1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2015 Shaohua Li <shli@fb.com>
4 * Copyright (C) 2016 Song Liu <songliubraving@fb.com>
5 */
6 #include <linux/kernel.h>
7 #include <linux/wait.h>
8 #include <linux/blkdev.h>
9 #include <linux/slab.h>
10 #include <linux/raid/md_p.h>
11 #include <linux/crc32c.h>
12 #include <linux/random.h>
13 #include <linux/kthread.h>
14 #include <linux/types.h>
15 #include "md.h"
16 #include "raid5.h"
17 #include "md-bitmap.h"
18 #include "raid5-log.h"
19
20 /*
21 * metadata/data stored in disk with 4k size unit (a block) regardless
22 * underneath hardware sector size. only works with PAGE_SIZE == 4096
23 */
24 #define BLOCK_SECTORS (8)
25 #define BLOCK_SECTOR_SHIFT (3)
26
27 /*
28 * log->max_free_space is min(1/4 disk size, 10G reclaimable space).
29 *
30 * In write through mode, the reclaim runs every log->max_free_space.
31 * This can prevent the recovery scans for too long
32 */
33 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
34 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
35
36 /* wake up reclaim thread periodically */
37 #define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ)
38 /* start flush with these full stripes */
39 #define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4)
40 /* reclaim stripes in groups */
41 #define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2)
42
43 /*
44 * We only need 2 bios per I/O unit to make progress, but ensure we
45 * have a few more available to not get too tight.
46 */
47 #define R5L_POOL_SIZE 4
48
49 static char *r5c_journal_mode_str[] = {"write-through",
50 "write-back"};
51 /*
52 * raid5 cache state machine
53 *
54 * With the RAID cache, each stripe works in two phases:
55 * - caching phase
56 * - writing-out phase
57 *
58 * These two phases are controlled by bit STRIPE_R5C_CACHING:
59 * if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase
60 * if STRIPE_R5C_CACHING == 1, the stripe is in caching phase
61 *
62 * When there is no journal, or the journal is in write-through mode,
63 * the stripe is always in writing-out phase.
64 *
65 * For write-back journal, the stripe is sent to caching phase on write
66 * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off
67 * the write-out phase by clearing STRIPE_R5C_CACHING.
68 *
69 * Stripes in caching phase do not write the raid disks. Instead, all
70 * writes are committed from the log device. Therefore, a stripe in
71 * caching phase handles writes as:
72 * - write to log device
73 * - return IO
74 *
75 * Stripes in writing-out phase handle writes as:
76 * - calculate parity
77 * - write pending data and parity to journal
78 * - write data and parity to raid disks
79 * - return IO for pending writes
80 */
81
82 struct r5l_log {
83 struct md_rdev *rdev;
84
85 u32 uuid_checksum;
86
87 sector_t device_size; /* log device size, round to
88 * BLOCK_SECTORS */
89 sector_t max_free_space; /* reclaim run if free space is at
90 * this size */
91
92 sector_t last_checkpoint; /* log tail. where recovery scan
93 * starts from */
94 u64 last_cp_seq; /* log tail sequence */
95
96 sector_t log_start; /* log head. where new data appends */
97 u64 seq; /* log head sequence */
98
99 sector_t next_checkpoint;
100
101 struct mutex io_mutex;
102 struct r5l_io_unit *current_io; /* current io_unit accepting new data */
103
104 spinlock_t io_list_lock;
105 struct list_head running_ios; /* io_units which are still running,
106 * and have not yet been completely
107 * written to the log */
108 struct list_head io_end_ios; /* io_units which have been completely
109 * written to the log but not yet written
110 * to the RAID */
111 struct list_head flushing_ios; /* io_units which are waiting for log
112 * cache flush */
113 struct list_head finished_ios; /* io_units which settle down in log disk */
114 struct bio flush_bio;
115
116 struct list_head no_mem_stripes; /* pending stripes, -ENOMEM */
117
118 struct kmem_cache *io_kc;
119 mempool_t io_pool;
120 struct bio_set bs;
121 mempool_t meta_pool;
122
123 struct md_thread *reclaim_thread;
124 unsigned long reclaim_target; /* number of space that need to be
125 * reclaimed. if it's 0, reclaim spaces
126 * used by io_units which are in
127 * IO_UNIT_STRIPE_END state (eg, reclaim
128 * dones't wait for specific io_unit
129 * switching to IO_UNIT_STRIPE_END
130 * state) */
131 wait_queue_head_t iounit_wait;
132
133 struct list_head no_space_stripes; /* pending stripes, log has no space */
134 spinlock_t no_space_stripes_lock;
135
136 bool need_cache_flush;
137
138 /* for r5c_cache */
139 enum r5c_journal_mode r5c_journal_mode;
140
141 /* all stripes in r5cache, in the order of seq at sh->log_start */
142 struct list_head stripe_in_journal_list;
143
144 spinlock_t stripe_in_journal_lock;
145 atomic_t stripe_in_journal_count;
146
147 /* to submit async io_units, to fulfill ordering of flush */
148 struct work_struct deferred_io_work;
149 /* to disable write back during in degraded mode */
150 struct work_struct disable_writeback_work;
151
152 /* to for chunk_aligned_read in writeback mode, details below */
153 spinlock_t tree_lock;
154 struct radix_tree_root big_stripe_tree;
155 };
156
157 /*
158 * Enable chunk_aligned_read() with write back cache.
159 *
160 * Each chunk may contain more than one stripe (for example, a 256kB
161 * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For
162 * chunk_aligned_read, these stripes are grouped into one "big_stripe".
163 * For each big_stripe, we count how many stripes of this big_stripe
164 * are in the write back cache. These data are tracked in a radix tree
165 * (big_stripe_tree). We use radix_tree item pointer as the counter.
166 * r5c_tree_index() is used to calculate keys for the radix tree.
167 *
168 * chunk_aligned_read() calls r5c_big_stripe_cached() to look up
169 * big_stripe of each chunk in the tree. If this big_stripe is in the
170 * tree, chunk_aligned_read() aborts. This look up is protected by
171 * rcu_read_lock().
172 *
173 * It is necessary to remember whether a stripe is counted in
174 * big_stripe_tree. Instead of adding new flag, we reuses existing flags:
175 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these
176 * two flags are set, the stripe is counted in big_stripe_tree. This
177 * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to
178 * r5c_try_caching_write(); and moving clear_bit of
179 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to
180 * r5c_finish_stripe_write_out().
181 */
182
183 /*
184 * radix tree requests lowest 2 bits of data pointer to be 2b'00.
185 * So it is necessary to left shift the counter by 2 bits before using it
186 * as data pointer of the tree.
187 */
188 #define R5C_RADIX_COUNT_SHIFT 2
189
190 /*
191 * calculate key for big_stripe_tree
192 *
193 * sect: align_bi->bi_iter.bi_sector or sh->sector
194 */
r5c_tree_index(struct r5conf * conf,sector_t sect)195 static inline sector_t r5c_tree_index(struct r5conf *conf,
196 sector_t sect)
197 {
198 sector_div(sect, conf->chunk_sectors);
199 return sect;
200 }
201
202 /*
203 * an IO range starts from a meta data block and end at the next meta data
204 * block. The io unit's the meta data block tracks data/parity followed it. io
205 * unit is written to log disk with normal write, as we always flush log disk
206 * first and then start move data to raid disks, there is no requirement to
207 * write io unit with FLUSH/FUA
208 */
209 struct r5l_io_unit {
210 struct r5l_log *log;
211
212 struct page *meta_page; /* store meta block */
213 int meta_offset; /* current offset in meta_page */
214
215 struct bio *current_bio;/* current_bio accepting new data */
216
217 atomic_t pending_stripe;/* how many stripes not flushed to raid */
218 u64 seq; /* seq number of the metablock */
219 sector_t log_start; /* where the io_unit starts */
220 sector_t log_end; /* where the io_unit ends */
221 struct list_head log_sibling; /* log->running_ios */
222 struct list_head stripe_list; /* stripes added to the io_unit */
223
224 int state;
225 bool need_split_bio;
226 struct bio *split_bio;
227
228 unsigned int has_flush:1; /* include flush request */
229 unsigned int has_fua:1; /* include fua request */
230 unsigned int has_null_flush:1; /* include null flush request */
231 unsigned int has_flush_payload:1; /* include flush payload */
232 /*
233 * io isn't sent yet, flush/fua request can only be submitted till it's
234 * the first IO in running_ios list
235 */
236 unsigned int io_deferred:1;
237
238 struct bio_list flush_barriers; /* size == 0 flush bios */
239 };
240
241 /* r5l_io_unit state */
242 enum r5l_io_unit_state {
243 IO_UNIT_RUNNING = 0, /* accepting new IO */
244 IO_UNIT_IO_START = 1, /* io_unit bio start writing to log,
245 * don't accepting new bio */
246 IO_UNIT_IO_END = 2, /* io_unit bio finish writing to log */
247 IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */
248 };
249
r5c_is_writeback(struct r5l_log * log)250 bool r5c_is_writeback(struct r5l_log *log)
251 {
252 return (log != NULL &&
253 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK);
254 }
255
r5l_ring_add(struct r5l_log * log,sector_t start,sector_t inc)256 static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
257 {
258 start += inc;
259 if (start >= log->device_size)
260 start = start - log->device_size;
261 return start;
262 }
263
r5l_ring_distance(struct r5l_log * log,sector_t start,sector_t end)264 static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
265 sector_t end)
266 {
267 if (end >= start)
268 return end - start;
269 else
270 return end + log->device_size - start;
271 }
272
r5l_has_free_space(struct r5l_log * log,sector_t size)273 static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
274 {
275 sector_t used_size;
276
277 used_size = r5l_ring_distance(log, log->last_checkpoint,
278 log->log_start);
279
280 return log->device_size > used_size + size;
281 }
282
__r5l_set_io_unit_state(struct r5l_io_unit * io,enum r5l_io_unit_state state)283 static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
284 enum r5l_io_unit_state state)
285 {
286 if (WARN_ON(io->state >= state))
287 return;
288 io->state = state;
289 }
290
291 static void
r5c_return_dev_pending_writes(struct r5conf * conf,struct r5dev * dev)292 r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev)
293 {
294 struct bio *wbi, *wbi2;
295
296 wbi = dev->written;
297 dev->written = NULL;
298 while (wbi && wbi->bi_iter.bi_sector <
299 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
300 wbi2 = r5_next_bio(conf, wbi, dev->sector);
301 md_write_end(conf->mddev);
302 bio_endio(wbi);
303 wbi = wbi2;
304 }
305 }
306
r5c_handle_cached_data_endio(struct r5conf * conf,struct stripe_head * sh,int disks)307 void r5c_handle_cached_data_endio(struct r5conf *conf,
308 struct stripe_head *sh, int disks)
309 {
310 int i;
311
312 for (i = sh->disks; i--; ) {
313 if (sh->dev[i].written) {
314 set_bit(R5_UPTODATE, &sh->dev[i].flags);
315 r5c_return_dev_pending_writes(conf, &sh->dev[i]);
316 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
317 RAID5_STRIPE_SECTORS(conf),
318 !test_bit(STRIPE_DEGRADED, &sh->state),
319 0);
320 }
321 }
322 }
323
324 void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
325
326 /* Check whether we should flush some stripes to free up stripe cache */
r5c_check_stripe_cache_usage(struct r5conf * conf)327 void r5c_check_stripe_cache_usage(struct r5conf *conf)
328 {
329 int total_cached;
330
331 if (!r5c_is_writeback(conf->log))
332 return;
333
334 total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
335 atomic_read(&conf->r5c_cached_full_stripes);
336
337 /*
338 * The following condition is true for either of the following:
339 * - stripe cache pressure high:
340 * total_cached > 3/4 min_nr_stripes ||
341 * empty_inactive_list_nr > 0
342 * - stripe cache pressure moderate:
343 * total_cached > 1/2 min_nr_stripes
344 */
345 if (total_cached > conf->min_nr_stripes * 1 / 2 ||
346 atomic_read(&conf->empty_inactive_list_nr) > 0)
347 r5l_wake_reclaim(conf->log, 0);
348 }
349
350 /*
351 * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full
352 * stripes in the cache
353 */
r5c_check_cached_full_stripe(struct r5conf * conf)354 void r5c_check_cached_full_stripe(struct r5conf *conf)
355 {
356 if (!r5c_is_writeback(conf->log))
357 return;
358
359 /*
360 * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes
361 * or a full stripe (chunk size / 4k stripes).
362 */
363 if (atomic_read(&conf->r5c_cached_full_stripes) >=
364 min(R5C_FULL_STRIPE_FLUSH_BATCH(conf),
365 conf->chunk_sectors >> RAID5_STRIPE_SHIFT(conf)))
366 r5l_wake_reclaim(conf->log, 0);
367 }
368
369 /*
370 * Total log space (in sectors) needed to flush all data in cache
371 *
372 * To avoid deadlock due to log space, it is necessary to reserve log
373 * space to flush critical stripes (stripes that occupying log space near
374 * last_checkpoint). This function helps check how much log space is
375 * required to flush all cached stripes.
376 *
377 * To reduce log space requirements, two mechanisms are used to give cache
378 * flush higher priorities:
379 * 1. In handle_stripe_dirtying() and schedule_reconstruction(),
380 * stripes ALREADY in journal can be flushed w/o pending writes;
381 * 2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal
382 * can be delayed (r5l_add_no_space_stripe).
383 *
384 * In cache flush, the stripe goes through 1 and then 2. For a stripe that
385 * already passed 1, flushing it requires at most (conf->max_degraded + 1)
386 * pages of journal space. For stripes that has not passed 1, flushing it
387 * requires (conf->raid_disks + 1) pages of journal space. There are at
388 * most (conf->group_cnt + 1) stripe that passed 1. So total journal space
389 * required to flush all cached stripes (in pages) is:
390 *
391 * (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) +
392 * (group_cnt + 1) * (raid_disks + 1)
393 * or
394 * (stripe_in_journal_count) * (max_degraded + 1) +
395 * (group_cnt + 1) * (raid_disks - max_degraded)
396 */
r5c_log_required_to_flush_cache(struct r5conf * conf)397 static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf)
398 {
399 struct r5l_log *log = conf->log;
400
401 if (!r5c_is_writeback(log))
402 return 0;
403
404 return BLOCK_SECTORS *
405 ((conf->max_degraded + 1) * atomic_read(&log->stripe_in_journal_count) +
406 (conf->raid_disks - conf->max_degraded) * (conf->group_cnt + 1));
407 }
408
409 /*
410 * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL
411 *
412 * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of
413 * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log
414 * device is less than 2x of reclaim_required_space.
415 */
r5c_update_log_state(struct r5l_log * log)416 static inline void r5c_update_log_state(struct r5l_log *log)
417 {
418 struct r5conf *conf = log->rdev->mddev->private;
419 sector_t free_space;
420 sector_t reclaim_space;
421 bool wake_reclaim = false;
422
423 if (!r5c_is_writeback(log))
424 return;
425
426 free_space = r5l_ring_distance(log, log->log_start,
427 log->last_checkpoint);
428 reclaim_space = r5c_log_required_to_flush_cache(conf);
429 if (free_space < 2 * reclaim_space)
430 set_bit(R5C_LOG_CRITICAL, &conf->cache_state);
431 else {
432 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
433 wake_reclaim = true;
434 clear_bit(R5C_LOG_CRITICAL, &conf->cache_state);
435 }
436 if (free_space < 3 * reclaim_space)
437 set_bit(R5C_LOG_TIGHT, &conf->cache_state);
438 else
439 clear_bit(R5C_LOG_TIGHT, &conf->cache_state);
440
441 if (wake_reclaim)
442 r5l_wake_reclaim(log, 0);
443 }
444
445 /*
446 * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING.
447 * This function should only be called in write-back mode.
448 */
r5c_make_stripe_write_out(struct stripe_head * sh)449 void r5c_make_stripe_write_out(struct stripe_head *sh)
450 {
451 struct r5conf *conf = sh->raid_conf;
452 struct r5l_log *log = conf->log;
453
454 BUG_ON(!r5c_is_writeback(log));
455
456 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
457 clear_bit(STRIPE_R5C_CACHING, &sh->state);
458
459 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
460 atomic_inc(&conf->preread_active_stripes);
461 }
462
r5c_handle_data_cached(struct stripe_head * sh)463 static void r5c_handle_data_cached(struct stripe_head *sh)
464 {
465 int i;
466
467 for (i = sh->disks; i--; )
468 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
469 set_bit(R5_InJournal, &sh->dev[i].flags);
470 clear_bit(R5_LOCKED, &sh->dev[i].flags);
471 }
472 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
473 }
474
475 /*
476 * this journal write must contain full parity,
477 * it may also contain some data pages
478 */
r5c_handle_parity_cached(struct stripe_head * sh)479 static void r5c_handle_parity_cached(struct stripe_head *sh)
480 {
481 int i;
482
483 for (i = sh->disks; i--; )
484 if (test_bit(R5_InJournal, &sh->dev[i].flags))
485 set_bit(R5_Wantwrite, &sh->dev[i].flags);
486 }
487
488 /*
489 * Setting proper flags after writing (or flushing) data and/or parity to the
490 * log device. This is called from r5l_log_endio() or r5l_log_flush_endio().
491 */
r5c_finish_cache_stripe(struct stripe_head * sh)492 static void r5c_finish_cache_stripe(struct stripe_head *sh)
493 {
494 struct r5l_log *log = sh->raid_conf->log;
495
496 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
497 BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
498 /*
499 * Set R5_InJournal for parity dev[pd_idx]. This means
500 * all data AND parity in the journal. For RAID 6, it is
501 * NOT necessary to set the flag for dev[qd_idx], as the
502 * two parities are written out together.
503 */
504 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
505 } else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) {
506 r5c_handle_data_cached(sh);
507 } else {
508 r5c_handle_parity_cached(sh);
509 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
510 }
511 }
512
r5l_io_run_stripes(struct r5l_io_unit * io)513 static void r5l_io_run_stripes(struct r5l_io_unit *io)
514 {
515 struct stripe_head *sh, *next;
516
517 list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
518 list_del_init(&sh->log_list);
519
520 r5c_finish_cache_stripe(sh);
521
522 set_bit(STRIPE_HANDLE, &sh->state);
523 raid5_release_stripe(sh);
524 }
525 }
526
r5l_log_run_stripes(struct r5l_log * log)527 static void r5l_log_run_stripes(struct r5l_log *log)
528 {
529 struct r5l_io_unit *io, *next;
530
531 lockdep_assert_held(&log->io_list_lock);
532
533 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
534 /* don't change list order */
535 if (io->state < IO_UNIT_IO_END)
536 break;
537
538 list_move_tail(&io->log_sibling, &log->finished_ios);
539 r5l_io_run_stripes(io);
540 }
541 }
542
r5l_move_to_end_ios(struct r5l_log * log)543 static void r5l_move_to_end_ios(struct r5l_log *log)
544 {
545 struct r5l_io_unit *io, *next;
546
547 lockdep_assert_held(&log->io_list_lock);
548
549 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
550 /* don't change list order */
551 if (io->state < IO_UNIT_IO_END)
552 break;
553 list_move_tail(&io->log_sibling, &log->io_end_ios);
554 }
555 }
556
557 static void __r5l_stripe_write_finished(struct r5l_io_unit *io);
r5l_log_endio(struct bio * bio)558 static void r5l_log_endio(struct bio *bio)
559 {
560 struct r5l_io_unit *io = bio->bi_private;
561 struct r5l_io_unit *io_deferred;
562 struct r5l_log *log = io->log;
563 unsigned long flags;
564 bool has_null_flush;
565 bool has_flush_payload;
566
567 if (bio->bi_status)
568 md_error(log->rdev->mddev, log->rdev);
569
570 bio_put(bio);
571 mempool_free(io->meta_page, &log->meta_pool);
572
573 spin_lock_irqsave(&log->io_list_lock, flags);
574 __r5l_set_io_unit_state(io, IO_UNIT_IO_END);
575
576 /*
577 * if the io doesn't not have null_flush or flush payload,
578 * it is not safe to access it after releasing io_list_lock.
579 * Therefore, it is necessary to check the condition with
580 * the lock held.
581 */
582 has_null_flush = io->has_null_flush;
583 has_flush_payload = io->has_flush_payload;
584
585 if (log->need_cache_flush && !list_empty(&io->stripe_list))
586 r5l_move_to_end_ios(log);
587 else
588 r5l_log_run_stripes(log);
589 if (!list_empty(&log->running_ios)) {
590 /*
591 * FLUSH/FUA io_unit is deferred because of ordering, now we
592 * can dispatch it
593 */
594 io_deferred = list_first_entry(&log->running_ios,
595 struct r5l_io_unit, log_sibling);
596 if (io_deferred->io_deferred)
597 schedule_work(&log->deferred_io_work);
598 }
599
600 spin_unlock_irqrestore(&log->io_list_lock, flags);
601
602 if (log->need_cache_flush)
603 md_wakeup_thread(log->rdev->mddev->thread);
604
605 /* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */
606 if (has_null_flush) {
607 struct bio *bi;
608
609 WARN_ON(bio_list_empty(&io->flush_barriers));
610 while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) {
611 bio_endio(bi);
612 if (atomic_dec_and_test(&io->pending_stripe)) {
613 __r5l_stripe_write_finished(io);
614 return;
615 }
616 }
617 }
618 /* decrease pending_stripe for flush payload */
619 if (has_flush_payload)
620 if (atomic_dec_and_test(&io->pending_stripe))
621 __r5l_stripe_write_finished(io);
622 }
623
r5l_do_submit_io(struct r5l_log * log,struct r5l_io_unit * io)624 static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io)
625 {
626 unsigned long flags;
627
628 spin_lock_irqsave(&log->io_list_lock, flags);
629 __r5l_set_io_unit_state(io, IO_UNIT_IO_START);
630 spin_unlock_irqrestore(&log->io_list_lock, flags);
631
632 /*
633 * In case of journal device failures, submit_bio will get error
634 * and calls endio, then active stripes will continue write
635 * process. Therefore, it is not necessary to check Faulty bit
636 * of journal device here.
637 *
638 * We can't check split_bio after current_bio is submitted. If
639 * io->split_bio is null, after current_bio is submitted, current_bio
640 * might already be completed and the io_unit is freed. We submit
641 * split_bio first to avoid the issue.
642 */
643 if (io->split_bio) {
644 if (io->has_flush)
645 io->split_bio->bi_opf |= REQ_PREFLUSH;
646 if (io->has_fua)
647 io->split_bio->bi_opf |= REQ_FUA;
648 submit_bio(io->split_bio);
649 }
650
651 if (io->has_flush)
652 io->current_bio->bi_opf |= REQ_PREFLUSH;
653 if (io->has_fua)
654 io->current_bio->bi_opf |= REQ_FUA;
655 submit_bio(io->current_bio);
656 }
657
658 /* deferred io_unit will be dispatched here */
r5l_submit_io_async(struct work_struct * work)659 static void r5l_submit_io_async(struct work_struct *work)
660 {
661 struct r5l_log *log = container_of(work, struct r5l_log,
662 deferred_io_work);
663 struct r5l_io_unit *io = NULL;
664 unsigned long flags;
665
666 spin_lock_irqsave(&log->io_list_lock, flags);
667 if (!list_empty(&log->running_ios)) {
668 io = list_first_entry(&log->running_ios, struct r5l_io_unit,
669 log_sibling);
670 if (!io->io_deferred)
671 io = NULL;
672 else
673 io->io_deferred = 0;
674 }
675 spin_unlock_irqrestore(&log->io_list_lock, flags);
676 if (io)
677 r5l_do_submit_io(log, io);
678 }
679
r5c_disable_writeback_async(struct work_struct * work)680 static void r5c_disable_writeback_async(struct work_struct *work)
681 {
682 struct r5l_log *log = container_of(work, struct r5l_log,
683 disable_writeback_work);
684 struct mddev *mddev = log->rdev->mddev;
685 struct r5conf *conf = mddev->private;
686 int locked = 0;
687
688 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
689 return;
690 pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n",
691 mdname(mddev));
692
693 /* wait superblock change before suspend */
694 wait_event(mddev->sb_wait,
695 conf->log == NULL ||
696 (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) &&
697 (locked = mddev_trylock(mddev))));
698 if (locked) {
699 mddev_suspend(mddev);
700 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
701 mddev_resume(mddev);
702 mddev_unlock(mddev);
703 }
704 }
705
r5l_submit_current_io(struct r5l_log * log)706 static void r5l_submit_current_io(struct r5l_log *log)
707 {
708 struct r5l_io_unit *io = log->current_io;
709 struct r5l_meta_block *block;
710 unsigned long flags;
711 u32 crc;
712 bool do_submit = true;
713
714 if (!io)
715 return;
716
717 block = page_address(io->meta_page);
718 block->meta_size = cpu_to_le32(io->meta_offset);
719 crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
720 block->checksum = cpu_to_le32(crc);
721
722 log->current_io = NULL;
723 spin_lock_irqsave(&log->io_list_lock, flags);
724 if (io->has_flush || io->has_fua) {
725 if (io != list_first_entry(&log->running_ios,
726 struct r5l_io_unit, log_sibling)) {
727 io->io_deferred = 1;
728 do_submit = false;
729 }
730 }
731 spin_unlock_irqrestore(&log->io_list_lock, flags);
732 if (do_submit)
733 r5l_do_submit_io(log, io);
734 }
735
r5l_bio_alloc(struct r5l_log * log)736 static struct bio *r5l_bio_alloc(struct r5l_log *log)
737 {
738 struct bio *bio = bio_alloc_bioset(log->rdev->bdev, BIO_MAX_VECS,
739 REQ_OP_WRITE, GFP_NOIO, &log->bs);
740
741 bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
742
743 return bio;
744 }
745
r5_reserve_log_entry(struct r5l_log * log,struct r5l_io_unit * io)746 static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
747 {
748 log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
749
750 r5c_update_log_state(log);
751 /*
752 * If we filled up the log device start from the beginning again,
753 * which will require a new bio.
754 *
755 * Note: for this to work properly the log size needs to me a multiple
756 * of BLOCK_SECTORS.
757 */
758 if (log->log_start == 0)
759 io->need_split_bio = true;
760
761 io->log_end = log->log_start;
762 }
763
r5l_new_meta(struct r5l_log * log)764 static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
765 {
766 struct r5l_io_unit *io;
767 struct r5l_meta_block *block;
768
769 io = mempool_alloc(&log->io_pool, GFP_ATOMIC);
770 if (!io)
771 return NULL;
772 memset(io, 0, sizeof(*io));
773
774 io->log = log;
775 INIT_LIST_HEAD(&io->log_sibling);
776 INIT_LIST_HEAD(&io->stripe_list);
777 bio_list_init(&io->flush_barriers);
778 io->state = IO_UNIT_RUNNING;
779
780 io->meta_page = mempool_alloc(&log->meta_pool, GFP_NOIO);
781 block = page_address(io->meta_page);
782 clear_page(block);
783 block->magic = cpu_to_le32(R5LOG_MAGIC);
784 block->version = R5LOG_VERSION;
785 block->seq = cpu_to_le64(log->seq);
786 block->position = cpu_to_le64(log->log_start);
787
788 io->log_start = log->log_start;
789 io->meta_offset = sizeof(struct r5l_meta_block);
790 io->seq = log->seq++;
791
792 io->current_bio = r5l_bio_alloc(log);
793 io->current_bio->bi_end_io = r5l_log_endio;
794 io->current_bio->bi_private = io;
795 bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
796
797 r5_reserve_log_entry(log, io);
798
799 spin_lock_irq(&log->io_list_lock);
800 list_add_tail(&io->log_sibling, &log->running_ios);
801 spin_unlock_irq(&log->io_list_lock);
802
803 return io;
804 }
805
r5l_get_meta(struct r5l_log * log,unsigned int payload_size)806 static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
807 {
808 if (log->current_io &&
809 log->current_io->meta_offset + payload_size > PAGE_SIZE)
810 r5l_submit_current_io(log);
811
812 if (!log->current_io) {
813 log->current_io = r5l_new_meta(log);
814 if (!log->current_io)
815 return -ENOMEM;
816 }
817
818 return 0;
819 }
820
r5l_append_payload_meta(struct r5l_log * log,u16 type,sector_t location,u32 checksum1,u32 checksum2,bool checksum2_valid)821 static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
822 sector_t location,
823 u32 checksum1, u32 checksum2,
824 bool checksum2_valid)
825 {
826 struct r5l_io_unit *io = log->current_io;
827 struct r5l_payload_data_parity *payload;
828
829 payload = page_address(io->meta_page) + io->meta_offset;
830 payload->header.type = cpu_to_le16(type);
831 payload->header.flags = cpu_to_le16(0);
832 payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
833 (PAGE_SHIFT - 9));
834 payload->location = cpu_to_le64(location);
835 payload->checksum[0] = cpu_to_le32(checksum1);
836 if (checksum2_valid)
837 payload->checksum[1] = cpu_to_le32(checksum2);
838
839 io->meta_offset += sizeof(struct r5l_payload_data_parity) +
840 sizeof(__le32) * (1 + !!checksum2_valid);
841 }
842
r5l_append_payload_page(struct r5l_log * log,struct page * page)843 static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
844 {
845 struct r5l_io_unit *io = log->current_io;
846
847 if (io->need_split_bio) {
848 BUG_ON(io->split_bio);
849 io->split_bio = io->current_bio;
850 io->current_bio = r5l_bio_alloc(log);
851 bio_chain(io->current_bio, io->split_bio);
852 io->need_split_bio = false;
853 }
854
855 if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
856 BUG();
857
858 r5_reserve_log_entry(log, io);
859 }
860
r5l_append_flush_payload(struct r5l_log * log,sector_t sect)861 static void r5l_append_flush_payload(struct r5l_log *log, sector_t sect)
862 {
863 struct mddev *mddev = log->rdev->mddev;
864 struct r5conf *conf = mddev->private;
865 struct r5l_io_unit *io;
866 struct r5l_payload_flush *payload;
867 int meta_size;
868
869 /*
870 * payload_flush requires extra writes to the journal.
871 * To avoid handling the extra IO in quiesce, just skip
872 * flush_payload
873 */
874 if (conf->quiesce)
875 return;
876
877 mutex_lock(&log->io_mutex);
878 meta_size = sizeof(struct r5l_payload_flush) + sizeof(__le64);
879
880 if (r5l_get_meta(log, meta_size)) {
881 mutex_unlock(&log->io_mutex);
882 return;
883 }
884
885 /* current implementation is one stripe per flush payload */
886 io = log->current_io;
887 payload = page_address(io->meta_page) + io->meta_offset;
888 payload->header.type = cpu_to_le16(R5LOG_PAYLOAD_FLUSH);
889 payload->header.flags = cpu_to_le16(0);
890 payload->size = cpu_to_le32(sizeof(__le64));
891 payload->flush_stripes[0] = cpu_to_le64(sect);
892 io->meta_offset += meta_size;
893 /* multiple flush payloads count as one pending_stripe */
894 if (!io->has_flush_payload) {
895 io->has_flush_payload = 1;
896 atomic_inc(&io->pending_stripe);
897 }
898 mutex_unlock(&log->io_mutex);
899 }
900
r5l_log_stripe(struct r5l_log * log,struct stripe_head * sh,int data_pages,int parity_pages)901 static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
902 int data_pages, int parity_pages)
903 {
904 int i;
905 int meta_size;
906 int ret;
907 struct r5l_io_unit *io;
908
909 meta_size =
910 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
911 * data_pages) +
912 sizeof(struct r5l_payload_data_parity) +
913 sizeof(__le32) * parity_pages;
914
915 ret = r5l_get_meta(log, meta_size);
916 if (ret)
917 return ret;
918
919 io = log->current_io;
920
921 if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state))
922 io->has_flush = 1;
923
924 for (i = 0; i < sh->disks; i++) {
925 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
926 test_bit(R5_InJournal, &sh->dev[i].flags))
927 continue;
928 if (i == sh->pd_idx || i == sh->qd_idx)
929 continue;
930 if (test_bit(R5_WantFUA, &sh->dev[i].flags) &&
931 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) {
932 io->has_fua = 1;
933 /*
934 * we need to flush journal to make sure recovery can
935 * reach the data with fua flag
936 */
937 io->has_flush = 1;
938 }
939 r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
940 raid5_compute_blocknr(sh, i, 0),
941 sh->dev[i].log_checksum, 0, false);
942 r5l_append_payload_page(log, sh->dev[i].page);
943 }
944
945 if (parity_pages == 2) {
946 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
947 sh->sector, sh->dev[sh->pd_idx].log_checksum,
948 sh->dev[sh->qd_idx].log_checksum, true);
949 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
950 r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
951 } else if (parity_pages == 1) {
952 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
953 sh->sector, sh->dev[sh->pd_idx].log_checksum,
954 0, false);
955 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
956 } else /* Just writing data, not parity, in caching phase */
957 BUG_ON(parity_pages != 0);
958
959 list_add_tail(&sh->log_list, &io->stripe_list);
960 atomic_inc(&io->pending_stripe);
961 sh->log_io = io;
962
963 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
964 return 0;
965
966 if (sh->log_start == MaxSector) {
967 BUG_ON(!list_empty(&sh->r5c));
968 sh->log_start = io->log_start;
969 spin_lock_irq(&log->stripe_in_journal_lock);
970 list_add_tail(&sh->r5c,
971 &log->stripe_in_journal_list);
972 spin_unlock_irq(&log->stripe_in_journal_lock);
973 atomic_inc(&log->stripe_in_journal_count);
974 }
975 return 0;
976 }
977
978 /* add stripe to no_space_stripes, and then wake up reclaim */
r5l_add_no_space_stripe(struct r5l_log * log,struct stripe_head * sh)979 static inline void r5l_add_no_space_stripe(struct r5l_log *log,
980 struct stripe_head *sh)
981 {
982 spin_lock(&log->no_space_stripes_lock);
983 list_add_tail(&sh->log_list, &log->no_space_stripes);
984 spin_unlock(&log->no_space_stripes_lock);
985 }
986
987 /*
988 * running in raid5d, where reclaim could wait for raid5d too (when it flushes
989 * data from log to raid disks), so we shouldn't wait for reclaim here
990 */
r5l_write_stripe(struct r5l_log * log,struct stripe_head * sh)991 int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
992 {
993 struct r5conf *conf = sh->raid_conf;
994 int write_disks = 0;
995 int data_pages, parity_pages;
996 int reserve;
997 int i;
998 int ret = 0;
999 bool wake_reclaim = false;
1000
1001 if (!log)
1002 return -EAGAIN;
1003 /* Don't support stripe batch */
1004 if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
1005 test_bit(STRIPE_SYNCING, &sh->state)) {
1006 /* the stripe is written to log, we start writing it to raid */
1007 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
1008 return -EAGAIN;
1009 }
1010
1011 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
1012
1013 for (i = 0; i < sh->disks; i++) {
1014 void *addr;
1015
1016 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
1017 test_bit(R5_InJournal, &sh->dev[i].flags))
1018 continue;
1019
1020 write_disks++;
1021 /* checksum is already calculated in last run */
1022 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
1023 continue;
1024 addr = kmap_atomic(sh->dev[i].page);
1025 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
1026 addr, PAGE_SIZE);
1027 kunmap_atomic(addr);
1028 }
1029 parity_pages = 1 + !!(sh->qd_idx >= 0);
1030 data_pages = write_disks - parity_pages;
1031
1032 set_bit(STRIPE_LOG_TRAPPED, &sh->state);
1033 /*
1034 * The stripe must enter state machine again to finish the write, so
1035 * don't delay.
1036 */
1037 clear_bit(STRIPE_DELAYED, &sh->state);
1038 atomic_inc(&sh->count);
1039
1040 mutex_lock(&log->io_mutex);
1041 /* meta + data */
1042 reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
1043
1044 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1045 if (!r5l_has_free_space(log, reserve)) {
1046 r5l_add_no_space_stripe(log, sh);
1047 wake_reclaim = true;
1048 } else {
1049 ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1050 if (ret) {
1051 spin_lock_irq(&log->io_list_lock);
1052 list_add_tail(&sh->log_list,
1053 &log->no_mem_stripes);
1054 spin_unlock_irq(&log->io_list_lock);
1055 }
1056 }
1057 } else { /* R5C_JOURNAL_MODE_WRITE_BACK */
1058 /*
1059 * log space critical, do not process stripes that are
1060 * not in cache yet (sh->log_start == MaxSector).
1061 */
1062 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
1063 sh->log_start == MaxSector) {
1064 r5l_add_no_space_stripe(log, sh);
1065 wake_reclaim = true;
1066 reserve = 0;
1067 } else if (!r5l_has_free_space(log, reserve)) {
1068 if (sh->log_start == log->last_checkpoint)
1069 BUG();
1070 else
1071 r5l_add_no_space_stripe(log, sh);
1072 } else {
1073 ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1074 if (ret) {
1075 spin_lock_irq(&log->io_list_lock);
1076 list_add_tail(&sh->log_list,
1077 &log->no_mem_stripes);
1078 spin_unlock_irq(&log->io_list_lock);
1079 }
1080 }
1081 }
1082
1083 mutex_unlock(&log->io_mutex);
1084 if (wake_reclaim)
1085 r5l_wake_reclaim(log, reserve);
1086 return 0;
1087 }
1088
r5l_write_stripe_run(struct r5l_log * log)1089 void r5l_write_stripe_run(struct r5l_log *log)
1090 {
1091 if (!log)
1092 return;
1093 mutex_lock(&log->io_mutex);
1094 r5l_submit_current_io(log);
1095 mutex_unlock(&log->io_mutex);
1096 }
1097
r5l_handle_flush_request(struct r5l_log * log,struct bio * bio)1098 int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
1099 {
1100 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1101 /*
1102 * in write through (journal only)
1103 * we flush log disk cache first, then write stripe data to
1104 * raid disks. So if bio is finished, the log disk cache is
1105 * flushed already. The recovery guarantees we can recovery
1106 * the bio from log disk, so we don't need to flush again
1107 */
1108 if (bio->bi_iter.bi_size == 0) {
1109 bio_endio(bio);
1110 return 0;
1111 }
1112 bio->bi_opf &= ~REQ_PREFLUSH;
1113 } else {
1114 /* write back (with cache) */
1115 if (bio->bi_iter.bi_size == 0) {
1116 mutex_lock(&log->io_mutex);
1117 r5l_get_meta(log, 0);
1118 bio_list_add(&log->current_io->flush_barriers, bio);
1119 log->current_io->has_flush = 1;
1120 log->current_io->has_null_flush = 1;
1121 atomic_inc(&log->current_io->pending_stripe);
1122 r5l_submit_current_io(log);
1123 mutex_unlock(&log->io_mutex);
1124 return 0;
1125 }
1126 }
1127 return -EAGAIN;
1128 }
1129
1130 /* This will run after log space is reclaimed */
r5l_run_no_space_stripes(struct r5l_log * log)1131 static void r5l_run_no_space_stripes(struct r5l_log *log)
1132 {
1133 struct stripe_head *sh;
1134
1135 spin_lock(&log->no_space_stripes_lock);
1136 while (!list_empty(&log->no_space_stripes)) {
1137 sh = list_first_entry(&log->no_space_stripes,
1138 struct stripe_head, log_list);
1139 list_del_init(&sh->log_list);
1140 set_bit(STRIPE_HANDLE, &sh->state);
1141 raid5_release_stripe(sh);
1142 }
1143 spin_unlock(&log->no_space_stripes_lock);
1144 }
1145
1146 /*
1147 * calculate new last_checkpoint
1148 * for write through mode, returns log->next_checkpoint
1149 * for write back, returns log_start of first sh in stripe_in_journal_list
1150 */
r5c_calculate_new_cp(struct r5conf * conf)1151 static sector_t r5c_calculate_new_cp(struct r5conf *conf)
1152 {
1153 struct stripe_head *sh;
1154 struct r5l_log *log = conf->log;
1155 sector_t new_cp;
1156 unsigned long flags;
1157
1158 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
1159 return log->next_checkpoint;
1160
1161 spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1162 if (list_empty(&conf->log->stripe_in_journal_list)) {
1163 /* all stripes flushed */
1164 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1165 return log->next_checkpoint;
1166 }
1167 sh = list_first_entry(&conf->log->stripe_in_journal_list,
1168 struct stripe_head, r5c);
1169 new_cp = sh->log_start;
1170 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1171 return new_cp;
1172 }
1173
r5l_reclaimable_space(struct r5l_log * log)1174 static sector_t r5l_reclaimable_space(struct r5l_log *log)
1175 {
1176 struct r5conf *conf = log->rdev->mddev->private;
1177
1178 return r5l_ring_distance(log, log->last_checkpoint,
1179 r5c_calculate_new_cp(conf));
1180 }
1181
r5l_run_no_mem_stripe(struct r5l_log * log)1182 static void r5l_run_no_mem_stripe(struct r5l_log *log)
1183 {
1184 struct stripe_head *sh;
1185
1186 lockdep_assert_held(&log->io_list_lock);
1187
1188 if (!list_empty(&log->no_mem_stripes)) {
1189 sh = list_first_entry(&log->no_mem_stripes,
1190 struct stripe_head, log_list);
1191 list_del_init(&sh->log_list);
1192 set_bit(STRIPE_HANDLE, &sh->state);
1193 raid5_release_stripe(sh);
1194 }
1195 }
1196
r5l_complete_finished_ios(struct r5l_log * log)1197 static bool r5l_complete_finished_ios(struct r5l_log *log)
1198 {
1199 struct r5l_io_unit *io, *next;
1200 bool found = false;
1201
1202 lockdep_assert_held(&log->io_list_lock);
1203
1204 list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
1205 /* don't change list order */
1206 if (io->state < IO_UNIT_STRIPE_END)
1207 break;
1208
1209 log->next_checkpoint = io->log_start;
1210
1211 list_del(&io->log_sibling);
1212 mempool_free(io, &log->io_pool);
1213 r5l_run_no_mem_stripe(log);
1214
1215 found = true;
1216 }
1217
1218 return found;
1219 }
1220
__r5l_stripe_write_finished(struct r5l_io_unit * io)1221 static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
1222 {
1223 struct r5l_log *log = io->log;
1224 struct r5conf *conf = log->rdev->mddev->private;
1225 unsigned long flags;
1226
1227 spin_lock_irqsave(&log->io_list_lock, flags);
1228 __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
1229
1230 if (!r5l_complete_finished_ios(log)) {
1231 spin_unlock_irqrestore(&log->io_list_lock, flags);
1232 return;
1233 }
1234
1235 if (r5l_reclaimable_space(log) > log->max_free_space ||
1236 test_bit(R5C_LOG_TIGHT, &conf->cache_state))
1237 r5l_wake_reclaim(log, 0);
1238
1239 spin_unlock_irqrestore(&log->io_list_lock, flags);
1240 wake_up(&log->iounit_wait);
1241 }
1242
r5l_stripe_write_finished(struct stripe_head * sh)1243 void r5l_stripe_write_finished(struct stripe_head *sh)
1244 {
1245 struct r5l_io_unit *io;
1246
1247 io = sh->log_io;
1248 sh->log_io = NULL;
1249
1250 if (io && atomic_dec_and_test(&io->pending_stripe))
1251 __r5l_stripe_write_finished(io);
1252 }
1253
r5l_log_flush_endio(struct bio * bio)1254 static void r5l_log_flush_endio(struct bio *bio)
1255 {
1256 struct r5l_log *log = container_of(bio, struct r5l_log,
1257 flush_bio);
1258 unsigned long flags;
1259 struct r5l_io_unit *io;
1260
1261 if (bio->bi_status)
1262 md_error(log->rdev->mddev, log->rdev);
1263
1264 spin_lock_irqsave(&log->io_list_lock, flags);
1265 list_for_each_entry(io, &log->flushing_ios, log_sibling)
1266 r5l_io_run_stripes(io);
1267 list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
1268 spin_unlock_irqrestore(&log->io_list_lock, flags);
1269
1270 bio_uninit(bio);
1271 }
1272
1273 /*
1274 * Starting dispatch IO to raid.
1275 * io_unit(meta) consists of a log. There is one situation we want to avoid. A
1276 * broken meta in the middle of a log causes recovery can't find meta at the
1277 * head of log. If operations require meta at the head persistent in log, we
1278 * must make sure meta before it persistent in log too. A case is:
1279 *
1280 * stripe data/parity is in log, we start write stripe to raid disks. stripe
1281 * data/parity must be persistent in log before we do the write to raid disks.
1282 *
1283 * The solution is we restrictly maintain io_unit list order. In this case, we
1284 * only write stripes of an io_unit to raid disks till the io_unit is the first
1285 * one whose data/parity is in log.
1286 */
r5l_flush_stripe_to_raid(struct r5l_log * log)1287 void r5l_flush_stripe_to_raid(struct r5l_log *log)
1288 {
1289 bool do_flush;
1290
1291 if (!log || !log->need_cache_flush)
1292 return;
1293
1294 spin_lock_irq(&log->io_list_lock);
1295 /* flush bio is running */
1296 if (!list_empty(&log->flushing_ios)) {
1297 spin_unlock_irq(&log->io_list_lock);
1298 return;
1299 }
1300 list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
1301 do_flush = !list_empty(&log->flushing_ios);
1302 spin_unlock_irq(&log->io_list_lock);
1303
1304 if (!do_flush)
1305 return;
1306 bio_init(&log->flush_bio, log->rdev->bdev, NULL, 0,
1307 REQ_OP_WRITE | REQ_PREFLUSH);
1308 log->flush_bio.bi_end_io = r5l_log_flush_endio;
1309 submit_bio(&log->flush_bio);
1310 }
1311
1312 static void r5l_write_super(struct r5l_log *log, sector_t cp);
r5l_write_super_and_discard_space(struct r5l_log * log,sector_t end)1313 static void r5l_write_super_and_discard_space(struct r5l_log *log,
1314 sector_t end)
1315 {
1316 struct block_device *bdev = log->rdev->bdev;
1317 struct mddev *mddev;
1318
1319 r5l_write_super(log, end);
1320
1321 if (!bdev_max_discard_sectors(bdev))
1322 return;
1323
1324 mddev = log->rdev->mddev;
1325 /*
1326 * Discard could zero data, so before discard we must make sure
1327 * superblock is updated to new log tail. Updating superblock (either
1328 * directly call md_update_sb() or depend on md thread) must hold
1329 * reconfig mutex. On the other hand, raid5_quiesce is called with
1330 * reconfig_mutex hold. The first step of raid5_quiesce() is waitting
1331 * for all IO finish, hence waitting for reclaim thread, while reclaim
1332 * thread is calling this function and waitting for reconfig mutex. So
1333 * there is a deadlock. We workaround this issue with a trylock.
1334 * FIXME: we could miss discard if we can't take reconfig mutex
1335 */
1336 set_mask_bits(&mddev->sb_flags, 0,
1337 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1338 if (!mddev_trylock(mddev))
1339 return;
1340 md_update_sb(mddev, 1);
1341 mddev_unlock(mddev);
1342
1343 /* discard IO error really doesn't matter, ignore it */
1344 if (log->last_checkpoint < end) {
1345 blkdev_issue_discard(bdev,
1346 log->last_checkpoint + log->rdev->data_offset,
1347 end - log->last_checkpoint, GFP_NOIO);
1348 } else {
1349 blkdev_issue_discard(bdev,
1350 log->last_checkpoint + log->rdev->data_offset,
1351 log->device_size - log->last_checkpoint,
1352 GFP_NOIO);
1353 blkdev_issue_discard(bdev, log->rdev->data_offset, end,
1354 GFP_NOIO);
1355 }
1356 }
1357
1358 /*
1359 * r5c_flush_stripe moves stripe from cached list to handle_list. When called,
1360 * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes.
1361 *
1362 * must hold conf->device_lock
1363 */
r5c_flush_stripe(struct r5conf * conf,struct stripe_head * sh)1364 static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh)
1365 {
1366 BUG_ON(list_empty(&sh->lru));
1367 BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
1368 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
1369
1370 /*
1371 * The stripe is not ON_RELEASE_LIST, so it is safe to call
1372 * raid5_release_stripe() while holding conf->device_lock
1373 */
1374 BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
1375 lockdep_assert_held(&conf->device_lock);
1376
1377 list_del_init(&sh->lru);
1378 atomic_inc(&sh->count);
1379
1380 set_bit(STRIPE_HANDLE, &sh->state);
1381 atomic_inc(&conf->active_stripes);
1382 r5c_make_stripe_write_out(sh);
1383
1384 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
1385 atomic_inc(&conf->r5c_flushing_partial_stripes);
1386 else
1387 atomic_inc(&conf->r5c_flushing_full_stripes);
1388 raid5_release_stripe(sh);
1389 }
1390
1391 /*
1392 * if num == 0, flush all full stripes
1393 * if num > 0, flush all full stripes. If less than num full stripes are
1394 * flushed, flush some partial stripes until totally num stripes are
1395 * flushed or there is no more cached stripes.
1396 */
r5c_flush_cache(struct r5conf * conf,int num)1397 void r5c_flush_cache(struct r5conf *conf, int num)
1398 {
1399 int count;
1400 struct stripe_head *sh, *next;
1401
1402 lockdep_assert_held(&conf->device_lock);
1403 if (!conf->log)
1404 return;
1405
1406 count = 0;
1407 list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) {
1408 r5c_flush_stripe(conf, sh);
1409 count++;
1410 }
1411
1412 if (count >= num)
1413 return;
1414 list_for_each_entry_safe(sh, next,
1415 &conf->r5c_partial_stripe_list, lru) {
1416 r5c_flush_stripe(conf, sh);
1417 if (++count >= num)
1418 break;
1419 }
1420 }
1421
r5c_do_reclaim(struct r5conf * conf)1422 static void r5c_do_reclaim(struct r5conf *conf)
1423 {
1424 struct r5l_log *log = conf->log;
1425 struct stripe_head *sh;
1426 int count = 0;
1427 unsigned long flags;
1428 int total_cached;
1429 int stripes_to_flush;
1430 int flushing_partial, flushing_full;
1431
1432 if (!r5c_is_writeback(log))
1433 return;
1434
1435 flushing_partial = atomic_read(&conf->r5c_flushing_partial_stripes);
1436 flushing_full = atomic_read(&conf->r5c_flushing_full_stripes);
1437 total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
1438 atomic_read(&conf->r5c_cached_full_stripes) -
1439 flushing_full - flushing_partial;
1440
1441 if (total_cached > conf->min_nr_stripes * 3 / 4 ||
1442 atomic_read(&conf->empty_inactive_list_nr) > 0)
1443 /*
1444 * if stripe cache pressure high, flush all full stripes and
1445 * some partial stripes
1446 */
1447 stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP;
1448 else if (total_cached > conf->min_nr_stripes * 1 / 2 ||
1449 atomic_read(&conf->r5c_cached_full_stripes) - flushing_full >
1450 R5C_FULL_STRIPE_FLUSH_BATCH(conf))
1451 /*
1452 * if stripe cache pressure moderate, or if there is many full
1453 * stripes,flush all full stripes
1454 */
1455 stripes_to_flush = 0;
1456 else
1457 /* no need to flush */
1458 stripes_to_flush = -1;
1459
1460 if (stripes_to_flush >= 0) {
1461 spin_lock_irqsave(&conf->device_lock, flags);
1462 r5c_flush_cache(conf, stripes_to_flush);
1463 spin_unlock_irqrestore(&conf->device_lock, flags);
1464 }
1465
1466 /* if log space is tight, flush stripes on stripe_in_journal_list */
1467 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) {
1468 spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1469 spin_lock(&conf->device_lock);
1470 list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) {
1471 /*
1472 * stripes on stripe_in_journal_list could be in any
1473 * state of the stripe_cache state machine. In this
1474 * case, we only want to flush stripe on
1475 * r5c_cached_full/partial_stripes. The following
1476 * condition makes sure the stripe is on one of the
1477 * two lists.
1478 */
1479 if (!list_empty(&sh->lru) &&
1480 !test_bit(STRIPE_HANDLE, &sh->state) &&
1481 atomic_read(&sh->count) == 0) {
1482 r5c_flush_stripe(conf, sh);
1483 if (count++ >= R5C_RECLAIM_STRIPE_GROUP)
1484 break;
1485 }
1486 }
1487 spin_unlock(&conf->device_lock);
1488 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1489 }
1490
1491 if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
1492 r5l_run_no_space_stripes(log);
1493
1494 md_wakeup_thread(conf->mddev->thread);
1495 }
1496
r5l_do_reclaim(struct r5l_log * log)1497 static void r5l_do_reclaim(struct r5l_log *log)
1498 {
1499 struct r5conf *conf = log->rdev->mddev->private;
1500 sector_t reclaim_target = xchg(&log->reclaim_target, 0);
1501 sector_t reclaimable;
1502 sector_t next_checkpoint;
1503 bool write_super;
1504
1505 spin_lock_irq(&log->io_list_lock);
1506 write_super = r5l_reclaimable_space(log) > log->max_free_space ||
1507 reclaim_target != 0 || !list_empty(&log->no_space_stripes);
1508 /*
1509 * move proper io_unit to reclaim list. We should not change the order.
1510 * reclaimable/unreclaimable io_unit can be mixed in the list, we
1511 * shouldn't reuse space of an unreclaimable io_unit
1512 */
1513 while (1) {
1514 reclaimable = r5l_reclaimable_space(log);
1515 if (reclaimable >= reclaim_target ||
1516 (list_empty(&log->running_ios) &&
1517 list_empty(&log->io_end_ios) &&
1518 list_empty(&log->flushing_ios) &&
1519 list_empty(&log->finished_ios)))
1520 break;
1521
1522 md_wakeup_thread(log->rdev->mddev->thread);
1523 wait_event_lock_irq(log->iounit_wait,
1524 r5l_reclaimable_space(log) > reclaimable,
1525 log->io_list_lock);
1526 }
1527
1528 next_checkpoint = r5c_calculate_new_cp(conf);
1529 spin_unlock_irq(&log->io_list_lock);
1530
1531 if (reclaimable == 0 || !write_super)
1532 return;
1533
1534 /*
1535 * write_super will flush cache of each raid disk. We must write super
1536 * here, because the log area might be reused soon and we don't want to
1537 * confuse recovery
1538 */
1539 r5l_write_super_and_discard_space(log, next_checkpoint);
1540
1541 mutex_lock(&log->io_mutex);
1542 log->last_checkpoint = next_checkpoint;
1543 r5c_update_log_state(log);
1544 mutex_unlock(&log->io_mutex);
1545
1546 r5l_run_no_space_stripes(log);
1547 }
1548
r5l_reclaim_thread(struct md_thread * thread)1549 static void r5l_reclaim_thread(struct md_thread *thread)
1550 {
1551 struct mddev *mddev = thread->mddev;
1552 struct r5conf *conf = mddev->private;
1553 struct r5l_log *log = conf->log;
1554
1555 if (!log)
1556 return;
1557 r5c_do_reclaim(conf);
1558 r5l_do_reclaim(log);
1559 }
1560
r5l_wake_reclaim(struct r5l_log * log,sector_t space)1561 void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
1562 {
1563 unsigned long target;
1564 unsigned long new = (unsigned long)space; /* overflow in theory */
1565
1566 if (!log)
1567 return;
1568 do {
1569 target = log->reclaim_target;
1570 if (new < target)
1571 return;
1572 } while (cmpxchg(&log->reclaim_target, target, new) != target);
1573 md_wakeup_thread(log->reclaim_thread);
1574 }
1575
r5l_quiesce(struct r5l_log * log,int quiesce)1576 void r5l_quiesce(struct r5l_log *log, int quiesce)
1577 {
1578 struct mddev *mddev;
1579
1580 if (quiesce) {
1581 /* make sure r5l_write_super_and_discard_space exits */
1582 mddev = log->rdev->mddev;
1583 wake_up(&mddev->sb_wait);
1584 kthread_park(log->reclaim_thread->tsk);
1585 r5l_wake_reclaim(log, MaxSector);
1586 r5l_do_reclaim(log);
1587 } else
1588 kthread_unpark(log->reclaim_thread->tsk);
1589 }
1590
r5l_log_disk_error(struct r5conf * conf)1591 bool r5l_log_disk_error(struct r5conf *conf)
1592 {
1593 struct r5l_log *log;
1594 bool ret;
1595 /* don't allow write if journal disk is missing */
1596 rcu_read_lock();
1597 log = rcu_dereference(conf->log);
1598
1599 if (!log)
1600 ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
1601 else
1602 ret = test_bit(Faulty, &log->rdev->flags);
1603 rcu_read_unlock();
1604 return ret;
1605 }
1606
1607 #define R5L_RECOVERY_PAGE_POOL_SIZE 256
1608
1609 struct r5l_recovery_ctx {
1610 struct page *meta_page; /* current meta */
1611 sector_t meta_total_blocks; /* total size of current meta and data */
1612 sector_t pos; /* recovery position */
1613 u64 seq; /* recovery position seq */
1614 int data_parity_stripes; /* number of data_parity stripes */
1615 int data_only_stripes; /* number of data_only stripes */
1616 struct list_head cached_list;
1617
1618 /*
1619 * read ahead page pool (ra_pool)
1620 * in recovery, log is read sequentially. It is not efficient to
1621 * read every page with sync_page_io(). The read ahead page pool
1622 * reads multiple pages with one IO, so further log read can
1623 * just copy data from the pool.
1624 */
1625 struct page *ra_pool[R5L_RECOVERY_PAGE_POOL_SIZE];
1626 struct bio_vec ra_bvec[R5L_RECOVERY_PAGE_POOL_SIZE];
1627 sector_t pool_offset; /* offset of first page in the pool */
1628 int total_pages; /* total allocated pages */
1629 int valid_pages; /* pages with valid data */
1630 };
1631
r5l_recovery_allocate_ra_pool(struct r5l_log * log,struct r5l_recovery_ctx * ctx)1632 static int r5l_recovery_allocate_ra_pool(struct r5l_log *log,
1633 struct r5l_recovery_ctx *ctx)
1634 {
1635 struct page *page;
1636
1637 ctx->valid_pages = 0;
1638 ctx->total_pages = 0;
1639 while (ctx->total_pages < R5L_RECOVERY_PAGE_POOL_SIZE) {
1640 page = alloc_page(GFP_KERNEL);
1641
1642 if (!page)
1643 break;
1644 ctx->ra_pool[ctx->total_pages] = page;
1645 ctx->total_pages += 1;
1646 }
1647
1648 if (ctx->total_pages == 0)
1649 return -ENOMEM;
1650
1651 ctx->pool_offset = 0;
1652 return 0;
1653 }
1654
r5l_recovery_free_ra_pool(struct r5l_log * log,struct r5l_recovery_ctx * ctx)1655 static void r5l_recovery_free_ra_pool(struct r5l_log *log,
1656 struct r5l_recovery_ctx *ctx)
1657 {
1658 int i;
1659
1660 for (i = 0; i < ctx->total_pages; ++i)
1661 put_page(ctx->ra_pool[i]);
1662 }
1663
1664 /*
1665 * fetch ctx->valid_pages pages from offset
1666 * In normal cases, ctx->valid_pages == ctx->total_pages after the call.
1667 * However, if the offset is close to the end of the journal device,
1668 * ctx->valid_pages could be smaller than ctx->total_pages
1669 */
r5l_recovery_fetch_ra_pool(struct r5l_log * log,struct r5l_recovery_ctx * ctx,sector_t offset)1670 static int r5l_recovery_fetch_ra_pool(struct r5l_log *log,
1671 struct r5l_recovery_ctx *ctx,
1672 sector_t offset)
1673 {
1674 struct bio bio;
1675 int ret;
1676
1677 bio_init(&bio, log->rdev->bdev, ctx->ra_bvec,
1678 R5L_RECOVERY_PAGE_POOL_SIZE, REQ_OP_READ);
1679 bio.bi_iter.bi_sector = log->rdev->data_offset + offset;
1680
1681 ctx->valid_pages = 0;
1682 ctx->pool_offset = offset;
1683
1684 while (ctx->valid_pages < ctx->total_pages) {
1685 __bio_add_page(&bio, ctx->ra_pool[ctx->valid_pages], PAGE_SIZE,
1686 0);
1687 ctx->valid_pages += 1;
1688
1689 offset = r5l_ring_add(log, offset, BLOCK_SECTORS);
1690
1691 if (offset == 0) /* reached end of the device */
1692 break;
1693 }
1694
1695 ret = submit_bio_wait(&bio);
1696 bio_uninit(&bio);
1697 return ret;
1698 }
1699
1700 /*
1701 * try read a page from the read ahead page pool, if the page is not in the
1702 * pool, call r5l_recovery_fetch_ra_pool
1703 */
r5l_recovery_read_page(struct r5l_log * log,struct r5l_recovery_ctx * ctx,struct page * page,sector_t offset)1704 static int r5l_recovery_read_page(struct r5l_log *log,
1705 struct r5l_recovery_ctx *ctx,
1706 struct page *page,
1707 sector_t offset)
1708 {
1709 int ret;
1710
1711 if (offset < ctx->pool_offset ||
1712 offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS) {
1713 ret = r5l_recovery_fetch_ra_pool(log, ctx, offset);
1714 if (ret)
1715 return ret;
1716 }
1717
1718 BUG_ON(offset < ctx->pool_offset ||
1719 offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS);
1720
1721 memcpy(page_address(page),
1722 page_address(ctx->ra_pool[(offset - ctx->pool_offset) >>
1723 BLOCK_SECTOR_SHIFT]),
1724 PAGE_SIZE);
1725 return 0;
1726 }
1727
r5l_recovery_read_meta_block(struct r5l_log * log,struct r5l_recovery_ctx * ctx)1728 static int r5l_recovery_read_meta_block(struct r5l_log *log,
1729 struct r5l_recovery_ctx *ctx)
1730 {
1731 struct page *page = ctx->meta_page;
1732 struct r5l_meta_block *mb;
1733 u32 crc, stored_crc;
1734 int ret;
1735
1736 ret = r5l_recovery_read_page(log, ctx, page, ctx->pos);
1737 if (ret != 0)
1738 return ret;
1739
1740 mb = page_address(page);
1741 stored_crc = le32_to_cpu(mb->checksum);
1742 mb->checksum = 0;
1743
1744 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1745 le64_to_cpu(mb->seq) != ctx->seq ||
1746 mb->version != R5LOG_VERSION ||
1747 le64_to_cpu(mb->position) != ctx->pos)
1748 return -EINVAL;
1749
1750 crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1751 if (stored_crc != crc)
1752 return -EINVAL;
1753
1754 if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
1755 return -EINVAL;
1756
1757 ctx->meta_total_blocks = BLOCK_SECTORS;
1758
1759 return 0;
1760 }
1761
1762 static void
r5l_recovery_create_empty_meta_block(struct r5l_log * log,struct page * page,sector_t pos,u64 seq)1763 r5l_recovery_create_empty_meta_block(struct r5l_log *log,
1764 struct page *page,
1765 sector_t pos, u64 seq)
1766 {
1767 struct r5l_meta_block *mb;
1768
1769 mb = page_address(page);
1770 clear_page(mb);
1771 mb->magic = cpu_to_le32(R5LOG_MAGIC);
1772 mb->version = R5LOG_VERSION;
1773 mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1774 mb->seq = cpu_to_le64(seq);
1775 mb->position = cpu_to_le64(pos);
1776 }
1777
r5l_log_write_empty_meta_block(struct r5l_log * log,sector_t pos,u64 seq)1778 static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
1779 u64 seq)
1780 {
1781 struct page *page;
1782 struct r5l_meta_block *mb;
1783
1784 page = alloc_page(GFP_KERNEL);
1785 if (!page)
1786 return -ENOMEM;
1787 r5l_recovery_create_empty_meta_block(log, page, pos, seq);
1788 mb = page_address(page);
1789 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
1790 mb, PAGE_SIZE));
1791 if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE,
1792 REQ_SYNC | REQ_FUA, false)) {
1793 __free_page(page);
1794 return -EIO;
1795 }
1796 __free_page(page);
1797 return 0;
1798 }
1799
1800 /*
1801 * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite
1802 * to mark valid (potentially not flushed) data in the journal.
1803 *
1804 * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb,
1805 * so there should not be any mismatch here.
1806 */
r5l_recovery_load_data(struct r5l_log * log,struct stripe_head * sh,struct r5l_recovery_ctx * ctx,struct r5l_payload_data_parity * payload,sector_t log_offset)1807 static void r5l_recovery_load_data(struct r5l_log *log,
1808 struct stripe_head *sh,
1809 struct r5l_recovery_ctx *ctx,
1810 struct r5l_payload_data_parity *payload,
1811 sector_t log_offset)
1812 {
1813 struct mddev *mddev = log->rdev->mddev;
1814 struct r5conf *conf = mddev->private;
1815 int dd_idx;
1816
1817 raid5_compute_sector(conf,
1818 le64_to_cpu(payload->location), 0,
1819 &dd_idx, sh);
1820 r5l_recovery_read_page(log, ctx, sh->dev[dd_idx].page, log_offset);
1821 sh->dev[dd_idx].log_checksum =
1822 le32_to_cpu(payload->checksum[0]);
1823 ctx->meta_total_blocks += BLOCK_SECTORS;
1824
1825 set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags);
1826 set_bit(STRIPE_R5C_CACHING, &sh->state);
1827 }
1828
r5l_recovery_load_parity(struct r5l_log * log,struct stripe_head * sh,struct r5l_recovery_ctx * ctx,struct r5l_payload_data_parity * payload,sector_t log_offset)1829 static void r5l_recovery_load_parity(struct r5l_log *log,
1830 struct stripe_head *sh,
1831 struct r5l_recovery_ctx *ctx,
1832 struct r5l_payload_data_parity *payload,
1833 sector_t log_offset)
1834 {
1835 struct mddev *mddev = log->rdev->mddev;
1836 struct r5conf *conf = mddev->private;
1837
1838 ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
1839 r5l_recovery_read_page(log, ctx, sh->dev[sh->pd_idx].page, log_offset);
1840 sh->dev[sh->pd_idx].log_checksum =
1841 le32_to_cpu(payload->checksum[0]);
1842 set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags);
1843
1844 if (sh->qd_idx >= 0) {
1845 r5l_recovery_read_page(
1846 log, ctx, sh->dev[sh->qd_idx].page,
1847 r5l_ring_add(log, log_offset, BLOCK_SECTORS));
1848 sh->dev[sh->qd_idx].log_checksum =
1849 le32_to_cpu(payload->checksum[1]);
1850 set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags);
1851 }
1852 clear_bit(STRIPE_R5C_CACHING, &sh->state);
1853 }
1854
r5l_recovery_reset_stripe(struct stripe_head * sh)1855 static void r5l_recovery_reset_stripe(struct stripe_head *sh)
1856 {
1857 int i;
1858
1859 sh->state = 0;
1860 sh->log_start = MaxSector;
1861 for (i = sh->disks; i--; )
1862 sh->dev[i].flags = 0;
1863 }
1864
1865 static void
r5l_recovery_replay_one_stripe(struct r5conf * conf,struct stripe_head * sh,struct r5l_recovery_ctx * ctx)1866 r5l_recovery_replay_one_stripe(struct r5conf *conf,
1867 struct stripe_head *sh,
1868 struct r5l_recovery_ctx *ctx)
1869 {
1870 struct md_rdev *rdev, *rrdev;
1871 int disk_index;
1872 int data_count = 0;
1873
1874 for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1875 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1876 continue;
1877 if (disk_index == sh->qd_idx || disk_index == sh->pd_idx)
1878 continue;
1879 data_count++;
1880 }
1881
1882 /*
1883 * stripes that only have parity must have been flushed
1884 * before the crash that we are now recovering from, so
1885 * there is nothing more to recovery.
1886 */
1887 if (data_count == 0)
1888 goto out;
1889
1890 for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1891 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1892 continue;
1893
1894 /* in case device is broken */
1895 rcu_read_lock();
1896 rdev = rcu_dereference(conf->disks[disk_index].rdev);
1897 if (rdev) {
1898 atomic_inc(&rdev->nr_pending);
1899 rcu_read_unlock();
1900 sync_page_io(rdev, sh->sector, PAGE_SIZE,
1901 sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1902 false);
1903 rdev_dec_pending(rdev, rdev->mddev);
1904 rcu_read_lock();
1905 }
1906 rrdev = rcu_dereference(conf->disks[disk_index].replacement);
1907 if (rrdev) {
1908 atomic_inc(&rrdev->nr_pending);
1909 rcu_read_unlock();
1910 sync_page_io(rrdev, sh->sector, PAGE_SIZE,
1911 sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1912 false);
1913 rdev_dec_pending(rrdev, rrdev->mddev);
1914 rcu_read_lock();
1915 }
1916 rcu_read_unlock();
1917 }
1918 ctx->data_parity_stripes++;
1919 out:
1920 r5l_recovery_reset_stripe(sh);
1921 }
1922
1923 static struct stripe_head *
r5c_recovery_alloc_stripe(struct r5conf * conf,sector_t stripe_sect,int noblock)1924 r5c_recovery_alloc_stripe(
1925 struct r5conf *conf,
1926 sector_t stripe_sect,
1927 int noblock)
1928 {
1929 struct stripe_head *sh;
1930
1931 sh = raid5_get_active_stripe(conf, stripe_sect, 0, noblock, 0);
1932 if (!sh)
1933 return NULL; /* no more stripe available */
1934
1935 r5l_recovery_reset_stripe(sh);
1936
1937 return sh;
1938 }
1939
1940 static struct stripe_head *
r5c_recovery_lookup_stripe(struct list_head * list,sector_t sect)1941 r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect)
1942 {
1943 struct stripe_head *sh;
1944
1945 list_for_each_entry(sh, list, lru)
1946 if (sh->sector == sect)
1947 return sh;
1948 return NULL;
1949 }
1950
1951 static void
r5c_recovery_drop_stripes(struct list_head * cached_stripe_list,struct r5l_recovery_ctx * ctx)1952 r5c_recovery_drop_stripes(struct list_head *cached_stripe_list,
1953 struct r5l_recovery_ctx *ctx)
1954 {
1955 struct stripe_head *sh, *next;
1956
1957 list_for_each_entry_safe(sh, next, cached_stripe_list, lru) {
1958 r5l_recovery_reset_stripe(sh);
1959 list_del_init(&sh->lru);
1960 raid5_release_stripe(sh);
1961 }
1962 }
1963
1964 static void
r5c_recovery_replay_stripes(struct list_head * cached_stripe_list,struct r5l_recovery_ctx * ctx)1965 r5c_recovery_replay_stripes(struct list_head *cached_stripe_list,
1966 struct r5l_recovery_ctx *ctx)
1967 {
1968 struct stripe_head *sh, *next;
1969
1970 list_for_each_entry_safe(sh, next, cached_stripe_list, lru)
1971 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
1972 r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx);
1973 list_del_init(&sh->lru);
1974 raid5_release_stripe(sh);
1975 }
1976 }
1977
1978 /* if matches return 0; otherwise return -EINVAL */
1979 static int
r5l_recovery_verify_data_checksum(struct r5l_log * log,struct r5l_recovery_ctx * ctx,struct page * page,sector_t log_offset,__le32 log_checksum)1980 r5l_recovery_verify_data_checksum(struct r5l_log *log,
1981 struct r5l_recovery_ctx *ctx,
1982 struct page *page,
1983 sector_t log_offset, __le32 log_checksum)
1984 {
1985 void *addr;
1986 u32 checksum;
1987
1988 r5l_recovery_read_page(log, ctx, page, log_offset);
1989 addr = kmap_atomic(page);
1990 checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
1991 kunmap_atomic(addr);
1992 return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL;
1993 }
1994
1995 /*
1996 * before loading data to stripe cache, we need verify checksum for all data,
1997 * if there is mismatch for any data page, we drop all data in the mata block
1998 */
1999 static int
r5l_recovery_verify_data_checksum_for_mb(struct r5l_log * log,struct r5l_recovery_ctx * ctx)2000 r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log,
2001 struct r5l_recovery_ctx *ctx)
2002 {
2003 struct mddev *mddev = log->rdev->mddev;
2004 struct r5conf *conf = mddev->private;
2005 struct r5l_meta_block *mb = page_address(ctx->meta_page);
2006 sector_t mb_offset = sizeof(struct r5l_meta_block);
2007 sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2008 struct page *page;
2009 struct r5l_payload_data_parity *payload;
2010 struct r5l_payload_flush *payload_flush;
2011
2012 page = alloc_page(GFP_KERNEL);
2013 if (!page)
2014 return -ENOMEM;
2015
2016 while (mb_offset < le32_to_cpu(mb->meta_size)) {
2017 payload = (void *)mb + mb_offset;
2018 payload_flush = (void *)mb + mb_offset;
2019
2020 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2021 if (r5l_recovery_verify_data_checksum(
2022 log, ctx, page, log_offset,
2023 payload->checksum[0]) < 0)
2024 goto mismatch;
2025 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) {
2026 if (r5l_recovery_verify_data_checksum(
2027 log, ctx, page, log_offset,
2028 payload->checksum[0]) < 0)
2029 goto mismatch;
2030 if (conf->max_degraded == 2 && /* q for RAID 6 */
2031 r5l_recovery_verify_data_checksum(
2032 log, ctx, page,
2033 r5l_ring_add(log, log_offset,
2034 BLOCK_SECTORS),
2035 payload->checksum[1]) < 0)
2036 goto mismatch;
2037 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2038 /* nothing to do for R5LOG_PAYLOAD_FLUSH here */
2039 } else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */
2040 goto mismatch;
2041
2042 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2043 mb_offset += sizeof(struct r5l_payload_flush) +
2044 le32_to_cpu(payload_flush->size);
2045 } else {
2046 /* DATA or PARITY payload */
2047 log_offset = r5l_ring_add(log, log_offset,
2048 le32_to_cpu(payload->size));
2049 mb_offset += sizeof(struct r5l_payload_data_parity) +
2050 sizeof(__le32) *
2051 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2052 }
2053
2054 }
2055
2056 put_page(page);
2057 return 0;
2058
2059 mismatch:
2060 put_page(page);
2061 return -EINVAL;
2062 }
2063
2064 /*
2065 * Analyze all data/parity pages in one meta block
2066 * Returns:
2067 * 0 for success
2068 * -EINVAL for unknown playload type
2069 * -EAGAIN for checksum mismatch of data page
2070 * -ENOMEM for run out of memory (alloc_page failed or run out of stripes)
2071 */
2072 static int
r5c_recovery_analyze_meta_block(struct r5l_log * log,struct r5l_recovery_ctx * ctx,struct list_head * cached_stripe_list)2073 r5c_recovery_analyze_meta_block(struct r5l_log *log,
2074 struct r5l_recovery_ctx *ctx,
2075 struct list_head *cached_stripe_list)
2076 {
2077 struct mddev *mddev = log->rdev->mddev;
2078 struct r5conf *conf = mddev->private;
2079 struct r5l_meta_block *mb;
2080 struct r5l_payload_data_parity *payload;
2081 struct r5l_payload_flush *payload_flush;
2082 int mb_offset;
2083 sector_t log_offset;
2084 sector_t stripe_sect;
2085 struct stripe_head *sh;
2086 int ret;
2087
2088 /*
2089 * for mismatch in data blocks, we will drop all data in this mb, but
2090 * we will still read next mb for other data with FLUSH flag, as
2091 * io_unit could finish out of order.
2092 */
2093 ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx);
2094 if (ret == -EINVAL)
2095 return -EAGAIN;
2096 else if (ret)
2097 return ret; /* -ENOMEM duo to alloc_page() failed */
2098
2099 mb = page_address(ctx->meta_page);
2100 mb_offset = sizeof(struct r5l_meta_block);
2101 log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2102
2103 while (mb_offset < le32_to_cpu(mb->meta_size)) {
2104 int dd;
2105
2106 payload = (void *)mb + mb_offset;
2107 payload_flush = (void *)mb + mb_offset;
2108
2109 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2110 int i, count;
2111
2112 count = le32_to_cpu(payload_flush->size) / sizeof(__le64);
2113 for (i = 0; i < count; ++i) {
2114 stripe_sect = le64_to_cpu(payload_flush->flush_stripes[i]);
2115 sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2116 stripe_sect);
2117 if (sh) {
2118 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2119 r5l_recovery_reset_stripe(sh);
2120 list_del_init(&sh->lru);
2121 raid5_release_stripe(sh);
2122 }
2123 }
2124
2125 mb_offset += sizeof(struct r5l_payload_flush) +
2126 le32_to_cpu(payload_flush->size);
2127 continue;
2128 }
2129
2130 /* DATA or PARITY payload */
2131 stripe_sect = (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) ?
2132 raid5_compute_sector(
2133 conf, le64_to_cpu(payload->location), 0, &dd,
2134 NULL)
2135 : le64_to_cpu(payload->location);
2136
2137 sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2138 stripe_sect);
2139
2140 if (!sh) {
2141 sh = r5c_recovery_alloc_stripe(conf, stripe_sect, 1);
2142 /*
2143 * cannot get stripe from raid5_get_active_stripe
2144 * try replay some stripes
2145 */
2146 if (!sh) {
2147 r5c_recovery_replay_stripes(
2148 cached_stripe_list, ctx);
2149 sh = r5c_recovery_alloc_stripe(
2150 conf, stripe_sect, 1);
2151 }
2152 if (!sh) {
2153 int new_size = conf->min_nr_stripes * 2;
2154 pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n",
2155 mdname(mddev),
2156 new_size);
2157 ret = raid5_set_cache_size(mddev, new_size);
2158 if (conf->min_nr_stripes <= new_size / 2) {
2159 pr_err("md/raid:%s: Cannot increase cache size, ret=%d, new_size=%d, min_nr_stripes=%d, max_nr_stripes=%d\n",
2160 mdname(mddev),
2161 ret,
2162 new_size,
2163 conf->min_nr_stripes,
2164 conf->max_nr_stripes);
2165 return -ENOMEM;
2166 }
2167 sh = r5c_recovery_alloc_stripe(
2168 conf, stripe_sect, 0);
2169 }
2170 if (!sh) {
2171 pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n",
2172 mdname(mddev));
2173 return -ENOMEM;
2174 }
2175 list_add_tail(&sh->lru, cached_stripe_list);
2176 }
2177
2178 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2179 if (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
2180 test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) {
2181 r5l_recovery_replay_one_stripe(conf, sh, ctx);
2182 list_move_tail(&sh->lru, cached_stripe_list);
2183 }
2184 r5l_recovery_load_data(log, sh, ctx, payload,
2185 log_offset);
2186 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY)
2187 r5l_recovery_load_parity(log, sh, ctx, payload,
2188 log_offset);
2189 else
2190 return -EINVAL;
2191
2192 log_offset = r5l_ring_add(log, log_offset,
2193 le32_to_cpu(payload->size));
2194
2195 mb_offset += sizeof(struct r5l_payload_data_parity) +
2196 sizeof(__le32) *
2197 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2198 }
2199
2200 return 0;
2201 }
2202
2203 /*
2204 * Load the stripe into cache. The stripe will be written out later by
2205 * the stripe cache state machine.
2206 */
r5c_recovery_load_one_stripe(struct r5l_log * log,struct stripe_head * sh)2207 static void r5c_recovery_load_one_stripe(struct r5l_log *log,
2208 struct stripe_head *sh)
2209 {
2210 struct r5dev *dev;
2211 int i;
2212
2213 for (i = sh->disks; i--; ) {
2214 dev = sh->dev + i;
2215 if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) {
2216 set_bit(R5_InJournal, &dev->flags);
2217 set_bit(R5_UPTODATE, &dev->flags);
2218 }
2219 }
2220 }
2221
2222 /*
2223 * Scan through the log for all to-be-flushed data
2224 *
2225 * For stripes with data and parity, namely Data-Parity stripe
2226 * (STRIPE_R5C_CACHING == 0), we simply replay all the writes.
2227 *
2228 * For stripes with only data, namely Data-Only stripe
2229 * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine.
2230 *
2231 * For a stripe, if we see data after parity, we should discard all previous
2232 * data and parity for this stripe, as these data are already flushed to
2233 * the array.
2234 *
2235 * At the end of the scan, we return the new journal_tail, which points to
2236 * first data-only stripe on the journal device, or next invalid meta block.
2237 */
r5c_recovery_flush_log(struct r5l_log * log,struct r5l_recovery_ctx * ctx)2238 static int r5c_recovery_flush_log(struct r5l_log *log,
2239 struct r5l_recovery_ctx *ctx)
2240 {
2241 struct stripe_head *sh;
2242 int ret = 0;
2243
2244 /* scan through the log */
2245 while (1) {
2246 if (r5l_recovery_read_meta_block(log, ctx))
2247 break;
2248
2249 ret = r5c_recovery_analyze_meta_block(log, ctx,
2250 &ctx->cached_list);
2251 /*
2252 * -EAGAIN means mismatch in data block, in this case, we still
2253 * try scan the next metablock
2254 */
2255 if (ret && ret != -EAGAIN)
2256 break; /* ret == -EINVAL or -ENOMEM */
2257 ctx->seq++;
2258 ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
2259 }
2260
2261 if (ret == -ENOMEM) {
2262 r5c_recovery_drop_stripes(&ctx->cached_list, ctx);
2263 return ret;
2264 }
2265
2266 /* replay data-parity stripes */
2267 r5c_recovery_replay_stripes(&ctx->cached_list, ctx);
2268
2269 /* load data-only stripes to stripe cache */
2270 list_for_each_entry(sh, &ctx->cached_list, lru) {
2271 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2272 r5c_recovery_load_one_stripe(log, sh);
2273 ctx->data_only_stripes++;
2274 }
2275
2276 return 0;
2277 }
2278
2279 /*
2280 * we did a recovery. Now ctx.pos points to an invalid meta block. New
2281 * log will start here. but we can't let superblock point to last valid
2282 * meta block. The log might looks like:
2283 * | meta 1| meta 2| meta 3|
2284 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
2285 * superblock points to meta 1, we write a new valid meta 2n. if crash
2286 * happens again, new recovery will start from meta 1. Since meta 2n is
2287 * valid now, recovery will think meta 3 is valid, which is wrong.
2288 * The solution is we create a new meta in meta2 with its seq == meta
2289 * 1's seq + 10000 and let superblock points to meta2. The same recovery
2290 * will not think meta 3 is a valid meta, because its seq doesn't match
2291 */
2292
2293 /*
2294 * Before recovery, the log looks like the following
2295 *
2296 * ---------------------------------------------
2297 * | valid log | invalid log |
2298 * ---------------------------------------------
2299 * ^
2300 * |- log->last_checkpoint
2301 * |- log->last_cp_seq
2302 *
2303 * Now we scan through the log until we see invalid entry
2304 *
2305 * ---------------------------------------------
2306 * | valid log | invalid log |
2307 * ---------------------------------------------
2308 * ^ ^
2309 * |- log->last_checkpoint |- ctx->pos
2310 * |- log->last_cp_seq |- ctx->seq
2311 *
2312 * From this point, we need to increase seq number by 10 to avoid
2313 * confusing next recovery.
2314 *
2315 * ---------------------------------------------
2316 * | valid log | invalid log |
2317 * ---------------------------------------------
2318 * ^ ^
2319 * |- log->last_checkpoint |- ctx->pos+1
2320 * |- log->last_cp_seq |- ctx->seq+10001
2321 *
2322 * However, it is not safe to start the state machine yet, because data only
2323 * parities are not yet secured in RAID. To save these data only parities, we
2324 * rewrite them from seq+11.
2325 *
2326 * -----------------------------------------------------------------
2327 * | valid log | data only stripes | invalid log |
2328 * -----------------------------------------------------------------
2329 * ^ ^
2330 * |- log->last_checkpoint |- ctx->pos+n
2331 * |- log->last_cp_seq |- ctx->seq+10000+n
2332 *
2333 * If failure happens again during this process, the recovery can safe start
2334 * again from log->last_checkpoint.
2335 *
2336 * Once data only stripes are rewritten to journal, we move log_tail
2337 *
2338 * -----------------------------------------------------------------
2339 * | old log | data only stripes | invalid log |
2340 * -----------------------------------------------------------------
2341 * ^ ^
2342 * |- log->last_checkpoint |- ctx->pos+n
2343 * |- log->last_cp_seq |- ctx->seq+10000+n
2344 *
2345 * Then we can safely start the state machine. If failure happens from this
2346 * point on, the recovery will start from new log->last_checkpoint.
2347 */
2348 static int
r5c_recovery_rewrite_data_only_stripes(struct r5l_log * log,struct r5l_recovery_ctx * ctx)2349 r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log,
2350 struct r5l_recovery_ctx *ctx)
2351 {
2352 struct stripe_head *sh;
2353 struct mddev *mddev = log->rdev->mddev;
2354 struct page *page;
2355 sector_t next_checkpoint = MaxSector;
2356
2357 page = alloc_page(GFP_KERNEL);
2358 if (!page) {
2359 pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n",
2360 mdname(mddev));
2361 return -ENOMEM;
2362 }
2363
2364 WARN_ON(list_empty(&ctx->cached_list));
2365
2366 list_for_each_entry(sh, &ctx->cached_list, lru) {
2367 struct r5l_meta_block *mb;
2368 int i;
2369 int offset;
2370 sector_t write_pos;
2371
2372 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2373 r5l_recovery_create_empty_meta_block(log, page,
2374 ctx->pos, ctx->seq);
2375 mb = page_address(page);
2376 offset = le32_to_cpu(mb->meta_size);
2377 write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2378
2379 for (i = sh->disks; i--; ) {
2380 struct r5dev *dev = &sh->dev[i];
2381 struct r5l_payload_data_parity *payload;
2382 void *addr;
2383
2384 if (test_bit(R5_InJournal, &dev->flags)) {
2385 payload = (void *)mb + offset;
2386 payload->header.type = cpu_to_le16(
2387 R5LOG_PAYLOAD_DATA);
2388 payload->size = cpu_to_le32(BLOCK_SECTORS);
2389 payload->location = cpu_to_le64(
2390 raid5_compute_blocknr(sh, i, 0));
2391 addr = kmap_atomic(dev->page);
2392 payload->checksum[0] = cpu_to_le32(
2393 crc32c_le(log->uuid_checksum, addr,
2394 PAGE_SIZE));
2395 kunmap_atomic(addr);
2396 sync_page_io(log->rdev, write_pos, PAGE_SIZE,
2397 dev->page, REQ_OP_WRITE, 0, false);
2398 write_pos = r5l_ring_add(log, write_pos,
2399 BLOCK_SECTORS);
2400 offset += sizeof(__le32) +
2401 sizeof(struct r5l_payload_data_parity);
2402
2403 }
2404 }
2405 mb->meta_size = cpu_to_le32(offset);
2406 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
2407 mb, PAGE_SIZE));
2408 sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page,
2409 REQ_OP_WRITE, REQ_SYNC | REQ_FUA, false);
2410 sh->log_start = ctx->pos;
2411 list_add_tail(&sh->r5c, &log->stripe_in_journal_list);
2412 atomic_inc(&log->stripe_in_journal_count);
2413 ctx->pos = write_pos;
2414 ctx->seq += 1;
2415 next_checkpoint = sh->log_start;
2416 }
2417 log->next_checkpoint = next_checkpoint;
2418 __free_page(page);
2419 return 0;
2420 }
2421
r5c_recovery_flush_data_only_stripes(struct r5l_log * log,struct r5l_recovery_ctx * ctx)2422 static void r5c_recovery_flush_data_only_stripes(struct r5l_log *log,
2423 struct r5l_recovery_ctx *ctx)
2424 {
2425 struct mddev *mddev = log->rdev->mddev;
2426 struct r5conf *conf = mddev->private;
2427 struct stripe_head *sh, *next;
2428 bool cleared_pending = false;
2429
2430 if (ctx->data_only_stripes == 0)
2431 return;
2432
2433 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2434 cleared_pending = true;
2435 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2436 }
2437 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_BACK;
2438
2439 list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) {
2440 r5c_make_stripe_write_out(sh);
2441 set_bit(STRIPE_HANDLE, &sh->state);
2442 list_del_init(&sh->lru);
2443 raid5_release_stripe(sh);
2444 }
2445
2446 /* reuse conf->wait_for_quiescent in recovery */
2447 wait_event(conf->wait_for_quiescent,
2448 atomic_read(&conf->active_stripes) == 0);
2449
2450 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
2451 if (cleared_pending)
2452 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2453 }
2454
r5l_recovery_log(struct r5l_log * log)2455 static int r5l_recovery_log(struct r5l_log *log)
2456 {
2457 struct mddev *mddev = log->rdev->mddev;
2458 struct r5l_recovery_ctx *ctx;
2459 int ret;
2460 sector_t pos;
2461
2462 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2463 if (!ctx)
2464 return -ENOMEM;
2465
2466 ctx->pos = log->last_checkpoint;
2467 ctx->seq = log->last_cp_seq;
2468 INIT_LIST_HEAD(&ctx->cached_list);
2469 ctx->meta_page = alloc_page(GFP_KERNEL);
2470
2471 if (!ctx->meta_page) {
2472 ret = -ENOMEM;
2473 goto meta_page;
2474 }
2475
2476 if (r5l_recovery_allocate_ra_pool(log, ctx) != 0) {
2477 ret = -ENOMEM;
2478 goto ra_pool;
2479 }
2480
2481 ret = r5c_recovery_flush_log(log, ctx);
2482
2483 if (ret)
2484 goto error;
2485
2486 pos = ctx->pos;
2487 ctx->seq += 10000;
2488
2489 if ((ctx->data_only_stripes == 0) && (ctx->data_parity_stripes == 0))
2490 pr_info("md/raid:%s: starting from clean shutdown\n",
2491 mdname(mddev));
2492 else
2493 pr_info("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n",
2494 mdname(mddev), ctx->data_only_stripes,
2495 ctx->data_parity_stripes);
2496
2497 if (ctx->data_only_stripes == 0) {
2498 log->next_checkpoint = ctx->pos;
2499 r5l_log_write_empty_meta_block(log, ctx->pos, ctx->seq++);
2500 ctx->pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2501 } else if (r5c_recovery_rewrite_data_only_stripes(log, ctx)) {
2502 pr_err("md/raid:%s: failed to rewrite stripes to journal\n",
2503 mdname(mddev));
2504 ret = -EIO;
2505 goto error;
2506 }
2507
2508 log->log_start = ctx->pos;
2509 log->seq = ctx->seq;
2510 log->last_checkpoint = pos;
2511 r5l_write_super(log, pos);
2512
2513 r5c_recovery_flush_data_only_stripes(log, ctx);
2514 ret = 0;
2515 error:
2516 r5l_recovery_free_ra_pool(log, ctx);
2517 ra_pool:
2518 __free_page(ctx->meta_page);
2519 meta_page:
2520 kfree(ctx);
2521 return ret;
2522 }
2523
r5l_write_super(struct r5l_log * log,sector_t cp)2524 static void r5l_write_super(struct r5l_log *log, sector_t cp)
2525 {
2526 struct mddev *mddev = log->rdev->mddev;
2527
2528 log->rdev->journal_tail = cp;
2529 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2530 }
2531
r5c_journal_mode_show(struct mddev * mddev,char * page)2532 static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page)
2533 {
2534 struct r5conf *conf;
2535 int ret;
2536
2537 spin_lock(&mddev->lock);
2538 conf = mddev->private;
2539 if (!conf || !conf->log) {
2540 spin_unlock(&mddev->lock);
2541 return 0;
2542 }
2543
2544 switch (conf->log->r5c_journal_mode) {
2545 case R5C_JOURNAL_MODE_WRITE_THROUGH:
2546 ret = snprintf(
2547 page, PAGE_SIZE, "[%s] %s\n",
2548 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2549 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2550 break;
2551 case R5C_JOURNAL_MODE_WRITE_BACK:
2552 ret = snprintf(
2553 page, PAGE_SIZE, "%s [%s]\n",
2554 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2555 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2556 break;
2557 default:
2558 ret = 0;
2559 }
2560 spin_unlock(&mddev->lock);
2561 return ret;
2562 }
2563
2564 /*
2565 * Set journal cache mode on @mddev (external API initially needed by dm-raid).
2566 *
2567 * @mode as defined in 'enum r5c_journal_mode'.
2568 *
2569 */
r5c_journal_mode_set(struct mddev * mddev,int mode)2570 int r5c_journal_mode_set(struct mddev *mddev, int mode)
2571 {
2572 struct r5conf *conf;
2573
2574 if (mode < R5C_JOURNAL_MODE_WRITE_THROUGH ||
2575 mode > R5C_JOURNAL_MODE_WRITE_BACK)
2576 return -EINVAL;
2577
2578 conf = mddev->private;
2579 if (!conf || !conf->log)
2580 return -ENODEV;
2581
2582 if (raid5_calc_degraded(conf) > 0 &&
2583 mode == R5C_JOURNAL_MODE_WRITE_BACK)
2584 return -EINVAL;
2585
2586 mddev_suspend(mddev);
2587 conf->log->r5c_journal_mode = mode;
2588 mddev_resume(mddev);
2589
2590 pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n",
2591 mdname(mddev), mode, r5c_journal_mode_str[mode]);
2592 return 0;
2593 }
2594 EXPORT_SYMBOL(r5c_journal_mode_set);
2595
r5c_journal_mode_store(struct mddev * mddev,const char * page,size_t length)2596 static ssize_t r5c_journal_mode_store(struct mddev *mddev,
2597 const char *page, size_t length)
2598 {
2599 int mode = ARRAY_SIZE(r5c_journal_mode_str);
2600 size_t len = length;
2601 int ret;
2602
2603 if (len < 2)
2604 return -EINVAL;
2605
2606 if (page[len - 1] == '\n')
2607 len--;
2608
2609 while (mode--)
2610 if (strlen(r5c_journal_mode_str[mode]) == len &&
2611 !strncmp(page, r5c_journal_mode_str[mode], len))
2612 break;
2613 ret = mddev_lock(mddev);
2614 if (ret)
2615 return ret;
2616 ret = r5c_journal_mode_set(mddev, mode);
2617 mddev_unlock(mddev);
2618 return ret ?: length;
2619 }
2620
2621 struct md_sysfs_entry
2622 r5c_journal_mode = __ATTR(journal_mode, 0644,
2623 r5c_journal_mode_show, r5c_journal_mode_store);
2624
2625 /*
2626 * Try handle write operation in caching phase. This function should only
2627 * be called in write-back mode.
2628 *
2629 * If all outstanding writes can be handled in caching phase, returns 0
2630 * If writes requires write-out phase, call r5c_make_stripe_write_out()
2631 * and returns -EAGAIN
2632 */
r5c_try_caching_write(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)2633 int r5c_try_caching_write(struct r5conf *conf,
2634 struct stripe_head *sh,
2635 struct stripe_head_state *s,
2636 int disks)
2637 {
2638 struct r5l_log *log = conf->log;
2639 int i;
2640 struct r5dev *dev;
2641 int to_cache = 0;
2642 void **pslot;
2643 sector_t tree_index;
2644 int ret;
2645 uintptr_t refcount;
2646
2647 BUG_ON(!r5c_is_writeback(log));
2648
2649 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
2650 /*
2651 * There are two different scenarios here:
2652 * 1. The stripe has some data cached, and it is sent to
2653 * write-out phase for reclaim
2654 * 2. The stripe is clean, and this is the first write
2655 *
2656 * For 1, return -EAGAIN, so we continue with
2657 * handle_stripe_dirtying().
2658 *
2659 * For 2, set STRIPE_R5C_CACHING and continue with caching
2660 * write.
2661 */
2662
2663 /* case 1: anything injournal or anything in written */
2664 if (s->injournal > 0 || s->written > 0)
2665 return -EAGAIN;
2666 /* case 2 */
2667 set_bit(STRIPE_R5C_CACHING, &sh->state);
2668 }
2669
2670 /*
2671 * When run in degraded mode, array is set to write-through mode.
2672 * This check helps drain pending write safely in the transition to
2673 * write-through mode.
2674 *
2675 * When a stripe is syncing, the write is also handled in write
2676 * through mode.
2677 */
2678 if (s->failed || test_bit(STRIPE_SYNCING, &sh->state)) {
2679 r5c_make_stripe_write_out(sh);
2680 return -EAGAIN;
2681 }
2682
2683 for (i = disks; i--; ) {
2684 dev = &sh->dev[i];
2685 /* if non-overwrite, use writing-out phase */
2686 if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) &&
2687 !test_bit(R5_InJournal, &dev->flags)) {
2688 r5c_make_stripe_write_out(sh);
2689 return -EAGAIN;
2690 }
2691 }
2692
2693 /* if the stripe is not counted in big_stripe_tree, add it now */
2694 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
2695 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2696 tree_index = r5c_tree_index(conf, sh->sector);
2697 spin_lock(&log->tree_lock);
2698 pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2699 tree_index);
2700 if (pslot) {
2701 refcount = (uintptr_t)radix_tree_deref_slot_protected(
2702 pslot, &log->tree_lock) >>
2703 R5C_RADIX_COUNT_SHIFT;
2704 radix_tree_replace_slot(
2705 &log->big_stripe_tree, pslot,
2706 (void *)((refcount + 1) << R5C_RADIX_COUNT_SHIFT));
2707 } else {
2708 /*
2709 * this radix_tree_insert can fail safely, so no
2710 * need to call radix_tree_preload()
2711 */
2712 ret = radix_tree_insert(
2713 &log->big_stripe_tree, tree_index,
2714 (void *)(1 << R5C_RADIX_COUNT_SHIFT));
2715 if (ret) {
2716 spin_unlock(&log->tree_lock);
2717 r5c_make_stripe_write_out(sh);
2718 return -EAGAIN;
2719 }
2720 }
2721 spin_unlock(&log->tree_lock);
2722
2723 /*
2724 * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is
2725 * counted in the radix tree
2726 */
2727 set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state);
2728 atomic_inc(&conf->r5c_cached_partial_stripes);
2729 }
2730
2731 for (i = disks; i--; ) {
2732 dev = &sh->dev[i];
2733 if (dev->towrite) {
2734 set_bit(R5_Wantwrite, &dev->flags);
2735 set_bit(R5_Wantdrain, &dev->flags);
2736 set_bit(R5_LOCKED, &dev->flags);
2737 to_cache++;
2738 }
2739 }
2740
2741 if (to_cache) {
2742 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2743 /*
2744 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data()
2745 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in
2746 * r5c_handle_data_cached()
2747 */
2748 set_bit(STRIPE_LOG_TRAPPED, &sh->state);
2749 }
2750
2751 return 0;
2752 }
2753
2754 /*
2755 * free extra pages (orig_page) we allocated for prexor
2756 */
r5c_release_extra_page(struct stripe_head * sh)2757 void r5c_release_extra_page(struct stripe_head *sh)
2758 {
2759 struct r5conf *conf = sh->raid_conf;
2760 int i;
2761 bool using_disk_info_extra_page;
2762
2763 using_disk_info_extra_page =
2764 sh->dev[0].orig_page == conf->disks[0].extra_page;
2765
2766 for (i = sh->disks; i--; )
2767 if (sh->dev[i].page != sh->dev[i].orig_page) {
2768 struct page *p = sh->dev[i].orig_page;
2769
2770 sh->dev[i].orig_page = sh->dev[i].page;
2771 clear_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2772
2773 if (!using_disk_info_extra_page)
2774 put_page(p);
2775 }
2776
2777 if (using_disk_info_extra_page) {
2778 clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state);
2779 md_wakeup_thread(conf->mddev->thread);
2780 }
2781 }
2782
r5c_use_extra_page(struct stripe_head * sh)2783 void r5c_use_extra_page(struct stripe_head *sh)
2784 {
2785 struct r5conf *conf = sh->raid_conf;
2786 int i;
2787 struct r5dev *dev;
2788
2789 for (i = sh->disks; i--; ) {
2790 dev = &sh->dev[i];
2791 if (dev->orig_page != dev->page)
2792 put_page(dev->orig_page);
2793 dev->orig_page = conf->disks[i].extra_page;
2794 }
2795 }
2796
2797 /*
2798 * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the
2799 * stripe is committed to RAID disks.
2800 */
r5c_finish_stripe_write_out(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s)2801 void r5c_finish_stripe_write_out(struct r5conf *conf,
2802 struct stripe_head *sh,
2803 struct stripe_head_state *s)
2804 {
2805 struct r5l_log *log = conf->log;
2806 int i;
2807 int do_wakeup = 0;
2808 sector_t tree_index;
2809 void **pslot;
2810 uintptr_t refcount;
2811
2812 if (!log || !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags))
2813 return;
2814
2815 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2816 clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
2817
2818 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
2819 return;
2820
2821 for (i = sh->disks; i--; ) {
2822 clear_bit(R5_InJournal, &sh->dev[i].flags);
2823 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2824 do_wakeup = 1;
2825 }
2826
2827 /*
2828 * analyse_stripe() runs before r5c_finish_stripe_write_out(),
2829 * We updated R5_InJournal, so we also update s->injournal.
2830 */
2831 s->injournal = 0;
2832
2833 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2834 if (atomic_dec_and_test(&conf->pending_full_writes))
2835 md_wakeup_thread(conf->mddev->thread);
2836
2837 if (do_wakeup)
2838 wake_up(&conf->wait_for_overlap);
2839
2840 spin_lock_irq(&log->stripe_in_journal_lock);
2841 list_del_init(&sh->r5c);
2842 spin_unlock_irq(&log->stripe_in_journal_lock);
2843 sh->log_start = MaxSector;
2844
2845 atomic_dec(&log->stripe_in_journal_count);
2846 r5c_update_log_state(log);
2847
2848 /* stop counting this stripe in big_stripe_tree */
2849 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) ||
2850 test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2851 tree_index = r5c_tree_index(conf, sh->sector);
2852 spin_lock(&log->tree_lock);
2853 pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2854 tree_index);
2855 BUG_ON(pslot == NULL);
2856 refcount = (uintptr_t)radix_tree_deref_slot_protected(
2857 pslot, &log->tree_lock) >>
2858 R5C_RADIX_COUNT_SHIFT;
2859 if (refcount == 1)
2860 radix_tree_delete(&log->big_stripe_tree, tree_index);
2861 else
2862 radix_tree_replace_slot(
2863 &log->big_stripe_tree, pslot,
2864 (void *)((refcount - 1) << R5C_RADIX_COUNT_SHIFT));
2865 spin_unlock(&log->tree_lock);
2866 }
2867
2868 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) {
2869 BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0);
2870 atomic_dec(&conf->r5c_flushing_partial_stripes);
2871 atomic_dec(&conf->r5c_cached_partial_stripes);
2872 }
2873
2874 if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2875 BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0);
2876 atomic_dec(&conf->r5c_flushing_full_stripes);
2877 atomic_dec(&conf->r5c_cached_full_stripes);
2878 }
2879
2880 r5l_append_flush_payload(log, sh->sector);
2881 /* stripe is flused to raid disks, we can do resync now */
2882 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
2883 set_bit(STRIPE_HANDLE, &sh->state);
2884 }
2885
r5c_cache_data(struct r5l_log * log,struct stripe_head * sh)2886 int r5c_cache_data(struct r5l_log *log, struct stripe_head *sh)
2887 {
2888 struct r5conf *conf = sh->raid_conf;
2889 int pages = 0;
2890 int reserve;
2891 int i;
2892 int ret = 0;
2893
2894 BUG_ON(!log);
2895
2896 for (i = 0; i < sh->disks; i++) {
2897 void *addr;
2898
2899 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
2900 continue;
2901 addr = kmap_atomic(sh->dev[i].page);
2902 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
2903 addr, PAGE_SIZE);
2904 kunmap_atomic(addr);
2905 pages++;
2906 }
2907 WARN_ON(pages == 0);
2908
2909 /*
2910 * The stripe must enter state machine again to call endio, so
2911 * don't delay.
2912 */
2913 clear_bit(STRIPE_DELAYED, &sh->state);
2914 atomic_inc(&sh->count);
2915
2916 mutex_lock(&log->io_mutex);
2917 /* meta + data */
2918 reserve = (1 + pages) << (PAGE_SHIFT - 9);
2919
2920 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
2921 sh->log_start == MaxSector)
2922 r5l_add_no_space_stripe(log, sh);
2923 else if (!r5l_has_free_space(log, reserve)) {
2924 if (sh->log_start == log->last_checkpoint)
2925 BUG();
2926 else
2927 r5l_add_no_space_stripe(log, sh);
2928 } else {
2929 ret = r5l_log_stripe(log, sh, pages, 0);
2930 if (ret) {
2931 spin_lock_irq(&log->io_list_lock);
2932 list_add_tail(&sh->log_list, &log->no_mem_stripes);
2933 spin_unlock_irq(&log->io_list_lock);
2934 }
2935 }
2936
2937 mutex_unlock(&log->io_mutex);
2938 return 0;
2939 }
2940
2941 /* check whether this big stripe is in write back cache. */
r5c_big_stripe_cached(struct r5conf * conf,sector_t sect)2942 bool r5c_big_stripe_cached(struct r5conf *conf, sector_t sect)
2943 {
2944 struct r5l_log *log = conf->log;
2945 sector_t tree_index;
2946 void *slot;
2947
2948 if (!log)
2949 return false;
2950
2951 WARN_ON_ONCE(!rcu_read_lock_held());
2952 tree_index = r5c_tree_index(conf, sect);
2953 slot = radix_tree_lookup(&log->big_stripe_tree, tree_index);
2954 return slot != NULL;
2955 }
2956
r5l_load_log(struct r5l_log * log)2957 static int r5l_load_log(struct r5l_log *log)
2958 {
2959 struct md_rdev *rdev = log->rdev;
2960 struct page *page;
2961 struct r5l_meta_block *mb;
2962 sector_t cp = log->rdev->journal_tail;
2963 u32 stored_crc, expected_crc;
2964 bool create_super = false;
2965 int ret = 0;
2966
2967 /* Make sure it's valid */
2968 if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
2969 cp = 0;
2970 page = alloc_page(GFP_KERNEL);
2971 if (!page)
2972 return -ENOMEM;
2973
2974 if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, 0, false)) {
2975 ret = -EIO;
2976 goto ioerr;
2977 }
2978 mb = page_address(page);
2979
2980 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
2981 mb->version != R5LOG_VERSION) {
2982 create_super = true;
2983 goto create;
2984 }
2985 stored_crc = le32_to_cpu(mb->checksum);
2986 mb->checksum = 0;
2987 expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
2988 if (stored_crc != expected_crc) {
2989 create_super = true;
2990 goto create;
2991 }
2992 if (le64_to_cpu(mb->position) != cp) {
2993 create_super = true;
2994 goto create;
2995 }
2996 create:
2997 if (create_super) {
2998 log->last_cp_seq = prandom_u32();
2999 cp = 0;
3000 r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq);
3001 /*
3002 * Make sure super points to correct address. Log might have
3003 * data very soon. If super hasn't correct log tail address,
3004 * recovery can't find the log
3005 */
3006 r5l_write_super(log, cp);
3007 } else
3008 log->last_cp_seq = le64_to_cpu(mb->seq);
3009
3010 log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
3011 log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
3012 if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
3013 log->max_free_space = RECLAIM_MAX_FREE_SPACE;
3014 log->last_checkpoint = cp;
3015
3016 __free_page(page);
3017
3018 if (create_super) {
3019 log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS);
3020 log->seq = log->last_cp_seq + 1;
3021 log->next_checkpoint = cp;
3022 } else
3023 ret = r5l_recovery_log(log);
3024
3025 r5c_update_log_state(log);
3026 return ret;
3027 ioerr:
3028 __free_page(page);
3029 return ret;
3030 }
3031
r5l_start(struct r5l_log * log)3032 int r5l_start(struct r5l_log *log)
3033 {
3034 int ret;
3035
3036 if (!log)
3037 return 0;
3038
3039 ret = r5l_load_log(log);
3040 if (ret) {
3041 struct mddev *mddev = log->rdev->mddev;
3042 struct r5conf *conf = mddev->private;
3043
3044 r5l_exit_log(conf);
3045 }
3046 return ret;
3047 }
3048
r5c_update_on_rdev_error(struct mddev * mddev,struct md_rdev * rdev)3049 void r5c_update_on_rdev_error(struct mddev *mddev, struct md_rdev *rdev)
3050 {
3051 struct r5conf *conf = mddev->private;
3052 struct r5l_log *log = conf->log;
3053
3054 if (!log)
3055 return;
3056
3057 if ((raid5_calc_degraded(conf) > 0 ||
3058 test_bit(Journal, &rdev->flags)) &&
3059 conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK)
3060 schedule_work(&log->disable_writeback_work);
3061 }
3062
r5l_init_log(struct r5conf * conf,struct md_rdev * rdev)3063 int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
3064 {
3065 struct request_queue *q = bdev_get_queue(rdev->bdev);
3066 struct r5l_log *log;
3067 int ret;
3068
3069 pr_debug("md/raid:%s: using device %pg as journal\n",
3070 mdname(conf->mddev), rdev->bdev);
3071
3072 if (PAGE_SIZE != 4096)
3073 return -EINVAL;
3074
3075 /*
3076 * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and
3077 * raid_disks r5l_payload_data_parity.
3078 *
3079 * Write journal and cache does not work for very big array
3080 * (raid_disks > 203)
3081 */
3082 if (sizeof(struct r5l_meta_block) +
3083 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) *
3084 conf->raid_disks) > PAGE_SIZE) {
3085 pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n",
3086 mdname(conf->mddev), conf->raid_disks);
3087 return -EINVAL;
3088 }
3089
3090 log = kzalloc(sizeof(*log), GFP_KERNEL);
3091 if (!log)
3092 return -ENOMEM;
3093 log->rdev = rdev;
3094
3095 log->need_cache_flush = test_bit(QUEUE_FLAG_WC, &q->queue_flags) != 0;
3096
3097 log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
3098 sizeof(rdev->mddev->uuid));
3099
3100 mutex_init(&log->io_mutex);
3101
3102 spin_lock_init(&log->io_list_lock);
3103 INIT_LIST_HEAD(&log->running_ios);
3104 INIT_LIST_HEAD(&log->io_end_ios);
3105 INIT_LIST_HEAD(&log->flushing_ios);
3106 INIT_LIST_HEAD(&log->finished_ios);
3107
3108 log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
3109 if (!log->io_kc)
3110 goto io_kc;
3111
3112 ret = mempool_init_slab_pool(&log->io_pool, R5L_POOL_SIZE, log->io_kc);
3113 if (ret)
3114 goto io_pool;
3115
3116 ret = bioset_init(&log->bs, R5L_POOL_SIZE, 0, BIOSET_NEED_BVECS);
3117 if (ret)
3118 goto io_bs;
3119
3120 ret = mempool_init_page_pool(&log->meta_pool, R5L_POOL_SIZE, 0);
3121 if (ret)
3122 goto out_mempool;
3123
3124 spin_lock_init(&log->tree_lock);
3125 INIT_RADIX_TREE(&log->big_stripe_tree, GFP_NOWAIT | __GFP_NOWARN);
3126
3127 log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
3128 log->rdev->mddev, "reclaim");
3129 if (!log->reclaim_thread)
3130 goto reclaim_thread;
3131 log->reclaim_thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL;
3132
3133 init_waitqueue_head(&log->iounit_wait);
3134
3135 INIT_LIST_HEAD(&log->no_mem_stripes);
3136
3137 INIT_LIST_HEAD(&log->no_space_stripes);
3138 spin_lock_init(&log->no_space_stripes_lock);
3139
3140 INIT_WORK(&log->deferred_io_work, r5l_submit_io_async);
3141 INIT_WORK(&log->disable_writeback_work, r5c_disable_writeback_async);
3142
3143 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
3144 INIT_LIST_HEAD(&log->stripe_in_journal_list);
3145 spin_lock_init(&log->stripe_in_journal_lock);
3146 atomic_set(&log->stripe_in_journal_count, 0);
3147
3148 rcu_assign_pointer(conf->log, log);
3149
3150 set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
3151 return 0;
3152
3153 reclaim_thread:
3154 mempool_exit(&log->meta_pool);
3155 out_mempool:
3156 bioset_exit(&log->bs);
3157 io_bs:
3158 mempool_exit(&log->io_pool);
3159 io_pool:
3160 kmem_cache_destroy(log->io_kc);
3161 io_kc:
3162 kfree(log);
3163 return -EINVAL;
3164 }
3165
r5l_exit_log(struct r5conf * conf)3166 void r5l_exit_log(struct r5conf *conf)
3167 {
3168 struct r5l_log *log = conf->log;
3169
3170 conf->log = NULL;
3171 synchronize_rcu();
3172
3173 /* Ensure disable_writeback_work wakes up and exits */
3174 wake_up(&conf->mddev->sb_wait);
3175 flush_work(&log->disable_writeback_work);
3176 md_unregister_thread(&log->reclaim_thread);
3177 mempool_exit(&log->meta_pool);
3178 bioset_exit(&log->bs);
3179 mempool_exit(&log->io_pool);
3180 kmem_cache_destroy(log->io_kc);
3181 kfree(log);
3182 }
3183