |= 0x40000;
586 break;
587 }
588 if (!size)
589 bcmgenet_hfb_writel(priv, tmp, index * sizeof(u32));
590 }
591 }
592
593 return 0;
594 }
595
bcmgenet_hfb_create_rxnfc_filter(struct bcmgenet_priv * priv,struct bcmgenet_rxnfc_rule * rule)596 static void bcmgenet_hfb_create_rxnfc_filter(struct bcmgenet_priv *priv,
597 struct bcmgenet_rxnfc_rule *rule)
598 {
599 struct ethtool_rx_flow_spec *fs = &rule->fs;
600 u32 offset = 0, f_length = 0, f;
601 u8 val_8, mask_8;
602 __be16 val_16;
603 u16 mask_16;
604 size_t size;
605
606 f = fs->location;
607 if (fs->flow_type & FLOW_MAC_EXT) {
608 bcmgenet_hfb_insert_data(priv, f, 0,
609 &fs->h_ext.h_dest, &fs->m_ext.h_dest,
610 sizeof(fs->h_ext.h_dest));
611 }
612
613 if (fs->flow_type & FLOW_EXT) {
614 if (fs->m_ext.vlan_etype ||
615 fs->m_ext.vlan_tci) {
616 bcmgenet_hfb_insert_data(priv, f, 12,
617 &fs->h_ext.vlan_etype,
618 &fs->m_ext.vlan_etype,
619 sizeof(fs->h_ext.vlan_etype));
620 bcmgenet_hfb_insert_data(priv, f, 14,
621 &fs->h_ext.vlan_tci,
622 &fs->m_ext.vlan_tci,
623 sizeof(fs->h_ext.vlan_tci));
624 offset += VLAN_HLEN;
625 f_length += DIV_ROUND_UP(VLAN_HLEN, 2);
626 }
627 }
628
629 switch (fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
630 case ETHER_FLOW:
631 f_length += DIV_ROUND_UP(ETH_HLEN, 2);
632 bcmgenet_hfb_insert_data(priv, f, 0,
633 &fs->h_u.ether_spec.h_dest,
634 &fs->m_u.ether_spec.h_dest,
635 sizeof(fs->h_u.ether_spec.h_dest));
636 bcmgenet_hfb_insert_data(priv, f, ETH_ALEN,
637 &fs->h_u.ether_spec.h_source,
638 &fs->m_u.ether_spec.h_source,
639 sizeof(fs->h_u.ether_spec.h_source));
640 bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset,
641 &fs->h_u.ether_spec.h_proto,
642 &fs->m_u.ether_spec.h_proto,
643 sizeof(fs->h_u.ether_spec.h_proto));
644 break;
645 case IP_USER_FLOW:
646 f_length += DIV_ROUND_UP(ETH_HLEN + 20, 2);
647 /* Specify IP Ether Type */
648 val_16 = htons(ETH_P_IP);
649 mask_16 = 0xFFFF;
650 bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset,
651 &val_16, &mask_16, sizeof(val_16));
652 bcmgenet_hfb_insert_data(priv, f, 15 + offset,
653 &fs->h_u.usr_ip4_spec.tos,
654 &fs->m_u.usr_ip4_spec.tos,
655 sizeof(fs->h_u.usr_ip4_spec.tos));
656 bcmgenet_hfb_insert_data(priv, f, 23 + offset,
657 &fs->h_u.usr_ip4_spec.proto,
658 &fs->m_u.usr_ip4_spec.proto,
659 sizeof(fs->h_u.usr_ip4_spec.proto));
660 bcmgenet_hfb_insert_data(priv, f, 26 + offset,
661 &fs->h_u.usr_ip4_spec.ip4src,
662 &fs->m_u.usr_ip4_spec.ip4src,
663 sizeof(fs->h_u.usr_ip4_spec.ip4src));
664 bcmgenet_hfb_insert_data(priv, f, 30 + offset,
665 &fs->h_u.usr_ip4_spec.ip4dst,
666 &fs->m_u.usr_ip4_spec.ip4dst,
667 sizeof(fs->h_u.usr_ip4_spec.ip4dst));
668 if (!fs->m_u.usr_ip4_spec.l4_4_bytes)
669 break;
670
671 /* Only supports 20 byte IPv4 header */
672 val_8 = 0x45;
673 mask_8 = 0xFF;
674 bcmgenet_hfb_insert_data(priv, f, ETH_HLEN + offset,
675 &val_8, &mask_8,
676 sizeof(val_8));
677 size = sizeof(fs->h_u.usr_ip4_spec.l4_4_bytes);
678 bcmgenet_hfb_insert_data(priv, f,
679 ETH_HLEN + 20 + offset,
680 &fs->h_u.usr_ip4_spec.l4_4_bytes,
681 &fs->m_u.usr_ip4_spec.l4_4_bytes,
682 size);
683 f_length += DIV_ROUND_UP(size, 2);
684 break;
685 }
686
687 bcmgenet_hfb_set_filter_length(priv, f, 2 * f_length);
688 if (!fs->ring_cookie || fs->ring_cookie == RX_CLS_FLOW_WAKE) {
689 /* Ring 0 flows can be handled by the default Descriptor Ring
690 * We'll map them to ring 0, but don't enable the filter
691 */
692 bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f, 0);
693 rule->state = BCMGENET_RXNFC_STATE_DISABLED;
694 } else {
695 /* Other Rx rings are direct mapped here */
696 bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f,
697 fs->ring_cookie);
698 bcmgenet_hfb_enable_filter(priv, f);
699 rule->state = BCMGENET_RXNFC_STATE_ENABLED;
700 }
701 }
702
703 /* bcmgenet_hfb_clear
704 *
705 * Clear Hardware Filter Block and disable all filtering.
706 */
bcmgenet_hfb_clear_filter(struct bcmgenet_priv * priv,u32 f_index)707 static void bcmgenet_hfb_clear_filter(struct bcmgenet_priv *priv, u32 f_index)
708 {
709 u32 base, i;
710
711 base = f_index * priv->hw_params->hfb_filter_size;
712 for (i = 0; i < priv->hw_params->hfb_filter_size; i++)
713 bcmgenet_hfb_writel(priv, 0x0, (base + i) * sizeof(u32));
714 }
715
bcmgenet_hfb_clear(struct bcmgenet_priv * priv)716 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
717 {
718 u32 i;
719
720 if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
721 return;
722
723 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
724 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
725 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
726
727 for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
728 bcmgenet_rdma_writel(priv, 0x0, i);
729
730 for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
731 bcmgenet_hfb_reg_writel(priv, 0x0,
732 HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
733
734 for (i = 0; i < priv->hw_params->hfb_filter_cnt; i++)
735 bcmgenet_hfb_clear_filter(priv, i);
736 }
737
bcmgenet_hfb_init(struct bcmgenet_priv * priv)738 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
739 {
740 int i;
741
742 INIT_LIST_HEAD(&priv->rxnfc_list);
743 if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
744 return;
745
746 for (i = 0; i < MAX_NUM_OF_FS_RULES; i++) {
747 INIT_LIST_HEAD(&priv->rxnfc_rules[i].list);
748 priv->rxnfc_rules[i].state = BCMGENET_RXNFC_STATE_UNUSED;
749 }
750
751 bcmgenet_hfb_clear(priv);
752 }
753
bcmgenet_begin(struct net_device * dev)754 static int bcmgenet_begin(struct net_device *dev)
755 {
756 struct bcmgenet_priv *priv = netdev_priv(dev);
757
758 /* Turn on the clock */
759 return clk_prepare_enable(priv->clk);
760 }
761
bcmgenet_complete(struct net_device * dev)762 static void bcmgenet_complete(struct net_device *dev)
763 {
764 struct bcmgenet_priv *priv = netdev_priv(dev);
765
766 /* Turn off the clock */
767 clk_disable_unprepare(priv->clk);
768 }
769
bcmgenet_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)770 static int bcmgenet_get_link_ksettings(struct net_device *dev,
771 struct ethtool_link_ksettings *cmd)
772 {
773 if (!netif_running(dev))
774 return -EINVAL;
775
776 if (!dev->phydev)
777 return -ENODEV;
778
779 phy_ethtool_ksettings_get(dev->phydev, cmd);
780
781 return 0;
782 }
783
bcmgenet_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)784 static int bcmgenet_set_link_ksettings(struct net_device *dev,
785 const struct ethtool_link_ksettings *cmd)
786 {
787 if (!netif_running(dev))
788 return -EINVAL;
789
790 if (!dev->phydev)
791 return -ENODEV;
792
793 return phy_ethtool_ksettings_set(dev->phydev, cmd);
794 }
795
bcmgenet_set_features(struct net_device * dev,netdev_features_t features)796 static int bcmgenet_set_features(struct net_device *dev,
797 netdev_features_t features)
798 {
799 struct bcmgenet_priv *priv = netdev_priv(dev);
800 u32 reg;
801 int ret;
802
803 ret = clk_prepare_enable(priv->clk);
804 if (ret)
805 return ret;
806
807 /* Make sure we reflect the value of CRC_CMD_FWD */
808 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
809 priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
810
811 clk_disable_unprepare(priv->clk);
812
813 return ret;
814 }
815
bcmgenet_get_msglevel(struct net_device * dev)816 static u32 bcmgenet_get_msglevel(struct net_device *dev)
817 {
818 struct bcmgenet_priv *priv = netdev_priv(dev);
819
820 return priv->msg_enable;
821 }
822
bcmgenet_set_msglevel(struct net_device * dev,u32 level)823 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
824 {
825 struct bcmgenet_priv *priv = netdev_priv(dev);
826
827 priv->msg_enable = level;
828 }
829
bcmgenet_get_coalesce(struct net_device * dev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)830 static int bcmgenet_get_coalesce(struct net_device *dev,
831 struct ethtool_coalesce *ec,
832 struct kernel_ethtool_coalesce *kernel_coal,
833 struct netlink_ext_ack *extack)
834 {
835 struct bcmgenet_priv *priv = netdev_priv(dev);
836 struct bcmgenet_rx_ring *ring;
837 unsigned int i;
838
839 ec->tx_max_coalesced_frames =
840 bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
841 DMA_MBUF_DONE_THRESH);
842 ec->rx_max_coalesced_frames =
843 bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
844 DMA_MBUF_DONE_THRESH);
845 ec->rx_coalesce_usecs =
846 bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
847
848 for (i = 0; i < priv->hw_params->rx_queues; i++) {
849 ring = &priv->rx_rings[i];
850 ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
851 }
852 ring = &priv->rx_rings[DESC_INDEX];
853 ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
854
855 return 0;
856 }
857
bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring * ring,u32 usecs,u32 pkts)858 static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring *ring,
859 u32 usecs, u32 pkts)
860 {
861 struct bcmgenet_priv *priv = ring->priv;
862 unsigned int i = ring->index;
863 u32 reg;
864
865 bcmgenet_rdma_ring_writel(priv, i, pkts, DMA_MBUF_DONE_THRESH);
866
867 reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
868 reg &= ~DMA_TIMEOUT_MASK;
869 reg |= DIV_ROUND_UP(usecs * 1000, 8192);
870 bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
871 }
872
bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring * ring,struct ethtool_coalesce * ec)873 static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring *ring,
874 struct ethtool_coalesce *ec)
875 {
876 struct dim_cq_moder moder;
877 u32 usecs, pkts;
878
879 ring->rx_coalesce_usecs = ec->rx_coalesce_usecs;
880 ring->rx_max_coalesced_frames = ec->rx_max_coalesced_frames;
881 usecs = ring->rx_coalesce_usecs;
882 pkts = ring->rx_max_coalesced_frames;
883
884 if (ec->use_adaptive_rx_coalesce && !ring->dim.use_dim) {
885 moder = net_dim_get_def_rx_moderation(ring->dim.dim.mode);
886 usecs = moder.usec;
887 pkts = moder.pkts;
888 }
889
890 ring->dim.use_dim = ec->use_adaptive_rx_coalesce;
891 bcmgenet_set_rx_coalesce(ring, usecs, pkts);
892 }
893
bcmgenet_set_coalesce(struct net_device * dev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)894 static int bcmgenet_set_coalesce(struct net_device *dev,
895 struct ethtool_coalesce *ec,
896 struct kernel_ethtool_coalesce *kernel_coal,
897 struct netlink_ext_ack *extack)
898 {
899 struct bcmgenet_priv *priv = netdev_priv(dev);
900 unsigned int i;
901
902 /* Base system clock is 125Mhz, DMA timeout is this reference clock
903 * divided by 1024, which yields roughly 8.192us, our maximum value
904 * has to fit in the DMA_TIMEOUT_MASK (16 bits)
905 */
906 if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
907 ec->tx_max_coalesced_frames == 0 ||
908 ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
909 ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
910 return -EINVAL;
911
912 if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
913 return -EINVAL;
914
915 /* GENET TDMA hardware does not support a configurable timeout, but will
916 * always generate an interrupt either after MBDONE packets have been
917 * transmitted, or when the ring is empty.
918 */
919
920 /* Program all TX queues with the same values, as there is no
921 * ethtool knob to do coalescing on a per-queue basis
922 */
923 for (i = 0; i < priv->hw_params->tx_queues; i++)
924 bcmgenet_tdma_ring_writel(priv, i,
925 ec->tx_max_coalesced_frames,
926 DMA_MBUF_DONE_THRESH);
927 bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
928 ec->tx_max_coalesced_frames,
929 DMA_MBUF_DONE_THRESH);
930
931 for (i = 0; i < priv->hw_params->rx_queues; i++)
932 bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[i], ec);
933 bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[DESC_INDEX], ec);
934
935 return 0;
936 }
937
bcmgenet_get_pauseparam(struct net_device * dev,struct ethtool_pauseparam * epause)938 static void bcmgenet_get_pauseparam(struct net_device *dev,
939 struct ethtool_pauseparam *epause)
940 {
941 struct bcmgenet_priv *priv;
942 u32 umac_cmd;
943
944 priv = netdev_priv(dev);
945
946 epause->autoneg = priv->autoneg_pause;
947
948 if (netif_carrier_ok(dev)) {
949 /* report active state when link is up */
950 umac_cmd = bcmgenet_umac_readl(priv, UMAC_CMD);
951 epause->tx_pause = !(umac_cmd & CMD_TX_PAUSE_IGNORE);
952 epause->rx_pause = !(umac_cmd & CMD_RX_PAUSE_IGNORE);
953 } else {
954 /* otherwise report stored settings */
955 epause->tx_pause = priv->tx_pause;
956 epause->rx_pause = priv->rx_pause;
957 }
958 }
959
bcmgenet_set_pauseparam(struct net_device * dev,struct ethtool_pauseparam * epause)960 static int bcmgenet_set_pauseparam(struct net_device *dev,
961 struct ethtool_pauseparam *epause)
962 {
963 struct bcmgenet_priv *priv = netdev_priv(dev);
964
965 if (!dev->phydev)
966 return -ENODEV;
967
968 if (!phy_validate_pause(dev->phydev, epause))
969 return -EINVAL;
970
971 priv->autoneg_pause = !!epause->autoneg;
972 priv->tx_pause = !!epause->tx_pause;
973 priv->rx_pause = !!epause->rx_pause;
974
975 bcmgenet_phy_pause_set(dev, priv->rx_pause, priv->tx_pause);
976
977 return 0;
978 }
979
980 /* standard ethtool support functions. */
981 enum bcmgenet_stat_type {
982 BCMGENET_STAT_NETDEV = -1,
983 BCMGENET_STAT_MIB_RX,
984 BCMGENET_STAT_MIB_TX,
985 BCMGENET_STAT_RUNT,
986 BCMGENET_STAT_MISC,
987 BCMGENET_STAT_SOFT,
988 };
989
990 struct bcmgenet_stats {
991 char stat_string[ETH_GSTRING_LEN];
992 int stat_sizeof;
993 int stat_offset;
994 enum bcmgenet_stat_type type;
995 /* reg offset from UMAC base for misc counters */
996 u16 reg_offset;
997 };
998
999 #define STAT_NETDEV(m) { \
1000 .stat_string = __stringify(m), \
1001 .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
1002 .stat_offset = offsetof(struct net_device_stats, m), \
1003 .type = BCMGENET_STAT_NETDEV, \
1004 }
1005
1006 #define STAT_GENET_MIB(str, m, _type) { \
1007 .stat_string = str, \
1008 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
1009 .stat_offset = offsetof(struct bcmgenet_priv, m), \
1010 .type = _type, \
1011 }
1012
1013 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
1014 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
1015 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
1016 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
1017
1018 #define STAT_GENET_MISC(str, m, offset) { \
1019 .stat_string = str, \
1020 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
1021 .stat_offset = offsetof(struct bcmgenet_priv, m), \
1022 .type = BCMGENET_STAT_MISC, \
1023 .reg_offset = offset, \
1024 }
1025
1026 #define STAT_GENET_Q(num) \
1027 STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
1028 tx_rings[num].packets), \
1029 STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
1030 tx_rings[num].bytes), \
1031 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
1032 rx_rings[num].bytes), \
1033 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
1034 rx_rings[num].packets), \
1035 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
1036 rx_rings[num].errors), \
1037 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
1038 rx_rings[num].dropped)
1039
1040 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
1041 * between the end of TX stats and the beginning of the RX RUNT
1042 */
1043 #define BCMGENET_STAT_OFFSET 0xc
1044
1045 /* Hardware counters must be kept in sync because the order/offset
1046 * is important here (order in structure declaration = order in hardware)
1047 */
1048 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
1049 /* general stats */
1050 STAT_NETDEV(rx_packets),
1051 STAT_NETDEV(tx_packets),
1052 STAT_NETDEV(rx_bytes),
1053 STAT_NETDEV(tx_bytes),
1054 STAT_NETDEV(rx_errors),
1055 STAT_NETDEV(tx_errors),
1056 STAT_NETDEV(rx_dropped),
1057 STAT_NETDEV(tx_dropped),
1058 STAT_NETDEV(multicast),
1059 /* UniMAC RSV counters */
1060 STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
1061 STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
1062 STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
1063 STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
1064 STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
1065 STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
1066 STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
1067 STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
1068 STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
1069 STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
1070 STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
1071 STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
1072 STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
1073 STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
1074 STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
1075 STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
1076 STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
1077 STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
1078 STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
1079 STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
1080 STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
1081 STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
1082 STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
1083 STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
1084 STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
1085 STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
1086 STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
1087 STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
1088 STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
1089 /* UniMAC TSV counters */
1090 STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
1091 STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
1092 STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
1093 STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
1094 STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
1095 STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
1096 STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
1097 STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
1098 STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
1099 STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
1100 STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
1101 STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
1102 STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
1103 STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
1104 STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
1105 STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
1106 STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
1107 STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
1108 STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
1109 STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
1110 STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
1111 STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
1112 STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
1113 STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
1114 STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
1115 STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
1116 STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
1117 STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
1118 STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
1119 /* UniMAC RUNT counters */
1120 STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
1121 STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
1122 STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
1123 STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
1124 /* Misc UniMAC counters */
1125 STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
1126 UMAC_RBUF_OVFL_CNT_V1),
1127 STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
1128 UMAC_RBUF_ERR_CNT_V1),
1129 STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
1130 STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
1131 STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
1132 STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
1133 STAT_GENET_SOFT_MIB("tx_realloc_tsb", mib.tx_realloc_tsb),
1134 STAT_GENET_SOFT_MIB("tx_realloc_tsb_failed",
1135 mib.tx_realloc_tsb_failed),
1136 /* Per TX queues */
1137 STAT_GENET_Q(0),
1138 STAT_GENET_Q(1),
1139 STAT_GENET_Q(2),
1140 STAT_GENET_Q(3),
1141 STAT_GENET_Q(16),
1142 };
1143
1144 #define BCMGENET_STATS_LEN ARRAY_SIZE(bcmgenet_gstrings_stats)
1145
bcmgenet_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1146 static void bcmgenet_get_drvinfo(struct net_device *dev,
1147 struct ethtool_drvinfo *info)
1148 {
1149 strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
1150 }
1151
bcmgenet_get_sset_count(struct net_device * dev,int string_set)1152 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
1153 {
1154 switch (string_set) {
1155 case ETH_SS_STATS:
1156 return BCMGENET_STATS_LEN;
1157 default:
1158 return -EOPNOTSUPP;
1159 }
1160 }
1161
bcmgenet_get_strings(struct net_device * dev,u32 stringset,u8 * data)1162 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
1163 u8 *data)
1164 {
1165 int i;
1166
1167 switch (stringset) {
1168 case ETH_SS_STATS:
1169 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1170 memcpy(data + i * ETH_GSTRING_LEN,
1171 bcmgenet_gstrings_stats[i].stat_string,
1172 ETH_GSTRING_LEN);
1173 }
1174 break;
1175 }
1176 }
1177
bcmgenet_update_stat_misc(struct bcmgenet_priv * priv,u16 offset)1178 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
1179 {
1180 u16 new_offset;
1181 u32 val;
1182
1183 switch (offset) {
1184 case UMAC_RBUF_OVFL_CNT_V1:
1185 if (GENET_IS_V2(priv))
1186 new_offset = RBUF_OVFL_CNT_V2;
1187 else
1188 new_offset = RBUF_OVFL_CNT_V3PLUS;
1189
1190 val = bcmgenet_rbuf_readl(priv, new_offset);
1191 /* clear if overflowed */
1192 if (val == ~0)
1193 bcmgenet_rbuf_writel(priv, 0, new_offset);
1194 break;
1195 case UMAC_RBUF_ERR_CNT_V1:
1196 if (GENET_IS_V2(priv))
1197 new_offset = RBUF_ERR_CNT_V2;
1198 else
1199 new_offset = RBUF_ERR_CNT_V3PLUS;
1200
1201 val = bcmgenet_rbuf_readl(priv, new_offset);
1202 /* clear if overflowed */
1203 if (val == ~0)
1204 bcmgenet_rbuf_writel(priv, 0, new_offset);
1205 break;
1206 default:
1207 val = bcmgenet_umac_readl(priv, offset);
1208 /* clear if overflowed */
1209 if (val == ~0)
1210 bcmgenet_umac_writel(priv, 0, offset);
1211 break;
1212 }
1213
1214 return val;
1215 }
1216
bcmgenet_update_mib_counters(struct bcmgenet_priv * priv)1217 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
1218 {
1219 int i, j = 0;
1220
1221 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1222 const struct bcmgenet_stats *s;
1223 u8 offset = 0;
1224 u32 val = 0;
1225 char *p;
1226
1227 s = &bcmgenet_gstrings_stats[i];
1228 switch (s->type) {
1229 case BCMGENET_STAT_NETDEV:
1230 case BCMGENET_STAT_SOFT:
1231 continue;
1232 case BCMGENET_STAT_RUNT:
1233 offset += BCMGENET_STAT_OFFSET;
1234 fallthrough;
1235 case BCMGENET_STAT_MIB_TX:
1236 offset += BCMGENET_STAT_OFFSET;
1237 fallthrough;
1238 case BCMGENET_STAT_MIB_RX:
1239 val = bcmgenet_umac_readl(priv,
1240 UMAC_MIB_START + j + offset);
1241 offset = 0; /* Reset Offset */
1242 break;
1243 case BCMGENET_STAT_MISC:
1244 if (GENET_IS_V1(priv)) {
1245 val = bcmgenet_umac_readl(priv, s->reg_offset);
1246 /* clear if overflowed */
1247 if (val == ~0)
1248 bcmgenet_umac_writel(priv, 0,
1249 s->reg_offset);
1250 } else {
1251 val = bcmgenet_update_stat_misc(priv,
1252 s->reg_offset);
1253 }
1254 break;
1255 }
1256
1257 j += s->stat_sizeof;
1258 p = (char *)priv + s->stat_offset;
1259 *(u32 *)p = val;
1260 }
1261 }
1262
bcmgenet_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)1263 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
1264 struct ethtool_stats *stats,
1265 u64 *data)
1266 {
1267 struct bcmgenet_priv *priv = netdev_priv(dev);
1268 int i;
1269
1270 if (netif_running(dev))
1271 bcmgenet_update_mib_counters(priv);
1272
1273 dev->netdev_ops->ndo_get_stats(dev);
1274
1275 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1276 const struct bcmgenet_stats *s;
1277 char *p;
1278
1279 s = &bcmgenet_gstrings_stats[i];
1280 if (s->type == BCMGENET_STAT_NETDEV)
1281 p = (char *)&dev->stats;
1282 else
1283 p = (char *)priv;
1284 p += s->stat_offset;
1285 if (sizeof(unsigned long) != sizeof(u32) &&
1286 s->stat_sizeof == sizeof(unsigned long))
1287 data[i] = *(unsigned long *)p;
1288 else
1289 data[i] = *(u32 *)p;
1290 }
1291 }
1292
bcmgenet_eee_enable_set(struct net_device * dev,bool enable)1293 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
1294 {
1295 struct bcmgenet_priv *priv = netdev_priv(dev);
1296 u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
1297 u32 reg;
1298
1299 if (enable && !priv->clk_eee_enabled) {
1300 clk_prepare_enable(priv->clk_eee);
1301 priv->clk_eee_enabled = true;
1302 }
1303
1304 reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
1305 if (enable)
1306 reg |= EEE_EN;
1307 else
1308 reg &= ~EEE_EN;
1309 bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
1310
1311 /* Enable EEE and switch to a 27Mhz clock automatically */
1312 reg = bcmgenet_readl(priv->base + off);
1313 if (enable)
1314 reg |= TBUF_EEE_EN | TBUF_PM_EN;
1315 else
1316 reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
1317 bcmgenet_writel(reg, priv->base + off);
1318
1319 /* Do the same for thing for RBUF */
1320 reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
1321 if (enable)
1322 reg |= RBUF_EEE_EN | RBUF_PM_EN;
1323 else
1324 reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
1325 bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
1326
1327 if (!enable && priv->clk_eee_enabled) {
1328 clk_disable_unprepare(priv->clk_eee);
1329 priv->clk_eee_enabled = false;
1330 }
1331
1332 priv->eee.eee_enabled = enable;
1333 priv->eee.eee_active = enable;
1334 }
1335
bcmgenet_get_eee(struct net_device * dev,struct ethtool_eee * e)1336 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
1337 {
1338 struct bcmgenet_priv *priv = netdev_priv(dev);
1339 struct ethtool_eee *p = &priv->eee;
1340
1341 if (GENET_IS_V1(priv))
1342 return -EOPNOTSUPP;
1343
1344 if (!dev->phydev)
1345 return -ENODEV;
1346
1347 e->eee_enabled = p->eee_enabled;
1348 e->eee_active = p->eee_active;
1349 e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1350
1351 return phy_ethtool_get_eee(dev->phydev, e);
1352 }
1353
bcmgenet_set_eee(struct net_device * dev,struct ethtool_eee * e)1354 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1355 {
1356 struct bcmgenet_priv *priv = netdev_priv(dev);
1357 struct ethtool_eee *p = &priv->eee;
1358 int ret = 0;
1359
1360 if (GENET_IS_V1(priv))
1361 return -EOPNOTSUPP;
1362
1363 if (!dev->phydev)
1364 return -ENODEV;
1365
1366 p->eee_enabled = e->eee_enabled;
1367
1368 if (!p->eee_enabled) {
1369 bcmgenet_eee_enable_set(dev, false);
1370 } else {
1371 ret = phy_init_eee(dev->phydev, false);
1372 if (ret) {
1373 netif_err(priv, hw, dev, "EEE initialization failed\n");
1374 return ret;
1375 }
1376
1377 bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1378 bcmgenet_eee_enable_set(dev, true);
1379 }
1380
1381 return phy_ethtool_set_eee(dev->phydev, e);
1382 }
1383
bcmgenet_validate_flow(struct net_device * dev,struct ethtool_rxnfc * cmd)1384 static int bcmgenet_validate_flow(struct net_device *dev,
1385 struct ethtool_rxnfc *cmd)
1386 {
1387 struct ethtool_usrip4_spec *l4_mask;
1388 struct ethhdr *eth_mask;
1389
1390 if (cmd->fs.location >= MAX_NUM_OF_FS_RULES) {
1391 netdev_err(dev, "rxnfc: Invalid location (%d)\n",
1392 cmd->fs.location);
1393 return -EINVAL;
1394 }
1395
1396 switch (cmd->fs.flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
1397 case IP_USER_FLOW:
1398 l4_mask = &cmd->fs.m_u.usr_ip4_spec;
1399 /* don't allow mask which isn't valid */
1400 if (VALIDATE_MASK(l4_mask->ip4src) ||
1401 VALIDATE_MASK(l4_mask->ip4dst) ||
1402 VALIDATE_MASK(l4_mask->l4_4_bytes) ||
1403 VALIDATE_MASK(l4_mask->proto) ||
1404 VALIDATE_MASK(l4_mask->ip_ver) ||
1405 VALIDATE_MASK(l4_mask->tos)) {
1406 netdev_err(dev, "rxnfc: Unsupported mask\n");
1407 return -EINVAL;
1408 }
1409 break;
1410 case ETHER_FLOW:
1411 eth_mask = &cmd->fs.m_u.ether_spec;
1412 /* don't allow mask which isn't valid */
1413 if (VALIDATE_MASK(eth_mask->h_dest) ||
1414 VALIDATE_MASK(eth_mask->h_source) ||
1415 VALIDATE_MASK(eth_mask->h_proto)) {
1416 netdev_err(dev, "rxnfc: Unsupported mask\n");
1417 return -EINVAL;
1418 }
1419 break;
1420 default:
1421 netdev_err(dev, "rxnfc: Unsupported flow type (0x%x)\n",
1422 cmd->fs.flow_type);
1423 return -EINVAL;
1424 }
1425
1426 if ((cmd->fs.flow_type & FLOW_EXT)) {
1427 /* don't allow mask which isn't valid */
1428 if (VALIDATE_MASK(cmd->fs.m_ext.vlan_etype) ||
1429 VALIDATE_MASK(cmd->fs.m_ext.vlan_tci)) {
1430 netdev_err(dev, "rxnfc: Unsupported mask\n");
1431 return -EINVAL;
1432 }
1433 if (cmd->fs.m_ext.data[0] || cmd->fs.m_ext.data[1]) {
1434 netdev_err(dev, "rxnfc: user-def not supported\n");
1435 return -EINVAL;
1436 }
1437 }
1438
1439 if ((cmd->fs.flow_type & FLOW_MAC_EXT)) {
1440 /* don't allow mask which isn't valid */
1441 if (VALIDATE_MASK(cmd->fs.m_ext.h_dest)) {
1442 netdev_err(dev, "rxnfc: Unsupported mask\n");
1443 return -EINVAL;
1444 }
1445 }
1446
1447 return 0;
1448 }
1449
bcmgenet_insert_flow(struct net_device * dev,struct ethtool_rxnfc * cmd)1450 static int bcmgenet_insert_flow(struct net_device *dev,
1451 struct ethtool_rxnfc *cmd)
1452 {
1453 struct bcmgenet_priv *priv = netdev_priv(dev);
1454 struct bcmgenet_rxnfc_rule *loc_rule;
1455 int err;
1456
1457 if (priv->hw_params->hfb_filter_size < 128) {
1458 netdev_err(dev, "rxnfc: Not supported by this device\n");
1459 return -EINVAL;
1460 }
1461
1462 if (cmd->fs.ring_cookie > priv->hw_params->rx_queues &&
1463 cmd->fs.ring_cookie != RX_CLS_FLOW_WAKE) {
1464 netdev_err(dev, "rxnfc: Unsupported action (%llu)\n",
1465 cmd->fs.ring_cookie);
1466 return -EINVAL;
1467 }
1468
1469 err = bcmgenet_validate_flow(dev, cmd);
1470 if (err)
1471 return err;
1472
1473 loc_rule = &priv->rxnfc_rules[cmd->fs.location];
1474 if (loc_rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1475 bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
1476 if (loc_rule->state != BCMGENET_RXNFC_STATE_UNUSED) {
1477 list_del(&loc_rule->list);
1478 bcmgenet_hfb_clear_filter(priv, cmd->fs.location);
1479 }
1480 loc_rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1481 memcpy(&loc_rule->fs, &cmd->fs,
1482 sizeof(struct ethtool_rx_flow_spec));
1483
1484 bcmgenet_hfb_create_rxnfc_filter(priv, loc_rule);
1485
1486 list_add_tail(&loc_rule->list, &priv->rxnfc_list);
1487
1488 return 0;
1489 }
1490
bcmgenet_delete_flow(struct net_device * dev,struct ethtool_rxnfc * cmd)1491 static int bcmgenet_delete_flow(struct net_device *dev,
1492 struct ethtool_rxnfc *cmd)
1493 {
1494 struct bcmgenet_priv *priv = netdev_priv(dev);
1495 struct bcmgenet_rxnfc_rule *rule;
1496 int err = 0;
1497
1498 if (cmd->fs.location >= MAX_NUM_OF_FS_RULES)
1499 return -EINVAL;
1500
1501 rule = &priv->rxnfc_rules[cmd->fs.location];
1502 if (rule->state == BCMGENET_RXNFC_STATE_UNUSED) {
1503 err = -ENOENT;
1504 goto out;
1505 }
1506
1507 if (rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1508 bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
1509 if (rule->state != BCMGENET_RXNFC_STATE_UNUSED) {
1510 list_del(&rule->list);
1511 bcmgenet_hfb_clear_filter(priv, cmd->fs.location);
1512 }
1513 rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1514 memset(&rule->fs, 0, sizeof(struct ethtool_rx_flow_spec));
1515
1516 out:
1517 return err;
1518 }
1519
bcmgenet_set_rxnfc(struct net_device * dev,struct ethtool_rxnfc * cmd)1520 static int bcmgenet_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
1521 {
1522 struct bcmgenet_priv *priv = netdev_priv(dev);
1523 int err = 0;
1524
1525 switch (cmd->cmd) {
1526 case ETHTOOL_SRXCLSRLINS:
1527 err = bcmgenet_insert_flow(dev, cmd);
1528 break;
1529 case ETHTOOL_SRXCLSRLDEL:
1530 err = bcmgenet_delete_flow(dev, cmd);
1531 break;
1532 default:
1533 netdev_warn(priv->dev, "Unsupported ethtool command. (%d)\n",
1534 cmd->cmd);
1535 return -EINVAL;
1536 }
1537
1538 return err;
1539 }
1540
bcmgenet_get_flow(struct net_device * dev,struct ethtool_rxnfc * cmd,int loc)1541 static int bcmgenet_get_flow(struct net_device *dev, struct ethtool_rxnfc *cmd,
1542 int loc)
1543 {
1544 struct bcmgenet_priv *priv = netdev_priv(dev);
1545 struct bcmgenet_rxnfc_rule *rule;
1546 int err = 0;
1547
1548 if (loc < 0 || loc >= MAX_NUM_OF_FS_RULES)
1549 return -EINVAL;
1550
1551 rule = &priv->rxnfc_rules[loc];
1552 if (rule->state == BCMGENET_RXNFC_STATE_UNUSED)
1553 err = -ENOENT;
1554 else
1555 memcpy(&cmd->fs, &rule->fs,
1556 sizeof(struct ethtool_rx_flow_spec));
1557
1558 return err;
1559 }
1560
bcmgenet_get_num_flows(struct bcmgenet_priv * priv)1561 static int bcmgenet_get_num_flows(struct bcmgenet_priv *priv)
1562 {
1563 struct list_head *pos;
1564 int res = 0;
1565
1566 list_for_each(pos, &priv->rxnfc_list)
1567 res++;
1568
1569 return res;
1570 }
1571
bcmgenet_get_rxnfc(struct net_device * dev,struct ethtool_rxnfc * cmd,u32 * rule_locs)1572 static int bcmgenet_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
1573 u32 *rule_locs)
1574 {
1575 struct bcmgenet_priv *priv = netdev_priv(dev);
1576 struct bcmgenet_rxnfc_rule *rule;
1577 int err = 0;
1578 int i = 0;
1579
1580 switch (cmd->cmd) {
1581 case ETHTOOL_GRXRINGS:
1582 cmd->data = priv->hw_params->rx_queues ?: 1;
1583 break;
1584 case ETHTOOL_GRXCLSRLCNT:
1585 cmd->rule_cnt = bcmgenet_get_num_flows(priv);
1586 cmd->data = MAX_NUM_OF_FS_RULES;
1587 break;
1588 case ETHTOOL_GRXCLSRULE:
1589 err = bcmgenet_get_flow(dev, cmd, cmd->fs.location);
1590 break;
1591 case ETHTOOL_GRXCLSRLALL:
1592 list_for_each_entry(rule, &priv->rxnfc_list, list)
1593 if (i < cmd->rule_cnt)
1594 rule_locs[i++] = rule->fs.location;
1595 cmd->rule_cnt = i;
1596 cmd->data = MAX_NUM_OF_FS_RULES;
1597 break;
1598 default:
1599 err = -EOPNOTSUPP;
1600 break;
1601 }
1602
1603 return err;
1604 }
1605
1606 /* standard ethtool support functions. */
1607 static const struct ethtool_ops bcmgenet_ethtool_ops = {
1608 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
1609 ETHTOOL_COALESCE_MAX_FRAMES |
1610 ETHTOOL_COALESCE_USE_ADAPTIVE_RX,
1611 .begin = bcmgenet_begin,
1612 .complete = bcmgenet_complete,
1613 .get_strings = bcmgenet_get_strings,
1614 .get_sset_count = bcmgenet_get_sset_count,
1615 .get_ethtool_stats = bcmgenet_get_ethtool_stats,
1616 .get_drvinfo = bcmgenet_get_drvinfo,
1617 .get_link = ethtool_op_get_link,
1618 .get_msglevel = bcmgenet_get_msglevel,
1619 .set_msglevel = bcmgenet_set_msglevel,
1620 .get_wol = bcmgenet_get_wol,
1621 .set_wol = bcmgenet_set_wol,
1622 .get_eee = bcmgenet_get_eee,
1623 .set_eee = bcmgenet_set_eee,
1624 .nway_reset = phy_ethtool_nway_reset,
1625 .get_coalesce = bcmgenet_get_coalesce,
1626 .set_coalesce = bcmgenet_set_coalesce,
1627 .get_link_ksettings = bcmgenet_get_link_ksettings,
1628 .set_link_ksettings = bcmgenet_set_link_ksettings,
1629 .get_ts_info = ethtool_op_get_ts_info,
1630 .get_rxnfc = bcmgenet_get_rxnfc,
1631 .set_rxnfc = bcmgenet_set_rxnfc,
1632 .get_pauseparam = bcmgenet_get_pauseparam,
1633 .set_pauseparam = bcmgenet_set_pauseparam,
1634 };
1635
1636 /* Power down the unimac, based on mode. */
bcmgenet_power_down(struct bcmgenet_priv * priv,enum bcmgenet_power_mode mode)1637 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1638 enum bcmgenet_power_mode mode)
1639 {
1640 int ret = 0;
1641 u32 reg;
1642
1643 switch (mode) {
1644 case GENET_POWER_CABLE_SENSE:
1645 phy_detach(priv->dev->phydev);
1646 break;
1647
1648 case GENET_POWER_WOL_MAGIC:
1649 ret = bcmgenet_wol_power_down_cfg(priv, mode);
1650 break;
1651
1652 case GENET_POWER_PASSIVE:
1653 /* Power down LED */
1654 if (priv->hw_params->flags & GENET_HAS_EXT) {
1655 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1656 if (GENET_IS_V5(priv) && !priv->ephy_16nm)
1657 reg |= EXT_PWR_DOWN_PHY_EN |
1658 EXT_PWR_DOWN_PHY_RD |
1659 EXT_PWR_DOWN_PHY_SD |
1660 EXT_PWR_DOWN_PHY_RX |
1661 EXT_PWR_DOWN_PHY_TX |
1662 EXT_IDDQ_GLBL_PWR;
1663 else
1664 reg |= EXT_PWR_DOWN_PHY;
1665
1666 reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1667 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1668
1669 bcmgenet_phy_power_set(priv->dev, false);
1670 }
1671 break;
1672 default:
1673 break;
1674 }
1675
1676 return ret;
1677 }
1678
bcmgenet_power_up(struct bcmgenet_priv * priv,enum bcmgenet_power_mode mode)1679 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1680 enum bcmgenet_power_mode mode)
1681 {
1682 u32 reg;
1683
1684 if (!(priv->hw_params->flags & GENET_HAS_EXT))
1685 return;
1686
1687 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1688
1689 switch (mode) {
1690 case GENET_POWER_PASSIVE:
1691 reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS |
1692 EXT_ENERGY_DET_MASK);
1693 if (GENET_IS_V5(priv) && !priv->ephy_16nm) {
1694 reg &= ~(EXT_PWR_DOWN_PHY_EN |
1695 EXT_PWR_DOWN_PHY_RD |
1696 EXT_PWR_DOWN_PHY_SD |
1697 EXT_PWR_DOWN_PHY_RX |
1698 EXT_PWR_DOWN_PHY_TX |
1699 EXT_IDDQ_GLBL_PWR);
1700 reg |= EXT_PHY_RESET;
1701 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1702 mdelay(1);
1703
1704 reg &= ~EXT_PHY_RESET;
1705 } else {
1706 reg &= ~EXT_PWR_DOWN_PHY;
1707 reg |= EXT_PWR_DN_EN_LD;
1708 }
1709 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1710 bcmgenet_phy_power_set(priv->dev, true);
1711 break;
1712
1713 case GENET_POWER_CABLE_SENSE:
1714 /* enable APD */
1715 if (!GENET_IS_V5(priv)) {
1716 reg |= EXT_PWR_DN_EN_LD;
1717 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1718 }
1719 break;
1720 case GENET_POWER_WOL_MAGIC:
1721 bcmgenet_wol_power_up_cfg(priv, mode);
1722 return;
1723 default:
1724 break;
1725 }
1726 }
1727
bcmgenet_get_txcb(struct bcmgenet_priv * priv,struct bcmgenet_tx_ring * ring)1728 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1729 struct bcmgenet_tx_ring *ring)
1730 {
1731 struct enet_cb *tx_cb_ptr;
1732
1733 tx_cb_ptr = ring->cbs;
1734 tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1735
1736 /* Advancing local write pointer */
1737 if (ring->write_ptr == ring->end_ptr)
1738 ring->write_ptr = ring->cb_ptr;
1739 else
1740 ring->write_ptr++;
1741
1742 return tx_cb_ptr;
1743 }
1744
bcmgenet_put_txcb(struct bcmgenet_priv * priv,struct bcmgenet_tx_ring * ring)1745 static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
1746 struct bcmgenet_tx_ring *ring)
1747 {
1748 struct enet_cb *tx_cb_ptr;
1749
1750 tx_cb_ptr = ring->cbs;
1751 tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1752
1753 /* Rewinding local write pointer */
1754 if (ring->write_ptr == ring->cb_ptr)
1755 ring->write_ptr = ring->end_ptr;
1756 else
1757 ring->write_ptr--;
1758
1759 return tx_cb_ptr;
1760 }
1761
bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring * ring)1762 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1763 {
1764 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1765 INTRL2_CPU_MASK_SET);
1766 }
1767
bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring * ring)1768 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1769 {
1770 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1771 INTRL2_CPU_MASK_CLEAR);
1772 }
1773
bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring * ring)1774 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1775 {
1776 bcmgenet_intrl2_1_writel(ring->priv,
1777 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1778 INTRL2_CPU_MASK_SET);
1779 }
1780
bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring * ring)1781 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1782 {
1783 bcmgenet_intrl2_1_writel(ring->priv,
1784 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1785 INTRL2_CPU_MASK_CLEAR);
1786 }
1787
bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring * ring)1788 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1789 {
1790 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1791 INTRL2_CPU_MASK_SET);
1792 }
1793
bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring * ring)1794 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1795 {
1796 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1797 INTRL2_CPU_MASK_CLEAR);
1798 }
1799
bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring * ring)1800 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1801 {
1802 bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1803 INTRL2_CPU_MASK_CLEAR);
1804 }
1805
bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring * ring)1806 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1807 {
1808 bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1809 INTRL2_CPU_MASK_SET);
1810 }
1811
1812 /* Simple helper to free a transmit control block's resources
1813 * Returns an skb when the last transmit control block associated with the
1814 * skb is freed. The skb should be freed by the caller if necessary.
1815 */
bcmgenet_free_tx_cb(struct device * dev,struct enet_cb * cb)1816 static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
1817 struct enet_cb *cb)
1818 {
1819 struct sk_buff *skb;
1820
1821 skb = cb->skb;
1822
1823 if (skb) {
1824 cb->skb = NULL;
1825 if (cb == GENET_CB(skb)->first_cb)
1826 dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1827 dma_unmap_len(cb, dma_len),
1828 DMA_TO_DEVICE);
1829 else
1830 dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
1831 dma_unmap_len(cb, dma_len),
1832 DMA_TO_DEVICE);
1833 dma_unmap_addr_set(cb, dma_addr, 0);
1834
1835 if (cb == GENET_CB(skb)->last_cb)
1836 return skb;
1837
1838 } else if (dma_unmap_addr(cb, dma_addr)) {
1839 dma_unmap_page(dev,
1840 dma_unmap_addr(cb, dma_addr),
1841 dma_unmap_len(cb, dma_len),
1842 DMA_TO_DEVICE);
1843 dma_unmap_addr_set(cb, dma_addr, 0);
1844 }
1845
1846 return NULL;
1847 }
1848
1849 /* Simple helper to free a receive control block's resources */
bcmgenet_free_rx_cb(struct device * dev,struct enet_cb * cb)1850 static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
1851 struct enet_cb *cb)
1852 {
1853 struct sk_buff *skb;
1854
1855 skb = cb->skb;
1856 cb->skb = NULL;
1857
1858 if (dma_unmap_addr(cb, dma_addr)) {
1859 dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1860 dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
1861 dma_unmap_addr_set(cb, dma_addr, 0);
1862 }
1863
1864 return skb;
1865 }
1866
1867 /* Unlocked version of the reclaim routine */
__bcmgenet_tx_reclaim(struct net_device * dev,struct bcmgenet_tx_ring * ring)1868 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1869 struct bcmgenet_tx_ring *ring)
1870 {
1871 struct bcmgenet_priv *priv = netdev_priv(dev);
1872 unsigned int txbds_processed = 0;
1873 unsigned int bytes_compl = 0;
1874 unsigned int pkts_compl = 0;
1875 unsigned int txbds_ready;
1876 unsigned int c_index;
1877 struct sk_buff *skb;
1878
1879 /* Clear status before servicing to reduce spurious interrupts */
1880 if (ring->index == DESC_INDEX)
1881 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1882 INTRL2_CPU_CLEAR);
1883 else
1884 bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1885 INTRL2_CPU_CLEAR);
1886
1887 /* Compute how many buffers are transmitted since last xmit call */
1888 c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1889 & DMA_C_INDEX_MASK;
1890 txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1891
1892 netif_dbg(priv, tx_done, dev,
1893 "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1894 __func__, ring->index, ring->c_index, c_index, txbds_ready);
1895
1896 /* Reclaim transmitted buffers */
1897 while (txbds_processed < txbds_ready) {
1898 skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
1899 &priv->tx_cbs[ring->clean_ptr]);
1900 if (skb) {
1901 pkts_compl++;
1902 bytes_compl += GENET_CB(skb)->bytes_sent;
1903 dev_consume_skb_any(skb);
1904 }
1905
1906 txbds_processed++;
1907 if (likely(ring->clean_ptr < ring->end_ptr))
1908 ring->clean_ptr++;
1909 else
1910 ring->clean_ptr = ring->cb_ptr;
1911 }
1912
1913 ring->free_bds += txbds_processed;
1914 ring->c_index = c_index;
1915
1916 ring->packets += pkts_compl;
1917 ring->bytes += bytes_compl;
1918
1919 netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1920 pkts_compl, bytes_compl);
1921
1922 return txbds_processed;
1923 }
1924
bcmgenet_tx_reclaim(struct net_device * dev,struct bcmgenet_tx_ring * ring)1925 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1926 struct bcmgenet_tx_ring *ring)
1927 {
1928 unsigned int released;
1929
1930 spin_lock_bh(&ring->lock);
1931 released = __bcmgenet_tx_reclaim(dev, ring);
1932 spin_unlock_bh(&ring->lock);
1933
1934 return released;
1935 }
1936
bcmgenet_tx_poll(struct napi_struct * napi,int budget)1937 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1938 {
1939 struct bcmgenet_tx_ring *ring =
1940 container_of(napi, struct bcmgenet_tx_ring, napi);
1941 unsigned int work_done = 0;
1942 struct netdev_queue *txq;
1943
1944 spin_lock(&ring->lock);
1945 work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1946 if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1947 txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1948 netif_tx_wake_queue(txq);
1949 }
1950 spin_unlock(&ring->lock);
1951
1952 if (work_done == 0) {
1953 napi_complete(napi);
1954 ring->int_enable(ring);
1955
1956 return 0;
1957 }
1958
1959 return budget;
1960 }
1961
bcmgenet_tx_reclaim_all(struct net_device * dev)1962 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1963 {
1964 struct bcmgenet_priv *priv = netdev_priv(dev);
1965 int i;
1966
1967 if (netif_is_multiqueue(dev)) {
1968 for (i = 0; i < priv->hw_params->tx_queues; i++)
1969 bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1970 }
1971
1972 bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1973 }
1974
1975 /* Reallocate the SKB to put enough headroom in front of it and insert
1976 * the transmit checksum offsets in the descriptors
1977 */
bcmgenet_add_tsb(struct net_device * dev,struct sk_buff * skb)1978 static struct sk_buff *bcmgenet_add_tsb(struct net_device *dev,
1979 struct sk_buff *skb)
1980 {
1981 struct bcmgenet_priv *priv = netdev_priv(dev);
1982 struct status_64 *status = NULL;
1983 struct sk_buff *new_skb;
1984 u16 offset;
1985 u8 ip_proto;
1986 __be16 ip_ver;
1987 u32 tx_csum_info;
1988
1989 if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1990 /* If 64 byte status block enabled, must make sure skb has
1991 * enough headroom for us to insert 64B status block.
1992 */
1993 new_skb = skb_realloc_headroom(skb, sizeof(*status));
1994 if (!new_skb) {
1995 dev_kfree_skb_any(skb);
1996 priv->mib.tx_realloc_tsb_failed++;
1997 dev->stats.tx_dropped++;
1998 return NULL;
1999 }
2000 dev_consume_skb_any(skb);
2001 skb = new_skb;
2002 priv->mib.tx_realloc_tsb++;
2003 }
2004
2005 skb_push(skb, sizeof(*status));
2006 status = (struct status_64 *)skb->data;
2007
2008 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2009 ip_ver = skb->protocol;
2010 switch (ip_ver) {
2011 case htons(ETH_P_IP):
2012 ip_proto = ip_hdr(skb)->protocol;
2013 break;
2014 case htons(ETH_P_IPV6):
2015 ip_proto = ipv6_hdr(skb)->nexthdr;
2016 break;
2017 default:
2018 /* don't use UDP flag */
2019 ip_proto = 0;
2020 break;
2021 }
2022
2023 offset = skb_checksum_start_offset(skb) - sizeof(*status);
2024 tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
2025 (offset + skb->csum_offset) |
2026 STATUS_TX_CSUM_LV;
2027
2028 /* Set the special UDP flag for UDP */
2029 if (ip_proto == IPPROTO_UDP)
2030 tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
2031
2032 status->tx_csum_info = tx_csum_info;
2033 }
2034
2035 return skb;
2036 }
2037
bcmgenet_hide_tsb(struct sk_buff * skb)2038 static void bcmgenet_hide_tsb(struct sk_buff *skb)
2039 {
2040 __skb_pull(skb, sizeof(struct status_64));
2041 }
2042
bcmgenet_xmit(struct sk_buff * skb,struct net_device * dev)2043 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
2044 {
2045 struct bcmgenet_priv *priv = netdev_priv(dev);
2046 struct device *kdev = &priv->pdev->dev;
2047 struct bcmgenet_tx_ring *ring = NULL;
2048 struct enet_cb *tx_cb_ptr;
2049 struct netdev_queue *txq;
2050 int nr_frags, index;
2051 dma_addr_t mapping;
2052 unsigned int size;
2053 skb_frag_t *frag;
2054 u32 len_stat;
2055 int ret;
2056 int i;
2057
2058 index = skb_get_queue_mapping(skb);
2059 /* Mapping strategy:
2060 * queue_mapping = 0, unclassified, packet xmited through ring16
2061 * queue_mapping = 1, goes to ring 0. (highest priority queue
2062 * queue_mapping = 2, goes to ring 1.
2063 * queue_mapping = 3, goes to ring 2.
2064 * queue_mapping = 4, goes to ring 3.
2065 */
2066 if (index == 0)
2067 index = DESC_INDEX;
2068 else
2069 index -= 1;
2070
2071 ring = &priv->tx_rings[index];
2072 txq = netdev_get_tx_queue(dev, ring->queue);
2073
2074 nr_frags = skb_shinfo(skb)->nr_frags;
2075
2076 spin_lock(&ring->lock);
2077 if (ring->free_bds <= (nr_frags + 1)) {
2078 if (!netif_tx_queue_stopped(txq)) {
2079 netif_tx_stop_queue(txq);
2080 netdev_err(dev,
2081 "%s: tx ring %d full when queue %d awake\n",
2082 __func__, index, ring->queue);
2083 }
2084 ret = NETDEV_TX_BUSY;
2085 goto out;
2086 }
2087
2088 /* Retain how many bytes will be sent on the wire, without TSB inserted
2089 * by transmit checksum offload
2090 */
2091 GENET_CB(skb)->bytes_sent = skb->len;
2092
2093 /* add the Transmit Status Block */
2094 skb = bcmgenet_add_tsb(dev, skb);
2095 if (!skb) {
2096 ret = NETDEV_TX_OK;
2097 goto out;
2098 }
2099
2100 for (i = 0; i <= nr_frags; i++) {
2101 tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
2102
2103 BUG_ON(!tx_cb_ptr);
2104
2105 if (!i) {
2106 /* Transmit single SKB or head of fragment list */
2107 GENET_CB(skb)->first_cb = tx_cb_ptr;
2108 size = skb_headlen(skb);
2109 mapping = dma_map_single(kdev, skb->data, size,
2110 DMA_TO_DEVICE);
2111 } else {
2112 /* xmit fragment */
2113 frag = &skb_shinfo(skb)->frags[i - 1];
2114 size = skb_frag_size(frag);
2115 mapping = skb_frag_dma_map(kdev, frag, 0, size,
2116 DMA_TO_DEVICE);
2117 }
2118
2119 ret = dma_mapping_error(kdev, mapping);
2120 if (ret) {
2121 priv->mib.tx_dma_failed++;
2122 netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
2123 ret = NETDEV_TX_OK;
2124 goto out_unmap_frags;
2125 }
2126 dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
2127 dma_unmap_len_set(tx_cb_ptr, dma_len, size);
2128
2129 tx_cb_ptr->skb = skb;
2130
2131 len_stat = (size << DMA_BUFLENGTH_SHIFT) |
2132 (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);
2133
2134 /* Note: if we ever change from DMA_TX_APPEND_CRC below we
2135 * will need to restore software padding of "runt" packets
2136 */
2137 if (!i) {
2138 len_stat |= DMA_TX_APPEND_CRC | DMA_SOP;
2139 if (skb->ip_summed == CHECKSUM_PARTIAL)
2140 len_stat |= DMA_TX_DO_CSUM;
2141 }
2142 if (i == nr_frags)
2143 len_stat |= DMA_EOP;
2144
2145 dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
2146 }
2147
2148 GENET_CB(skb)->last_cb = tx_cb_ptr;
2149
2150 bcmgenet_hide_tsb(skb);
2151 skb_tx_timestamp(skb);
2152
2153 /* Decrement total BD count and advance our write pointer */
2154 ring->free_bds -= nr_frags + 1;
2155 ring->prod_index += nr_frags + 1;
2156 ring->prod_index &= DMA_P_INDEX_MASK;
2157
2158 netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
2159
2160 if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
2161 netif_tx_stop_queue(txq);
2162
2163 if (!netdev_xmit_more() || netif_xmit_stopped(txq))
2164 /* Packets are ready, update producer index */
2165 bcmgenet_tdma_ring_writel(priv, ring->index,
2166 ring->prod_index, TDMA_PROD_INDEX);
2167 out:
2168 spin_unlock(&ring->lock);
2169
2170 return ret;
2171
2172 out_unmap_frags:
2173 /* Back up for failed control block mapping */
2174 bcmgenet_put_txcb(priv, ring);
2175
2176 /* Unmap successfully mapped control blocks */
2177 while (i-- > 0) {
2178 tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
2179 bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
2180 }
2181
2182 dev_kfree_skb(skb);
2183 goto out;
2184 }
2185
bcmgenet_rx_refill(struct bcmgenet_priv * priv,struct enet_cb * cb)2186 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
2187 struct enet_cb *cb)
2188 {
2189 struct device *kdev = &priv->pdev->dev;
2190 struct sk_buff *skb;
2191 struct sk_buff *rx_skb;
2192 dma_addr_t mapping;
2193
2194 /* Allocate a new Rx skb */
2195 skb = __netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT,
2196 GFP_ATOMIC | __GFP_NOWARN);
2197 if (!skb) {
2198 priv->mib.alloc_rx_buff_failed++;
2199 netif_err(priv, rx_err, priv->dev,
2200 "%s: Rx skb allocation failed\n", __func__);
2201 return NULL;
2202 }
2203
2204 /* DMA-map the new Rx skb */
2205 mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
2206 DMA_FROM_DEVICE);
2207 if (dma_mapping_error(kdev, mapping)) {
2208 priv->mib.rx_dma_failed++;
2209 dev_kfree_skb_any(skb);
2210 netif_err(priv, rx_err, priv->dev,
2211 "%s: Rx skb DMA mapping failed\n", __func__);
2212 return NULL;
2213 }
2214
2215 /* Grab the current Rx skb from the ring and DMA-unmap it */
2216 rx_skb = bcmgenet_free_rx_cb(kdev, cb);
2217
2218 /* Put the new Rx skb on the ring */
2219 cb->skb = skb;
2220 dma_unmap_addr_set(cb, dma_addr, mapping);
2221 dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
2222 dmadesc_set_addr(priv, cb->bd_addr, mapping);
2223
2224 /* Return the current Rx skb to caller */
2225 return rx_skb;
2226 }
2227
2228 /* bcmgenet_desc_rx - descriptor based rx process.
2229 * this could be called from bottom half, or from NAPI polling method.
2230 */
bcmgenet_desc_rx(struct bcmgenet_rx_ring * ring,unsigned int budget)2231 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
2232 unsigned int budget)
2233 {
2234 struct bcmgenet_priv *priv = ring->priv;
2235 struct net_device *dev = priv->dev;
2236 struct enet_cb *cb;
2237 struct sk_buff *skb;
2238 u32 dma_length_status;
2239 unsigned long dma_flag;
2240 int len;
2241 unsigned int rxpktprocessed = 0, rxpkttoprocess;
2242 unsigned int bytes_processed = 0;
2243 unsigned int p_index, mask;
2244 unsigned int discards;
2245
2246 /* Clear status before servicing to reduce spurious interrupts */
2247 if (ring->index == DESC_INDEX) {
2248 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
2249 INTRL2_CPU_CLEAR);
2250 } else {
2251 mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
2252 bcmgenet_intrl2_1_writel(priv,
2253 mask,
2254 INTRL2_CPU_CLEAR);
2255 }
2256
2257 p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
2258
2259 discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
2260 DMA_P_INDEX_DISCARD_CNT_MASK;
2261 if (discards > ring->old_discards) {
2262 discards = discards - ring->old_discards;
2263 ring->errors += discards;
2264 ring->old_discards += discards;
2265
2266 /* Clear HW register when we reach 75% of maximum 0xFFFF */
2267 if (ring->old_discards >= 0xC000) {
2268 ring->old_discards = 0;
2269 bcmgenet_rdma_ring_writel(priv, ring->index, 0,
2270 RDMA_PROD_INDEX);
2271 }
2272 }
2273
2274 p_index &= DMA_P_INDEX_MASK;
2275 rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
2276
2277 netif_dbg(priv, rx_status, dev,
2278 "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
2279
2280 while ((rxpktprocessed < rxpkttoprocess) &&
2281 (rxpktprocessed < budget)) {
2282 struct status_64 *status;
2283 __be16 rx_csum;
2284
2285 cb = &priv->rx_cbs[ring->read_ptr];
2286 skb = bcmgenet_rx_refill(priv, cb);
2287
2288 if (unlikely(!skb)) {
2289 ring->dropped++;
2290 goto next;
2291 }
2292
2293 status = (struct status_64 *)skb->data;
2294 dma_length_status = status->length_status;
2295 if (dev->features & NETIF_F_RXCSUM) {
2296 rx_csum = (__force __be16)(status->rx_csum & 0xffff);
2297 if (rx_csum) {
2298 skb->csum = (__force __wsum)ntohs(rx_csum);
2299 skb->ip_summed = CHECKSUM_COMPLETE;
2300 }
2301 }
2302
2303 /* DMA flags and length are still valid no matter how
2304 * we got the Receive Status Vector (64B RSB or register)
2305 */
2306 dma_flag = dma_length_status & 0xffff;
2307 len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
2308
2309 netif_dbg(priv, rx_status, dev,
2310 "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
2311 __func__, p_index, ring->c_index,
2312 ring->read_ptr, dma_length_status);
2313
2314 if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
2315 netif_err(priv, rx_status, dev,
2316 "dropping fragmented packet!\n");
2317 ring->errors++;
2318 dev_kfree_skb_any(skb);
2319 goto next;
2320 }
2321
2322 /* report errors */
2323 if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
2324 DMA_RX_OV |
2325 DMA_RX_NO |
2326 DMA_RX_LG |
2327 DMA_RX_RXER))) {
2328 netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
2329 (unsigned int)dma_flag);
2330 if (dma_flag & DMA_RX_CRC_ERROR)
2331 dev->stats.rx_crc_errors++;
2332 if (dma_flag & DMA_RX_OV)
2333 dev->stats.rx_over_errors++;
2334 if (dma_flag & DMA_RX_NO)
2335 dev->stats.rx_frame_errors++;
2336 if (dma_flag & DMA_RX_LG)
2337 dev->stats.rx_length_errors++;
2338 dev->stats.rx_errors++;
2339 dev_kfree_skb_any(skb);
2340 goto next;
2341 } /* error packet */
2342
2343 skb_put(skb, len);
2344
2345 /* remove RSB and hardware 2bytes added for IP alignment */
2346 skb_pull(skb, 66);
2347 len -= 66;
2348
2349 if (priv->crc_fwd_en) {
2350 skb_trim(skb, len - ETH_FCS_LEN);
2351 len -= ETH_FCS_LEN;
2352 }
2353
2354 bytes_processed += len;
2355
2356 /*Finish setting up the received SKB and send it to the kernel*/
2357 skb->protocol = eth_type_trans(skb, priv->dev);
2358 ring->packets++;
2359 ring->bytes += len;
2360 if (dma_flag & DMA_RX_MULT)
2361 dev->stats.multicast++;
2362
2363 /* Notify kernel */
2364 napi_gro_receive(&ring->napi, skb);
2365 netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
2366
2367 next:
2368 rxpktprocessed++;
2369 if (likely(ring->read_ptr < ring->end_ptr))
2370 ring->read_ptr++;
2371 else
2372 ring->read_ptr = ring->cb_ptr;
2373
2374 ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
2375 bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
2376 }
2377
2378 ring->dim.bytes = bytes_processed;
2379 ring->dim.packets = rxpktprocessed;
2380
2381 return rxpktprocessed;
2382 }
2383
2384 /* Rx NAPI polling method */
bcmgenet_rx_poll(struct napi_struct * napi,int budget)2385 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
2386 {
2387 struct bcmgenet_rx_ring *ring = container_of(napi,
2388 struct bcmgenet_rx_ring, napi);
2389 struct dim_sample dim_sample = {};
2390 unsigned int work_done;
2391
2392 work_done = bcmgenet_desc_rx(ring, budget);
2393
2394 if (work_done < budget) {
2395 napi_complete_done(napi, work_done);
2396 ring->int_enable(ring);
2397 }
2398
2399 if (ring->dim.use_dim) {
2400 dim_update_sample(ring->dim.event_ctr, ring->dim.packets,
2401 ring->dim.bytes, &dim_sample);
2402 net_dim(&ring->dim.dim, dim_sample);
2403 }
2404
2405 return work_done;
2406 }
2407
bcmgenet_dim_work(struct work_struct * work)2408 static void bcmgenet_dim_work(struct work_struct *work)
2409 {
2410 struct dim *dim = container_of(work, struct dim, work);
2411 struct bcmgenet_net_dim *ndim =
2412 container_of(dim, struct bcmgenet_net_dim, dim);
2413 struct bcmgenet_rx_ring *ring =
2414 container_of(ndim, struct bcmgenet_rx_ring, dim);
2415 struct dim_cq_moder cur_profile =
2416 net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
2417
2418 bcmgenet_set_rx_coalesce(ring, cur_profile.usec, cur_profile.pkts);
2419 dim->state = DIM_START_MEASURE;
2420 }
2421
2422 /* Assign skb to RX DMA descriptor. */
bcmgenet_alloc_rx_buffers(struct bcmgenet_priv * priv,struct bcmgenet_rx_ring * ring)2423 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
2424 struct bcmgenet_rx_ring *ring)
2425 {
2426 struct enet_cb *cb;
2427 struct sk_buff *skb;
2428 int i;
2429
2430 netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2431
2432 /* loop here for each buffer needing assign */
2433 for (i = 0; i < ring->size; i++) {
2434 cb = ring->cbs + i;
2435 skb = bcmgenet_rx_refill(priv, cb);
2436 if (skb)
2437 dev_consume_skb_any(skb);
2438 if (!cb->skb)
2439 return -ENOMEM;
2440 }
2441
2442 return 0;
2443 }
2444
bcmgenet_free_rx_buffers(struct bcmgenet_priv * priv)2445 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
2446 {
2447 struct sk_buff *skb;
2448 struct enet_cb *cb;
2449 int i;
2450
2451 for (i = 0; i < priv->num_rx_bds; i++) {
2452 cb = &priv->rx_cbs[i];
2453
2454 skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
2455 if (skb)
2456 dev_consume_skb_any(skb);
2457 }
2458 }
2459
umac_enable_set(struct bcmgenet_priv * priv,u32 mask,bool enable)2460 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
2461 {
2462 u32 reg;
2463
2464 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2465 if (reg & CMD_SW_RESET)
2466 return;
2467 if (enable)
2468 reg |= mask;
2469 else
2470 reg &= ~mask;
2471 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
2472
2473 /* UniMAC stops on a packet boundary, wait for a full-size packet
2474 * to be processed
2475 */
2476 if (enable == 0)
2477 usleep_range(1000, 2000);
2478 }
2479
reset_umac(struct bcmgenet_priv * priv)2480 static void reset_umac(struct bcmgenet_priv *priv)
2481 {
2482 /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
2483 bcmgenet_rbuf_ctrl_set(priv, 0);
2484 udelay(10);
2485
2486 /* issue soft reset and disable MAC while updating its registers */
2487 bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
2488 udelay(2);
2489 }
2490
bcmgenet_intr_disable(struct bcmgenet_priv * priv)2491 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
2492 {
2493 /* Mask all interrupts.*/
2494 bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2495 bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2496 bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2497 bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2498 }
2499
bcmgenet_link_intr_enable(struct bcmgenet_priv * priv)2500 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
2501 {
2502 u32 int0_enable = 0;
2503
2504 /* Monitor cable plug/unplugged event for internal PHY, external PHY
2505 * and MoCA PHY
2506 */
2507 if (priv->internal_phy) {
2508 int0_enable |= UMAC_IRQ_LINK_EVENT;
2509 if (GENET_IS_V1(priv) || GENET_IS_V2(priv) || GENET_IS_V3(priv))
2510 int0_enable |= UMAC_IRQ_PHY_DET_R;
2511 } else if (priv->ext_phy) {
2512 int0_enable |= UMAC_IRQ_LINK_EVENT;
2513 } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2514 if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
2515 int0_enable |= UMAC_IRQ_LINK_EVENT;
2516 }
2517 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2518 }
2519
init_umac(struct bcmgenet_priv * priv)2520 static void init_umac(struct bcmgenet_priv *priv)
2521 {
2522 struct device *kdev = &priv->pdev->dev;
2523 u32 reg;
2524 u32 int0_enable = 0;
2525
2526 dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
2527
2528 reset_umac(priv);
2529
2530 /* clear tx/rx counter */
2531 bcmgenet_umac_writel(priv,
2532 MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
2533 UMAC_MIB_CTRL);
2534 bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
2535
2536 bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
2537
2538 /* init tx registers, enable TSB */
2539 reg = bcmgenet_tbuf_ctrl_get(priv);
2540 reg |= TBUF_64B_EN;
2541 bcmgenet_tbuf_ctrl_set(priv, reg);
2542
2543 /* init rx registers, enable ip header optimization and RSB */
2544 reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
2545 reg |= RBUF_ALIGN_2B | RBUF_64B_EN;
2546 bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
2547
2548 /* enable rx checksumming */
2549 reg = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
2550 reg |= RBUF_RXCHK_EN | RBUF_L3_PARSE_DIS;
2551 /* If UniMAC forwards CRC, we need to skip over it to get
2552 * a valid CHK bit to be set in the per-packet status word
2553 */
2554 if (priv->crc_fwd_en)
2555 reg |= RBUF_SKIP_FCS;
2556 else
2557 reg &= ~RBUF_SKIP_FCS;
2558 bcmgenet_rbuf_writel(priv, reg, RBUF_CHK_CTRL);
2559
2560 if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
2561 bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
2562
2563 bcmgenet_intr_disable(priv);
2564
2565 /* Configure backpressure vectors for MoCA */
2566 if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2567 reg = bcmgenet_bp_mc_get(priv);
2568 reg |= BIT(priv->hw_params->bp_in_en_shift);
2569
2570 /* bp_mask: back pressure mask */
2571 if (netif_is_multiqueue(priv->dev))
2572 reg |= priv->hw_params->bp_in_mask;
2573 else
2574 reg &= ~priv->hw_params->bp_in_mask;
2575 bcmgenet_bp_mc_set(priv, reg);
2576 }
2577
2578 /* Enable MDIO interrupts on GENET v3+ */
2579 if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2580 int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2581
2582 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2583
2584 dev_dbg(kdev, "done init umac\n");
2585 }
2586
bcmgenet_init_dim(struct bcmgenet_rx_ring * ring,void (* cb)(struct work_struct * work))2587 static void bcmgenet_init_dim(struct bcmgenet_rx_ring *ring,
2588 void (*cb)(struct work_struct *work))
2589 {
2590 struct bcmgenet_net_dim *dim = &ring->dim;
2591
2592 INIT_WORK(&dim->dim.work, cb);
2593 dim->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
2594 dim->event_ctr = 0;
2595 dim->packets = 0;
2596 dim->bytes = 0;
2597 }
2598
bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring * ring)2599 static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring *ring)
2600 {
2601 struct bcmgenet_net_dim *dim = &ring->dim;
2602 struct dim_cq_moder moder;
2603 u32 usecs, pkts;
2604
2605 usecs = ring->rx_coalesce_usecs;
2606 pkts = ring->rx_max_coalesced_frames;
2607
2608 /* If DIM was enabled, re-apply default parameters */
2609 if (dim->use_dim) {
2610 moder = net_dim_get_def_rx_moderation(dim->dim.mode);
2611 usecs = moder.usec;
2612 pkts = moder.pkts;
2613 }
2614
2615 bcmgenet_set_rx_coalesce(ring, usecs, pkts);
2616 }
2617
2618 /* Initialize a Tx ring along with corresponding hardware registers */
bcmgenet_init_tx_ring(struct bcmgenet_priv * priv,unsigned int index,unsigned int size,unsigned int start_ptr,unsigned int end_ptr)2619 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2620 unsigned int index, unsigned int size,
2621 unsigned int start_ptr, unsigned int end_ptr)
2622 {
2623 struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2624 u32 words_per_bd = WORDS_PER_BD(priv);
2625 u32 flow_period_val = 0;
2626
2627 spin_lock_init(&ring->lock);
2628 ring->priv = priv;
2629 ring->index = index;
2630 if (index == DESC_INDEX) {
2631 ring->queue = 0;
2632 ring->int_enable = bcmgenet_tx_ring16_int_enable;
2633 ring->int_disable = bcmgenet_tx_ring16_int_disable;
2634 } else {
2635 ring->queue = index + 1;
2636 ring->int_enable = bcmgenet_tx_ring_int_enable;
2637 ring->int_disable = bcmgenet_tx_ring_int_disable;
2638 }
2639 ring->cbs = priv->tx_cbs + start_ptr;
2640 ring->size = size;
2641 ring->clean_ptr = start_ptr;
2642 ring->c_index = 0;
2643 ring->free_bds = size;
2644 ring->write_ptr = start_ptr;
2645 ring->cb_ptr = start_ptr;
2646 ring->end_ptr = end_ptr - 1;
2647 ring->prod_index = 0;
2648
2649 /* Set flow period for ring != 16 */
2650 if (index != DESC_INDEX)
2651 flow_period_val = ENET_MAX_MTU_SIZE << 16;
2652
2653 bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2654 bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2655 bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2656 /* Disable rate control for now */
2657 bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2658 TDMA_FLOW_PERIOD);
2659 bcmgenet_tdma_ring_writel(priv, index,
2660 ((size << DMA_RING_SIZE_SHIFT) |
2661 RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2662
2663 /* Set start and end address, read and write pointers */
2664 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2665 DMA_START_ADDR);
2666 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2667 TDMA_READ_PTR);
2668 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2669 TDMA_WRITE_PTR);
2670 bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2671 DMA_END_ADDR);
2672
2673 /* Initialize Tx NAPI */
2674 netif_napi_add_tx(priv->dev, &ring->napi, bcmgenet_tx_poll);
2675 }
2676
2677 /* Initialize a RDMA ring */
bcmgenet_init_rx_ring(struct bcmgenet_priv * priv,unsigned int index,unsigned int size,unsigned int start_ptr,unsigned int end_ptr)2678 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2679 unsigned int index, unsigned int size,
2680 unsigned int start_ptr, unsigned int end_ptr)
2681 {
2682 struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2683 u32 words_per_bd = WORDS_PER_BD(priv);
2684 int ret;
2685
2686 ring->priv = priv;
2687 ring->index = index;
2688 if (index == DESC_INDEX) {
2689 ring->int_enable = bcmgenet_rx_ring16_int_enable;
2690 ring->int_disable = bcmgenet_rx_ring16_int_disable;
2691 } else {
2692 ring->int_enable = bcmgenet_rx_ring_int_enable;
2693 ring->int_disable = bcmgenet_rx_ring_int_disable;
2694 }
2695 ring->cbs = priv->rx_cbs + start_ptr;
2696 ring->size = size;
2697 ring->c_index = 0;
2698 ring->read_ptr = start_ptr;
2699 ring->cb_ptr = start_ptr;
2700 ring->end_ptr = end_ptr - 1;
2701
2702 ret = bcmgenet_alloc_rx_buffers(priv, ring);
2703 if (ret)
2704 return ret;
2705
2706 bcmgenet_init_dim(ring, bcmgenet_dim_work);
2707 bcmgenet_init_rx_coalesce(ring);
2708
2709 /* Initialize Rx NAPI */
2710 netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll,
2711 NAPI_POLL_WEIGHT);
2712
2713 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2714 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2715 bcmgenet_rdma_ring_writel(priv, index,
2716 ((size << DMA_RING_SIZE_SHIFT) |
2717 RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2718 bcmgenet_rdma_ring_writel(priv, index,
2719 (DMA_FC_THRESH_LO <<
2720 DMA_XOFF_THRESHOLD_SHIFT) |
2721 DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2722
2723 /* Set start and end address, read and write pointers */
2724 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2725 DMA_START_ADDR);
2726 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2727 RDMA_READ_PTR);
2728 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2729 RDMA_WRITE_PTR);
2730 bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2731 DMA_END_ADDR);
2732
2733 return ret;
2734 }
2735
bcmgenet_enable_tx_napi(struct bcmgenet_priv * priv)2736 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2737 {
2738 unsigned int i;
2739 struct bcmgenet_tx_ring *ring;
2740
2741 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2742 ring = &priv->tx_rings[i];
2743 napi_enable(&ring->napi);
2744 ring->int_enable(ring);
2745 }
2746
2747 ring = &priv->tx_rings[DESC_INDEX];
2748 napi_enable(&ring->napi);
2749 ring->int_enable(ring);
2750 }
2751
bcmgenet_disable_tx_napi(struct bcmgenet_priv * priv)2752 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2753 {
2754 unsigned int i;
2755 struct bcmgenet_tx_ring *ring;
2756
2757 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2758 ring = &priv->tx_rings[i];
2759 napi_disable(&ring->napi);
2760 }
2761
2762 ring = &priv->tx_rings[DESC_INDEX];
2763 napi_disable(&ring->napi);
2764 }
2765
bcmgenet_fini_tx_napi(struct bcmgenet_priv * priv)2766 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2767 {
2768 unsigned int i;
2769 struct bcmgenet_tx_ring *ring;
2770
2771 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2772 ring = &priv->tx_rings[i];
2773 netif_napi_del(&ring->napi);
2774 }
2775
2776 ring = &priv->tx_rings[DESC_INDEX];
2777 netif_napi_del(&ring->napi);
2778 }
2779
2780 /* Initialize Tx queues
2781 *
2782 * Queues 0-3 are priority-based, each one has 32 descriptors,
2783 * with queue 0 being the highest priority queue.
2784 *
2785 * Queue 16 is the default Tx queue with
2786 * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2787 *
2788 * The transmit control block pool is then partitioned as follows:
2789 * - Tx queue 0 uses tx_cbs[0..31]
2790 * - Tx queue 1 uses tx_cbs[32..63]
2791 * - Tx queue 2 uses tx_cbs[64..95]
2792 * - Tx queue 3 uses tx_cbs[96..127]
2793 * - Tx queue 16 uses tx_cbs[128..255]
2794 */
bcmgenet_init_tx_queues(struct net_device * dev)2795 static void bcmgenet_init_tx_queues(struct net_device *dev)
2796 {
2797 struct bcmgenet_priv *priv = netdev_priv(dev);
2798 u32 i, dma_enable;
2799 u32 dma_ctrl, ring_cfg;
2800 u32 dma_priority[3] = {0, 0, 0};
2801
2802 dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2803 dma_enable = dma_ctrl & DMA_EN;
2804 dma_ctrl &= ~DMA_EN;
2805 bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2806
2807 dma_ctrl = 0;
2808 ring_cfg = 0;
2809
2810 /* Enable strict priority arbiter mode */
2811 bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2812
2813 /* Initialize Tx priority queues */
2814 for (i = 0; i < priv->hw_params->tx_queues; i++) {
2815 bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2816 i * priv->hw_params->tx_bds_per_q,
2817 (i + 1) * priv->hw_params->tx_bds_per_q);
2818 ring_cfg |= (1 << i);
2819 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2820 dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2821 ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2822 }
2823
2824 /* Initialize Tx default queue 16 */
2825 bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2826 priv->hw_params->tx_queues *
2827 priv->hw_params->tx_bds_per_q,
2828 TOTAL_DESC);
2829 ring_cfg |= (1 << DESC_INDEX);
2830 dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2831 dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2832 ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2833 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2834
2835 /* Set Tx queue priorities */
2836 bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2837 bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2838 bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2839
2840 /* Enable Tx queues */
2841 bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2842
2843 /* Enable Tx DMA */
2844 if (dma_enable)
2845 dma_ctrl |= DMA_EN;
2846 bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2847 }
2848
bcmgenet_enable_rx_napi(struct bcmgenet_priv * priv)2849 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2850 {
2851 unsigned int i;
2852 struct bcmgenet_rx_ring *ring;
2853
2854 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2855 ring = &priv->rx_rings[i];
2856 napi_enable(&ring->napi);
2857 ring->int_enable(ring);
2858 }
2859
2860 ring = &priv->rx_rings[DESC_INDEX];
2861 napi_enable(&ring->napi);
2862 ring->int_enable(ring);
2863 }
2864
bcmgenet_disable_rx_napi(struct bcmgenet_priv * priv)2865 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2866 {
2867 unsigned int i;
2868 struct bcmgenet_rx_ring *ring;
2869
2870 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2871 ring = &priv->rx_rings[i];
2872 napi_disable(&ring->napi);
2873 cancel_work_sync(&ring->dim.dim.work);
2874 }
2875
2876 ring = &priv->rx_rings[DESC_INDEX];
2877 napi_disable(&ring->napi);
2878 cancel_work_sync(&ring->dim.dim.work);
2879 }
2880
bcmgenet_fini_rx_napi(struct bcmgenet_priv * priv)2881 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2882 {
2883 unsigned int i;
2884 struct bcmgenet_rx_ring *ring;
2885
2886 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2887 ring = &priv->rx_rings[i];
2888 netif_napi_del(&ring->napi);
2889 }
2890
2891 ring = &priv->rx_rings[DESC_INDEX];
2892 netif_napi_del(&ring->napi);
2893 }
2894
2895 /* Initialize Rx queues
2896 *
2897 * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2898 * used to direct traffic to these queues.
2899 *
2900 * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2901 */
bcmgenet_init_rx_queues(struct net_device * dev)2902 static int bcmgenet_init_rx_queues(struct net_device *dev)
2903 {
2904 struct bcmgenet_priv *priv = netdev_priv(dev);
2905 u32 i;
2906 u32 dma_enable;
2907 u32 dma_ctrl;
2908 u32 ring_cfg;
2909 int ret;
2910
2911 dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2912 dma_enable = dma_ctrl & DMA_EN;
2913 dma_ctrl &= ~DMA_EN;
2914 bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2915
2916 dma_ctrl = 0;
2917 ring_cfg = 0;
2918
2919 /* Initialize Rx priority queues */
2920 for (i = 0; i < priv->hw_params->rx_queues; i++) {
2921 ret = bcmgenet_init_rx_ring(priv, i,
2922 priv->hw_params->rx_bds_per_q,
2923 i * priv->hw_params->rx_bds_per_q,
2924 (i + 1) *
2925 priv->hw_params->rx_bds_per_q);
2926 if (ret)
2927 return ret;
2928
2929 ring_cfg |= (1 << i);
2930 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2931 }
2932
2933 /* Initialize Rx default queue 16 */
2934 ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2935 priv->hw_params->rx_queues *
2936 priv->hw_params->rx_bds_per_q,
2937 TOTAL_DESC);
2938 if (ret)
2939 return ret;
2940
2941 ring_cfg |= (1 << DESC_INDEX);
2942 dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2943
2944 /* Enable rings */
2945 bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2946
2947 /* Configure ring as descriptor ring and re-enable DMA if enabled */
2948 if (dma_enable)
2949 dma_ctrl |= DMA_EN;
2950 bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2951
2952 return 0;
2953 }
2954
bcmgenet_dma_teardown(struct bcmgenet_priv * priv)2955 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2956 {
2957 int ret = 0;
2958 int timeout = 0;
2959 u32 reg;
2960 u32 dma_ctrl;
2961 int i;
2962
2963 /* Disable TDMA to stop add more frames in TX DMA */
2964 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2965 reg &= ~DMA_EN;
2966 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2967
2968 /* Check TDMA status register to confirm TDMA is disabled */
2969 while (timeout++ < DMA_TIMEOUT_VAL) {
2970 reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2971 if (reg & DMA_DISABLED)
2972 break;
2973
2974 udelay(1);
2975 }
2976
2977 if (timeout == DMA_TIMEOUT_VAL) {
2978 netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2979 ret = -ETIMEDOUT;
2980 }
2981
2982 /* Wait 10ms for packet drain in both tx and rx dma */
2983 usleep_range(10000, 20000);
2984
2985 /* Disable RDMA */
2986 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2987 reg &= ~DMA_EN;
2988 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2989
2990 timeout = 0;
2991 /* Check RDMA status register to confirm RDMA is disabled */
2992 while (timeout++ < DMA_TIMEOUT_VAL) {
2993 reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2994 if (reg & DMA_DISABLED)
2995 break;
2996
2997 udelay(1);
2998 }
2999
3000 if (timeout == DMA_TIMEOUT_VAL) {
3001 netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
3002 ret = -ETIMEDOUT;
3003 }
3004
3005 dma_ctrl = 0;
3006 for (i = 0; i < priv->hw_params->rx_queues; i++)
3007 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3008 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3009 reg &= ~dma_ctrl;
3010 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3011
3012 dma_ctrl = 0;
3013 for (i = 0; i < priv->hw_params->tx_queues; i++)
3014 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3015 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3016 reg &= ~dma_ctrl;
3017 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3018
3019 return ret;
3020 }
3021
bcmgenet_fini_dma(struct bcmgenet_priv * priv)3022 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
3023 {
3024 struct netdev_queue *txq;
3025 int i;
3026
3027 bcmgenet_fini_rx_napi(priv);
3028 bcmgenet_fini_tx_napi(priv);
3029
3030 for (i = 0; i < priv->num_tx_bds; i++)
3031 dev_kfree_skb(bcmgenet_free_tx_cb(&priv->pdev->dev,
3032 priv->tx_cbs + i));
3033
3034 for (i = 0; i < priv->hw_params->tx_queues; i++) {
3035 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
3036 netdev_tx_reset_queue(txq);
3037 }
3038
3039 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
3040 netdev_tx_reset_queue(txq);
3041
3042 bcmgenet_free_rx_buffers(priv);
3043 kfree(priv->rx_cbs);
3044 kfree(priv->tx_cbs);
3045 }
3046
3047 /* init_edma: Initialize DMA control register */
bcmgenet_init_dma(struct bcmgenet_priv * priv)3048 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
3049 {
3050 int ret;
3051 unsigned int i;
3052 struct enet_cb *cb;
3053
3054 netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
3055
3056 /* Initialize common Rx ring structures */
3057 priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
3058 priv->num_rx_bds = TOTAL_DESC;
3059 priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
3060 GFP_KERNEL);
3061 if (!priv->rx_cbs)
3062 return -ENOMEM;
3063
3064 for (i = 0; i < priv->num_rx_bds; i++) {
3065 cb = priv->rx_cbs + i;
3066 cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
3067 }
3068
3069 /* Initialize common TX ring structures */
3070 priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
3071 priv->num_tx_bds = TOTAL_DESC;
3072 priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
3073 GFP_KERNEL);
3074 if (!priv->tx_cbs) {
3075 kfree(priv->rx_cbs);
3076 return -ENOMEM;
3077 }
3078
3079 for (i = 0; i < priv->num_tx_bds; i++) {
3080 cb = priv->tx_cbs + i;
3081 cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
3082 }
3083
3084 /* Init rDma */
3085 bcmgenet_rdma_writel(priv, priv->dma_max_burst_length,
3086 DMA_SCB_BURST_SIZE);
3087
3088 /* Initialize Rx queues */
3089 ret = bcmgenet_init_rx_queues(priv->dev);
3090 if (ret) {
3091 netdev_err(priv->dev, "failed to initialize Rx queues\n");
3092 bcmgenet_free_rx_buffers(priv);
3093 kfree(priv->rx_cbs);
3094 kfree(priv->tx_cbs);
3095 return ret;
3096 }
3097
3098 /* Init tDma */
3099 bcmgenet_tdma_writel(priv, priv->dma_max_burst_length,
3100 DMA_SCB_BURST_SIZE);
3101
3102 /* Initialize Tx queues */
3103 bcmgenet_init_tx_queues(priv->dev);
3104
3105 return 0;
3106 }
3107
3108 /* Interrupt bottom half */
bcmgenet_irq_task(struct work_struct * work)3109 static void bcmgenet_irq_task(struct work_struct *work)
3110 {
3111 unsigned int status;
3112 struct bcmgenet_priv *priv = container_of(
3113 work, struct bcmgenet_priv, bcmgenet_irq_work);
3114
3115 netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
3116
3117 spin_lock_irq(&priv->lock);
3118 status = priv->irq0_stat;
3119 priv->irq0_stat = 0;
3120 spin_unlock_irq(&priv->lock);
3121
3122 if (status & UMAC_IRQ_PHY_DET_R &&
3123 priv->dev->phydev->autoneg != AUTONEG_ENABLE) {
3124 phy_init_hw(priv->dev->phydev);
3125 genphy_config_aneg(priv->dev->phydev);
3126 }
3127
3128 /* Link UP/DOWN event */
3129 if (status & UMAC_IRQ_LINK_EVENT)
3130 phy_mac_interrupt(priv->dev->phydev);
3131
3132 }
3133
3134 /* bcmgenet_isr1: handle Rx and Tx priority queues */
bcmgenet_isr1(int irq,void * dev_id)3135 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
3136 {
3137 struct bcmgenet_priv *priv = dev_id;
3138 struct bcmgenet_rx_ring *rx_ring;
3139 struct bcmgenet_tx_ring *tx_ring;
3140 unsigned int index, status;
3141
3142 /* Read irq status */
3143 status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
3144 ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3145
3146 /* clear interrupts */
3147 bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
3148
3149 netif_dbg(priv, intr, priv->dev,
3150 "%s: IRQ=0x%x\n", __func__, status);
3151
3152 /* Check Rx priority queue interrupts */
3153 for (index = 0; index < priv->hw_params->rx_queues; index++) {
3154 if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
3155 continue;
3156
3157 rx_ring = &priv->rx_rings[index];
3158 rx_ring->dim.event_ctr++;
3159
3160 if (likely(napi_schedule_prep(&rx_ring->napi))) {
3161 rx_ring->int_disable(rx_ring);
3162 __napi_schedule_irqoff(&rx_ring->napi);
3163 }
3164 }
3165
3166 /* Check Tx priority queue interrupts */
3167 for (index = 0; index < priv->hw_params->tx_queues; index++) {
3168 if (!(status & BIT(index)))
3169 continue;
3170
3171 tx_ring = &priv->tx_rings[index];
3172
3173 if (likely(napi_schedule_prep(&tx_ring->napi))) {
3174 tx_ring->int_disable(tx_ring);
3175 __napi_schedule_irqoff(&tx_ring->napi);
3176 }
3177 }
3178
3179 return IRQ_HANDLED;
3180 }
3181
3182 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
bcmgenet_isr0(int irq,void * dev_id)3183 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
3184 {
3185 struct bcmgenet_priv *priv = dev_id;
3186 struct bcmgenet_rx_ring *rx_ring;
3187 struct bcmgenet_tx_ring *tx_ring;
3188 unsigned int status;
3189 unsigned long flags;
3190
3191 /* Read irq status */
3192 status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
3193 ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3194
3195 /* clear interrupts */
3196 bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
3197
3198 netif_dbg(priv, intr, priv->dev,
3199 "IRQ=0x%x\n", status);
3200
3201 if (status & UMAC_IRQ_RXDMA_DONE) {
3202 rx_ring = &priv->rx_rings[DESC_INDEX];
3203 rx_ring->dim.event_ctr++;
3204
3205 if (likely(napi_schedule_prep(&rx_ring->napi))) {
3206 rx_ring->int_disable(rx_ring);
3207 __napi_schedule_irqoff(&rx_ring->napi);
3208 }
3209 }
3210
3211 if (status & UMAC_IRQ_TXDMA_DONE) {
3212 tx_ring = &priv->tx_rings[DESC_INDEX];
3213
3214 if (likely(napi_schedule_prep(&tx_ring->napi))) {
3215 tx_ring->int_disable(tx_ring);
3216 __napi_schedule_irqoff(&tx_ring->napi);
3217 }
3218 }
3219
3220 if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
3221 status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
3222 wake_up(&priv->wq);
3223 }
3224
3225 /* all other interested interrupts handled in bottom half */
3226 status &= (UMAC_IRQ_LINK_EVENT | UMAC_IRQ_PHY_DET_R);
3227 if (status) {
3228 /* Save irq status for bottom-half processing. */
3229 spin_lock_irqsave(&priv->lock, flags);
3230 priv->irq0_stat |= status;
3231 spin_unlock_irqrestore(&priv->lock, flags);
3232
3233 schedule_work(&priv->bcmgenet_irq_work);
3234 }
3235
3236 return IRQ_HANDLED;
3237 }
3238
bcmgenet_wol_isr(int irq,void * dev_id)3239 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
3240 {
3241 /* Acknowledge the interrupt */
3242 return IRQ_HANDLED;
3243 }
3244
3245 #ifdef CONFIG_NET_POLL_CONTROLLER
bcmgenet_poll_controller(struct net_device * dev)3246 static void bcmgenet_poll_controller(struct net_device *dev)
3247 {
3248 struct bcmgenet_priv *priv = netdev_priv(dev);
3249
3250 /* Invoke the main RX/TX interrupt handler */
3251 disable_irq(priv->irq0);
3252 bcmgenet_isr0(priv->irq0, priv);
3253 enable_irq(priv->irq0);
3254
3255 /* And the interrupt handler for RX/TX priority queues */
3256 disable_irq(priv->irq1);
3257 bcmgenet_isr1(priv->irq1, priv);
3258 enable_irq(priv->irq1);
3259 }
3260 #endif
3261
bcmgenet_umac_reset(struct bcmgenet_priv * priv)3262 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
3263 {
3264 u32 reg;
3265
3266 reg = bcmgenet_rbuf_ctrl_get(priv);
3267 reg |= BIT(1);
3268 bcmgenet_rbuf_ctrl_set(priv, reg);
3269 udelay(10);
3270
3271 reg &= ~BIT(1);
3272 bcmgenet_rbuf_ctrl_set(priv, reg);
3273 udelay(10);
3274 }
3275
bcmgenet_set_hw_addr(struct bcmgenet_priv * priv,const unsigned char * addr)3276 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
3277 const unsigned char *addr)
3278 {
3279 bcmgenet_umac_writel(priv, get_unaligned_be32(&addr[0]), UMAC_MAC0);
3280 bcmgenet_umac_writel(priv, get_unaligned_be16(&addr[4]), UMAC_MAC1);
3281 }
3282
bcmgenet_get_hw_addr(struct bcmgenet_priv * priv,unsigned char * addr)3283 static void bcmgenet_get_hw_addr(struct bcmgenet_priv *priv,
3284 unsigned char *addr)
3285 {
3286 u32 addr_tmp;
3287
3288 addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC0);
3289 put_unaligned_be32(addr_tmp, &addr[0]);
3290 addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC1);
3291 put_unaligned_be16(addr_tmp, &addr[4]);
3292 }
3293
3294 /* Returns a reusable dma control register value */
bcmgenet_dma_disable(struct bcmgenet_priv * priv)3295 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
3296 {
3297 unsigned int i;
3298 u32 reg;
3299 u32 dma_ctrl;
3300
3301 /* disable DMA */
3302 dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
3303 for (i = 0; i < priv->hw_params->tx_queues; i++)
3304 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3305 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3306 reg &= ~dma_ctrl;
3307 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3308
3309 dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
3310 for (i = 0; i < priv->hw_params->rx_queues; i++)
3311 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3312 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3313 reg &= ~dma_ctrl;
3314 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3315
3316 bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
3317 udelay(10);
3318 bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
3319
3320 return dma_ctrl;
3321 }
3322
bcmgenet_enable_dma(struct bcmgenet_priv * priv,u32 dma_ctrl)3323 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
3324 {
3325 u32 reg;
3326
3327 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3328 reg |= dma_ctrl;
3329 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3330
3331 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3332 reg |= dma_ctrl;
3333 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3334 }
3335
bcmgenet_netif_start(struct net_device * dev)3336 static void bcmgenet_netif_start(struct net_device *dev)
3337 {
3338 struct bcmgenet_priv *priv = netdev_priv(dev);
3339
3340 /* Start the network engine */
3341 bcmgenet_set_rx_mode(dev);
3342 bcmgenet_enable_rx_napi(priv);
3343
3344 umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
3345
3346 bcmgenet_enable_tx_napi(priv);
3347
3348 /* Monitor link interrupts now */
3349 bcmgenet_link_intr_enable(priv);
3350
3351 phy_start(dev->phydev);
3352 }
3353
bcmgenet_open(struct net_device * dev)3354 static int bcmgenet_open(struct net_device *dev)
3355 {
3356 struct bcmgenet_priv *priv = netdev_priv(dev);
3357 unsigned long dma_ctrl;
3358 int ret;
3359
3360 netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
3361
3362 /* Turn on the clock */
3363 clk_prepare_enable(priv->clk);
3364
3365 /* If this is an internal GPHY, power it back on now, before UniMAC is
3366 * brought out of reset as absolutely no UniMAC activity is allowed
3367 */
3368 if (priv->internal_phy)
3369 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3370
3371 /* take MAC out of reset */
3372 bcmgenet_umac_reset(priv);
3373
3374 init_umac(priv);
3375
3376 /* Apply features again in case we changed them while interface was
3377 * down
3378 */
3379 bcmgenet_set_features(dev, dev->features);
3380
3381 bcmgenet_set_hw_addr(priv, dev->dev_addr);
3382
3383 /* Disable RX/TX DMA and flush TX queues */
3384 dma_ctrl = bcmgenet_dma_disable(priv);
3385
3386 /* Reinitialize TDMA and RDMA and SW housekeeping */
3387 ret = bcmgenet_init_dma(priv);
3388 if (ret) {
3389 netdev_err(dev, "failed to initialize DMA\n");
3390 goto err_clk_disable;
3391 }
3392
3393 /* Always enable ring 16 - descriptor ring */
3394 bcmgenet_enable_dma(priv, dma_ctrl);
3395
3396 /* HFB init */
3397 bcmgenet_hfb_init(priv);
3398
3399 ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
3400 dev->name, priv);
3401 if (ret < 0) {
3402 netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
3403 goto err_fini_dma;
3404 }
3405
3406 ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
3407 dev->name, priv);
3408 if (ret < 0) {
3409 netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
3410 goto err_irq0;
3411 }
3412
3413 ret = bcmgenet_mii_probe(dev);
3414 if (ret) {
3415 netdev_err(dev, "failed to connect to PHY\n");
3416 goto err_irq1;
3417 }
3418
3419 bcmgenet_phy_pause_set(dev, priv->rx_pause, priv->tx_pause);
3420
3421 bcmgenet_netif_start(dev);
3422
3423 netif_tx_start_all_queues(dev);
3424
3425 return 0;
3426
3427 err_irq1:
3428 free_irq(priv->irq1, priv);
3429 err_irq0:
3430 free_irq(priv->irq0, priv);
3431 err_fini_dma:
3432 bcmgenet_dma_teardown(priv);
3433 bcmgenet_fini_dma(priv);
3434 err_clk_disable:
3435 if (priv->internal_phy)
3436 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3437 clk_disable_unprepare(priv->clk);
3438 return ret;
3439 }
3440
bcmgenet_netif_stop(struct net_device * dev)3441 static void bcmgenet_netif_stop(struct net_device *dev)
3442 {
3443 struct bcmgenet_priv *priv = netdev_priv(dev);
3444
3445 bcmgenet_disable_tx_napi(priv);
3446 netif_tx_disable(dev);
3447
3448 /* Disable MAC receive */
3449 umac_enable_set(priv, CMD_RX_EN, false);
3450
3451 bcmgenet_dma_teardown(priv);
3452
3453 /* Disable MAC transmit. TX DMA disabled must be done before this */
3454 umac_enable_set(priv, CMD_TX_EN, false);
3455
3456 phy_stop(dev->phydev);
3457 bcmgenet_disable_rx_napi(priv);
3458 bcmgenet_intr_disable(priv);
3459
3460 /* Wait for pending work items to complete. Since interrupts are
3461 * disabled no new work will be scheduled.
3462 */
3463 cancel_work_sync(&priv->bcmgenet_irq_work);
3464
3465 /* tx reclaim */
3466 bcmgenet_tx_reclaim_all(dev);
3467 bcmgenet_fini_dma(priv);
3468 }
3469
bcmgenet_close(struct net_device * dev)3470 static int bcmgenet_close(struct net_device *dev)
3471 {
3472 struct bcmgenet_priv *priv = netdev_priv(dev);
3473 int ret = 0;
3474
3475 netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
3476
3477 bcmgenet_netif_stop(dev);
3478
3479 /* Really kill the PHY state machine and disconnect from it */
3480 phy_disconnect(dev->phydev);
3481
3482 free_irq(priv->irq0, priv);
3483 free_irq(priv->irq1, priv);
3484
3485 if (priv->internal_phy)
3486 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3487
3488 clk_disable_unprepare(priv->clk);
3489
3490 return ret;
3491 }
3492
bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring * ring)3493 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
3494 {
3495 struct bcmgenet_priv *priv = ring->priv;
3496 u32 p_index, c_index, intsts, intmsk;
3497 struct netdev_queue *txq;
3498 unsigned int free_bds;
3499 bool txq_stopped;
3500
3501 if (!netif_msg_tx_err(priv))
3502 return;
3503
3504 txq = netdev_get_tx_queue(priv->dev, ring->queue);
3505
3506 spin_lock(&ring->lock);
3507 if (ring->index == DESC_INDEX) {
3508 intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3509 intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3510 } else {
3511 intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3512 intmsk = 1 << ring->index;
3513 }
3514 c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
3515 p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
3516 txq_stopped = netif_tx_queue_stopped(txq);
3517 free_bds = ring->free_bds;
3518 spin_unlock(&ring->lock);
3519
3520 netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3521 "TX queue status: %s, interrupts: %s\n"
3522 "(sw)free_bds: %d (sw)size: %d\n"
3523 "(sw)p_index: %d (hw)p_index: %d\n"
3524 "(sw)c_index: %d (hw)c_index: %d\n"
3525 "(sw)clean_p: %d (sw)write_p: %d\n"
3526 "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3527 ring->index, ring->queue,
3528 txq_stopped ? "stopped" : "active",
3529 intsts & intmsk ? "enabled" : "disabled",
3530 free_bds, ring->size,
3531 ring->prod_index, p_index & DMA_P_INDEX_MASK,
3532 ring->c_index, c_index & DMA_C_INDEX_MASK,
3533 ring->clean_ptr, ring->write_ptr,
3534 ring->cb_ptr, ring->end_ptr);
3535 }
3536
bcmgenet_timeout(struct net_device * dev,unsigned int txqueue)3537 static void bcmgenet_timeout(struct net_device *dev, unsigned int txqueue)
3538 {
3539 struct bcmgenet_priv *priv = netdev_priv(dev);
3540 u32 int0_enable = 0;
3541 u32 int1_enable = 0;
3542 unsigned int q;
3543
3544 netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3545
3546 for (q = 0; q < priv->hw_params->tx_queues; q++)
3547 bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3548 bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3549
3550 bcmgenet_tx_reclaim_all(dev);
3551
3552 for (q = 0; q < priv->hw_params->tx_queues; q++)
3553 int1_enable |= (1 << q);
3554
3555 int0_enable = UMAC_IRQ_TXDMA_DONE;
3556
3557 /* Re-enable TX interrupts if disabled */
3558 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3559 bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3560
3561 netif_trans_update(dev);
3562
3563 dev->stats.tx_errors++;
3564
3565 netif_tx_wake_all_queues(dev);
3566 }
3567
3568 #define MAX_MDF_FILTER 17
3569
bcmgenet_set_mdf_addr(struct bcmgenet_priv * priv,const unsigned char * addr,int * i)3570 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3571 const unsigned char *addr,
3572 int *i)
3573 {
3574 bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3575 UMAC_MDF_ADDR + (*i * 4));
3576 bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3577 addr[4] << 8 | addr[5],
3578 UMAC_MDF_ADDR + ((*i + 1) * 4));
3579 *i += 2;
3580 }
3581
bcmgenet_set_rx_mode(struct net_device * dev)3582 static void bcmgenet_set_rx_mode(struct net_device *dev)
3583 {
3584 struct bcmgenet_priv *priv = netdev_priv(dev);
3585 struct netdev_hw_addr *ha;
3586 int i, nfilter;
3587 u32 reg;
3588
3589 netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3590
3591 /* Number of filters needed */
3592 nfilter = netdev_uc_count(dev) + netdev_mc_count(dev) + 2;
3593
3594 /*
3595 * Turn on promicuous mode for three scenarios
3596 * 1. IFF_PROMISC flag is set
3597 * 2. IFF_ALLMULTI flag is set
3598 * 3. The number of filters needed exceeds the number filters
3599 * supported by the hardware.
3600 */
3601 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3602 if ((dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) ||
3603 (nfilter > MAX_MDF_FILTER)) {
3604 reg |= CMD_PROMISC;
3605 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3606 bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3607 return;
3608 } else {
3609 reg &= ~CMD_PROMISC;
3610 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3611 }
3612
3613 /* update MDF filter */
3614 i = 0;
3615 /* Broadcast */
3616 bcmgenet_set_mdf_addr(priv, dev->broadcast, &i);
3617 /* my own address.*/
3618 bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i);
3619
3620 /* Unicast */
3621 netdev_for_each_uc_addr(ha, dev)
3622 bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3623
3624 /* Multicast */
3625 netdev_for_each_mc_addr(ha, dev)
3626 bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3627
3628 /* Enable filters */
3629 reg = GENMASK(MAX_MDF_FILTER - 1, MAX_MDF_FILTER - nfilter);
3630 bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3631 }
3632
3633 /* Set the hardware MAC address. */
bcmgenet_set_mac_addr(struct net_device * dev,void * p)3634 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3635 {
3636 struct sockaddr *addr = p;
3637
3638 /* Setting the MAC address at the hardware level is not possible
3639 * without disabling the UniMAC RX/TX enable bits.
3640 */
3641 if (netif_running(dev))
3642 return -EBUSY;
3643
3644 eth_hw_addr_set(dev, addr->sa_data);
3645
3646 return 0;
3647 }
3648
bcmgenet_get_stats(struct net_device * dev)3649 static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3650 {
3651 struct bcmgenet_priv *priv = netdev_priv(dev);
3652 unsigned long tx_bytes = 0, tx_packets = 0;
3653 unsigned long rx_bytes = 0, rx_packets = 0;
3654 unsigned long rx_errors = 0, rx_dropped = 0;
3655 struct bcmgenet_tx_ring *tx_ring;
3656 struct bcmgenet_rx_ring *rx_ring;
3657 unsigned int q;
3658
3659 for (q = 0; q < priv->hw_params->tx_queues; q++) {
3660 tx_ring = &priv->tx_rings[q];
3661 tx_bytes += tx_ring->bytes;
3662 tx_packets += tx_ring->packets;
3663 }
3664 tx_ring = &priv->tx_rings[DESC_INDEX];
3665 tx_bytes += tx_ring->bytes;
3666 tx_packets += tx_ring->packets;
3667
3668 for (q = 0; q < priv->hw_params->rx_queues; q++) {
3669 rx_ring = &priv->rx_rings[q];
3670
3671 rx_bytes += rx_ring->bytes;
3672 rx_packets += rx_ring->packets;
3673 rx_errors += rx_ring->errors;
3674 rx_dropped += rx_ring->dropped;
3675 }
3676 rx_ring = &priv->rx_rings[DESC_INDEX];
3677 rx_bytes += rx_ring->bytes;
3678 rx_packets += rx_ring->packets;
3679 rx_errors += rx_ring->errors;
3680 rx_dropped += rx_ring->dropped;
3681
3682 dev->stats.tx_bytes = tx_bytes;
3683 dev->stats.tx_packets = tx_packets;
3684 dev->stats.rx_bytes = rx_bytes;
3685 dev->stats.rx_packets = rx_packets;
3686 dev->stats.rx_errors = rx_errors;
3687 dev->stats.rx_missed_errors = rx_errors;
3688 dev->stats.rx_dropped = rx_dropped;
3689 return &dev->stats;
3690 }
3691
bcmgenet_change_carrier(struct net_device * dev,bool new_carrier)3692 static int bcmgenet_change_carrier(struct net_device *dev, bool new_carrier)
3693 {
3694 struct bcmgenet_priv *priv = netdev_priv(dev);
3695
3696 if (!dev->phydev || !phy_is_pseudo_fixed_link(dev->phydev) ||
3697 priv->phy_interface != PHY_INTERFACE_MODE_MOCA)
3698 return -EOPNOTSUPP;
3699
3700 if (new_carrier)
3701 netif_carrier_on(dev);
3702 else
3703 netif_carrier_off(dev);
3704
3705 return 0;
3706 }
3707
3708 static const struct net_device_ops bcmgenet_netdev_ops = {
3709 .ndo_open = bcmgenet_open,
3710 .ndo_stop = bcmgenet_close,
3711 .ndo_start_xmit = bcmgenet_xmit,
3712 .ndo_tx_timeout = bcmgenet_timeout,
3713 .ndo_set_rx_mode = bcmgenet_set_rx_mode,
3714 .ndo_set_mac_address = bcmgenet_set_mac_addr,
3715 .ndo_eth_ioctl = phy_do_ioctl_running,
3716 .ndo_set_features = bcmgenet_set_features,
3717 #ifdef CONFIG_NET_POLL_CONTROLLER
3718 .ndo_poll_controller = bcmgenet_poll_controller,
3719 #endif
3720 .ndo_get_stats = bcmgenet_get_stats,
3721 .ndo_change_carrier = bcmgenet_change_carrier,
3722 };
3723
3724 /* Array of GENET hardware parameters/characteristics */
3725 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3726 [GENET_V1] = {
3727 .tx_queues = 0,
3728 .tx_bds_per_q = 0,
3729 .rx_queues = 0,
3730 .rx_bds_per_q = 0,
3731 .bp_in_en_shift = 16,
3732 .bp_in_mask = 0xffff,
3733 .hfb_filter_cnt = 16,
3734 .qtag_mask = 0x1F,
3735 .hfb_offset = 0x1000,
3736 .rdma_offset = 0x2000,
3737 .tdma_offset = 0x3000,
3738 .words_per_bd = 2,
3739 },
3740 [GENET_V2] = {
3741 .tx_queues = 4,
3742 .tx_bds_per_q = 32,
3743 .rx_queues = 0,
3744 .rx_bds_per_q = 0,
3745 .bp_in_en_shift = 16,
3746 .bp_in_mask = 0xffff,
3747 .hfb_filter_cnt = 16,
3748 .qtag_mask = 0x1F,
3749 .tbuf_offset = 0x0600,
3750 .hfb_offset = 0x1000,
3751 .hfb_reg_offset = 0x2000,
3752 .rdma_offset = 0x3000,
3753 .tdma_offset = 0x4000,
3754 .words_per_bd = 2,
3755 .flags = GENET_HAS_EXT,
3756 },
3757 [GENET_V3] = {
3758 .tx_queues = 4,
3759 .tx_bds_per_q = 32,
3760 .rx_queues = 0,
3761 .rx_bds_per_q = 0,
3762 .bp_in_en_shift = 17,
3763 .bp_in_mask = 0x1ffff,
3764 .hfb_filter_cnt = 48,
3765 .hfb_filter_size = 128,
3766 .qtag_mask = 0x3F,
3767 .tbuf_offset = 0x0600,
3768 .hfb_offset = 0x8000,
3769 .hfb_reg_offset = 0xfc00,
3770 .rdma_offset = 0x10000,
3771 .tdma_offset = 0x11000,
3772 .words_per_bd = 2,
3773 .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3774 GENET_HAS_MOCA_LINK_DET,
3775 },
3776 [GENET_V4] = {
3777 .tx_queues = 4,
3778 .tx_bds_per_q = 32,
3779 .rx_queues = 0,
3780 .rx_bds_per_q = 0,
3781 .bp_in_en_shift = 17,
3782 .bp_in_mask = 0x1ffff,
3783 .hfb_filter_cnt = 48,
3784 .hfb_filter_size = 128,
3785 .qtag_mask = 0x3F,
3786 .tbuf_offset = 0x0600,
3787 .hfb_offset = 0x8000,
3788 .hfb_reg_offset = 0xfc00,
3789 .rdma_offset = 0x2000,
3790 .tdma_offset = 0x4000,
3791 .words_per_bd = 3,
3792 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3793 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3794 },
3795 [GENET_V5] = {
3796 .tx_queues = 4,
3797 .tx_bds_per_q = 32,
3798 .rx_queues = 0,
3799 .rx_bds_per_q = 0,
3800 .bp_in_en_shift = 17,
3801 .bp_in_mask = 0x1ffff,
3802 .hfb_filter_cnt = 48,
3803 .hfb_filter_size = 128,
3804 .qtag_mask = 0x3F,
3805 .tbuf_offset = 0x0600,
3806 .hfb_offset = 0x8000,
3807 .hfb_reg_offset = 0xfc00,
3808 .rdma_offset = 0x2000,
3809 .tdma_offset = 0x4000,
3810 .words_per_bd = 3,
3811 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3812 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3813 },
3814 };
3815
3816 /* Infer hardware parameters from the detected GENET version */
bcmgenet_set_hw_params(struct bcmgenet_priv * priv)3817 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3818 {
3819 struct bcmgenet_hw_params *params;
3820 u32 reg;
3821 u8 major;
3822 u16 gphy_rev;
3823
3824 if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3825 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3826 genet_dma_ring_regs = genet_dma_ring_regs_v4;
3827 } else if (GENET_IS_V3(priv)) {
3828 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3829 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3830 } else if (GENET_IS_V2(priv)) {
3831 bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3832 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3833 } else if (GENET_IS_V1(priv)) {
3834 bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3835 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3836 }
3837
3838 /* enum genet_version starts at 1 */
3839 priv->hw_params = &bcmgenet_hw_params[priv->version];
3840 params = priv->hw_params;
3841
3842 /* Read GENET HW version */
3843 reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3844 major = (reg >> 24 & 0x0f);
3845 if (major == 6)
3846 major = 5;
3847 else if (major == 5)
3848 major = 4;
3849 else if (major == 0)
3850 major = 1;
3851 if (major != priv->version) {
3852 dev_err(&priv->pdev->dev,
3853 "GENET version mismatch, got: %d, configured for: %d\n",
3854 major, priv->version);
3855 }
3856
3857 /* Print the GENET core version */
3858 dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3859 major, (reg >> 16) & 0x0f, reg & 0xffff);
3860
3861 /* Store the integrated PHY revision for the MDIO probing function
3862 * to pass this information to the PHY driver. The PHY driver expects
3863 * to find the PHY major revision in bits 15:8 while the GENET register
3864 * stores that information in bits 7:0, account for that.
3865 *
3866 * On newer chips, starting with PHY revision G0, a new scheme is
3867 * deployed similar to the Starfighter 2 switch with GPHY major
3868 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3869 * is reserved as well as special value 0x01ff, we have a small
3870 * heuristic to check for the new GPHY revision and re-arrange things
3871 * so the GPHY driver is happy.
3872 */
3873 gphy_rev = reg & 0xffff;
3874
3875 if (GENET_IS_V5(priv)) {
3876 /* The EPHY revision should come from the MDIO registers of
3877 * the PHY not from GENET.
3878 */
3879 if (gphy_rev != 0) {
3880 pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3881 gphy_rev);
3882 }
3883 /* This is reserved so should require special treatment */
3884 } else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3885 pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3886 return;
3887 /* This is the good old scheme, just GPHY major, no minor nor patch */
3888 } else if ((gphy_rev & 0xf0) != 0) {
3889 priv->gphy_rev = gphy_rev << 8;
3890 /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3891 } else if ((gphy_rev & 0xff00) != 0) {
3892 priv->gphy_rev = gphy_rev;
3893 }
3894
3895 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3896 if (!(params->flags & GENET_HAS_40BITS))
3897 pr_warn("GENET does not support 40-bits PA\n");
3898 #endif
3899
3900 pr_debug("Configuration for version: %d\n"
3901 "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3902 "BP << en: %2d, BP msk: 0x%05x\n"
3903 "HFB count: %2d, QTAQ msk: 0x%05x\n"
3904 "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3905 "RDMA: 0x%05x, TDMA: 0x%05x\n"
3906 "Words/BD: %d\n",
3907 priv->version,
3908 params->tx_queues, params->tx_bds_per_q,
3909 params->rx_queues, params->rx_bds_per_q,
3910 params->bp_in_en_shift, params->bp_in_mask,
3911 params->hfb_filter_cnt, params->qtag_mask,
3912 params->tbuf_offset, params->hfb_offset,
3913 params->hfb_reg_offset,
3914 params->rdma_offset, params->tdma_offset,
3915 params->words_per_bd);
3916 }
3917
3918 struct bcmgenet_plat_data {
3919 enum bcmgenet_version version;
3920 u32 dma_max_burst_length;
3921 bool ephy_16nm;
3922 };
3923
3924 static const struct bcmgenet_plat_data v1_plat_data = {
3925 .version = GENET_V1,
3926 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3927 };
3928
3929 static const struct bcmgenet_plat_data v2_plat_data = {
3930 .version = GENET_V2,
3931 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3932 };
3933
3934 static const struct bcmgenet_plat_data v3_plat_data = {
3935 .version = GENET_V3,
3936 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3937 };
3938
3939 static const struct bcmgenet_plat_data v4_plat_data = {
3940 .version = GENET_V4,
3941 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3942 };
3943
3944 static const struct bcmgenet_plat_data v5_plat_data = {
3945 .version = GENET_V5,
3946 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3947 };
3948
3949 static const struct bcmgenet_plat_data bcm2711_plat_data = {
3950 .version = GENET_V5,
3951 .dma_max_burst_length = 0x08,
3952 };
3953
3954 static const struct bcmgenet_plat_data bcm7712_plat_data = {
3955 .version = GENET_V5,
3956 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3957 .ephy_16nm = true,
3958 };
3959
3960 static const struct of_device_id bcmgenet_match[] = {
3961 { .compatible = "brcm,genet-v1", .data = &v1_plat_data },
3962 { .compatible = "brcm,genet-v2", .data = &v2_plat_data },
3963 { .compatible = "brcm,genet-v3", .data = &v3_plat_data },
3964 { .compatible = "brcm,genet-v4", .data = &v4_plat_data },
3965 { .compatible = "brcm,genet-v5", .data = &v5_plat_data },
3966 { .compatible = "brcm,bcm2711-genet-v5", .data = &bcm2711_plat_data },
3967 { .compatible = "brcm,bcm7712-genet-v5", .data = &bcm7712_plat_data },
3968 { },
3969 };
3970 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3971
bcmgenet_probe(struct platform_device * pdev)3972 static int bcmgenet_probe(struct platform_device *pdev)
3973 {
3974 struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3975 const struct bcmgenet_plat_data *pdata;
3976 struct bcmgenet_priv *priv;
3977 struct net_device *dev;
3978 unsigned int i;
3979 int err = -EIO;
3980
3981 /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3982 dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3983 GENET_MAX_MQ_CNT + 1);
3984 if (!dev) {
3985 dev_err(&pdev->dev, "can't allocate net device\n");
3986 return -ENOMEM;
3987 }
3988
3989 priv = netdev_priv(dev);
3990 priv->irq0 = platform_get_irq(pdev, 0);
3991 if (priv->irq0 < 0) {
3992 err = priv->irq0;
3993 goto err;
3994 }
3995 priv->irq1 = platform_get_irq(pdev, 1);
3996 if (priv->irq1 < 0) {
3997 err = priv->irq1;
3998 goto err;
3999 }
4000 priv->wol_irq = platform_get_irq_optional(pdev, 2);
4001 if (priv->wol_irq == -EPROBE_DEFER) {
4002 err = priv->wol_irq;
4003 goto err;
4004 }
4005
4006 priv->base = devm_platform_ioremap_resource(pdev, 0);
4007 if (IS_ERR(priv->base)) {
4008 err = PTR_ERR(priv->base);
4009 goto err;
4010 }
4011
4012 spin_lock_init(&priv->lock);
4013
4014 /* Set default pause parameters */
4015 priv->autoneg_pause = 1;
4016 priv->tx_pause = 1;
4017 priv->rx_pause = 1;
4018
4019 SET_NETDEV_DEV(dev, &pdev->dev);
4020 dev_set_drvdata(&pdev->dev, dev);
4021 dev->watchdog_timeo = 2 * HZ;
4022 dev->ethtool_ops = &bcmgenet_ethtool_ops;
4023 dev->netdev_ops = &bcmgenet_netdev_ops;
4024
4025 priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
4026
4027 /* Set default features */
4028 dev->features |= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_HW_CSUM |
4029 NETIF_F_RXCSUM;
4030 dev->hw_features |= dev->features;
4031 dev->vlan_features |= dev->features;
4032
4033 /* Request the WOL interrupt and advertise suspend if available */
4034 priv->wol_irq_disabled = true;
4035 if (priv->wol_irq > 0) {
4036 err = devm_request_irq(&pdev->dev, priv->wol_irq,
4037 bcmgenet_wol_isr, 0, dev->name, priv);
4038 if (!err)
4039 device_set_wakeup_capable(&pdev->dev, 1);
4040 }
4041
4042 /* Set the needed headroom to account for any possible
4043 * features enabling/disabling at runtime
4044 */
4045 dev->needed_headroom += 64;
4046
4047 priv->dev = dev;
4048 priv->pdev = pdev;
4049
4050 pdata = device_get_match_data(&pdev->dev);
4051 if (pdata) {
4052 priv->version = pdata->version;
4053 priv->dma_max_burst_length = pdata->dma_max_burst_length;
4054 priv->ephy_16nm = pdata->ephy_16nm;
4055 } else {
4056 priv->version = pd->genet_version;
4057 priv->dma_max_burst_length = DMA_MAX_BURST_LENGTH;
4058 }
4059
4060 priv->clk = devm_clk_get_optional(&priv->pdev->dev, "enet");
4061 if (IS_ERR(priv->clk)) {
4062 dev_dbg(&priv->pdev->dev, "failed to get enet clock\n");
4063 err = PTR_ERR(priv->clk);
4064 goto err;
4065 }
4066
4067 err = clk_prepare_enable(priv->clk);
4068 if (err)
4069 goto err;
4070
4071 bcmgenet_set_hw_params(priv);
4072
4073 err = -EIO;
4074 if (priv->hw_params->flags & GENET_HAS_40BITS)
4075 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
4076 if (err)
4077 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
4078 if (err)
4079 goto err_clk_disable;
4080
4081 /* Mii wait queue */
4082 init_waitqueue_head(&priv->wq);
4083 /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
4084 priv->rx_buf_len = RX_BUF_LENGTH;
4085 INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
4086
4087 priv->clk_wol = devm_clk_get_optional(&priv->pdev->dev, "enet-wol");
4088 if (IS_ERR(priv->clk_wol)) {
4089 dev_dbg(&priv->pdev->dev, "failed to get enet-wol clock\n");
4090 err = PTR_ERR(priv->clk_wol);
4091 goto err_clk_disable;
4092 }
4093
4094 priv->clk_eee = devm_clk_get_optional(&priv->pdev->dev, "enet-eee");
4095 if (IS_ERR(priv->clk_eee)) {
4096 dev_dbg(&priv->pdev->dev, "failed to get enet-eee clock\n");
4097 err = PTR_ERR(priv->clk_eee);
4098 goto err_clk_disable;
4099 }
4100
4101 /* If this is an internal GPHY, power it on now, before UniMAC is
4102 * brought out of reset as absolutely no UniMAC activity is allowed
4103 */
4104 if (device_get_phy_mode(&pdev->dev) == PHY_INTERFACE_MODE_INTERNAL)
4105 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
4106
4107 if (pd && !IS_ERR_OR_NULL(pd->mac_address))
4108 eth_hw_addr_set(dev, pd->mac_address);
4109 else
4110 if (device_get_ethdev_address(&pdev->dev, dev))
4111 if (has_acpi_companion(&pdev->dev)) {
4112 u8 addr[ETH_ALEN];
4113
4114 bcmgenet_get_hw_addr(priv, addr);
4115 eth_hw_addr_set(dev, addr);
4116 }
4117
4118 if (!is_valid_ether_addr(dev->dev_addr)) {
4119 dev_warn(&pdev->dev, "using random Ethernet MAC\n");
4120 eth_hw_addr_random(dev);
4121 }
4122
4123 reset_umac(priv);
4124
4125 err = bcmgenet_mii_init(dev);
4126 if (err)
4127 goto err_clk_disable;
4128
4129 /* setup number of real queues + 1 (GENET_V1 has 0 hardware queues
4130 * just the ring 16 descriptor based TX
4131 */
4132 netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
4133 netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
4134
4135 /* Set default coalescing parameters */
4136 for (i = 0; i < priv->hw_params->rx_queues; i++)
4137 priv->rx_rings[i].rx_max_coalesced_frames = 1;
4138 priv->rx_rings[DESC_INDEX].rx_max_coalesced_frames = 1;
4139
4140 /* libphy will determine the link state */
4141 netif_carrier_off(dev);
4142
4143 /* Turn off the main clock, WOL clock is handled separately */
4144 clk_disable_unprepare(priv->clk);
4145
4146 err = register_netdev(dev);
4147 if (err) {
4148 bcmgenet_mii_exit(dev);
4149 goto err;
4150 }
4151
4152 return err;
4153
4154 err_clk_disable:
4155 clk_disable_unprepare(priv->clk);
4156 err:
4157 free_netdev(dev);
4158 return err;
4159 }
4160
bcmgenet_remove(struct platform_device * pdev)4161 static int bcmgenet_remove(struct platform_device *pdev)
4162 {
4163 struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
4164
4165 dev_set_drvdata(&pdev->dev, NULL);
4166 unregister_netdev(priv->dev);
4167 bcmgenet_mii_exit(priv->dev);
4168 free_netdev(priv->dev);
4169
4170 return 0;
4171 }
4172
bcmgenet_shutdown(struct platform_device * pdev)4173 static void bcmgenet_shutdown(struct platform_device *pdev)
4174 {
4175 bcmgenet_remove(pdev);
4176 }
4177
4178 #ifdef CONFIG_PM_SLEEP
bcmgenet_resume_noirq(struct device * d)4179 static int bcmgenet_resume_noirq(struct device *d)
4180 {
4181 struct net_device *dev = dev_get_drvdata(d);
4182 struct bcmgenet_priv *priv = netdev_priv(dev);
4183 int ret;
4184 u32 reg;
4185
4186 if (!netif_running(dev))
4187 return 0;
4188
4189 /* Turn on the clock */
4190 ret = clk_prepare_enable(priv->clk);
4191 if (ret)
4192 return ret;
4193
4194 if (device_may_wakeup(d) && priv->wolopts) {
4195 /* Account for Wake-on-LAN events and clear those events
4196 * (Some devices need more time between enabling the clocks
4197 * and the interrupt register reflecting the wake event so
4198 * read the register twice)
4199 */
4200 reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4201 reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4202 if (reg & UMAC_IRQ_WAKE_EVENT)
4203 pm_wakeup_event(&priv->pdev->dev, 0);
4204 }
4205
4206 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_WAKE_EVENT, INTRL2_CPU_CLEAR);
4207
4208 return 0;
4209 }
4210
bcmgenet_resume(struct device * d)4211 static int bcmgenet_resume(struct device *d)
4212 {
4213 struct net_device *dev = dev_get_drvdata(d);
4214 struct bcmgenet_priv *priv = netdev_priv(dev);
4215 struct bcmgenet_rxnfc_rule *rule;
4216 unsigned long dma_ctrl;
4217 int ret;
4218
4219 if (!netif_running(dev))
4220 return 0;
4221
4222 /* From WOL-enabled suspend, switch to regular clock */
4223 if (device_may_wakeup(d) && priv->wolopts)
4224 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
4225
4226 /* If this is an internal GPHY, power it back on now, before UniMAC is
4227 * brought out of reset as absolutely no UniMAC activity is allowed
4228 */
4229 if (priv->internal_phy)
4230 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
4231
4232 bcmgenet_umac_reset(priv);
4233
4234 init_umac(priv);
4235
4236 phy_init_hw(dev->phydev);
4237
4238 /* Speed settings must be restored */
4239 genphy_config_aneg(dev->phydev);
4240 bcmgenet_mii_config(priv->dev, false);
4241
4242 /* Restore enabled features */
4243 bcmgenet_set_features(dev, dev->features);
4244
4245 bcmgenet_set_hw_addr(priv, dev->dev_addr);
4246
4247 /* Restore hardware filters */
4248 bcmgenet_hfb_clear(priv);
4249 list_for_each_entry(rule, &priv->rxnfc_list, list)
4250 if (rule->state != BCMGENET_RXNFC_STATE_UNUSED)
4251 bcmgenet_hfb_create_rxnfc_filter(priv, rule);
4252
4253 /* Disable RX/TX DMA and flush TX queues */
4254 dma_ctrl = bcmgenet_dma_disable(priv);
4255
4256 /* Reinitialize TDMA and RDMA and SW housekeeping */
4257 ret = bcmgenet_init_dma(priv);
4258 if (ret) {
4259 netdev_err(dev, "failed to initialize DMA\n");
4260 goto out_clk_disable;
4261 }
4262
4263 /* Always enable ring 16 - descriptor ring */
4264 bcmgenet_enable_dma(priv, dma_ctrl);
4265
4266 if (!device_may_wakeup(d))
4267 phy_resume(dev->phydev);
4268
4269 if (priv->eee.eee_enabled)
4270 bcmgenet_eee_enable_set(dev, true);
4271
4272 bcmgenet_netif_start(dev);
4273
4274 netif_device_attach(dev);
4275
4276 return 0;
4277
4278 out_clk_disable:
4279 if (priv->internal_phy)
4280 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
4281 clk_disable_unprepare(priv->clk);
4282 return ret;
4283 }
4284
bcmgenet_suspend(struct device * d)4285 static int bcmgenet_suspend(struct device *d)
4286 {
4287 struct net_device *dev = dev_get_drvdata(d);
4288 struct bcmgenet_priv *priv = netdev_priv(dev);
4289
4290 if (!netif_running(dev))
4291 return 0;
4292
4293 netif_device_detach(dev);
4294
4295 bcmgenet_netif_stop(dev);
4296
4297 if (!device_may_wakeup(d))
4298 phy_suspend(dev->phydev);
4299
4300 /* Disable filtering */
4301 bcmgenet_hfb_reg_writel(priv, 0, HFB_CTRL);
4302
4303 return 0;
4304 }
4305
bcmgenet_suspend_noirq(struct device * d)4306 static int bcmgenet_suspend_noirq(struct device *d)
4307 {
4308 struct net_device *dev = dev_get_drvdata(d);
4309 struct bcmgenet_priv *priv = netdev_priv(dev);
4310 int ret = 0;
4311
4312 if (!netif_running(dev))
4313 return 0;
4314
4315 /* Prepare the device for Wake-on-LAN and switch to the slow clock */
4316 if (device_may_wakeup(d) && priv->wolopts)
4317 ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
4318 else if (priv->internal_phy)
4319 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
4320
4321 /* Let the framework handle resumption and leave the clocks on */
4322 if (ret)
4323 return ret;
4324
4325 /* Turn off the clocks */
4326 clk_disable_unprepare(priv->clk);
4327
4328 return 0;
4329 }
4330 #else
4331 #define bcmgenet_suspend NULL
4332 #define bcmgenet_suspend_noirq NULL
4333 #define bcmgenet_resume NULL
4334 #define bcmgenet_resume_noirq NULL
4335 #endif /* CONFIG_PM_SLEEP */
4336
4337 static const struct dev_pm_ops bcmgenet_pm_ops = {
4338 .suspend = bcmgenet_suspend,
4339 .suspend_noirq = bcmgenet_suspend_noirq,
4340 .resume = bcmgenet_resume,
4341 .resume_noirq = bcmgenet_resume_noirq,
4342 };
4343
4344 static const struct acpi_device_id genet_acpi_match[] = {
4345 { "BCM6E4E", (kernel_ulong_t)&bcm2711_plat_data },
4346 { },
4347 };
4348 MODULE_DEVICE_TABLE(acpi, genet_acpi_match);
4349
4350 static struct platform_driver bcmgenet_driver = {
4351 .probe = bcmgenet_probe,
4352 .remove = bcmgenet_remove,
4353 .shutdown = bcmgenet_shutdown,
4354 .driver = {
4355 .name = "bcmgenet",
4356 .of_match_table = bcmgenet_match,
4357 .pm = &bcmgenet_pm_ops,
4358 .acpi_match_table = genet_acpi_match,
4359 },
4360 };
4361 module_platform_driver(bcmgenet_driver);
4362
4363 MODULE_AUTHOR("Broadcom Corporation");
4364 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
4365 MODULE_ALIAS("platform:bcmgenet");
4366 MODULE_LICENSE("GPL");
4367 MODULE_SOFTDEP("pre: mdio-bcm-unimac");
4368