1 // SPDX-License-Identifier: GPL-2.0-only
2 
3 /*
4  * MTD driver for the 28F160F3 Flash Memory (non-CFI) on LART.
5  *
6  * Author: Abraham vd Merwe <abraham@2d3d.co.za>
7  *
8  * Copyright (c) 2001, 2d3D, Inc.
9  *
10  * References:
11  *
12  *    [1] 3 Volt Fast Boot Block Flash Memory" Intel Datasheet
13  *           - Order Number: 290644-005
14  *           - January 2000
15  *
16  *    [2] MTD internal API documentation
17  *           - http://www.linux-mtd.infradead.org/
18  *
19  * Limitations:
20  *
21  *    Even though this driver is written for 3 Volt Fast Boot
22  *    Block Flash Memory, it is rather specific to LART. With
23  *    Minor modifications, notably the without data/address line
24  *    mangling and different bus settings, etc. it should be
25  *    trivial to adapt to other platforms.
26  *
27  *    If somebody would sponsor me a different board, I'll
28  *    adapt the driver (:
29  */
30 
31 /* debugging */
32 //#define LART_DEBUG
33 
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/types.h>
37 #include <linux/init.h>
38 #include <linux/errno.h>
39 #include <linux/string.h>
40 #include <linux/mtd/mtd.h>
41 #include <linux/mtd/partitions.h>
42 
43 #ifndef CONFIG_SA1100_LART
44 #error This is for LART architecture only
45 #endif
46 
47 static char module_name[] = "lart";
48 
49 /*
50  * These values is specific to 28Fxxxx3 flash memory.
51  * See section 2.3.1 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
52  */
53 #define FLASH_BLOCKSIZE_PARAM		(4096 * BUSWIDTH)
54 #define FLASH_NUMBLOCKS_16m_PARAM	8
55 #define FLASH_NUMBLOCKS_8m_PARAM	8
56 
57 /*
58  * These values is specific to 28Fxxxx3 flash memory.
59  * See section 2.3.2 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
60  */
61 #define FLASH_BLOCKSIZE_MAIN		(32768 * BUSWIDTH)
62 #define FLASH_NUMBLOCKS_16m_MAIN	31
63 #define FLASH_NUMBLOCKS_8m_MAIN		15
64 
65 /*
66  * These values are specific to LART
67  */
68 
69 /* general */
70 #define BUSWIDTH			4				/* don't change this - a lot of the code _will_ break if you change this */
71 #define FLASH_OFFSET		0xe8000000		/* see linux/arch/arm/mach-sa1100/lart.c */
72 
73 /* blob */
74 #define NUM_BLOB_BLOCKS		FLASH_NUMBLOCKS_16m_PARAM
75 #define PART_BLOB_START		0x00000000
76 #define PART_BLOB_LEN		(NUM_BLOB_BLOCKS * FLASH_BLOCKSIZE_PARAM)
77 
78 /* kernel */
79 #define NUM_KERNEL_BLOCKS	7
80 #define PART_KERNEL_START	(PART_BLOB_START + PART_BLOB_LEN)
81 #define PART_KERNEL_LEN		(NUM_KERNEL_BLOCKS * FLASH_BLOCKSIZE_MAIN)
82 
83 /* initial ramdisk */
84 #define NUM_INITRD_BLOCKS	24
85 #define PART_INITRD_START	(PART_KERNEL_START + PART_KERNEL_LEN)
86 #define PART_INITRD_LEN		(NUM_INITRD_BLOCKS * FLASH_BLOCKSIZE_MAIN)
87 
88 /*
89  * See section 4.0 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
90  */
91 #define READ_ARRAY			0x00FF00FF		/* Read Array/Reset */
92 #define READ_ID_CODES		0x00900090		/* Read Identifier Codes */
93 #define ERASE_SETUP			0x00200020		/* Block Erase */
94 #define ERASE_CONFIRM		0x00D000D0		/* Block Erase and Program Resume */
95 #define PGM_SETUP			0x00400040		/* Program */
96 #define STATUS_READ			0x00700070		/* Read Status Register */
97 #define STATUS_CLEAR		0x00500050		/* Clear Status Register */
98 #define STATUS_BUSY			0x00800080		/* Write State Machine Status (WSMS) */
99 #define STATUS_ERASE_ERR	0x00200020		/* Erase Status (ES) */
100 #define STATUS_PGM_ERR		0x00100010		/* Program Status (PS) */
101 
102 /*
103  * See section 4.2 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
104  */
105 #define FLASH_MANUFACTURER			0x00890089
106 #define FLASH_DEVICE_8mbit_TOP		0x88f188f1
107 #define FLASH_DEVICE_8mbit_BOTTOM	0x88f288f2
108 #define FLASH_DEVICE_16mbit_TOP		0x88f388f3
109 #define FLASH_DEVICE_16mbit_BOTTOM	0x88f488f4
110 
111 /***************************************************************************************************/
112 
113 /*
114  * The data line mapping on LART is as follows:
115  *
116  *   	 U2  CPU |   U3  CPU
117  *   	 -------------------
118  *   	  0  20  |   0   12
119  *   	  1  22  |   1   14
120  *   	  2  19  |   2   11
121  *   	  3  17  |   3   9
122  *   	  4  24  |   4   0
123  *   	  5  26  |   5   2
124  *   	  6  31  |   6   7
125  *   	  7  29  |   7   5
126  *   	  8  21  |   8   13
127  *   	  9  23  |   9   15
128  *   	  10 18  |   10  10
129  *   	  11 16  |   11  8
130  *   	  12 25  |   12  1
131  *   	  13 27  |   13  3
132  *   	  14 30  |   14  6
133  *   	  15 28  |   15  4
134  */
135 
136 /* Mangle data (x) */
137 #define DATA_TO_FLASH(x)				\
138 	(									\
139 		(((x) & 0x08009000) >> 11)	+	\
140 		(((x) & 0x00002000) >> 10)	+	\
141 		(((x) & 0x04004000) >> 8)	+	\
142 		(((x) & 0x00000010) >> 4)	+	\
143 		(((x) & 0x91000820) >> 3)	+	\
144 		(((x) & 0x22080080) >> 2)	+	\
145 		((x) & 0x40000400)			+	\
146 		(((x) & 0x00040040) << 1)	+	\
147 		(((x) & 0x00110000) << 4)	+	\
148 		(((x) & 0x00220100) << 5)	+	\
149 		(((x) & 0x00800208) << 6)	+	\
150 		(((x) & 0x00400004) << 9)	+	\
151 		(((x) & 0x00000001) << 12)	+	\
152 		(((x) & 0x00000002) << 13)		\
153 	)
154 
155 /* Unmangle data (x) */
156 #define FLASH_TO_DATA(x)				\
157 	(									\
158 		(((x) & 0x00010012) << 11)	+	\
159 		(((x) & 0x00000008) << 10)	+	\
160 		(((x) & 0x00040040) << 8)	+	\
161 		(((x) & 0x00000001) << 4)	+	\
162 		(((x) & 0x12200104) << 3)	+	\
163 		(((x) & 0x08820020) << 2)	+	\
164 		((x) & 0x40000400)			+	\
165 		(((x) & 0x00080080) >> 1)	+	\
166 		(((x) & 0x01100000) >> 4)	+	\
167 		(((x) & 0x04402000) >> 5)	+	\
168 		(((x) & 0x20008200) >> 6)	+	\
169 		(((x) & 0x80000800) >> 9)	+	\
170 		(((x) & 0x00001000) >> 12)	+	\
171 		(((x) & 0x00004000) >> 13)		\
172 	)
173 
174 /*
175  * The address line mapping on LART is as follows:
176  *
177  *   	 U3  CPU |   U2  CPU
178  *   	 -------------------
179  *   	  0  2   |   0   2
180  *   	  1  3   |   1   3
181  *   	  2  9   |   2   9
182  *   	  3  13  |   3   8
183  *   	  4  8   |   4   7
184  *   	  5  12  |   5   6
185  *   	  6  11  |   6   5
186  *   	  7  10  |   7   4
187  *   	  8  4   |   8   10
188  *   	  9  5   |   9   11
189  *   	 10  6   |   10  12
190  *   	 11  7   |   11  13
191  *
192  *   	 BOOT BLOCK BOUNDARY
193  *
194  *   	 12  15  |   12  15
195  *   	 13  14  |   13  14
196  *   	 14  16  |   14  16
197  *
198  *   	 MAIN BLOCK BOUNDARY
199  *
200  *   	 15  17  |   15  18
201  *   	 16  18  |   16  17
202  *   	 17  20  |   17  20
203  *   	 18  19  |   18  19
204  *   	 19  21  |   19  21
205  *
206  * As we can see from above, the addresses aren't mangled across
207  * block boundaries, so we don't need to worry about address
208  * translations except for sending/reading commands during
209  * initialization
210  */
211 
212 /* Mangle address (x) on chip U2 */
213 #define ADDR_TO_FLASH_U2(x)				\
214 	(									\
215 		(((x) & 0x00000f00) >> 4)	+	\
216 		(((x) & 0x00042000) << 1)	+	\
217 		(((x) & 0x0009c003) << 2)	+	\
218 		(((x) & 0x00021080) << 3)	+	\
219 		(((x) & 0x00000010) << 4)	+	\
220 		(((x) & 0x00000040) << 5)	+	\
221 		(((x) & 0x00000024) << 7)	+	\
222 		(((x) & 0x00000008) << 10)		\
223 	)
224 
225 /* Unmangle address (x) on chip U2 */
226 #define FLASH_U2_TO_ADDR(x)				\
227 	(									\
228 		(((x) << 4) & 0x00000f00)	+	\
229 		(((x) >> 1) & 0x00042000)	+	\
230 		(((x) >> 2) & 0x0009c003)	+	\
231 		(((x) >> 3) & 0x00021080)	+	\
232 		(((x) >> 4) & 0x00000010)	+	\
233 		(((x) >> 5) & 0x00000040)	+	\
234 		(((x) >> 7) & 0x00000024)	+	\
235 		(((x) >> 10) & 0x00000008)		\
236 	)
237 
238 /* Mangle address (x) on chip U3 */
239 #define ADDR_TO_FLASH_U3(x)				\
240 	(									\
241 		(((x) & 0x00000080) >> 3)	+	\
242 		(((x) & 0x00000040) >> 1)	+	\
243 		(((x) & 0x00052020) << 1)	+	\
244 		(((x) & 0x00084f03) << 2)	+	\
245 		(((x) & 0x00029010) << 3)	+	\
246 		(((x) & 0x00000008) << 5)	+	\
247 		(((x) & 0x00000004) << 7)		\
248 	)
249 
250 /* Unmangle address (x) on chip U3 */
251 #define FLASH_U3_TO_ADDR(x)				\
252 	(									\
253 		(((x) << 3) & 0x00000080)	+	\
254 		(((x) << 1) & 0x00000040)	+	\
255 		(((x) >> 1) & 0x00052020)	+	\
256 		(((x) >> 2) & 0x00084f03)	+	\
257 		(((x) >> 3) & 0x00029010)	+	\
258 		(((x) >> 5) & 0x00000008)	+	\
259 		(((x) >> 7) & 0x00000004)		\
260 	)
261 
262 /***************************************************************************************************/
263 
read8(__u32 offset)264 static __u8 read8 (__u32 offset)
265 {
266    volatile __u8 *data = (__u8 *) (FLASH_OFFSET + offset);
267 #ifdef LART_DEBUG
268    printk (KERN_DEBUG "%s(): 0x%.8x -> 0x%.2x\n", __func__, offset, *data);
269 #endif
270    return (*data);
271 }
272 
read32(__u32 offset)273 static __u32 read32 (__u32 offset)
274 {
275    volatile __u32 *data = (__u32 *) (FLASH_OFFSET + offset);
276 #ifdef LART_DEBUG
277    printk (KERN_DEBUG "%s(): 0x%.8x -> 0x%.8x\n", __func__, offset, *data);
278 #endif
279    return (*data);
280 }
281 
write32(__u32 x,__u32 offset)282 static void write32 (__u32 x,__u32 offset)
283 {
284    volatile __u32 *data = (__u32 *) (FLASH_OFFSET + offset);
285    *data = x;
286 #ifdef LART_DEBUG
287    printk (KERN_DEBUG "%s(): 0x%.8x <- 0x%.8x\n", __func__, offset, *data);
288 #endif
289 }
290 
291 /***************************************************************************************************/
292 
293 /*
294  * Probe for 16mbit flash memory on a LART board without doing
295  * too much damage. Since we need to write 1 dword to memory,
296  * we're f**cked if this happens to be DRAM since we can't
297  * restore the memory (otherwise we might exit Read Array mode).
298  *
299  * Returns 1 if we found 16mbit flash memory on LART, 0 otherwise.
300  */
flash_probe(void)301 static int flash_probe (void)
302 {
303    __u32 manufacturer,devtype;
304 
305    /* setup "Read Identifier Codes" mode */
306    write32 (DATA_TO_FLASH (READ_ID_CODES),0x00000000);
307 
308    /* probe U2. U2/U3 returns the same data since the first 3
309 	* address lines is mangled in the same way */
310    manufacturer = FLASH_TO_DATA (read32 (ADDR_TO_FLASH_U2 (0x00000000)));
311    devtype = FLASH_TO_DATA (read32 (ADDR_TO_FLASH_U2 (0x00000001)));
312 
313    /* put the flash back into command mode */
314    write32 (DATA_TO_FLASH (READ_ARRAY),0x00000000);
315 
316    return (manufacturer == FLASH_MANUFACTURER && (devtype == FLASH_DEVICE_16mbit_TOP || devtype == FLASH_DEVICE_16mbit_BOTTOM));
317 }
318 
319 /*
320  * Erase one block of flash memory at offset ``offset'' which is any
321  * address within the block which should be erased.
322  *
323  * Returns 1 if successful, 0 otherwise.
324  */
erase_block(__u32 offset)325 static inline int erase_block (__u32 offset)
326 {
327    __u32 status;
328 
329 #ifdef LART_DEBUG
330    printk (KERN_DEBUG "%s(): 0x%.8x\n", __func__, offset);
331 #endif
332 
333    /* erase and confirm */
334    write32 (DATA_TO_FLASH (ERASE_SETUP),offset);
335    write32 (DATA_TO_FLASH (ERASE_CONFIRM),offset);
336 
337    /* wait for block erase to finish */
338    do
339 	 {
340 		write32 (DATA_TO_FLASH (STATUS_READ),offset);
341 		status = FLASH_TO_DATA (read32 (offset));
342 	 }
343    while ((~status & STATUS_BUSY) != 0);
344 
345    /* put the flash back into command mode */
346    write32 (DATA_TO_FLASH (READ_ARRAY),offset);
347 
348    /* was the erase successful? */
349    if ((status & STATUS_ERASE_ERR))
350 	 {
351 		printk (KERN_WARNING "%s: erase error at address 0x%.8x.\n",module_name,offset);
352 		return (0);
353 	 }
354 
355    return (1);
356 }
357 
flash_erase(struct mtd_info * mtd,struct erase_info * instr)358 static int flash_erase (struct mtd_info *mtd,struct erase_info *instr)
359 {
360    __u32 addr,len;
361    int i,first;
362 
363 #ifdef LART_DEBUG
364    printk (KERN_DEBUG "%s(addr = 0x%.8x, len = %d)\n", __func__, instr->addr, instr->len);
365 #endif
366 
367    /*
368 	* check that both start and end of the requested erase are
369 	* aligned with the erasesize at the appropriate addresses.
370 	*
371 	* skip all erase regions which are ended before the start of
372 	* the requested erase. Actually, to save on the calculations,
373 	* we skip to the first erase region which starts after the
374 	* start of the requested erase, and then go back one.
375 	*/
376    for (i = 0; i < mtd->numeraseregions && instr->addr >= mtd->eraseregions[i].offset; i++) ;
377    i--;
378 
379    /*
380 	* ok, now i is pointing at the erase region in which this
381 	* erase request starts. Check the start of the requested
382 	* erase range is aligned with the erase size which is in
383 	* effect here.
384 	*/
385    if (i < 0 || (instr->addr & (mtd->eraseregions[i].erasesize - 1)))
386       return -EINVAL;
387 
388    /* Remember the erase region we start on */
389    first = i;
390 
391    /*
392 	* next, check that the end of the requested erase is aligned
393 	* with the erase region at that address.
394 	*
395 	* as before, drop back one to point at the region in which
396 	* the address actually falls
397 	*/
398    for (; i < mtd->numeraseregions && instr->addr + instr->len >= mtd->eraseregions[i].offset; i++) ;
399    i--;
400 
401    /* is the end aligned on a block boundary? */
402    if (i < 0 || ((instr->addr + instr->len) & (mtd->eraseregions[i].erasesize - 1)))
403       return -EINVAL;
404 
405    addr = instr->addr;
406    len = instr->len;
407 
408    i = first;
409 
410    /* now erase those blocks */
411    while (len)
412 	 {
413 		if (!erase_block (addr))
414 			 return (-EIO);
415 
416 		addr += mtd->eraseregions[i].erasesize;
417 		len -= mtd->eraseregions[i].erasesize;
418 
419 		if (addr == mtd->eraseregions[i].offset + (mtd->eraseregions[i].erasesize * mtd->eraseregions[i].numblocks)) i++;
420 	 }
421 
422    return (0);
423 }
424 
flash_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)425 static int flash_read (struct mtd_info *mtd,loff_t from,size_t len,size_t *retlen,u_char *buf)
426 {
427 #ifdef LART_DEBUG
428    printk (KERN_DEBUG "%s(from = 0x%.8x, len = %d)\n", __func__, (__u32)from, len);
429 #endif
430 
431    /* we always read len bytes */
432    *retlen = len;
433 
434    /* first, we read bytes until we reach a dword boundary */
435    if (from & (BUSWIDTH - 1))
436 	 {
437 		int gap = BUSWIDTH - (from & (BUSWIDTH - 1));
438 
439 		while (len && gap--) {
440 			*buf++ = read8 (from++);
441 			len--;
442 		}
443 	 }
444 
445    /* now we read dwords until we reach a non-dword boundary */
446    while (len >= BUSWIDTH)
447 	 {
448 		*((__u32 *) buf) = read32 (from);
449 
450 		buf += BUSWIDTH;
451 		from += BUSWIDTH;
452 		len -= BUSWIDTH;
453 	 }
454 
455    /* top up the last unaligned bytes */
456    if (len & (BUSWIDTH - 1))
457 	 while (len--) *buf++ = read8 (from++);
458 
459    return (0);
460 }
461 
462 /*
463  * Write one dword ``x'' to flash memory at offset ``offset''. ``offset''
464  * must be 32 bits, i.e. it must be on a dword boundary.
465  *
466  * Returns 1 if successful, 0 otherwise.
467  */
write_dword(__u32 offset,__u32 x)468 static inline int write_dword (__u32 offset,__u32 x)
469 {
470    __u32 status;
471 
472 #ifdef LART_DEBUG
473    printk (KERN_DEBUG "%s(): 0x%.8x <- 0x%.8x\n", __func__, offset, x);
474 #endif
475 
476    /* setup writing */
477    write32 (DATA_TO_FLASH (PGM_SETUP),offset);
478 
479    /* write the data */
480    write32 (x,offset);
481 
482    /* wait for the write to finish */
483    do
484 	 {
485 		write32 (DATA_TO_FLASH (STATUS_READ),offset);
486 		status = FLASH_TO_DATA (read32 (offset));
487 	 }
488    while ((~status & STATUS_BUSY) != 0);
489 
490    /* put the flash back into command mode */
491    write32 (DATA_TO_FLASH (READ_ARRAY),offset);
492 
493    /* was the write successful? */
494    if ((status & STATUS_PGM_ERR) || read32 (offset) != x)
495 	 {
496 		printk (KERN_WARNING "%s: write error at address 0x%.8x.\n",module_name,offset);
497 		return (0);
498 	 }
499 
500    return (1);
501 }
502 
flash_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)503 static int flash_write (struct mtd_info *mtd,loff_t to,size_t len,size_t *retlen,const u_char *buf)
504 {
505    __u8 tmp[4];
506    int i,n;
507 
508 #ifdef LART_DEBUG
509    printk (KERN_DEBUG "%s(to = 0x%.8x, len = %d)\n", __func__, (__u32)to, len);
510 #endif
511 
512    /* sanity checks */
513    if (!len) return (0);
514 
515    /* first, we write a 0xFF.... padded byte until we reach a dword boundary */
516    if (to & (BUSWIDTH - 1))
517 	 {
518 		__u32 aligned = to & ~(BUSWIDTH - 1);
519 		int gap = to - aligned;
520 
521 		i = n = 0;
522 
523 		while (gap--) tmp[i++] = 0xFF;
524 		while (len && i < BUSWIDTH) {
525 			tmp[i++] = buf[n++];
526 			len--;
527 		}
528 		while (i < BUSWIDTH) tmp[i++] = 0xFF;
529 
530 		if (!write_dword (aligned,*((__u32 *) tmp))) return (-EIO);
531 
532 		to += n;
533 		buf += n;
534 		*retlen += n;
535 	 }
536 
537    /* now we write dwords until we reach a non-dword boundary */
538    while (len >= BUSWIDTH)
539 	 {
540 		if (!write_dword (to,*((__u32 *) buf))) return (-EIO);
541 
542 		to += BUSWIDTH;
543 		buf += BUSWIDTH;
544 		*retlen += BUSWIDTH;
545 		len -= BUSWIDTH;
546 	 }
547 
548    /* top up the last unaligned bytes, padded with 0xFF.... */
549    if (len & (BUSWIDTH - 1))
550 	 {
551 		i = n = 0;
552 
553 		while (len--) tmp[i++] = buf[n++];
554 		while (i < BUSWIDTH) tmp[i++] = 0xFF;
555 
556 		if (!write_dword (to,*((__u32 *) tmp))) return (-EIO);
557 
558 		*retlen += n;
559 	 }
560 
561    return (0);
562 }
563 
564 /***************************************************************************************************/
565 
566 static struct mtd_info mtd;
567 
568 static struct mtd_erase_region_info erase_regions[] = {
569 	/* parameter blocks */
570 	{
571 		.offset		= 0x00000000,
572 		.erasesize	= FLASH_BLOCKSIZE_PARAM,
573 		.numblocks	= FLASH_NUMBLOCKS_16m_PARAM,
574 	},
575 	/* main blocks */
576 	{
577 		.offset	 = FLASH_BLOCKSIZE_PARAM * FLASH_NUMBLOCKS_16m_PARAM,
578 		.erasesize	= FLASH_BLOCKSIZE_MAIN,
579 		.numblocks	= FLASH_NUMBLOCKS_16m_MAIN,
580 	}
581 };
582 
583 static const struct mtd_partition lart_partitions[] = {
584 	/* blob */
585 	{
586 		.name	= "blob",
587 		.offset	= PART_BLOB_START,
588 		.size	= PART_BLOB_LEN,
589 	},
590 	/* kernel */
591 	{
592 		.name	= "kernel",
593 		.offset	= PART_KERNEL_START,	/* MTDPART_OFS_APPEND */
594 		.size	= PART_KERNEL_LEN,
595 	},
596 	/* initial ramdisk / file system */
597 	{
598 		.name	= "file system",
599 		.offset	= PART_INITRD_START,	/* MTDPART_OFS_APPEND */
600 		.size	= PART_INITRD_LEN,	/* MTDPART_SIZ_FULL */
601 	}
602 };
603 #define NUM_PARTITIONS ARRAY_SIZE(lart_partitions)
604 
lart_flash_init(void)605 static int __init lart_flash_init (void)
606 {
607    int result;
608    memset (&mtd,0,sizeof (mtd));
609    printk ("MTD driver for LART. Written by Abraham vd Merwe <abraham@2d3d.co.za>\n");
610    printk ("%s: Probing for 28F160x3 flash on LART...\n",module_name);
611    if (!flash_probe ())
612 	 {
613 		printk (KERN_WARNING "%s: Found no LART compatible flash device\n",module_name);
614 		return (-ENXIO);
615 	 }
616    printk ("%s: This looks like a LART board to me.\n",module_name);
617    mtd.name = module_name;
618    mtd.type = MTD_NORFLASH;
619    mtd.writesize = 1;
620    mtd.writebufsize = 4;
621    mtd.flags = MTD_CAP_NORFLASH;
622    mtd.size = FLASH_BLOCKSIZE_PARAM * FLASH_NUMBLOCKS_16m_PARAM + FLASH_BLOCKSIZE_MAIN * FLASH_NUMBLOCKS_16m_MAIN;
623    mtd.erasesize = FLASH_BLOCKSIZE_MAIN;
624    mtd.numeraseregions = ARRAY_SIZE(erase_regions);
625    mtd.eraseregions = erase_regions;
626    mtd._erase = flash_erase;
627    mtd._read = flash_read;
628    mtd._write = flash_write;
629    mtd.owner = THIS_MODULE;
630 
631 #ifdef LART_DEBUG
632    printk (KERN_DEBUG
633 		   "mtd.name = %s\n"
634 		   "mtd.size = 0x%.8x (%uM)\n"
635 		   "mtd.erasesize = 0x%.8x (%uK)\n"
636 		   "mtd.numeraseregions = %d\n",
637 		   mtd.name,
638 		   mtd.size,mtd.size / (1024*1024),
639 		   mtd.erasesize,mtd.erasesize / 1024,
640 		   mtd.numeraseregions);
641 
642    if (mtd.numeraseregions)
643 	 for (result = 0; result < mtd.numeraseregions; result++)
644 	   printk (KERN_DEBUG
645 			   "\n\n"
646 			   "mtd.eraseregions[%d].offset = 0x%.8x\n"
647 			   "mtd.eraseregions[%d].erasesize = 0x%.8x (%uK)\n"
648 			   "mtd.eraseregions[%d].numblocks = %d\n",
649 			   result,mtd.eraseregions[result].offset,
650 			   result,mtd.eraseregions[result].erasesize,mtd.eraseregions[result].erasesize / 1024,
651 			   result,mtd.eraseregions[result].numblocks);
652 
653    printk ("\npartitions = %d\n", ARRAY_SIZE(lart_partitions));
654 
655    for (result = 0; result < ARRAY_SIZE(lart_partitions); result++)
656 	 printk (KERN_DEBUG
657 			 "\n\n"
658 			 "lart_partitions[%d].name = %s\n"
659 			 "lart_partitions[%d].offset = 0x%.8x\n"
660 			 "lart_partitions[%d].size = 0x%.8x (%uK)\n",
661 			 result,lart_partitions[result].name,
662 			 result,lart_partitions[result].offset,
663 			 result,lart_partitions[result].size,lart_partitions[result].size / 1024);
664 #endif
665 
666    result = mtd_device_register(&mtd, lart_partitions,
667                                 ARRAY_SIZE(lart_partitions));
668 
669    return (result);
670 }
671 
lart_flash_exit(void)672 static void __exit lart_flash_exit (void)
673 {
674    mtd_device_unregister(&mtd);
675 }
676 
677 module_init (lart_flash_init);
678 module_exit (lart_flash_exit);
679 
680 MODULE_LICENSE("GPL");
681 MODULE_AUTHOR("Abraham vd Merwe <abraham@2d3d.co.za>");
682 MODULE_DESCRIPTION("MTD driver for Intel 28F160F3 on LART board");
683