1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * Copyright 2016-2020 HabanaLabs, Ltd.
5  * All Rights Reserved.
6  */
7 
8 #include <linux/slab.h>
9 
10 #include "../habanalabs.h"
11 
12 /**
13  * hl_mmu_get_funcs() - get MMU functions structure
14  * @hdev: habanalabs device structure.
15  * @pgt_residency: page table residency.
16  * @is_dram_addr: true if we need HMMU functions
17  *
18  * @return appropriate MMU functions structure
19  */
hl_mmu_get_funcs(struct hl_device * hdev,int pgt_residency,bool is_dram_addr)20 static struct hl_mmu_funcs *hl_mmu_get_funcs(struct hl_device *hdev, int pgt_residency,
21 									bool is_dram_addr)
22 {
23 	return &hdev->mmu_func[pgt_residency];
24 }
25 
hl_is_dram_va(struct hl_device * hdev,u64 virt_addr)26 bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr)
27 {
28 	struct asic_fixed_properties *prop = &hdev->asic_prop;
29 
30 	return hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size,
31 					prop->dmmu.start_addr,
32 					prop->dmmu.end_addr);
33 }
34 
35 /**
36  * hl_mmu_init() - initialize the MMU module.
37  * @hdev: habanalabs device structure.
38  *
39  * Return: 0 for success, non-zero for failure.
40  */
hl_mmu_init(struct hl_device * hdev)41 int hl_mmu_init(struct hl_device *hdev)
42 {
43 	int rc = -EOPNOTSUPP;
44 
45 	if (!hdev->mmu_enable)
46 		return 0;
47 
48 	if (hdev->mmu_func[MMU_DR_PGT].init != NULL) {
49 		rc = hdev->mmu_func[MMU_DR_PGT].init(hdev);
50 		if (rc)
51 			return rc;
52 	}
53 
54 	if (hdev->mmu_func[MMU_HR_PGT].init != NULL)
55 		rc = hdev->mmu_func[MMU_HR_PGT].init(hdev);
56 
57 	return rc;
58 }
59 
60 /**
61  * hl_mmu_fini() - release the MMU module.
62  * @hdev: habanalabs device structure.
63  *
64  * This function does the following:
65  * - Disable MMU in H/W.
66  * - Free the pgt_infos pool.
67  *
68  * All contexts should be freed before calling this function.
69  */
hl_mmu_fini(struct hl_device * hdev)70 void hl_mmu_fini(struct hl_device *hdev)
71 {
72 	if (!hdev->mmu_enable)
73 		return;
74 
75 	if (hdev->mmu_func[MMU_DR_PGT].fini != NULL)
76 		hdev->mmu_func[MMU_DR_PGT].fini(hdev);
77 
78 	if (hdev->mmu_func[MMU_HR_PGT].fini != NULL)
79 		hdev->mmu_func[MMU_HR_PGT].fini(hdev);
80 }
81 
82 /**
83  * hl_mmu_ctx_init() - initialize a context for using the MMU module.
84  * @ctx: pointer to the context structure to initialize.
85  *
86  * Initialize a mutex to protect the concurrent mapping flow, a hash to hold all
87  * page tables hops related to this context.
88  * Return: 0 on success, non-zero otherwise.
89  */
hl_mmu_ctx_init(struct hl_ctx * ctx)90 int hl_mmu_ctx_init(struct hl_ctx *ctx)
91 {
92 	struct hl_device *hdev = ctx->hdev;
93 	int rc = -EOPNOTSUPP;
94 
95 	if (!hdev->mmu_enable)
96 		return 0;
97 
98 	mutex_init(&ctx->mmu_lock);
99 
100 	if (hdev->mmu_func[MMU_DR_PGT].ctx_init != NULL) {
101 		rc = hdev->mmu_func[MMU_DR_PGT].ctx_init(ctx);
102 		if (rc)
103 			return rc;
104 	}
105 
106 	if (hdev->mmu_func[MMU_HR_PGT].ctx_init != NULL)
107 		rc = hdev->mmu_func[MMU_HR_PGT].ctx_init(ctx);
108 
109 	return rc;
110 }
111 
112 /*
113  * hl_mmu_ctx_fini - disable a ctx from using the mmu module
114  *
115  * @ctx: pointer to the context structure
116  *
117  * This function does the following:
118  * - Free any pgts which were not freed yet
119  * - Free the mutex
120  * - Free DRAM default page mapping hops
121  */
hl_mmu_ctx_fini(struct hl_ctx * ctx)122 void hl_mmu_ctx_fini(struct hl_ctx *ctx)
123 {
124 	struct hl_device *hdev = ctx->hdev;
125 
126 	if (!hdev->mmu_enable)
127 		return;
128 
129 	if (hdev->mmu_func[MMU_DR_PGT].ctx_fini != NULL)
130 		hdev->mmu_func[MMU_DR_PGT].ctx_fini(ctx);
131 
132 	if (hdev->mmu_func[MMU_HR_PGT].ctx_fini != NULL)
133 		hdev->mmu_func[MMU_HR_PGT].ctx_fini(ctx);
134 
135 	mutex_destroy(&ctx->mmu_lock);
136 }
137 
138 /*
139  * hl_mmu_get_real_page_size - get real page size to use in map/unmap operation
140  *
141  * @hdev: pointer to device data.
142  * @mmu_prop: MMU properties.
143  * @page_size: page size
144  * @real_page_size: set here the actual page size to use for the operation
145  * @is_dram_addr: true if DRAM address, otherwise false.
146  *
147  * @return 0 on success, otherwise non 0 error code
148  *
149  * note that this is general implementation that can fit most MMU arch. but as this is used as an
150  * MMU function:
151  * 1. it shall not be called directly- only from mmu_func structure instance
152  * 2. each MMU may modify the implementation internally
153  */
hl_mmu_get_real_page_size(struct hl_device * hdev,struct hl_mmu_properties * mmu_prop,u32 page_size,u32 * real_page_size,bool is_dram_addr)154 int hl_mmu_get_real_page_size(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop,
155 				u32 page_size, u32 *real_page_size, bool is_dram_addr)
156 {
157 	/*
158 	 * The H/W handles mapping of specific page sizes. Hence if the page
159 	 * size is bigger, we break it to sub-pages and map them separately.
160 	 */
161 	if ((page_size % mmu_prop->page_size) == 0) {
162 		*real_page_size = mmu_prop->page_size;
163 		return 0;
164 	}
165 
166 	dev_err(hdev->dev, "page size of %u is not %uKB aligned, can't map\n",
167 						page_size, mmu_prop->page_size >> 10);
168 
169 	return -EFAULT;
170 }
171 
hl_mmu_get_prop(struct hl_device * hdev,u32 page_size,bool is_dram_addr)172 static struct hl_mmu_properties *hl_mmu_get_prop(struct hl_device *hdev, u32 page_size,
173 							bool is_dram_addr)
174 {
175 	struct asic_fixed_properties *prop = &hdev->asic_prop;
176 
177 	if (is_dram_addr)
178 		return &prop->dmmu;
179 	else if ((page_size % prop->pmmu_huge.page_size) == 0)
180 		return &prop->pmmu_huge;
181 
182 	return &prop->pmmu;
183 }
184 
185 /*
186  * hl_mmu_unmap_page - unmaps a virtual addr
187  *
188  * @ctx: pointer to the context structure
189  * @virt_addr: virt addr to map from
190  * @page_size: size of the page to unmap
191  * @flush_pte: whether to do a PCI flush
192  *
193  * This function does the following:
194  * - Check that the virt addr is mapped
195  * - Unmap the virt addr and frees pgts if possible
196  * - Returns 0 on success, -EINVAL if the given addr is not mapped
197  *
198  * Because this function changes the page tables in the device and because it
199  * changes the MMU hash, it must be protected by a lock.
200  * However, because it maps only a single page, the lock should be implemented
201  * in a higher level in order to protect the entire mapping of the memory area
202  *
203  * For optimization reasons PCI flush may be requested once after unmapping of
204  * large area.
205  */
hl_mmu_unmap_page(struct hl_ctx * ctx,u64 virt_addr,u32 page_size,bool flush_pte)206 int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size, bool flush_pte)
207 {
208 	struct hl_device *hdev = ctx->hdev;
209 	struct hl_mmu_properties *mmu_prop;
210 	struct hl_mmu_funcs *mmu_funcs;
211 	int i, pgt_residency, rc = 0;
212 	u32 real_page_size, npages;
213 	u64 real_virt_addr;
214 	bool is_dram_addr;
215 
216 	if (!hdev->mmu_enable)
217 		return 0;
218 
219 	is_dram_addr = hl_is_dram_va(hdev, virt_addr);
220 	mmu_prop = hl_mmu_get_prop(hdev, page_size, is_dram_addr);
221 
222 	pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT;
223 	mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr);
224 
225 	rc = hdev->asic_funcs->mmu_get_real_page_size(hdev, mmu_prop, page_size, &real_page_size,
226 							is_dram_addr);
227 	if (rc)
228 		return rc;
229 
230 	npages = page_size / real_page_size;
231 	real_virt_addr = virt_addr;
232 
233 	for (i = 0 ; i < npages ; i++) {
234 		rc = mmu_funcs->unmap(ctx, real_virt_addr, is_dram_addr);
235 		if (rc)
236 			break;
237 
238 		real_virt_addr += real_page_size;
239 	}
240 
241 	if (flush_pte)
242 		mmu_funcs->flush(ctx);
243 
244 	return rc;
245 }
246 
247 /*
248  * hl_mmu_map_page - maps a virtual addr to physical addr
249  *
250  * @ctx: pointer to the context structure
251  * @virt_addr: virt addr to map from
252  * @phys_addr: phys addr to map to
253  * @page_size: physical page size
254  * @flush_pte: whether to do a PCI flush
255  *
256  * This function does the following:
257  * - Check that the virt addr is not mapped
258  * - Allocate pgts as necessary in order to map the virt addr to the phys
259  * - Returns 0 on success, -EINVAL if addr is already mapped, or -ENOMEM.
260  *
261  * Because this function changes the page tables in the device and because it
262  * changes the MMU hash, it must be protected by a lock.
263  * However, because it maps only a single page, the lock should be implemented
264  * in a higher level in order to protect the entire mapping of the memory area
265  *
266  * For optimization reasons PCI flush may be requested once after mapping of
267  * large area.
268  */
hl_mmu_map_page(struct hl_ctx * ctx,u64 virt_addr,u64 phys_addr,u32 page_size,bool flush_pte)269 int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size,
270 			bool flush_pte)
271 {
272 	int i, rc, pgt_residency, mapped_cnt = 0;
273 	struct hl_device *hdev = ctx->hdev;
274 	struct hl_mmu_properties *mmu_prop;
275 	u64 real_virt_addr, real_phys_addr;
276 	struct hl_mmu_funcs *mmu_funcs;
277 	u32 real_page_size, npages;
278 	bool is_dram_addr;
279 
280 
281 	if (!hdev->mmu_enable)
282 		return 0;
283 
284 	is_dram_addr = hl_is_dram_va(hdev, virt_addr);
285 	mmu_prop = hl_mmu_get_prop(hdev, page_size, is_dram_addr);
286 
287 	pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT;
288 	mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr);
289 
290 	rc = hdev->asic_funcs->mmu_get_real_page_size(hdev, mmu_prop, page_size, &real_page_size,
291 							is_dram_addr);
292 	if (rc)
293 		return rc;
294 
295 	/*
296 	 * Verify that the phys and virt addresses are aligned with the
297 	 * MMU page size (in dram this means checking the address and MMU
298 	 * after scrambling)
299 	 */
300 	if ((is_dram_addr &&
301 			((hdev->asic_funcs->scramble_addr(hdev, phys_addr) &
302 				(mmu_prop->page_size - 1)) ||
303 			(hdev->asic_funcs->scramble_addr(hdev, virt_addr) &
304 				(mmu_prop->page_size - 1)))) ||
305 		(!is_dram_addr && ((phys_addr & (real_page_size - 1)) ||
306 				(virt_addr & (real_page_size - 1)))))
307 		dev_crit(hdev->dev,
308 			"Mapping address 0x%llx with virtual address 0x%llx and page size of 0x%x is erroneous! Addresses must be divisible by page size",
309 			phys_addr, virt_addr, real_page_size);
310 
311 	npages = page_size / real_page_size;
312 	real_virt_addr = virt_addr;
313 	real_phys_addr = phys_addr;
314 
315 	for (i = 0 ; i < npages ; i++) {
316 		rc = mmu_funcs->map(ctx, real_virt_addr, real_phys_addr, real_page_size,
317 										is_dram_addr);
318 		if (rc)
319 			goto err;
320 
321 		real_virt_addr += real_page_size;
322 		real_phys_addr += real_page_size;
323 		mapped_cnt++;
324 	}
325 
326 	if (flush_pte)
327 		mmu_funcs->flush(ctx);
328 
329 	return 0;
330 
331 err:
332 	real_virt_addr = virt_addr;
333 	for (i = 0 ; i < mapped_cnt ; i++) {
334 		if (mmu_funcs->unmap(ctx, real_virt_addr, is_dram_addr))
335 			dev_warn_ratelimited(hdev->dev,
336 				"failed to unmap va: 0x%llx\n", real_virt_addr);
337 
338 		real_virt_addr += real_page_size;
339 	}
340 
341 	mmu_funcs->flush(ctx);
342 
343 	return rc;
344 }
345 
346 /*
347  * hl_mmu_map_contiguous - implements a wrapper for hl_mmu_map_page
348  *                         for mapping contiguous physical memory
349  *
350  * @ctx: pointer to the context structure
351  * @virt_addr: virt addr to map from
352  * @phys_addr: phys addr to map to
353  * @size: size to map
354  *
355  */
hl_mmu_map_contiguous(struct hl_ctx * ctx,u64 virt_addr,u64 phys_addr,u32 size)356 int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr,
357 					u64 phys_addr, u32 size)
358 {
359 	struct hl_device *hdev = ctx->hdev;
360 	struct asic_fixed_properties *prop = &hdev->asic_prop;
361 	u64 curr_va, curr_pa;
362 	u32 page_size;
363 	bool flush_pte;
364 	int rc = 0, off;
365 
366 	if (hl_mem_area_inside_range(virt_addr, size,
367 			prop->dmmu.start_addr, prop->dmmu.end_addr))
368 		page_size = prop->dmmu.page_size;
369 	else if (hl_mem_area_inside_range(virt_addr, size,
370 			prop->pmmu.start_addr, prop->pmmu.end_addr))
371 		page_size = prop->pmmu.page_size;
372 	else if (hl_mem_area_inside_range(virt_addr, size,
373 			prop->pmmu_huge.start_addr, prop->pmmu_huge.end_addr))
374 		page_size = prop->pmmu_huge.page_size;
375 	else
376 		return -EINVAL;
377 
378 	for (off = 0 ; off < size ; off += page_size) {
379 		curr_va = virt_addr + off;
380 		curr_pa = phys_addr + off;
381 		flush_pte = (off + page_size) >= size;
382 		rc = hl_mmu_map_page(ctx, curr_va, curr_pa, page_size,
383 								flush_pte);
384 		if (rc) {
385 			dev_err(hdev->dev,
386 				"Map failed for va 0x%llx to pa 0x%llx\n",
387 				curr_va, curr_pa);
388 			goto unmap;
389 		}
390 	}
391 
392 	return rc;
393 
394 unmap:
395 	for (; off >= 0 ; off -= page_size) {
396 		curr_va = virt_addr + off;
397 		flush_pte = (off - (s32) page_size) < 0;
398 		if (hl_mmu_unmap_page(ctx, curr_va, page_size, flush_pte))
399 			dev_warn_ratelimited(hdev->dev,
400 				"failed to unmap va 0x%llx\n", curr_va);
401 	}
402 
403 	return rc;
404 }
405 
406 /*
407  * hl_mmu_unmap_contiguous - implements a wrapper for hl_mmu_unmap_page
408  *                           for unmapping contiguous physical memory
409  *
410  * @ctx: pointer to the context structure
411  * @virt_addr: virt addr to unmap
412  * @size: size to unmap
413  *
414  */
hl_mmu_unmap_contiguous(struct hl_ctx * ctx,u64 virt_addr,u32 size)415 int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size)
416 {
417 	struct hl_device *hdev = ctx->hdev;
418 	struct asic_fixed_properties *prop = &hdev->asic_prop;
419 	u64 curr_va;
420 	u32 page_size;
421 	bool flush_pte;
422 	int rc = 0, off;
423 
424 	if (hl_mem_area_inside_range(virt_addr, size,
425 			prop->dmmu.start_addr, prop->dmmu.end_addr))
426 		page_size = prop->dmmu.page_size;
427 	else if (hl_mem_area_inside_range(virt_addr, size,
428 			prop->pmmu.start_addr, prop->pmmu.end_addr))
429 		page_size = prop->pmmu.page_size;
430 	else if (hl_mem_area_inside_range(virt_addr, size,
431 			prop->pmmu_huge.start_addr, prop->pmmu_huge.end_addr))
432 		page_size = prop->pmmu_huge.page_size;
433 	else
434 		return -EINVAL;
435 
436 	for (off = 0 ; off < size ; off += page_size) {
437 		curr_va = virt_addr + off;
438 		flush_pte = (off + page_size) >= size;
439 		rc = hl_mmu_unmap_page(ctx, curr_va, page_size, flush_pte);
440 		if (rc)
441 			dev_warn_ratelimited(hdev->dev,
442 				"Unmap failed for va 0x%llx\n", curr_va);
443 	}
444 
445 	return rc;
446 }
447 
448 /*
449  * hl_mmu_swap_out - marks all mapping of the given ctx as swapped out
450  *
451  * @ctx: pointer to the context structure
452  *
453  */
hl_mmu_swap_out(struct hl_ctx * ctx)454 void hl_mmu_swap_out(struct hl_ctx *ctx)
455 {
456 	struct hl_device *hdev = ctx->hdev;
457 
458 	if (!hdev->mmu_enable)
459 		return;
460 
461 	if (hdev->mmu_func[MMU_DR_PGT].swap_out != NULL)
462 		hdev->mmu_func[MMU_DR_PGT].swap_out(ctx);
463 
464 	if (hdev->mmu_func[MMU_HR_PGT].swap_out != NULL)
465 		hdev->mmu_func[MMU_HR_PGT].swap_out(ctx);
466 }
467 
468 /*
469  * hl_mmu_swap_in - marks all mapping of the given ctx as swapped in
470  *
471  * @ctx: pointer to the context structure
472  *
473  */
hl_mmu_swap_in(struct hl_ctx * ctx)474 void hl_mmu_swap_in(struct hl_ctx *ctx)
475 {
476 	struct hl_device *hdev = ctx->hdev;
477 
478 	if (!hdev->mmu_enable)
479 		return;
480 
481 	if (hdev->mmu_func[MMU_DR_PGT].swap_in != NULL)
482 		hdev->mmu_func[MMU_DR_PGT].swap_in(ctx);
483 
484 	if (hdev->mmu_func[MMU_HR_PGT].swap_in != NULL)
485 		hdev->mmu_func[MMU_HR_PGT].swap_in(ctx);
486 }
487 
hl_mmu_pa_page_with_offset(struct hl_ctx * ctx,u64 virt_addr,struct hl_mmu_hop_info * hops,u64 * phys_addr)488 static void hl_mmu_pa_page_with_offset(struct hl_ctx *ctx, u64 virt_addr,
489 						struct hl_mmu_hop_info *hops,
490 						u64 *phys_addr)
491 {
492 	struct asic_fixed_properties *prop = &ctx->hdev->asic_prop;
493 	u64 offset_mask, addr_mask, hop_shift, tmp_phys_addr;
494 	struct hl_mmu_properties *mmu_prop;
495 
496 	/* last hop holds the phys address and flags */
497 	if (hops->unscrambled_paddr)
498 		tmp_phys_addr = hops->unscrambled_paddr;
499 	else
500 		tmp_phys_addr = hops->hop_info[hops->used_hops - 1].hop_pte_val;
501 
502 	if (hops->range_type == HL_VA_RANGE_TYPE_HOST_HUGE)
503 		mmu_prop = &prop->pmmu_huge;
504 	else if (hops->range_type == HL_VA_RANGE_TYPE_HOST)
505 		mmu_prop = &prop->pmmu;
506 	else /* HL_VA_RANGE_TYPE_DRAM */
507 		mmu_prop = &prop->dmmu;
508 
509 	if ((hops->range_type == HL_VA_RANGE_TYPE_DRAM) &&
510 			!is_power_of_2(prop->dram_page_size)) {
511 		u64 dram_page_size, dram_base, abs_phys_addr, abs_virt_addr,
512 			page_id, page_start;
513 		u32 page_off;
514 
515 		/*
516 		 * Bit arithmetics cannot be used for non power of two page
517 		 * sizes. In addition, since bit arithmetics is not used,
518 		 * we cannot ignore dram base. All that shall be considered.
519 		 */
520 
521 		dram_page_size = prop->dram_page_size;
522 		dram_base = prop->dram_base_address;
523 		abs_phys_addr = tmp_phys_addr - dram_base;
524 		abs_virt_addr = virt_addr - dram_base;
525 		page_id = DIV_ROUND_DOWN_ULL(abs_phys_addr, dram_page_size);
526 		page_start = page_id * dram_page_size;
527 		div_u64_rem(abs_virt_addr, dram_page_size, &page_off);
528 
529 		*phys_addr = page_start + page_off + dram_base;
530 	} else {
531 		/*
532 		 * find the correct hop shift field in hl_mmu_properties
533 		 * structure in order to determine the right masks
534 		 * for the page offset.
535 		 */
536 		hop_shift = mmu_prop->hop_shifts[hops->used_hops - 1];
537 		offset_mask = (1ull << hop_shift) - 1;
538 		addr_mask = ~(offset_mask);
539 		*phys_addr = (tmp_phys_addr & addr_mask) |
540 				(virt_addr & offset_mask);
541 	}
542 }
543 
hl_mmu_va_to_pa(struct hl_ctx * ctx,u64 virt_addr,u64 * phys_addr)544 int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr)
545 {
546 	struct hl_mmu_hop_info hops;
547 	int rc;
548 
549 	memset(&hops, 0, sizeof(hops));
550 
551 	rc = hl_mmu_get_tlb_info(ctx, virt_addr, &hops);
552 	if (rc)
553 		return rc;
554 
555 	hl_mmu_pa_page_with_offset(ctx, virt_addr, &hops,  phys_addr);
556 
557 	return 0;
558 }
559 
hl_mmu_get_tlb_info(struct hl_ctx * ctx,u64 virt_addr,struct hl_mmu_hop_info * hops)560 int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr,
561 			struct hl_mmu_hop_info *hops)
562 {
563 	struct hl_device *hdev = ctx->hdev;
564 	struct asic_fixed_properties *prop;
565 	struct hl_mmu_properties *mmu_prop;
566 	struct hl_mmu_funcs *mmu_funcs;
567 	int pgt_residency, rc;
568 	bool is_dram_addr;
569 
570 	if (!hdev->mmu_enable)
571 		return -EOPNOTSUPP;
572 
573 	prop = &hdev->asic_prop;
574 	hops->scrambled_vaddr = virt_addr;      /* assume no scrambling */
575 
576 	is_dram_addr = hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size,
577 								prop->dmmu.start_addr,
578 								prop->dmmu.end_addr);
579 
580 	/* host-residency is the same in PMMU and PMMU huge, no need to distinguish here */
581 	mmu_prop = is_dram_addr ? &prop->dmmu : &prop->pmmu;
582 	pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT;
583 	mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr);
584 
585 	mutex_lock(&ctx->mmu_lock);
586 	rc = mmu_funcs->get_tlb_info(ctx, virt_addr, hops);
587 	mutex_unlock(&ctx->mmu_lock);
588 
589 	if (rc)
590 		return rc;
591 
592 	/* add page offset to physical address */
593 	if (hops->unscrambled_paddr)
594 		hl_mmu_pa_page_with_offset(ctx, virt_addr, hops, &hops->unscrambled_paddr);
595 
596 	return 0;
597 }
598 
hl_mmu_if_set_funcs(struct hl_device * hdev)599 int hl_mmu_if_set_funcs(struct hl_device *hdev)
600 {
601 	if (!hdev->mmu_enable)
602 		return 0;
603 
604 	switch (hdev->asic_type) {
605 	case ASIC_GOYA:
606 	case ASIC_GAUDI:
607 	case ASIC_GAUDI_SEC:
608 		hl_mmu_v1_set_funcs(hdev, &hdev->mmu_func[MMU_DR_PGT]);
609 		break;
610 	default:
611 		dev_err(hdev->dev, "Unrecognized ASIC type %d\n",
612 			hdev->asic_type);
613 		return -EOPNOTSUPP;
614 	}
615 
616 	return 0;
617 }
618 
619 /**
620  * hl_mmu_scramble_addr() - The generic mmu address scrambling routine.
621  * @hdev: pointer to device data.
622  * @addr: The address to scramble.
623  *
624  * Return: The scrambled address.
625  */
hl_mmu_scramble_addr(struct hl_device * hdev,u64 addr)626 u64 hl_mmu_scramble_addr(struct hl_device *hdev, u64 addr)
627 {
628 	return addr;
629 }
630 
631 /**
632  * hl_mmu_descramble_addr() - The generic mmu address descrambling
633  * routine.
634  * @hdev: pointer to device data.
635  * @addr: The address to descramble.
636  *
637  * Return: The un-scrambled address.
638  */
hl_mmu_descramble_addr(struct hl_device * hdev,u64 addr)639 u64 hl_mmu_descramble_addr(struct hl_device *hdev, u64 addr)
640 {
641 	return addr;
642 }
643 
hl_mmu_invalidate_cache(struct hl_device * hdev,bool is_hard,u32 flags)644 int hl_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard, u32 flags)
645 {
646 	int rc;
647 
648 	rc = hdev->asic_funcs->mmu_invalidate_cache(hdev, is_hard, flags);
649 	if (rc)
650 		dev_err_ratelimited(hdev->dev, "MMU cache invalidation failed\n");
651 
652 	return rc;
653 }
654 
hl_mmu_invalidate_cache_range(struct hl_device * hdev,bool is_hard,u32 flags,u32 asid,u64 va,u64 size)655 int hl_mmu_invalidate_cache_range(struct hl_device *hdev, bool is_hard,
656 					u32 flags, u32 asid, u64 va, u64 size)
657 {
658 	int rc;
659 
660 	rc = hdev->asic_funcs->mmu_invalidate_cache_range(hdev, is_hard, flags,
661 								asid, va, size);
662 	if (rc)
663 		dev_err_ratelimited(hdev->dev, "MMU cache range invalidation failed\n");
664 
665 	return rc;
666 }
667 
hl_mmu_prefetch_work_function(struct work_struct * work)668 static void hl_mmu_prefetch_work_function(struct work_struct *work)
669 {
670 	struct hl_prefetch_work *pfw = container_of(work, struct hl_prefetch_work, pf_work);
671 	struct hl_ctx *ctx = pfw->ctx;
672 
673 	if (!hl_device_operational(ctx->hdev, NULL))
674 		goto put_ctx;
675 
676 	mutex_lock(&ctx->mmu_lock);
677 
678 	ctx->hdev->asic_funcs->mmu_prefetch_cache_range(ctx, pfw->flags, pfw->asid,
679 								pfw->va, pfw->size);
680 
681 	mutex_unlock(&ctx->mmu_lock);
682 
683 put_ctx:
684 	/*
685 	 * context was taken in the common mmu prefetch function- see comment there about
686 	 * context handling.
687 	 */
688 	hl_ctx_put(ctx);
689 	kfree(pfw);
690 }
691 
hl_mmu_prefetch_cache_range(struct hl_ctx * ctx,u32 flags,u32 asid,u64 va,u64 size)692 int hl_mmu_prefetch_cache_range(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size)
693 {
694 	struct hl_prefetch_work *handle_pf_work;
695 
696 	handle_pf_work = kmalloc(sizeof(*handle_pf_work), GFP_KERNEL);
697 	if (!handle_pf_work)
698 		return -ENOMEM;
699 
700 	INIT_WORK(&handle_pf_work->pf_work, hl_mmu_prefetch_work_function);
701 	handle_pf_work->ctx = ctx;
702 	handle_pf_work->va = va;
703 	handle_pf_work->size = size;
704 	handle_pf_work->flags = flags;
705 	handle_pf_work->asid = asid;
706 
707 	/*
708 	 * as actual prefetch is done in a WQ we must get the context (and put it
709 	 * at the end of the work function)
710 	 */
711 	hl_ctx_get(ctx);
712 	queue_work(ctx->hdev->pf_wq, &handle_pf_work->pf_work);
713 
714 	return 0;
715 }
716 
hl_mmu_get_next_hop_addr(struct hl_ctx * ctx,u64 curr_pte)717 u64 hl_mmu_get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte)
718 {
719 	return (curr_pte & PAGE_PRESENT_MASK) ? (curr_pte & HOP_PHYS_ADDR_MASK) : ULLONG_MAX;
720 }
721 
722 /**
723  * hl_mmu_get_hop_pte_phys_addr() - extract PTE address from HOP
724  * @ctx: pointer to the context structure to initialize.
725  * @mmu_prop: MMU properties.
726  * @hop_idx: HOP index.
727  * @hop_addr: HOP address.
728  * @virt_addr: virtual address fro the translation.
729  *
730  * @return the matching PTE value on success, otherwise U64_MAX.
731  */
hl_mmu_get_hop_pte_phys_addr(struct hl_ctx * ctx,struct hl_mmu_properties * mmu_prop,u8 hop_idx,u64 hop_addr,u64 virt_addr)732 u64 hl_mmu_get_hop_pte_phys_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop,
733 					u8 hop_idx, u64 hop_addr, u64 virt_addr)
734 {
735 	u64 mask, shift;
736 
737 	if (hop_idx >= mmu_prop->num_hops) {
738 		dev_err_ratelimited(ctx->hdev->dev, "Invalid hop index %d\n", hop_idx);
739 		return U64_MAX;
740 	}
741 
742 	shift = mmu_prop->hop_shifts[hop_idx];
743 	mask = mmu_prop->hop_masks[hop_idx];
744 
745 	return hop_addr + ctx->hdev->asic_prop.mmu_pte_size * ((virt_addr & mask) >> shift);
746 }
747 
748