1 // SPDX-License-Identifier: GPL-2.0-only
2
3 /*
4 * MTD driver for the 28F160F3 Flash Memory (non-CFI) on LART.
5 *
6 * Author: Abraham vd Merwe <abraham@2d3d.co.za>
7 *
8 * Copyright (c) 2001, 2d3D, Inc.
9 *
10 * References:
11 *
12 * [1] 3 Volt Fast Boot Block Flash Memory" Intel Datasheet
13 * - Order Number: 290644-005
14 * - January 2000
15 *
16 * [2] MTD internal API documentation
17 * - http://www.linux-mtd.infradead.org/
18 *
19 * Limitations:
20 *
21 * Even though this driver is written for 3 Volt Fast Boot
22 * Block Flash Memory, it is rather specific to LART. With
23 * Minor modifications, notably the without data/address line
24 * mangling and different bus settings, etc. it should be
25 * trivial to adapt to other platforms.
26 *
27 * If somebody would sponsor me a different board, I'll
28 * adapt the driver (:
29 */
30
31 /* debugging */
32 //#define LART_DEBUG
33
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/types.h>
37 #include <linux/init.h>
38 #include <linux/errno.h>
39 #include <linux/string.h>
40 #include <linux/mtd/mtd.h>
41 #include <linux/mtd/partitions.h>
42
43 #ifndef CONFIG_SA1100_LART
44 #error This is for LART architecture only
45 #endif
46
47 static char module_name[] = "lart";
48
49 /*
50 * These values is specific to 28Fxxxx3 flash memory.
51 * See section 2.3.1 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
52 */
53 #define FLASH_BLOCKSIZE_PARAM (4096 * BUSWIDTH)
54 #define FLASH_NUMBLOCKS_16m_PARAM 8
55 #define FLASH_NUMBLOCKS_8m_PARAM 8
56
57 /*
58 * These values is specific to 28Fxxxx3 flash memory.
59 * See section 2.3.2 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
60 */
61 #define FLASH_BLOCKSIZE_MAIN (32768 * BUSWIDTH)
62 #define FLASH_NUMBLOCKS_16m_MAIN 31
63 #define FLASH_NUMBLOCKS_8m_MAIN 15
64
65 /*
66 * These values are specific to LART
67 */
68
69 /* general */
70 #define BUSWIDTH 4 /* don't change this - a lot of the code _will_ break if you change this */
71 #define FLASH_OFFSET 0xe8000000 /* see linux/arch/arm/mach-sa1100/lart.c */
72
73 /* blob */
74 #define NUM_BLOB_BLOCKS FLASH_NUMBLOCKS_16m_PARAM
75 #define PART_BLOB_START 0x00000000
76 #define PART_BLOB_LEN (NUM_BLOB_BLOCKS * FLASH_BLOCKSIZE_PARAM)
77
78 /* kernel */
79 #define NUM_KERNEL_BLOCKS 7
80 #define PART_KERNEL_START (PART_BLOB_START + PART_BLOB_LEN)
81 #define PART_KERNEL_LEN (NUM_KERNEL_BLOCKS * FLASH_BLOCKSIZE_MAIN)
82
83 /* initial ramdisk */
84 #define NUM_INITRD_BLOCKS 24
85 #define PART_INITRD_START (PART_KERNEL_START + PART_KERNEL_LEN)
86 #define PART_INITRD_LEN (NUM_INITRD_BLOCKS * FLASH_BLOCKSIZE_MAIN)
87
88 /*
89 * See section 4.0 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
90 */
91 #define READ_ARRAY 0x00FF00FF /* Read Array/Reset */
92 #define READ_ID_CODES 0x00900090 /* Read Identifier Codes */
93 #define ERASE_SETUP 0x00200020 /* Block Erase */
94 #define ERASE_CONFIRM 0x00D000D0 /* Block Erase and Program Resume */
95 #define PGM_SETUP 0x00400040 /* Program */
96 #define STATUS_READ 0x00700070 /* Read Status Register */
97 #define STATUS_CLEAR 0x00500050 /* Clear Status Register */
98 #define STATUS_BUSY 0x00800080 /* Write State Machine Status (WSMS) */
99 #define STATUS_ERASE_ERR 0x00200020 /* Erase Status (ES) */
100 #define STATUS_PGM_ERR 0x00100010 /* Program Status (PS) */
101
102 /*
103 * See section 4.2 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
104 */
105 #define FLASH_MANUFACTURER 0x00890089
106 #define FLASH_DEVICE_8mbit_TOP 0x88f188f1
107 #define FLASH_DEVICE_8mbit_BOTTOM 0x88f288f2
108 #define FLASH_DEVICE_16mbit_TOP 0x88f388f3
109 #define FLASH_DEVICE_16mbit_BOTTOM 0x88f488f4
110
111 /***************************************************************************************************/
112
113 /*
114 * The data line mapping on LART is as follows:
115 *
116 * U2 CPU | U3 CPU
117 * -------------------
118 * 0 20 | 0 12
119 * 1 22 | 1 14
120 * 2 19 | 2 11
121 * 3 17 | 3 9
122 * 4 24 | 4 0
123 * 5 26 | 5 2
124 * 6 31 | 6 7
125 * 7 29 | 7 5
126 * 8 21 | 8 13
127 * 9 23 | 9 15
128 * 10 18 | 10 10
129 * 11 16 | 11 8
130 * 12 25 | 12 1
131 * 13 27 | 13 3
132 * 14 30 | 14 6
133 * 15 28 | 15 4
134 */
135
136 /* Mangle data (x) */
137 #define DATA_TO_FLASH(x) \
138 ( \
139 (((x) & 0x08009000) >> 11) + \
140 (((x) & 0x00002000) >> 10) + \
141 (((x) & 0x04004000) >> 8) + \
142 (((x) & 0x00000010) >> 4) + \
143 (((x) & 0x91000820) >> 3) + \
144 (((x) & 0x22080080) >> 2) + \
145 ((x) & 0x40000400) + \
146 (((x) & 0x00040040) << 1) + \
147 (((x) & 0x00110000) << 4) + \
148 (((x) & 0x00220100) << 5) + \
149 (((x) & 0x00800208) << 6) + \
150 (((x) & 0x00400004) << 9) + \
151 (((x) & 0x00000001) << 12) + \
152 (((x) & 0x00000002) << 13) \
153 )
154
155 /* Unmangle data (x) */
156 #define FLASH_TO_DATA(x) \
157 ( \
158 (((x) & 0x00010012) << 11) + \
159 (((x) & 0x00000008) << 10) + \
160 (((x) & 0x00040040) << 8) + \
161 (((x) & 0x00000001) << 4) + \
162 (((x) & 0x12200104) << 3) + \
163 (((x) & 0x08820020) << 2) + \
164 ((x) & 0x40000400) + \
165 (((x) & 0x00080080) >> 1) + \
166 (((x) & 0x01100000) >> 4) + \
167 (((x) & 0x04402000) >> 5) + \
168 (((x) & 0x20008200) >> 6) + \
169 (((x) & 0x80000800) >> 9) + \
170 (((x) & 0x00001000) >> 12) + \
171 (((x) & 0x00004000) >> 13) \
172 )
173
174 /*
175 * The address line mapping on LART is as follows:
176 *
177 * U3 CPU | U2 CPU
178 * -------------------
179 * 0 2 | 0 2
180 * 1 3 | 1 3
181 * 2 9 | 2 9
182 * 3 13 | 3 8
183 * 4 8 | 4 7
184 * 5 12 | 5 6
185 * 6 11 | 6 5
186 * 7 10 | 7 4
187 * 8 4 | 8 10
188 * 9 5 | 9 11
189 * 10 6 | 10 12
190 * 11 7 | 11 13
191 *
192 * BOOT BLOCK BOUNDARY
193 *
194 * 12 15 | 12 15
195 * 13 14 | 13 14
196 * 14 16 | 14 16
197 *
198 * MAIN BLOCK BOUNDARY
199 *
200 * 15 17 | 15 18
201 * 16 18 | 16 17
202 * 17 20 | 17 20
203 * 18 19 | 18 19
204 * 19 21 | 19 21
205 *
206 * As we can see from above, the addresses aren't mangled across
207 * block boundaries, so we don't need to worry about address
208 * translations except for sending/reading commands during
209 * initialization
210 */
211
212 /* Mangle address (x) on chip U2 */
213 #define ADDR_TO_FLASH_U2(x) \
214 ( \
215 (((x) & 0x00000f00) >> 4) + \
216 (((x) & 0x00042000) << 1) + \
217 (((x) & 0x0009c003) << 2) + \
218 (((x) & 0x00021080) << 3) + \
219 (((x) & 0x00000010) << 4) + \
220 (((x) & 0x00000040) << 5) + \
221 (((x) & 0x00000024) << 7) + \
222 (((x) & 0x00000008) << 10) \
223 )
224
225 /* Unmangle address (x) on chip U2 */
226 #define FLASH_U2_TO_ADDR(x) \
227 ( \
228 (((x) << 4) & 0x00000f00) + \
229 (((x) >> 1) & 0x00042000) + \
230 (((x) >> 2) & 0x0009c003) + \
231 (((x) >> 3) & 0x00021080) + \
232 (((x) >> 4) & 0x00000010) + \
233 (((x) >> 5) & 0x00000040) + \
234 (((x) >> 7) & 0x00000024) + \
235 (((x) >> 10) & 0x00000008) \
236 )
237
238 /* Mangle address (x) on chip U3 */
239 #define ADDR_TO_FLASH_U3(x) \
240 ( \
241 (((x) & 0x00000080) >> 3) + \
242 (((x) & 0x00000040) >> 1) + \
243 (((x) & 0x00052020) << 1) + \
244 (((x) & 0x00084f03) << 2) + \
245 (((x) & 0x00029010) << 3) + \
246 (((x) & 0x00000008) << 5) + \
247 (((x) & 0x00000004) << 7) \
248 )
249
250 /* Unmangle address (x) on chip U3 */
251 #define FLASH_U3_TO_ADDR(x) \
252 ( \
253 (((x) << 3) & 0x00000080) + \
254 (((x) << 1) & 0x00000040) + \
255 (((x) >> 1) & 0x00052020) + \
256 (((x) >> 2) & 0x00084f03) + \
257 (((x) >> 3) & 0x00029010) + \
258 (((x) >> 5) & 0x00000008) + \
259 (((x) >> 7) & 0x00000004) \
260 )
261
262 /***************************************************************************************************/
263
read8(__u32 offset)264 static __u8 read8 (__u32 offset)
265 {
266 volatile __u8 *data = (__u8 *) (FLASH_OFFSET + offset);
267 #ifdef LART_DEBUG
268 printk (KERN_DEBUG "%s(): 0x%.8x -> 0x%.2x\n", __func__, offset, *data);
269 #endif
270 return (*data);
271 }
272
read32(__u32 offset)273 static __u32 read32 (__u32 offset)
274 {
275 volatile __u32 *data = (__u32 *) (FLASH_OFFSET + offset);
276 #ifdef LART_DEBUG
277 printk (KERN_DEBUG "%s(): 0x%.8x -> 0x%.8x\n", __func__, offset, *data);
278 #endif
279 return (*data);
280 }
281
write32(__u32 x,__u32 offset)282 static void write32 (__u32 x,__u32 offset)
283 {
284 volatile __u32 *data = (__u32 *) (FLASH_OFFSET + offset);
285 *data = x;
286 #ifdef LART_DEBUG
287 printk (KERN_DEBUG "%s(): 0x%.8x <- 0x%.8x\n", __func__, offset, *data);
288 #endif
289 }
290
291 /***************************************************************************************************/
292
293 /*
294 * Probe for 16mbit flash memory on a LART board without doing
295 * too much damage. Since we need to write 1 dword to memory,
296 * we're f**cked if this happens to be DRAM since we can't
297 * restore the memory (otherwise we might exit Read Array mode).
298 *
299 * Returns 1 if we found 16mbit flash memory on LART, 0 otherwise.
300 */
flash_probe(void)301 static int flash_probe (void)
302 {
303 __u32 manufacturer,devtype;
304
305 /* setup "Read Identifier Codes" mode */
306 write32 (DATA_TO_FLASH (READ_ID_CODES),0x00000000);
307
308 /* probe U2. U2/U3 returns the same data since the first 3
309 * address lines is mangled in the same way */
310 manufacturer = FLASH_TO_DATA (read32 (ADDR_TO_FLASH_U2 (0x00000000)));
311 devtype = FLASH_TO_DATA (read32 (ADDR_TO_FLASH_U2 (0x00000001)));
312
313 /* put the flash back into command mode */
314 write32 (DATA_TO_FLASH (READ_ARRAY),0x00000000);
315
316 return (manufacturer == FLASH_MANUFACTURER && (devtype == FLASH_DEVICE_16mbit_TOP || devtype == FLASH_DEVICE_16mbit_BOTTOM));
317 }
318
319 /*
320 * Erase one block of flash memory at offset ``offset'' which is any
321 * address within the block which should be erased.
322 *
323 * Returns 1 if successful, 0 otherwise.
324 */
erase_block(__u32 offset)325 static inline int erase_block (__u32 offset)
326 {
327 __u32 status;
328
329 #ifdef LART_DEBUG
330 printk (KERN_DEBUG "%s(): 0x%.8x\n", __func__, offset);
331 #endif
332
333 /* erase and confirm */
334 write32 (DATA_TO_FLASH (ERASE_SETUP),offset);
335 write32 (DATA_TO_FLASH (ERASE_CONFIRM),offset);
336
337 /* wait for block erase to finish */
338 do
339 {
340 write32 (DATA_TO_FLASH (STATUS_READ),offset);
341 status = FLASH_TO_DATA (read32 (offset));
342 }
343 while ((~status & STATUS_BUSY) != 0);
344
345 /* put the flash back into command mode */
346 write32 (DATA_TO_FLASH (READ_ARRAY),offset);
347
348 /* was the erase successful? */
349 if ((status & STATUS_ERASE_ERR))
350 {
351 printk (KERN_WARNING "%s: erase error at address 0x%.8x.\n",module_name,offset);
352 return (0);
353 }
354
355 return (1);
356 }
357
flash_erase(struct mtd_info * mtd,struct erase_info * instr)358 static int flash_erase (struct mtd_info *mtd,struct erase_info *instr)
359 {
360 __u32 addr,len;
361 int i,first;
362
363 #ifdef LART_DEBUG
364 printk (KERN_DEBUG "%s(addr = 0x%.8x, len = %d)\n", __func__, instr->addr, instr->len);
365 #endif
366
367 /*
368 * check that both start and end of the requested erase are
369 * aligned with the erasesize at the appropriate addresses.
370 *
371 * skip all erase regions which are ended before the start of
372 * the requested erase. Actually, to save on the calculations,
373 * we skip to the first erase region which starts after the
374 * start of the requested erase, and then go back one.
375 */
376 for (i = 0; i < mtd->numeraseregions && instr->addr >= mtd->eraseregions[i].offset; i++) ;
377 i--;
378
379 /*
380 * ok, now i is pointing at the erase region in which this
381 * erase request starts. Check the start of the requested
382 * erase range is aligned with the erase size which is in
383 * effect here.
384 */
385 if (i < 0 || (instr->addr & (mtd->eraseregions[i].erasesize - 1)))
386 return -EINVAL;
387
388 /* Remember the erase region we start on */
389 first = i;
390
391 /*
392 * next, check that the end of the requested erase is aligned
393 * with the erase region at that address.
394 *
395 * as before, drop back one to point at the region in which
396 * the address actually falls
397 */
398 for (; i < mtd->numeraseregions && instr->addr + instr->len >= mtd->eraseregions[i].offset; i++) ;
399 i--;
400
401 /* is the end aligned on a block boundary? */
402 if (i < 0 || ((instr->addr + instr->len) & (mtd->eraseregions[i].erasesize - 1)))
403 return -EINVAL;
404
405 addr = instr->addr;
406 len = instr->len;
407
408 i = first;
409
410 /* now erase those blocks */
411 while (len)
412 {
413 if (!erase_block (addr))
414 return (-EIO);
415
416 addr += mtd->eraseregions[i].erasesize;
417 len -= mtd->eraseregions[i].erasesize;
418
419 if (addr == mtd->eraseregions[i].offset + (mtd->eraseregions[i].erasesize * mtd->eraseregions[i].numblocks)) i++;
420 }
421
422 return (0);
423 }
424
flash_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)425 static int flash_read (struct mtd_info *mtd,loff_t from,size_t len,size_t *retlen,u_char *buf)
426 {
427 #ifdef LART_DEBUG
428 printk (KERN_DEBUG "%s(from = 0x%.8x, len = %d)\n", __func__, (__u32)from, len);
429 #endif
430
431 /* we always read len bytes */
432 *retlen = len;
433
434 /* first, we read bytes until we reach a dword boundary */
435 if (from & (BUSWIDTH - 1))
436 {
437 int gap = BUSWIDTH - (from & (BUSWIDTH - 1));
438
439 while (len && gap--) {
440 *buf++ = read8 (from++);
441 len--;
442 }
443 }
444
445 /* now we read dwords until we reach a non-dword boundary */
446 while (len >= BUSWIDTH)
447 {
448 *((__u32 *) buf) = read32 (from);
449
450 buf += BUSWIDTH;
451 from += BUSWIDTH;
452 len -= BUSWIDTH;
453 }
454
455 /* top up the last unaligned bytes */
456 if (len & (BUSWIDTH - 1))
457 while (len--) *buf++ = read8 (from++);
458
459 return (0);
460 }
461
462 /*
463 * Write one dword ``x'' to flash memory at offset ``offset''. ``offset''
464 * must be 32 bits, i.e. it must be on a dword boundary.
465 *
466 * Returns 1 if successful, 0 otherwise.
467 */
write_dword(__u32 offset,__u32 x)468 static inline int write_dword (__u32 offset,__u32 x)
469 {
470 __u32 status;
471
472 #ifdef LART_DEBUG
473 printk (KERN_DEBUG "%s(): 0x%.8x <- 0x%.8x\n", __func__, offset, x);
474 #endif
475
476 /* setup writing */
477 write32 (DATA_TO_FLASH (PGM_SETUP),offset);
478
479 /* write the data */
480 write32 (x,offset);
481
482 /* wait for the write to finish */
483 do
484 {
485 write32 (DATA_TO_FLASH (STATUS_READ),offset);
486 status = FLASH_TO_DATA (read32 (offset));
487 }
488 while ((~status & STATUS_BUSY) != 0);
489
490 /* put the flash back into command mode */
491 write32 (DATA_TO_FLASH (READ_ARRAY),offset);
492
493 /* was the write successful? */
494 if ((status & STATUS_PGM_ERR) || read32 (offset) != x)
495 {
496 printk (KERN_WARNING "%s: write error at address 0x%.8x.\n",module_name,offset);
497 return (0);
498 }
499
500 return (1);
501 }
502
flash_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)503 static int flash_write (struct mtd_info *mtd,loff_t to,size_t len,size_t *retlen,const u_char *buf)
504 {
505 __u8 tmp[4];
506 int i,n;
507
508 #ifdef LART_DEBUG
509 printk (KERN_DEBUG "%s(to = 0x%.8x, len = %d)\n", __func__, (__u32)to, len);
510 #endif
511
512 /* sanity checks */
513 if (!len) return (0);
514
515 /* first, we write a 0xFF.... padded byte until we reach a dword boundary */
516 if (to & (BUSWIDTH - 1))
517 {
518 __u32 aligned = to & ~(BUSWIDTH - 1);
519 int gap = to - aligned;
520
521 i = n = 0;
522
523 while (gap--) tmp[i++] = 0xFF;
524 while (len && i < BUSWIDTH) {
525 tmp[i++] = buf[n++];
526 len--;
527 }
528 while (i < BUSWIDTH) tmp[i++] = 0xFF;
529
530 if (!write_dword (aligned,*((__u32 *) tmp))) return (-EIO);
531
532 to += n;
533 buf += n;
534 *retlen += n;
535 }
536
537 /* now we write dwords until we reach a non-dword boundary */
538 while (len >= BUSWIDTH)
539 {
540 if (!write_dword (to,*((__u32 *) buf))) return (-EIO);
541
542 to += BUSWIDTH;
543 buf += BUSWIDTH;
544 *retlen += BUSWIDTH;
545 len -= BUSWIDTH;
546 }
547
548 /* top up the last unaligned bytes, padded with 0xFF.... */
549 if (len & (BUSWIDTH - 1))
550 {
551 i = n = 0;
552
553 while (len--) tmp[i++] = buf[n++];
554 while (i < BUSWIDTH) tmp[i++] = 0xFF;
555
556 if (!write_dword (to,*((__u32 *) tmp))) return (-EIO);
557
558 *retlen += n;
559 }
560
561 return (0);
562 }
563
564 /***************************************************************************************************/
565
566 static struct mtd_info mtd;
567
568 static struct mtd_erase_region_info erase_regions[] = {
569 /* parameter blocks */
570 {
571 .offset = 0x00000000,
572 .erasesize = FLASH_BLOCKSIZE_PARAM,
573 .numblocks = FLASH_NUMBLOCKS_16m_PARAM,
574 },
575 /* main blocks */
576 {
577 .offset = FLASH_BLOCKSIZE_PARAM * FLASH_NUMBLOCKS_16m_PARAM,
578 .erasesize = FLASH_BLOCKSIZE_MAIN,
579 .numblocks = FLASH_NUMBLOCKS_16m_MAIN,
580 }
581 };
582
583 static const struct mtd_partition lart_partitions[] = {
584 /* blob */
585 {
586 .name = "blob",
587 .offset = PART_BLOB_START,
588 .size = PART_BLOB_LEN,
589 },
590 /* kernel */
591 {
592 .name = "kernel",
593 .offset = PART_KERNEL_START, /* MTDPART_OFS_APPEND */
594 .size = PART_KERNEL_LEN,
595 },
596 /* initial ramdisk / file system */
597 {
598 .name = "file system",
599 .offset = PART_INITRD_START, /* MTDPART_OFS_APPEND */
600 .size = PART_INITRD_LEN, /* MTDPART_SIZ_FULL */
601 }
602 };
603 #define NUM_PARTITIONS ARRAY_SIZE(lart_partitions)
604
lart_flash_init(void)605 static int __init lart_flash_init (void)
606 {
607 int result;
608 memset (&mtd,0,sizeof (mtd));
609 printk ("MTD driver for LART. Written by Abraham vd Merwe <abraham@2d3d.co.za>\n");
610 printk ("%s: Probing for 28F160x3 flash on LART...\n",module_name);
611 if (!flash_probe ())
612 {
613 printk (KERN_WARNING "%s: Found no LART compatible flash device\n",module_name);
614 return (-ENXIO);
615 }
616 printk ("%s: This looks like a LART board to me.\n",module_name);
617 mtd.name = module_name;
618 mtd.type = MTD_NORFLASH;
619 mtd.writesize = 1;
620 mtd.writebufsize = 4;
621 mtd.flags = MTD_CAP_NORFLASH;
622 mtd.size = FLASH_BLOCKSIZE_PARAM * FLASH_NUMBLOCKS_16m_PARAM + FLASH_BLOCKSIZE_MAIN * FLASH_NUMBLOCKS_16m_MAIN;
623 mtd.erasesize = FLASH_BLOCKSIZE_MAIN;
624 mtd.numeraseregions = ARRAY_SIZE(erase_regions);
625 mtd.eraseregions = erase_regions;
626 mtd._erase = flash_erase;
627 mtd._read = flash_read;
628 mtd._write = flash_write;
629 mtd.owner = THIS_MODULE;
630
631 #ifdef LART_DEBUG
632 printk (KERN_DEBUG
633 "mtd.name = %s\n"
634 "mtd.size = 0x%.8x (%uM)\n"
635 "mtd.erasesize = 0x%.8x (%uK)\n"
636 "mtd.numeraseregions = %d\n",
637 mtd.name,
638 mtd.size,mtd.size / (1024*1024),
639 mtd.erasesize,mtd.erasesize / 1024,
640 mtd.numeraseregions);
641
642 if (mtd.numeraseregions)
643 for (result = 0; result < mtd.numeraseregions; result++)
644 printk (KERN_DEBUG
645 "\n\n"
646 "mtd.eraseregions[%d].offset = 0x%.8x\n"
647 "mtd.eraseregions[%d].erasesize = 0x%.8x (%uK)\n"
648 "mtd.eraseregions[%d].numblocks = %d\n",
649 result,mtd.eraseregions[result].offset,
650 result,mtd.eraseregions[result].erasesize,mtd.eraseregions[result].erasesize / 1024,
651 result,mtd.eraseregions[result].numblocks);
652
653 printk ("\npartitions = %d\n", ARRAY_SIZE(lart_partitions));
654
655 for (result = 0; result < ARRAY_SIZE(lart_partitions); result++)
656 printk (KERN_DEBUG
657 "\n\n"
658 "lart_partitions[%d].name = %s\n"
659 "lart_partitions[%d].offset = 0x%.8x\n"
660 "lart_partitions[%d].size = 0x%.8x (%uK)\n",
661 result,lart_partitions[result].name,
662 result,lart_partitions[result].offset,
663 result,lart_partitions[result].size,lart_partitions[result].size / 1024);
664 #endif
665
666 result = mtd_device_register(&mtd, lart_partitions,
667 ARRAY_SIZE(lart_partitions));
668
669 return (result);
670 }
671
lart_flash_exit(void)672 static void __exit lart_flash_exit (void)
673 {
674 mtd_device_unregister(&mtd);
675 }
676
677 module_init (lart_flash_init);
678 module_exit (lart_flash_exit);
679
680 MODULE_LICENSE("GPL");
681 MODULE_AUTHOR("Abraham vd Merwe <abraham@2d3d.co.za>");
682 MODULE_DESCRIPTION("MTD driver for Intel 28F160F3 on LART board");
683