1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
4 * Author: Joerg Roedel <jroedel@suse.de>
5 */
6
7 #define pr_fmt(fmt) "iommu: " fmt
8
9 #include <linux/device.h>
10 #include <linux/dma-iommu.h>
11 #include <linux/kernel.h>
12 #include <linux/bits.h>
13 #include <linux/bug.h>
14 #include <linux/types.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/slab.h>
18 #include <linux/errno.h>
19 #include <linux/iommu.h>
20 #include <linux/idr.h>
21 #include <linux/err.h>
22 #include <linux/pci.h>
23 #include <linux/bitops.h>
24 #include <linux/property.h>
25 #include <linux/fsl/mc.h>
26 #include <linux/module.h>
27 #include <linux/cc_platform.h>
28 #include <trace/events/iommu.h>
29
30 static struct kset *iommu_group_kset;
31 static DEFINE_IDA(iommu_group_ida);
32
33 static unsigned int iommu_def_domain_type __read_mostly;
34 static bool iommu_dma_strict __read_mostly = IS_ENABLED(CONFIG_IOMMU_DEFAULT_DMA_STRICT);
35 static u32 iommu_cmd_line __read_mostly;
36
37 struct iommu_group {
38 struct kobject kobj;
39 struct kobject *devices_kobj;
40 struct list_head devices;
41 struct mutex mutex;
42 void *iommu_data;
43 void (*iommu_data_release)(void *iommu_data);
44 char *name;
45 int id;
46 struct iommu_domain *default_domain;
47 struct iommu_domain *blocking_domain;
48 struct iommu_domain *domain;
49 struct list_head entry;
50 unsigned int owner_cnt;
51 void *owner;
52 };
53
54 struct group_device {
55 struct list_head list;
56 struct device *dev;
57 char *name;
58 };
59
60 struct iommu_group_attribute {
61 struct attribute attr;
62 ssize_t (*show)(struct iommu_group *group, char *buf);
63 ssize_t (*store)(struct iommu_group *group,
64 const char *buf, size_t count);
65 };
66
67 static const char * const iommu_group_resv_type_string[] = {
68 [IOMMU_RESV_DIRECT] = "direct",
69 [IOMMU_RESV_DIRECT_RELAXABLE] = "direct-relaxable",
70 [IOMMU_RESV_RESERVED] = "reserved",
71 [IOMMU_RESV_MSI] = "msi",
72 [IOMMU_RESV_SW_MSI] = "msi",
73 };
74
75 #define IOMMU_CMD_LINE_DMA_API BIT(0)
76 #define IOMMU_CMD_LINE_STRICT BIT(1)
77
78 static int iommu_alloc_default_domain(struct iommu_group *group,
79 struct device *dev);
80 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
81 unsigned type);
82 static int __iommu_attach_device(struct iommu_domain *domain,
83 struct device *dev);
84 static int __iommu_attach_group(struct iommu_domain *domain,
85 struct iommu_group *group);
86 static int __iommu_group_set_domain(struct iommu_group *group,
87 struct iommu_domain *new_domain);
88 static int iommu_create_device_direct_mappings(struct iommu_group *group,
89 struct device *dev);
90 static struct iommu_group *iommu_group_get_for_dev(struct device *dev);
91 static ssize_t iommu_group_store_type(struct iommu_group *group,
92 const char *buf, size_t count);
93
94 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store) \
95 struct iommu_group_attribute iommu_group_attr_##_name = \
96 __ATTR(_name, _mode, _show, _store)
97
98 #define to_iommu_group_attr(_attr) \
99 container_of(_attr, struct iommu_group_attribute, attr)
100 #define to_iommu_group(_kobj) \
101 container_of(_kobj, struct iommu_group, kobj)
102
103 static LIST_HEAD(iommu_device_list);
104 static DEFINE_SPINLOCK(iommu_device_lock);
105
106 /*
107 * Use a function instead of an array here because the domain-type is a
108 * bit-field, so an array would waste memory.
109 */
iommu_domain_type_str(unsigned int t)110 static const char *iommu_domain_type_str(unsigned int t)
111 {
112 switch (t) {
113 case IOMMU_DOMAIN_BLOCKED:
114 return "Blocked";
115 case IOMMU_DOMAIN_IDENTITY:
116 return "Passthrough";
117 case IOMMU_DOMAIN_UNMANAGED:
118 return "Unmanaged";
119 case IOMMU_DOMAIN_DMA:
120 case IOMMU_DOMAIN_DMA_FQ:
121 return "Translated";
122 default:
123 return "Unknown";
124 }
125 }
126
iommu_subsys_init(void)127 static int __init iommu_subsys_init(void)
128 {
129 if (!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API)) {
130 if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH))
131 iommu_set_default_passthrough(false);
132 else
133 iommu_set_default_translated(false);
134
135 if (iommu_default_passthrough() && cc_platform_has(CC_ATTR_MEM_ENCRYPT)) {
136 pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n");
137 iommu_set_default_translated(false);
138 }
139 }
140
141 if (!iommu_default_passthrough() && !iommu_dma_strict)
142 iommu_def_domain_type = IOMMU_DOMAIN_DMA_FQ;
143
144 pr_info("Default domain type: %s %s\n",
145 iommu_domain_type_str(iommu_def_domain_type),
146 (iommu_cmd_line & IOMMU_CMD_LINE_DMA_API) ?
147 "(set via kernel command line)" : "");
148
149 if (!iommu_default_passthrough())
150 pr_info("DMA domain TLB invalidation policy: %s mode %s\n",
151 iommu_dma_strict ? "strict" : "lazy",
152 (iommu_cmd_line & IOMMU_CMD_LINE_STRICT) ?
153 "(set via kernel command line)" : "");
154
155 return 0;
156 }
157 subsys_initcall(iommu_subsys_init);
158
159 /**
160 * iommu_device_register() - Register an IOMMU hardware instance
161 * @iommu: IOMMU handle for the instance
162 * @ops: IOMMU ops to associate with the instance
163 * @hwdev: (optional) actual instance device, used for fwnode lookup
164 *
165 * Return: 0 on success, or an error.
166 */
iommu_device_register(struct iommu_device * iommu,const struct iommu_ops * ops,struct device * hwdev)167 int iommu_device_register(struct iommu_device *iommu,
168 const struct iommu_ops *ops, struct device *hwdev)
169 {
170 /* We need to be able to take module references appropriately */
171 if (WARN_ON(is_module_address((unsigned long)ops) && !ops->owner))
172 return -EINVAL;
173
174 iommu->ops = ops;
175 if (hwdev)
176 iommu->fwnode = hwdev->fwnode;
177
178 spin_lock(&iommu_device_lock);
179 list_add_tail(&iommu->list, &iommu_device_list);
180 spin_unlock(&iommu_device_lock);
181 return 0;
182 }
183 EXPORT_SYMBOL_GPL(iommu_device_register);
184
iommu_device_unregister(struct iommu_device * iommu)185 void iommu_device_unregister(struct iommu_device *iommu)
186 {
187 spin_lock(&iommu_device_lock);
188 list_del(&iommu->list);
189 spin_unlock(&iommu_device_lock);
190 }
191 EXPORT_SYMBOL_GPL(iommu_device_unregister);
192
dev_iommu_get(struct device * dev)193 static struct dev_iommu *dev_iommu_get(struct device *dev)
194 {
195 struct dev_iommu *param = dev->iommu;
196
197 if (param)
198 return param;
199
200 param = kzalloc(sizeof(*param), GFP_KERNEL);
201 if (!param)
202 return NULL;
203
204 mutex_init(¶m->lock);
205 dev->iommu = param;
206 return param;
207 }
208
dev_iommu_free(struct device * dev)209 static void dev_iommu_free(struct device *dev)
210 {
211 struct dev_iommu *param = dev->iommu;
212
213 dev->iommu = NULL;
214 if (param->fwspec) {
215 fwnode_handle_put(param->fwspec->iommu_fwnode);
216 kfree(param->fwspec);
217 }
218 kfree(param);
219 }
220
__iommu_probe_device(struct device * dev,struct list_head * group_list)221 static int __iommu_probe_device(struct device *dev, struct list_head *group_list)
222 {
223 const struct iommu_ops *ops = dev->bus->iommu_ops;
224 struct iommu_device *iommu_dev;
225 struct iommu_group *group;
226 int ret;
227
228 if (!ops)
229 return -ENODEV;
230
231 if (!dev_iommu_get(dev))
232 return -ENOMEM;
233
234 if (!try_module_get(ops->owner)) {
235 ret = -EINVAL;
236 goto err_free;
237 }
238
239 iommu_dev = ops->probe_device(dev);
240 if (IS_ERR(iommu_dev)) {
241 ret = PTR_ERR(iommu_dev);
242 goto out_module_put;
243 }
244
245 dev->iommu->iommu_dev = iommu_dev;
246
247 group = iommu_group_get_for_dev(dev);
248 if (IS_ERR(group)) {
249 ret = PTR_ERR(group);
250 goto out_release;
251 }
252 iommu_group_put(group);
253
254 if (group_list && !group->default_domain && list_empty(&group->entry))
255 list_add_tail(&group->entry, group_list);
256
257 iommu_device_link(iommu_dev, dev);
258
259 return 0;
260
261 out_release:
262 ops->release_device(dev);
263
264 out_module_put:
265 module_put(ops->owner);
266
267 err_free:
268 dev_iommu_free(dev);
269
270 return ret;
271 }
272
iommu_probe_device(struct device * dev)273 int iommu_probe_device(struct device *dev)
274 {
275 const struct iommu_ops *ops = dev->bus->iommu_ops;
276 struct iommu_group *group;
277 int ret;
278
279 ret = __iommu_probe_device(dev, NULL);
280 if (ret)
281 goto err_out;
282
283 group = iommu_group_get(dev);
284 if (!group) {
285 ret = -ENODEV;
286 goto err_release;
287 }
288
289 /*
290 * Try to allocate a default domain - needs support from the
291 * IOMMU driver. There are still some drivers which don't
292 * support default domains, so the return value is not yet
293 * checked.
294 */
295 mutex_lock(&group->mutex);
296 iommu_alloc_default_domain(group, dev);
297
298 /*
299 * If device joined an existing group which has been claimed, don't
300 * attach the default domain.
301 */
302 if (group->default_domain && !group->owner) {
303 ret = __iommu_attach_device(group->default_domain, dev);
304 if (ret) {
305 mutex_unlock(&group->mutex);
306 iommu_group_put(group);
307 goto err_release;
308 }
309 }
310
311 iommu_create_device_direct_mappings(group, dev);
312
313 mutex_unlock(&group->mutex);
314 iommu_group_put(group);
315
316 if (ops->probe_finalize)
317 ops->probe_finalize(dev);
318
319 return 0;
320
321 err_release:
322 iommu_release_device(dev);
323
324 err_out:
325 return ret;
326
327 }
328
iommu_release_device(struct device * dev)329 void iommu_release_device(struct device *dev)
330 {
331 const struct iommu_ops *ops;
332
333 if (!dev->iommu)
334 return;
335
336 iommu_device_unlink(dev->iommu->iommu_dev, dev);
337
338 ops = dev_iommu_ops(dev);
339 ops->release_device(dev);
340
341 iommu_group_remove_device(dev);
342 module_put(ops->owner);
343 dev_iommu_free(dev);
344 }
345
iommu_set_def_domain_type(char * str)346 static int __init iommu_set_def_domain_type(char *str)
347 {
348 bool pt;
349 int ret;
350
351 ret = kstrtobool(str, &pt);
352 if (ret)
353 return ret;
354
355 if (pt)
356 iommu_set_default_passthrough(true);
357 else
358 iommu_set_default_translated(true);
359
360 return 0;
361 }
362 early_param("iommu.passthrough", iommu_set_def_domain_type);
363
iommu_dma_setup(char * str)364 static int __init iommu_dma_setup(char *str)
365 {
366 int ret = kstrtobool(str, &iommu_dma_strict);
367
368 if (!ret)
369 iommu_cmd_line |= IOMMU_CMD_LINE_STRICT;
370 return ret;
371 }
372 early_param("iommu.strict", iommu_dma_setup);
373
iommu_set_dma_strict(void)374 void iommu_set_dma_strict(void)
375 {
376 iommu_dma_strict = true;
377 if (iommu_def_domain_type == IOMMU_DOMAIN_DMA_FQ)
378 iommu_def_domain_type = IOMMU_DOMAIN_DMA;
379 }
380
iommu_group_attr_show(struct kobject * kobj,struct attribute * __attr,char * buf)381 static ssize_t iommu_group_attr_show(struct kobject *kobj,
382 struct attribute *__attr, char *buf)
383 {
384 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
385 struct iommu_group *group = to_iommu_group(kobj);
386 ssize_t ret = -EIO;
387
388 if (attr->show)
389 ret = attr->show(group, buf);
390 return ret;
391 }
392
iommu_group_attr_store(struct kobject * kobj,struct attribute * __attr,const char * buf,size_t count)393 static ssize_t iommu_group_attr_store(struct kobject *kobj,
394 struct attribute *__attr,
395 const char *buf, size_t count)
396 {
397 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
398 struct iommu_group *group = to_iommu_group(kobj);
399 ssize_t ret = -EIO;
400
401 if (attr->store)
402 ret = attr->store(group, buf, count);
403 return ret;
404 }
405
406 static const struct sysfs_ops iommu_group_sysfs_ops = {
407 .show = iommu_group_attr_show,
408 .store = iommu_group_attr_store,
409 };
410
iommu_group_create_file(struct iommu_group * group,struct iommu_group_attribute * attr)411 static int iommu_group_create_file(struct iommu_group *group,
412 struct iommu_group_attribute *attr)
413 {
414 return sysfs_create_file(&group->kobj, &attr->attr);
415 }
416
iommu_group_remove_file(struct iommu_group * group,struct iommu_group_attribute * attr)417 static void iommu_group_remove_file(struct iommu_group *group,
418 struct iommu_group_attribute *attr)
419 {
420 sysfs_remove_file(&group->kobj, &attr->attr);
421 }
422
iommu_group_show_name(struct iommu_group * group,char * buf)423 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf)
424 {
425 return sprintf(buf, "%s\n", group->name);
426 }
427
428 /**
429 * iommu_insert_resv_region - Insert a new region in the
430 * list of reserved regions.
431 * @new: new region to insert
432 * @regions: list of regions
433 *
434 * Elements are sorted by start address and overlapping segments
435 * of the same type are merged.
436 */
iommu_insert_resv_region(struct iommu_resv_region * new,struct list_head * regions)437 static int iommu_insert_resv_region(struct iommu_resv_region *new,
438 struct list_head *regions)
439 {
440 struct iommu_resv_region *iter, *tmp, *nr, *top;
441 LIST_HEAD(stack);
442
443 nr = iommu_alloc_resv_region(new->start, new->length,
444 new->prot, new->type);
445 if (!nr)
446 return -ENOMEM;
447
448 /* First add the new element based on start address sorting */
449 list_for_each_entry(iter, regions, list) {
450 if (nr->start < iter->start ||
451 (nr->start == iter->start && nr->type <= iter->type))
452 break;
453 }
454 list_add_tail(&nr->list, &iter->list);
455
456 /* Merge overlapping segments of type nr->type in @regions, if any */
457 list_for_each_entry_safe(iter, tmp, regions, list) {
458 phys_addr_t top_end, iter_end = iter->start + iter->length - 1;
459
460 /* no merge needed on elements of different types than @new */
461 if (iter->type != new->type) {
462 list_move_tail(&iter->list, &stack);
463 continue;
464 }
465
466 /* look for the last stack element of same type as @iter */
467 list_for_each_entry_reverse(top, &stack, list)
468 if (top->type == iter->type)
469 goto check_overlap;
470
471 list_move_tail(&iter->list, &stack);
472 continue;
473
474 check_overlap:
475 top_end = top->start + top->length - 1;
476
477 if (iter->start > top_end + 1) {
478 list_move_tail(&iter->list, &stack);
479 } else {
480 top->length = max(top_end, iter_end) - top->start + 1;
481 list_del(&iter->list);
482 kfree(iter);
483 }
484 }
485 list_splice(&stack, regions);
486 return 0;
487 }
488
489 static int
iommu_insert_device_resv_regions(struct list_head * dev_resv_regions,struct list_head * group_resv_regions)490 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions,
491 struct list_head *group_resv_regions)
492 {
493 struct iommu_resv_region *entry;
494 int ret = 0;
495
496 list_for_each_entry(entry, dev_resv_regions, list) {
497 ret = iommu_insert_resv_region(entry, group_resv_regions);
498 if (ret)
499 break;
500 }
501 return ret;
502 }
503
iommu_get_group_resv_regions(struct iommu_group * group,struct list_head * head)504 int iommu_get_group_resv_regions(struct iommu_group *group,
505 struct list_head *head)
506 {
507 struct group_device *device;
508 int ret = 0;
509
510 mutex_lock(&group->mutex);
511 list_for_each_entry(device, &group->devices, list) {
512 struct list_head dev_resv_regions;
513
514 /*
515 * Non-API groups still expose reserved_regions in sysfs,
516 * so filter out calls that get here that way.
517 */
518 if (!device->dev->iommu)
519 break;
520
521 INIT_LIST_HEAD(&dev_resv_regions);
522 iommu_get_resv_regions(device->dev, &dev_resv_regions);
523 ret = iommu_insert_device_resv_regions(&dev_resv_regions, head);
524 iommu_put_resv_regions(device->dev, &dev_resv_regions);
525 if (ret)
526 break;
527 }
528 mutex_unlock(&group->mutex);
529 return ret;
530 }
531 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions);
532
iommu_group_show_resv_regions(struct iommu_group * group,char * buf)533 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group,
534 char *buf)
535 {
536 struct iommu_resv_region *region, *next;
537 struct list_head group_resv_regions;
538 char *str = buf;
539
540 INIT_LIST_HEAD(&group_resv_regions);
541 iommu_get_group_resv_regions(group, &group_resv_regions);
542
543 list_for_each_entry_safe(region, next, &group_resv_regions, list) {
544 str += sprintf(str, "0x%016llx 0x%016llx %s\n",
545 (long long int)region->start,
546 (long long int)(region->start +
547 region->length - 1),
548 iommu_group_resv_type_string[region->type]);
549 kfree(region);
550 }
551
552 return (str - buf);
553 }
554
iommu_group_show_type(struct iommu_group * group,char * buf)555 static ssize_t iommu_group_show_type(struct iommu_group *group,
556 char *buf)
557 {
558 char *type = "unknown\n";
559
560 mutex_lock(&group->mutex);
561 if (group->default_domain) {
562 switch (group->default_domain->type) {
563 case IOMMU_DOMAIN_BLOCKED:
564 type = "blocked\n";
565 break;
566 case IOMMU_DOMAIN_IDENTITY:
567 type = "identity\n";
568 break;
569 case IOMMU_DOMAIN_UNMANAGED:
570 type = "unmanaged\n";
571 break;
572 case IOMMU_DOMAIN_DMA:
573 type = "DMA\n";
574 break;
575 case IOMMU_DOMAIN_DMA_FQ:
576 type = "DMA-FQ\n";
577 break;
578 }
579 }
580 mutex_unlock(&group->mutex);
581 strcpy(buf, type);
582
583 return strlen(type);
584 }
585
586 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL);
587
588 static IOMMU_GROUP_ATTR(reserved_regions, 0444,
589 iommu_group_show_resv_regions, NULL);
590
591 static IOMMU_GROUP_ATTR(type, 0644, iommu_group_show_type,
592 iommu_group_store_type);
593
iommu_group_release(struct kobject * kobj)594 static void iommu_group_release(struct kobject *kobj)
595 {
596 struct iommu_group *group = to_iommu_group(kobj);
597
598 pr_debug("Releasing group %d\n", group->id);
599
600 if (group->iommu_data_release)
601 group->iommu_data_release(group->iommu_data);
602
603 ida_simple_remove(&iommu_group_ida, group->id);
604
605 if (group->default_domain)
606 iommu_domain_free(group->default_domain);
607 if (group->blocking_domain)
608 iommu_domain_free(group->blocking_domain);
609
610 kfree(group->name);
611 kfree(group);
612 }
613
614 static struct kobj_type iommu_group_ktype = {
615 .sysfs_ops = &iommu_group_sysfs_ops,
616 .release = iommu_group_release,
617 };
618
619 /**
620 * iommu_group_alloc - Allocate a new group
621 *
622 * This function is called by an iommu driver to allocate a new iommu
623 * group. The iommu group represents the minimum granularity of the iommu.
624 * Upon successful return, the caller holds a reference to the supplied
625 * group in order to hold the group until devices are added. Use
626 * iommu_group_put() to release this extra reference count, allowing the
627 * group to be automatically reclaimed once it has no devices or external
628 * references.
629 */
iommu_group_alloc(void)630 struct iommu_group *iommu_group_alloc(void)
631 {
632 struct iommu_group *group;
633 int ret;
634
635 group = kzalloc(sizeof(*group), GFP_KERNEL);
636 if (!group)
637 return ERR_PTR(-ENOMEM);
638
639 group->kobj.kset = iommu_group_kset;
640 mutex_init(&group->mutex);
641 INIT_LIST_HEAD(&group->devices);
642 INIT_LIST_HEAD(&group->entry);
643
644 ret = ida_simple_get(&iommu_group_ida, 0, 0, GFP_KERNEL);
645 if (ret < 0) {
646 kfree(group);
647 return ERR_PTR(ret);
648 }
649 group->id = ret;
650
651 ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype,
652 NULL, "%d", group->id);
653 if (ret) {
654 ida_simple_remove(&iommu_group_ida, group->id);
655 kobject_put(&group->kobj);
656 return ERR_PTR(ret);
657 }
658
659 group->devices_kobj = kobject_create_and_add("devices", &group->kobj);
660 if (!group->devices_kobj) {
661 kobject_put(&group->kobj); /* triggers .release & free */
662 return ERR_PTR(-ENOMEM);
663 }
664
665 /*
666 * The devices_kobj holds a reference on the group kobject, so
667 * as long as that exists so will the group. We can therefore
668 * use the devices_kobj for reference counting.
669 */
670 kobject_put(&group->kobj);
671
672 ret = iommu_group_create_file(group,
673 &iommu_group_attr_reserved_regions);
674 if (ret)
675 return ERR_PTR(ret);
676
677 ret = iommu_group_create_file(group, &iommu_group_attr_type);
678 if (ret)
679 return ERR_PTR(ret);
680
681 pr_debug("Allocated group %d\n", group->id);
682
683 return group;
684 }
685 EXPORT_SYMBOL_GPL(iommu_group_alloc);
686
iommu_group_get_by_id(int id)687 struct iommu_group *iommu_group_get_by_id(int id)
688 {
689 struct kobject *group_kobj;
690 struct iommu_group *group;
691 const char *name;
692
693 if (!iommu_group_kset)
694 return NULL;
695
696 name = kasprintf(GFP_KERNEL, "%d", id);
697 if (!name)
698 return NULL;
699
700 group_kobj = kset_find_obj(iommu_group_kset, name);
701 kfree(name);
702
703 if (!group_kobj)
704 return NULL;
705
706 group = container_of(group_kobj, struct iommu_group, kobj);
707 BUG_ON(group->id != id);
708
709 kobject_get(group->devices_kobj);
710 kobject_put(&group->kobj);
711
712 return group;
713 }
714 EXPORT_SYMBOL_GPL(iommu_group_get_by_id);
715
716 /**
717 * iommu_group_get_iommudata - retrieve iommu_data registered for a group
718 * @group: the group
719 *
720 * iommu drivers can store data in the group for use when doing iommu
721 * operations. This function provides a way to retrieve it. Caller
722 * should hold a group reference.
723 */
iommu_group_get_iommudata(struct iommu_group * group)724 void *iommu_group_get_iommudata(struct iommu_group *group)
725 {
726 return group->iommu_data;
727 }
728 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata);
729
730 /**
731 * iommu_group_set_iommudata - set iommu_data for a group
732 * @group: the group
733 * @iommu_data: new data
734 * @release: release function for iommu_data
735 *
736 * iommu drivers can store data in the group for use when doing iommu
737 * operations. This function provides a way to set the data after
738 * the group has been allocated. Caller should hold a group reference.
739 */
iommu_group_set_iommudata(struct iommu_group * group,void * iommu_data,void (* release)(void * iommu_data))740 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data,
741 void (*release)(void *iommu_data))
742 {
743 group->iommu_data = iommu_data;
744 group->iommu_data_release = release;
745 }
746 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata);
747
748 /**
749 * iommu_group_set_name - set name for a group
750 * @group: the group
751 * @name: name
752 *
753 * Allow iommu driver to set a name for a group. When set it will
754 * appear in a name attribute file under the group in sysfs.
755 */
iommu_group_set_name(struct iommu_group * group,const char * name)756 int iommu_group_set_name(struct iommu_group *group, const char *name)
757 {
758 int ret;
759
760 if (group->name) {
761 iommu_group_remove_file(group, &iommu_group_attr_name);
762 kfree(group->name);
763 group->name = NULL;
764 if (!name)
765 return 0;
766 }
767
768 group->name = kstrdup(name, GFP_KERNEL);
769 if (!group->name)
770 return -ENOMEM;
771
772 ret = iommu_group_create_file(group, &iommu_group_attr_name);
773 if (ret) {
774 kfree(group->name);
775 group->name = NULL;
776 return ret;
777 }
778
779 return 0;
780 }
781 EXPORT_SYMBOL_GPL(iommu_group_set_name);
782
iommu_create_device_direct_mappings(struct iommu_group * group,struct device * dev)783 static int iommu_create_device_direct_mappings(struct iommu_group *group,
784 struct device *dev)
785 {
786 struct iommu_domain *domain = group->default_domain;
787 struct iommu_resv_region *entry;
788 struct list_head mappings;
789 unsigned long pg_size;
790 int ret = 0;
791
792 if (!domain || !iommu_is_dma_domain(domain))
793 return 0;
794
795 BUG_ON(!domain->pgsize_bitmap);
796
797 pg_size = 1UL << __ffs(domain->pgsize_bitmap);
798 INIT_LIST_HEAD(&mappings);
799
800 iommu_get_resv_regions(dev, &mappings);
801
802 /* We need to consider overlapping regions for different devices */
803 list_for_each_entry(entry, &mappings, list) {
804 dma_addr_t start, end, addr;
805 size_t map_size = 0;
806
807 start = ALIGN(entry->start, pg_size);
808 end = ALIGN(entry->start + entry->length, pg_size);
809
810 if (entry->type != IOMMU_RESV_DIRECT &&
811 entry->type != IOMMU_RESV_DIRECT_RELAXABLE)
812 continue;
813
814 for (addr = start; addr <= end; addr += pg_size) {
815 phys_addr_t phys_addr;
816
817 if (addr == end)
818 goto map_end;
819
820 phys_addr = iommu_iova_to_phys(domain, addr);
821 if (!phys_addr) {
822 map_size += pg_size;
823 continue;
824 }
825
826 map_end:
827 if (map_size) {
828 ret = iommu_map(domain, addr - map_size,
829 addr - map_size, map_size,
830 entry->prot);
831 if (ret)
832 goto out;
833 map_size = 0;
834 }
835 }
836
837 }
838
839 iommu_flush_iotlb_all(domain);
840
841 out:
842 iommu_put_resv_regions(dev, &mappings);
843
844 return ret;
845 }
846
iommu_is_attach_deferred(struct device * dev)847 static bool iommu_is_attach_deferred(struct device *dev)
848 {
849 const struct iommu_ops *ops = dev_iommu_ops(dev);
850
851 if (ops->is_attach_deferred)
852 return ops->is_attach_deferred(dev);
853
854 return false;
855 }
856
857 /**
858 * iommu_group_add_device - add a device to an iommu group
859 * @group: the group into which to add the device (reference should be held)
860 * @dev: the device
861 *
862 * This function is called by an iommu driver to add a device into a
863 * group. Adding a device increments the group reference count.
864 */
iommu_group_add_device(struct iommu_group * group,struct device * dev)865 int iommu_group_add_device(struct iommu_group *group, struct device *dev)
866 {
867 int ret, i = 0;
868 struct group_device *device;
869
870 device = kzalloc(sizeof(*device), GFP_KERNEL);
871 if (!device)
872 return -ENOMEM;
873
874 device->dev = dev;
875
876 ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group");
877 if (ret)
878 goto err_free_device;
879
880 device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj));
881 rename:
882 if (!device->name) {
883 ret = -ENOMEM;
884 goto err_remove_link;
885 }
886
887 ret = sysfs_create_link_nowarn(group->devices_kobj,
888 &dev->kobj, device->name);
889 if (ret) {
890 if (ret == -EEXIST && i >= 0) {
891 /*
892 * Account for the slim chance of collision
893 * and append an instance to the name.
894 */
895 kfree(device->name);
896 device->name = kasprintf(GFP_KERNEL, "%s.%d",
897 kobject_name(&dev->kobj), i++);
898 goto rename;
899 }
900 goto err_free_name;
901 }
902
903 kobject_get(group->devices_kobj);
904
905 dev->iommu_group = group;
906
907 mutex_lock(&group->mutex);
908 list_add_tail(&device->list, &group->devices);
909 if (group->domain && !iommu_is_attach_deferred(dev))
910 ret = __iommu_attach_device(group->domain, dev);
911 mutex_unlock(&group->mutex);
912 if (ret)
913 goto err_put_group;
914
915 trace_add_device_to_group(group->id, dev);
916
917 dev_info(dev, "Adding to iommu group %d\n", group->id);
918
919 return 0;
920
921 err_put_group:
922 mutex_lock(&group->mutex);
923 list_del(&device->list);
924 mutex_unlock(&group->mutex);
925 dev->iommu_group = NULL;
926 kobject_put(group->devices_kobj);
927 sysfs_remove_link(group->devices_kobj, device->name);
928 err_free_name:
929 kfree(device->name);
930 err_remove_link:
931 sysfs_remove_link(&dev->kobj, "iommu_group");
932 err_free_device:
933 kfree(device);
934 dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret);
935 return ret;
936 }
937 EXPORT_SYMBOL_GPL(iommu_group_add_device);
938
939 /**
940 * iommu_group_remove_device - remove a device from it's current group
941 * @dev: device to be removed
942 *
943 * This function is called by an iommu driver to remove the device from
944 * it's current group. This decrements the iommu group reference count.
945 */
iommu_group_remove_device(struct device * dev)946 void iommu_group_remove_device(struct device *dev)
947 {
948 struct iommu_group *group = dev->iommu_group;
949 struct group_device *tmp_device, *device = NULL;
950
951 if (!group)
952 return;
953
954 dev_info(dev, "Removing from iommu group %d\n", group->id);
955
956 mutex_lock(&group->mutex);
957 list_for_each_entry(tmp_device, &group->devices, list) {
958 if (tmp_device->dev == dev) {
959 device = tmp_device;
960 list_del(&device->list);
961 break;
962 }
963 }
964 mutex_unlock(&group->mutex);
965
966 if (!device)
967 return;
968
969 sysfs_remove_link(group->devices_kobj, device->name);
970 sysfs_remove_link(&dev->kobj, "iommu_group");
971
972 trace_remove_device_from_group(group->id, dev);
973
974 kfree(device->name);
975 kfree(device);
976 dev->iommu_group = NULL;
977 kobject_put(group->devices_kobj);
978 }
979 EXPORT_SYMBOL_GPL(iommu_group_remove_device);
980
iommu_group_device_count(struct iommu_group * group)981 static int iommu_group_device_count(struct iommu_group *group)
982 {
983 struct group_device *entry;
984 int ret = 0;
985
986 list_for_each_entry(entry, &group->devices, list)
987 ret++;
988
989 return ret;
990 }
991
__iommu_group_for_each_dev(struct iommu_group * group,void * data,int (* fn)(struct device *,void *))992 static int __iommu_group_for_each_dev(struct iommu_group *group, void *data,
993 int (*fn)(struct device *, void *))
994 {
995 struct group_device *device;
996 int ret = 0;
997
998 list_for_each_entry(device, &group->devices, list) {
999 ret = fn(device->dev, data);
1000 if (ret)
1001 break;
1002 }
1003 return ret;
1004 }
1005
1006 /**
1007 * iommu_group_for_each_dev - iterate over each device in the group
1008 * @group: the group
1009 * @data: caller opaque data to be passed to callback function
1010 * @fn: caller supplied callback function
1011 *
1012 * This function is called by group users to iterate over group devices.
1013 * Callers should hold a reference count to the group during callback.
1014 * The group->mutex is held across callbacks, which will block calls to
1015 * iommu_group_add/remove_device.
1016 */
iommu_group_for_each_dev(struct iommu_group * group,void * data,int (* fn)(struct device *,void *))1017 int iommu_group_for_each_dev(struct iommu_group *group, void *data,
1018 int (*fn)(struct device *, void *))
1019 {
1020 int ret;
1021
1022 mutex_lock(&group->mutex);
1023 ret = __iommu_group_for_each_dev(group, data, fn);
1024 mutex_unlock(&group->mutex);
1025
1026 return ret;
1027 }
1028 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev);
1029
1030 /**
1031 * iommu_group_get - Return the group for a device and increment reference
1032 * @dev: get the group that this device belongs to
1033 *
1034 * This function is called by iommu drivers and users to get the group
1035 * for the specified device. If found, the group is returned and the group
1036 * reference in incremented, else NULL.
1037 */
iommu_group_get(struct device * dev)1038 struct iommu_group *iommu_group_get(struct device *dev)
1039 {
1040 struct iommu_group *group = dev->iommu_group;
1041
1042 if (group)
1043 kobject_get(group->devices_kobj);
1044
1045 return group;
1046 }
1047 EXPORT_SYMBOL_GPL(iommu_group_get);
1048
1049 /**
1050 * iommu_group_ref_get - Increment reference on a group
1051 * @group: the group to use, must not be NULL
1052 *
1053 * This function is called by iommu drivers to take additional references on an
1054 * existing group. Returns the given group for convenience.
1055 */
iommu_group_ref_get(struct iommu_group * group)1056 struct iommu_group *iommu_group_ref_get(struct iommu_group *group)
1057 {
1058 kobject_get(group->devices_kobj);
1059 return group;
1060 }
1061 EXPORT_SYMBOL_GPL(iommu_group_ref_get);
1062
1063 /**
1064 * iommu_group_put - Decrement group reference
1065 * @group: the group to use
1066 *
1067 * This function is called by iommu drivers and users to release the
1068 * iommu group. Once the reference count is zero, the group is released.
1069 */
iommu_group_put(struct iommu_group * group)1070 void iommu_group_put(struct iommu_group *group)
1071 {
1072 if (group)
1073 kobject_put(group->devices_kobj);
1074 }
1075 EXPORT_SYMBOL_GPL(iommu_group_put);
1076
1077 /**
1078 * iommu_register_device_fault_handler() - Register a device fault handler
1079 * @dev: the device
1080 * @handler: the fault handler
1081 * @data: private data passed as argument to the handler
1082 *
1083 * When an IOMMU fault event is received, this handler gets called with the
1084 * fault event and data as argument. The handler should return 0 on success. If
1085 * the fault is recoverable (IOMMU_FAULT_PAGE_REQ), the consumer should also
1086 * complete the fault by calling iommu_page_response() with one of the following
1087 * response code:
1088 * - IOMMU_PAGE_RESP_SUCCESS: retry the translation
1089 * - IOMMU_PAGE_RESP_INVALID: terminate the fault
1090 * - IOMMU_PAGE_RESP_FAILURE: terminate the fault and stop reporting
1091 * page faults if possible.
1092 *
1093 * Return 0 if the fault handler was installed successfully, or an error.
1094 */
iommu_register_device_fault_handler(struct device * dev,iommu_dev_fault_handler_t handler,void * data)1095 int iommu_register_device_fault_handler(struct device *dev,
1096 iommu_dev_fault_handler_t handler,
1097 void *data)
1098 {
1099 struct dev_iommu *param = dev->iommu;
1100 int ret = 0;
1101
1102 if (!param)
1103 return -EINVAL;
1104
1105 mutex_lock(¶m->lock);
1106 /* Only allow one fault handler registered for each device */
1107 if (param->fault_param) {
1108 ret = -EBUSY;
1109 goto done_unlock;
1110 }
1111
1112 get_device(dev);
1113 param->fault_param = kzalloc(sizeof(*param->fault_param), GFP_KERNEL);
1114 if (!param->fault_param) {
1115 put_device(dev);
1116 ret = -ENOMEM;
1117 goto done_unlock;
1118 }
1119 param->fault_param->handler = handler;
1120 param->fault_param->data = data;
1121 mutex_init(¶m->fault_param->lock);
1122 INIT_LIST_HEAD(¶m->fault_param->faults);
1123
1124 done_unlock:
1125 mutex_unlock(¶m->lock);
1126
1127 return ret;
1128 }
1129 EXPORT_SYMBOL_GPL(iommu_register_device_fault_handler);
1130
1131 /**
1132 * iommu_unregister_device_fault_handler() - Unregister the device fault handler
1133 * @dev: the device
1134 *
1135 * Remove the device fault handler installed with
1136 * iommu_register_device_fault_handler().
1137 *
1138 * Return 0 on success, or an error.
1139 */
iommu_unregister_device_fault_handler(struct device * dev)1140 int iommu_unregister_device_fault_handler(struct device *dev)
1141 {
1142 struct dev_iommu *param = dev->iommu;
1143 int ret = 0;
1144
1145 if (!param)
1146 return -EINVAL;
1147
1148 mutex_lock(¶m->lock);
1149
1150 if (!param->fault_param)
1151 goto unlock;
1152
1153 /* we cannot unregister handler if there are pending faults */
1154 if (!list_empty(¶m->fault_param->faults)) {
1155 ret = -EBUSY;
1156 goto unlock;
1157 }
1158
1159 kfree(param->fault_param);
1160 param->fault_param = NULL;
1161 put_device(dev);
1162 unlock:
1163 mutex_unlock(¶m->lock);
1164
1165 return ret;
1166 }
1167 EXPORT_SYMBOL_GPL(iommu_unregister_device_fault_handler);
1168
1169 /**
1170 * iommu_report_device_fault() - Report fault event to device driver
1171 * @dev: the device
1172 * @evt: fault event data
1173 *
1174 * Called by IOMMU drivers when a fault is detected, typically in a threaded IRQ
1175 * handler. When this function fails and the fault is recoverable, it is the
1176 * caller's responsibility to complete the fault.
1177 *
1178 * Return 0 on success, or an error.
1179 */
iommu_report_device_fault(struct device * dev,struct iommu_fault_event * evt)1180 int iommu_report_device_fault(struct device *dev, struct iommu_fault_event *evt)
1181 {
1182 struct dev_iommu *param = dev->iommu;
1183 struct iommu_fault_event *evt_pending = NULL;
1184 struct iommu_fault_param *fparam;
1185 int ret = 0;
1186
1187 if (!param || !evt)
1188 return -EINVAL;
1189
1190 /* we only report device fault if there is a handler registered */
1191 mutex_lock(¶m->lock);
1192 fparam = param->fault_param;
1193 if (!fparam || !fparam->handler) {
1194 ret = -EINVAL;
1195 goto done_unlock;
1196 }
1197
1198 if (evt->fault.type == IOMMU_FAULT_PAGE_REQ &&
1199 (evt->fault.prm.flags & IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE)) {
1200 evt_pending = kmemdup(evt, sizeof(struct iommu_fault_event),
1201 GFP_KERNEL);
1202 if (!evt_pending) {
1203 ret = -ENOMEM;
1204 goto done_unlock;
1205 }
1206 mutex_lock(&fparam->lock);
1207 list_add_tail(&evt_pending->list, &fparam->faults);
1208 mutex_unlock(&fparam->lock);
1209 }
1210
1211 ret = fparam->handler(&evt->fault, fparam->data);
1212 if (ret && evt_pending) {
1213 mutex_lock(&fparam->lock);
1214 list_del(&evt_pending->list);
1215 mutex_unlock(&fparam->lock);
1216 kfree(evt_pending);
1217 }
1218 done_unlock:
1219 mutex_unlock(¶m->lock);
1220 return ret;
1221 }
1222 EXPORT_SYMBOL_GPL(iommu_report_device_fault);
1223
iommu_page_response(struct device * dev,struct iommu_page_response * msg)1224 int iommu_page_response(struct device *dev,
1225 struct iommu_page_response *msg)
1226 {
1227 bool needs_pasid;
1228 int ret = -EINVAL;
1229 struct iommu_fault_event *evt;
1230 struct iommu_fault_page_request *prm;
1231 struct dev_iommu *param = dev->iommu;
1232 const struct iommu_ops *ops = dev_iommu_ops(dev);
1233 bool has_pasid = msg->flags & IOMMU_PAGE_RESP_PASID_VALID;
1234
1235 if (!ops->page_response)
1236 return -ENODEV;
1237
1238 if (!param || !param->fault_param)
1239 return -EINVAL;
1240
1241 if (msg->version != IOMMU_PAGE_RESP_VERSION_1 ||
1242 msg->flags & ~IOMMU_PAGE_RESP_PASID_VALID)
1243 return -EINVAL;
1244
1245 /* Only send response if there is a fault report pending */
1246 mutex_lock(¶m->fault_param->lock);
1247 if (list_empty(¶m->fault_param->faults)) {
1248 dev_warn_ratelimited(dev, "no pending PRQ, drop response\n");
1249 goto done_unlock;
1250 }
1251 /*
1252 * Check if we have a matching page request pending to respond,
1253 * otherwise return -EINVAL
1254 */
1255 list_for_each_entry(evt, ¶m->fault_param->faults, list) {
1256 prm = &evt->fault.prm;
1257 if (prm->grpid != msg->grpid)
1258 continue;
1259
1260 /*
1261 * If the PASID is required, the corresponding request is
1262 * matched using the group ID, the PASID valid bit and the PASID
1263 * value. Otherwise only the group ID matches request and
1264 * response.
1265 */
1266 needs_pasid = prm->flags & IOMMU_FAULT_PAGE_RESPONSE_NEEDS_PASID;
1267 if (needs_pasid && (!has_pasid || msg->pasid != prm->pasid))
1268 continue;
1269
1270 if (!needs_pasid && has_pasid) {
1271 /* No big deal, just clear it. */
1272 msg->flags &= ~IOMMU_PAGE_RESP_PASID_VALID;
1273 msg->pasid = 0;
1274 }
1275
1276 ret = ops->page_response(dev, evt, msg);
1277 list_del(&evt->list);
1278 kfree(evt);
1279 break;
1280 }
1281
1282 done_unlock:
1283 mutex_unlock(¶m->fault_param->lock);
1284 return ret;
1285 }
1286 EXPORT_SYMBOL_GPL(iommu_page_response);
1287
1288 /**
1289 * iommu_group_id - Return ID for a group
1290 * @group: the group to ID
1291 *
1292 * Return the unique ID for the group matching the sysfs group number.
1293 */
iommu_group_id(struct iommu_group * group)1294 int iommu_group_id(struct iommu_group *group)
1295 {
1296 return group->id;
1297 }
1298 EXPORT_SYMBOL_GPL(iommu_group_id);
1299
1300 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1301 unsigned long *devfns);
1302
1303 /*
1304 * To consider a PCI device isolated, we require ACS to support Source
1305 * Validation, Request Redirection, Completer Redirection, and Upstream
1306 * Forwarding. This effectively means that devices cannot spoof their
1307 * requester ID, requests and completions cannot be redirected, and all
1308 * transactions are forwarded upstream, even as it passes through a
1309 * bridge where the target device is downstream.
1310 */
1311 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
1312
1313 /*
1314 * For multifunction devices which are not isolated from each other, find
1315 * all the other non-isolated functions and look for existing groups. For
1316 * each function, we also need to look for aliases to or from other devices
1317 * that may already have a group.
1318 */
get_pci_function_alias_group(struct pci_dev * pdev,unsigned long * devfns)1319 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev,
1320 unsigned long *devfns)
1321 {
1322 struct pci_dev *tmp = NULL;
1323 struct iommu_group *group;
1324
1325 if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS))
1326 return NULL;
1327
1328 for_each_pci_dev(tmp) {
1329 if (tmp == pdev || tmp->bus != pdev->bus ||
1330 PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) ||
1331 pci_acs_enabled(tmp, REQ_ACS_FLAGS))
1332 continue;
1333
1334 group = get_pci_alias_group(tmp, devfns);
1335 if (group) {
1336 pci_dev_put(tmp);
1337 return group;
1338 }
1339 }
1340
1341 return NULL;
1342 }
1343
1344 /*
1345 * Look for aliases to or from the given device for existing groups. DMA
1346 * aliases are only supported on the same bus, therefore the search
1347 * space is quite small (especially since we're really only looking at pcie
1348 * device, and therefore only expect multiple slots on the root complex or
1349 * downstream switch ports). It's conceivable though that a pair of
1350 * multifunction devices could have aliases between them that would cause a
1351 * loop. To prevent this, we use a bitmap to track where we've been.
1352 */
get_pci_alias_group(struct pci_dev * pdev,unsigned long * devfns)1353 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1354 unsigned long *devfns)
1355 {
1356 struct pci_dev *tmp = NULL;
1357 struct iommu_group *group;
1358
1359 if (test_and_set_bit(pdev->devfn & 0xff, devfns))
1360 return NULL;
1361
1362 group = iommu_group_get(&pdev->dev);
1363 if (group)
1364 return group;
1365
1366 for_each_pci_dev(tmp) {
1367 if (tmp == pdev || tmp->bus != pdev->bus)
1368 continue;
1369
1370 /* We alias them or they alias us */
1371 if (pci_devs_are_dma_aliases(pdev, tmp)) {
1372 group = get_pci_alias_group(tmp, devfns);
1373 if (group) {
1374 pci_dev_put(tmp);
1375 return group;
1376 }
1377
1378 group = get_pci_function_alias_group(tmp, devfns);
1379 if (group) {
1380 pci_dev_put(tmp);
1381 return group;
1382 }
1383 }
1384 }
1385
1386 return NULL;
1387 }
1388
1389 struct group_for_pci_data {
1390 struct pci_dev *pdev;
1391 struct iommu_group *group;
1392 };
1393
1394 /*
1395 * DMA alias iterator callback, return the last seen device. Stop and return
1396 * the IOMMU group if we find one along the way.
1397 */
get_pci_alias_or_group(struct pci_dev * pdev,u16 alias,void * opaque)1398 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque)
1399 {
1400 struct group_for_pci_data *data = opaque;
1401
1402 data->pdev = pdev;
1403 data->group = iommu_group_get(&pdev->dev);
1404
1405 return data->group != NULL;
1406 }
1407
1408 /*
1409 * Generic device_group call-back function. It just allocates one
1410 * iommu-group per device.
1411 */
generic_device_group(struct device * dev)1412 struct iommu_group *generic_device_group(struct device *dev)
1413 {
1414 return iommu_group_alloc();
1415 }
1416 EXPORT_SYMBOL_GPL(generic_device_group);
1417
1418 /*
1419 * Use standard PCI bus topology, isolation features, and DMA alias quirks
1420 * to find or create an IOMMU group for a device.
1421 */
pci_device_group(struct device * dev)1422 struct iommu_group *pci_device_group(struct device *dev)
1423 {
1424 struct pci_dev *pdev = to_pci_dev(dev);
1425 struct group_for_pci_data data;
1426 struct pci_bus *bus;
1427 struct iommu_group *group = NULL;
1428 u64 devfns[4] = { 0 };
1429
1430 if (WARN_ON(!dev_is_pci(dev)))
1431 return ERR_PTR(-EINVAL);
1432
1433 /*
1434 * Find the upstream DMA alias for the device. A device must not
1435 * be aliased due to topology in order to have its own IOMMU group.
1436 * If we find an alias along the way that already belongs to a
1437 * group, use it.
1438 */
1439 if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data))
1440 return data.group;
1441
1442 pdev = data.pdev;
1443
1444 /*
1445 * Continue upstream from the point of minimum IOMMU granularity
1446 * due to aliases to the point where devices are protected from
1447 * peer-to-peer DMA by PCI ACS. Again, if we find an existing
1448 * group, use it.
1449 */
1450 for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) {
1451 if (!bus->self)
1452 continue;
1453
1454 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
1455 break;
1456
1457 pdev = bus->self;
1458
1459 group = iommu_group_get(&pdev->dev);
1460 if (group)
1461 return group;
1462 }
1463
1464 /*
1465 * Look for existing groups on device aliases. If we alias another
1466 * device or another device aliases us, use the same group.
1467 */
1468 group = get_pci_alias_group(pdev, (unsigned long *)devfns);
1469 if (group)
1470 return group;
1471
1472 /*
1473 * Look for existing groups on non-isolated functions on the same
1474 * slot and aliases of those funcions, if any. No need to clear
1475 * the search bitmap, the tested devfns are still valid.
1476 */
1477 group = get_pci_function_alias_group(pdev, (unsigned long *)devfns);
1478 if (group)
1479 return group;
1480
1481 /* No shared group found, allocate new */
1482 return iommu_group_alloc();
1483 }
1484 EXPORT_SYMBOL_GPL(pci_device_group);
1485
1486 /* Get the IOMMU group for device on fsl-mc bus */
fsl_mc_device_group(struct device * dev)1487 struct iommu_group *fsl_mc_device_group(struct device *dev)
1488 {
1489 struct device *cont_dev = fsl_mc_cont_dev(dev);
1490 struct iommu_group *group;
1491
1492 group = iommu_group_get(cont_dev);
1493 if (!group)
1494 group = iommu_group_alloc();
1495 return group;
1496 }
1497 EXPORT_SYMBOL_GPL(fsl_mc_device_group);
1498
iommu_get_def_domain_type(struct device * dev)1499 static int iommu_get_def_domain_type(struct device *dev)
1500 {
1501 const struct iommu_ops *ops = dev_iommu_ops(dev);
1502
1503 if (dev_is_pci(dev) && to_pci_dev(dev)->untrusted)
1504 return IOMMU_DOMAIN_DMA;
1505
1506 if (ops->def_domain_type)
1507 return ops->def_domain_type(dev);
1508
1509 return 0;
1510 }
1511
iommu_group_alloc_default_domain(struct bus_type * bus,struct iommu_group * group,unsigned int type)1512 static int iommu_group_alloc_default_domain(struct bus_type *bus,
1513 struct iommu_group *group,
1514 unsigned int type)
1515 {
1516 struct iommu_domain *dom;
1517
1518 dom = __iommu_domain_alloc(bus, type);
1519 if (!dom && type != IOMMU_DOMAIN_DMA) {
1520 dom = __iommu_domain_alloc(bus, IOMMU_DOMAIN_DMA);
1521 if (dom)
1522 pr_warn("Failed to allocate default IOMMU domain of type %u for group %s - Falling back to IOMMU_DOMAIN_DMA",
1523 type, group->name);
1524 }
1525
1526 if (!dom)
1527 return -ENOMEM;
1528
1529 group->default_domain = dom;
1530 if (!group->domain)
1531 group->domain = dom;
1532 return 0;
1533 }
1534
iommu_alloc_default_domain(struct iommu_group * group,struct device * dev)1535 static int iommu_alloc_default_domain(struct iommu_group *group,
1536 struct device *dev)
1537 {
1538 unsigned int type;
1539
1540 if (group->default_domain)
1541 return 0;
1542
1543 type = iommu_get_def_domain_type(dev) ? : iommu_def_domain_type;
1544
1545 return iommu_group_alloc_default_domain(dev->bus, group, type);
1546 }
1547
1548 /**
1549 * iommu_group_get_for_dev - Find or create the IOMMU group for a device
1550 * @dev: target device
1551 *
1552 * This function is intended to be called by IOMMU drivers and extended to
1553 * support common, bus-defined algorithms when determining or creating the
1554 * IOMMU group for a device. On success, the caller will hold a reference
1555 * to the returned IOMMU group, which will already include the provided
1556 * device. The reference should be released with iommu_group_put().
1557 */
iommu_group_get_for_dev(struct device * dev)1558 static struct iommu_group *iommu_group_get_for_dev(struct device *dev)
1559 {
1560 const struct iommu_ops *ops = dev_iommu_ops(dev);
1561 struct iommu_group *group;
1562 int ret;
1563
1564 group = iommu_group_get(dev);
1565 if (group)
1566 return group;
1567
1568 group = ops->device_group(dev);
1569 if (WARN_ON_ONCE(group == NULL))
1570 return ERR_PTR(-EINVAL);
1571
1572 if (IS_ERR(group))
1573 return group;
1574
1575 ret = iommu_group_add_device(group, dev);
1576 if (ret)
1577 goto out_put_group;
1578
1579 return group;
1580
1581 out_put_group:
1582 iommu_group_put(group);
1583
1584 return ERR_PTR(ret);
1585 }
1586
iommu_group_default_domain(struct iommu_group * group)1587 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group)
1588 {
1589 return group->default_domain;
1590 }
1591
probe_iommu_group(struct device * dev,void * data)1592 static int probe_iommu_group(struct device *dev, void *data)
1593 {
1594 struct list_head *group_list = data;
1595 struct iommu_group *group;
1596 int ret;
1597
1598 /* Device is probed already if in a group */
1599 group = iommu_group_get(dev);
1600 if (group) {
1601 iommu_group_put(group);
1602 return 0;
1603 }
1604
1605 ret = __iommu_probe_device(dev, group_list);
1606 if (ret == -ENODEV)
1607 ret = 0;
1608
1609 return ret;
1610 }
1611
remove_iommu_group(struct device * dev,void * data)1612 static int remove_iommu_group(struct device *dev, void *data)
1613 {
1614 iommu_release_device(dev);
1615
1616 return 0;
1617 }
1618
iommu_bus_notifier(struct notifier_block * nb,unsigned long action,void * data)1619 static int iommu_bus_notifier(struct notifier_block *nb,
1620 unsigned long action, void *data)
1621 {
1622 struct device *dev = data;
1623
1624 if (action == BUS_NOTIFY_ADD_DEVICE) {
1625 int ret;
1626
1627 ret = iommu_probe_device(dev);
1628 return (ret) ? NOTIFY_DONE : NOTIFY_OK;
1629 } else if (action == BUS_NOTIFY_REMOVED_DEVICE) {
1630 iommu_release_device(dev);
1631 return NOTIFY_OK;
1632 }
1633
1634 return 0;
1635 }
1636
1637 struct __group_domain_type {
1638 struct device *dev;
1639 unsigned int type;
1640 };
1641
probe_get_default_domain_type(struct device * dev,void * data)1642 static int probe_get_default_domain_type(struct device *dev, void *data)
1643 {
1644 struct __group_domain_type *gtype = data;
1645 unsigned int type = iommu_get_def_domain_type(dev);
1646
1647 if (type) {
1648 if (gtype->type && gtype->type != type) {
1649 dev_warn(dev, "Device needs domain type %s, but device %s in the same iommu group requires type %s - using default\n",
1650 iommu_domain_type_str(type),
1651 dev_name(gtype->dev),
1652 iommu_domain_type_str(gtype->type));
1653 gtype->type = 0;
1654 }
1655
1656 if (!gtype->dev) {
1657 gtype->dev = dev;
1658 gtype->type = type;
1659 }
1660 }
1661
1662 return 0;
1663 }
1664
probe_alloc_default_domain(struct bus_type * bus,struct iommu_group * group)1665 static void probe_alloc_default_domain(struct bus_type *bus,
1666 struct iommu_group *group)
1667 {
1668 struct __group_domain_type gtype;
1669
1670 memset(>ype, 0, sizeof(gtype));
1671
1672 /* Ask for default domain requirements of all devices in the group */
1673 __iommu_group_for_each_dev(group, >ype,
1674 probe_get_default_domain_type);
1675
1676 if (!gtype.type)
1677 gtype.type = iommu_def_domain_type;
1678
1679 iommu_group_alloc_default_domain(bus, group, gtype.type);
1680
1681 }
1682
iommu_group_do_dma_attach(struct device * dev,void * data)1683 static int iommu_group_do_dma_attach(struct device *dev, void *data)
1684 {
1685 struct iommu_domain *domain = data;
1686 int ret = 0;
1687
1688 if (!iommu_is_attach_deferred(dev))
1689 ret = __iommu_attach_device(domain, dev);
1690
1691 return ret;
1692 }
1693
__iommu_group_dma_attach(struct iommu_group * group)1694 static int __iommu_group_dma_attach(struct iommu_group *group)
1695 {
1696 return __iommu_group_for_each_dev(group, group->default_domain,
1697 iommu_group_do_dma_attach);
1698 }
1699
iommu_group_do_probe_finalize(struct device * dev,void * data)1700 static int iommu_group_do_probe_finalize(struct device *dev, void *data)
1701 {
1702 const struct iommu_ops *ops = dev_iommu_ops(dev);
1703
1704 if (ops->probe_finalize)
1705 ops->probe_finalize(dev);
1706
1707 return 0;
1708 }
1709
__iommu_group_dma_finalize(struct iommu_group * group)1710 static void __iommu_group_dma_finalize(struct iommu_group *group)
1711 {
1712 __iommu_group_for_each_dev(group, group->default_domain,
1713 iommu_group_do_probe_finalize);
1714 }
1715
iommu_do_create_direct_mappings(struct device * dev,void * data)1716 static int iommu_do_create_direct_mappings(struct device *dev, void *data)
1717 {
1718 struct iommu_group *group = data;
1719
1720 iommu_create_device_direct_mappings(group, dev);
1721
1722 return 0;
1723 }
1724
iommu_group_create_direct_mappings(struct iommu_group * group)1725 static int iommu_group_create_direct_mappings(struct iommu_group *group)
1726 {
1727 return __iommu_group_for_each_dev(group, group,
1728 iommu_do_create_direct_mappings);
1729 }
1730
bus_iommu_probe(struct bus_type * bus)1731 int bus_iommu_probe(struct bus_type *bus)
1732 {
1733 struct iommu_group *group, *next;
1734 LIST_HEAD(group_list);
1735 int ret;
1736
1737 /*
1738 * This code-path does not allocate the default domain when
1739 * creating the iommu group, so do it after the groups are
1740 * created.
1741 */
1742 ret = bus_for_each_dev(bus, NULL, &group_list, probe_iommu_group);
1743 if (ret)
1744 return ret;
1745
1746 list_for_each_entry_safe(group, next, &group_list, entry) {
1747 /* Remove item from the list */
1748 list_del_init(&group->entry);
1749
1750 mutex_lock(&group->mutex);
1751
1752 /* Try to allocate default domain */
1753 probe_alloc_default_domain(bus, group);
1754
1755 if (!group->default_domain) {
1756 mutex_unlock(&group->mutex);
1757 continue;
1758 }
1759
1760 iommu_group_create_direct_mappings(group);
1761
1762 ret = __iommu_group_dma_attach(group);
1763
1764 mutex_unlock(&group->mutex);
1765
1766 if (ret)
1767 break;
1768
1769 __iommu_group_dma_finalize(group);
1770 }
1771
1772 return ret;
1773 }
1774
iommu_bus_init(struct bus_type * bus,const struct iommu_ops * ops)1775 static int iommu_bus_init(struct bus_type *bus, const struct iommu_ops *ops)
1776 {
1777 struct notifier_block *nb;
1778 int err;
1779
1780 nb = kzalloc(sizeof(struct notifier_block), GFP_KERNEL);
1781 if (!nb)
1782 return -ENOMEM;
1783
1784 nb->notifier_call = iommu_bus_notifier;
1785
1786 err = bus_register_notifier(bus, nb);
1787 if (err)
1788 goto out_free;
1789
1790 err = bus_iommu_probe(bus);
1791 if (err)
1792 goto out_err;
1793
1794
1795 return 0;
1796
1797 out_err:
1798 /* Clean up */
1799 bus_for_each_dev(bus, NULL, NULL, remove_iommu_group);
1800 bus_unregister_notifier(bus, nb);
1801
1802 out_free:
1803 kfree(nb);
1804
1805 return err;
1806 }
1807
1808 /**
1809 * bus_set_iommu - set iommu-callbacks for the bus
1810 * @bus: bus.
1811 * @ops: the callbacks provided by the iommu-driver
1812 *
1813 * This function is called by an iommu driver to set the iommu methods
1814 * used for a particular bus. Drivers for devices on that bus can use
1815 * the iommu-api after these ops are registered.
1816 * This special function is needed because IOMMUs are usually devices on
1817 * the bus itself, so the iommu drivers are not initialized when the bus
1818 * is set up. With this function the iommu-driver can set the iommu-ops
1819 * afterwards.
1820 */
bus_set_iommu(struct bus_type * bus,const struct iommu_ops * ops)1821 int bus_set_iommu(struct bus_type *bus, const struct iommu_ops *ops)
1822 {
1823 int err;
1824
1825 if (ops == NULL) {
1826 bus->iommu_ops = NULL;
1827 return 0;
1828 }
1829
1830 if (bus->iommu_ops != NULL)
1831 return -EBUSY;
1832
1833 bus->iommu_ops = ops;
1834
1835 /* Do IOMMU specific setup for this bus-type */
1836 err = iommu_bus_init(bus, ops);
1837 if (err)
1838 bus->iommu_ops = NULL;
1839
1840 return err;
1841 }
1842 EXPORT_SYMBOL_GPL(bus_set_iommu);
1843
iommu_present(struct bus_type * bus)1844 bool iommu_present(struct bus_type *bus)
1845 {
1846 return bus->iommu_ops != NULL;
1847 }
1848 EXPORT_SYMBOL_GPL(iommu_present);
1849
1850 /**
1851 * device_iommu_capable() - check for a general IOMMU capability
1852 * @dev: device to which the capability would be relevant, if available
1853 * @cap: IOMMU capability
1854 *
1855 * Return: true if an IOMMU is present and supports the given capability
1856 * for the given device, otherwise false.
1857 */
device_iommu_capable(struct device * dev,enum iommu_cap cap)1858 bool device_iommu_capable(struct device *dev, enum iommu_cap cap)
1859 {
1860 const struct iommu_ops *ops;
1861
1862 if (!dev->iommu || !dev->iommu->iommu_dev)
1863 return false;
1864
1865 ops = dev_iommu_ops(dev);
1866 if (!ops->capable)
1867 return false;
1868
1869 return ops->capable(cap);
1870 }
1871 EXPORT_SYMBOL_GPL(device_iommu_capable);
1872
iommu_capable(struct bus_type * bus,enum iommu_cap cap)1873 bool iommu_capable(struct bus_type *bus, enum iommu_cap cap)
1874 {
1875 if (!bus->iommu_ops || !bus->iommu_ops->capable)
1876 return false;
1877
1878 return bus->iommu_ops->capable(cap);
1879 }
1880 EXPORT_SYMBOL_GPL(iommu_capable);
1881
1882 /**
1883 * iommu_set_fault_handler() - set a fault handler for an iommu domain
1884 * @domain: iommu domain
1885 * @handler: fault handler
1886 * @token: user data, will be passed back to the fault handler
1887 *
1888 * This function should be used by IOMMU users which want to be notified
1889 * whenever an IOMMU fault happens.
1890 *
1891 * The fault handler itself should return 0 on success, and an appropriate
1892 * error code otherwise.
1893 */
iommu_set_fault_handler(struct iommu_domain * domain,iommu_fault_handler_t handler,void * token)1894 void iommu_set_fault_handler(struct iommu_domain *domain,
1895 iommu_fault_handler_t handler,
1896 void *token)
1897 {
1898 BUG_ON(!domain);
1899
1900 domain->handler = handler;
1901 domain->handler_token = token;
1902 }
1903 EXPORT_SYMBOL_GPL(iommu_set_fault_handler);
1904
__iommu_domain_alloc(struct bus_type * bus,unsigned type)1905 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
1906 unsigned type)
1907 {
1908 struct iommu_domain *domain;
1909
1910 if (bus == NULL || bus->iommu_ops == NULL)
1911 return NULL;
1912
1913 domain = bus->iommu_ops->domain_alloc(type);
1914 if (!domain)
1915 return NULL;
1916
1917 domain->type = type;
1918 /* Assume all sizes by default; the driver may override this later */
1919 domain->pgsize_bitmap = bus->iommu_ops->pgsize_bitmap;
1920 if (!domain->ops)
1921 domain->ops = bus->iommu_ops->default_domain_ops;
1922
1923 if (iommu_is_dma_domain(domain) && iommu_get_dma_cookie(domain)) {
1924 iommu_domain_free(domain);
1925 domain = NULL;
1926 }
1927 return domain;
1928 }
1929
iommu_domain_alloc(struct bus_type * bus)1930 struct iommu_domain *iommu_domain_alloc(struct bus_type *bus)
1931 {
1932 return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED);
1933 }
1934 EXPORT_SYMBOL_GPL(iommu_domain_alloc);
1935
iommu_domain_free(struct iommu_domain * domain)1936 void iommu_domain_free(struct iommu_domain *domain)
1937 {
1938 iommu_put_dma_cookie(domain);
1939 domain->ops->free(domain);
1940 }
1941 EXPORT_SYMBOL_GPL(iommu_domain_free);
1942
1943 /*
1944 * Put the group's domain back to the appropriate core-owned domain - either the
1945 * standard kernel-mode DMA configuration or an all-DMA-blocked domain.
1946 */
__iommu_group_set_core_domain(struct iommu_group * group)1947 static void __iommu_group_set_core_domain(struct iommu_group *group)
1948 {
1949 struct iommu_domain *new_domain;
1950 int ret;
1951
1952 if (group->owner)
1953 new_domain = group->blocking_domain;
1954 else
1955 new_domain = group->default_domain;
1956
1957 ret = __iommu_group_set_domain(group, new_domain);
1958 WARN(ret, "iommu driver failed to attach the default/blocking domain");
1959 }
1960
__iommu_attach_device(struct iommu_domain * domain,struct device * dev)1961 static int __iommu_attach_device(struct iommu_domain *domain,
1962 struct device *dev)
1963 {
1964 int ret;
1965
1966 if (unlikely(domain->ops->attach_dev == NULL))
1967 return -ENODEV;
1968
1969 ret = domain->ops->attach_dev(domain, dev);
1970 if (!ret)
1971 trace_attach_device_to_domain(dev);
1972 return ret;
1973 }
1974
iommu_attach_device(struct iommu_domain * domain,struct device * dev)1975 int iommu_attach_device(struct iommu_domain *domain, struct device *dev)
1976 {
1977 struct iommu_group *group;
1978 int ret;
1979
1980 group = iommu_group_get(dev);
1981 if (!group)
1982 return -ENODEV;
1983
1984 /*
1985 * Lock the group to make sure the device-count doesn't
1986 * change while we are attaching
1987 */
1988 mutex_lock(&group->mutex);
1989 ret = -EINVAL;
1990 if (iommu_group_device_count(group) != 1)
1991 goto out_unlock;
1992
1993 ret = __iommu_attach_group(domain, group);
1994
1995 out_unlock:
1996 mutex_unlock(&group->mutex);
1997 iommu_group_put(group);
1998
1999 return ret;
2000 }
2001 EXPORT_SYMBOL_GPL(iommu_attach_device);
2002
iommu_deferred_attach(struct device * dev,struct iommu_domain * domain)2003 int iommu_deferred_attach(struct device *dev, struct iommu_domain *domain)
2004 {
2005 if (iommu_is_attach_deferred(dev))
2006 return __iommu_attach_device(domain, dev);
2007
2008 return 0;
2009 }
2010
__iommu_detach_device(struct iommu_domain * domain,struct device * dev)2011 static void __iommu_detach_device(struct iommu_domain *domain,
2012 struct device *dev)
2013 {
2014 if (iommu_is_attach_deferred(dev))
2015 return;
2016
2017 domain->ops->detach_dev(domain, dev);
2018 trace_detach_device_from_domain(dev);
2019 }
2020
iommu_detach_device(struct iommu_domain * domain,struct device * dev)2021 void iommu_detach_device(struct iommu_domain *domain, struct device *dev)
2022 {
2023 struct iommu_group *group;
2024
2025 group = iommu_group_get(dev);
2026 if (!group)
2027 return;
2028
2029 mutex_lock(&group->mutex);
2030 if (WARN_ON(domain != group->domain) ||
2031 WARN_ON(iommu_group_device_count(group) != 1))
2032 goto out_unlock;
2033 __iommu_group_set_core_domain(group);
2034
2035 out_unlock:
2036 mutex_unlock(&group->mutex);
2037 iommu_group_put(group);
2038 }
2039 EXPORT_SYMBOL_GPL(iommu_detach_device);
2040
iommu_get_domain_for_dev(struct device * dev)2041 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev)
2042 {
2043 struct iommu_domain *domain;
2044 struct iommu_group *group;
2045
2046 group = iommu_group_get(dev);
2047 if (!group)
2048 return NULL;
2049
2050 domain = group->domain;
2051
2052 iommu_group_put(group);
2053
2054 return domain;
2055 }
2056 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev);
2057
2058 /*
2059 * For IOMMU_DOMAIN_DMA implementations which already provide their own
2060 * guarantees that the group and its default domain are valid and correct.
2061 */
iommu_get_dma_domain(struct device * dev)2062 struct iommu_domain *iommu_get_dma_domain(struct device *dev)
2063 {
2064 return dev->iommu_group->default_domain;
2065 }
2066
2067 /*
2068 * IOMMU groups are really the natural working unit of the IOMMU, but
2069 * the IOMMU API works on domains and devices. Bridge that gap by
2070 * iterating over the devices in a group. Ideally we'd have a single
2071 * device which represents the requestor ID of the group, but we also
2072 * allow IOMMU drivers to create policy defined minimum sets, where
2073 * the physical hardware may be able to distiguish members, but we
2074 * wish to group them at a higher level (ex. untrusted multi-function
2075 * PCI devices). Thus we attach each device.
2076 */
iommu_group_do_attach_device(struct device * dev,void * data)2077 static int iommu_group_do_attach_device(struct device *dev, void *data)
2078 {
2079 struct iommu_domain *domain = data;
2080
2081 return __iommu_attach_device(domain, dev);
2082 }
2083
__iommu_attach_group(struct iommu_domain * domain,struct iommu_group * group)2084 static int __iommu_attach_group(struct iommu_domain *domain,
2085 struct iommu_group *group)
2086 {
2087 int ret;
2088
2089 if (group->domain && group->domain != group->default_domain &&
2090 group->domain != group->blocking_domain)
2091 return -EBUSY;
2092
2093 ret = __iommu_group_for_each_dev(group, domain,
2094 iommu_group_do_attach_device);
2095 if (ret == 0)
2096 group->domain = domain;
2097
2098 return ret;
2099 }
2100
iommu_attach_group(struct iommu_domain * domain,struct iommu_group * group)2101 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group)
2102 {
2103 int ret;
2104
2105 mutex_lock(&group->mutex);
2106 ret = __iommu_attach_group(domain, group);
2107 mutex_unlock(&group->mutex);
2108
2109 return ret;
2110 }
2111 EXPORT_SYMBOL_GPL(iommu_attach_group);
2112
iommu_group_do_detach_device(struct device * dev,void * data)2113 static int iommu_group_do_detach_device(struct device *dev, void *data)
2114 {
2115 struct iommu_domain *domain = data;
2116
2117 __iommu_detach_device(domain, dev);
2118
2119 return 0;
2120 }
2121
__iommu_group_set_domain(struct iommu_group * group,struct iommu_domain * new_domain)2122 static int __iommu_group_set_domain(struct iommu_group *group,
2123 struct iommu_domain *new_domain)
2124 {
2125 int ret;
2126
2127 if (group->domain == new_domain)
2128 return 0;
2129
2130 /*
2131 * New drivers should support default domains and so the detach_dev() op
2132 * will never be called. Otherwise the NULL domain represents some
2133 * platform specific behavior.
2134 */
2135 if (!new_domain) {
2136 if (WARN_ON(!group->domain->ops->detach_dev))
2137 return -EINVAL;
2138 __iommu_group_for_each_dev(group, group->domain,
2139 iommu_group_do_detach_device);
2140 group->domain = NULL;
2141 return 0;
2142 }
2143
2144 /*
2145 * Changing the domain is done by calling attach_dev() on the new
2146 * domain. This switch does not have to be atomic and DMA can be
2147 * discarded during the transition. DMA must only be able to access
2148 * either new_domain or group->domain, never something else.
2149 *
2150 * Note that this is called in error unwind paths, attaching to a
2151 * domain that has already been attached cannot fail.
2152 */
2153 ret = __iommu_group_for_each_dev(group, new_domain,
2154 iommu_group_do_attach_device);
2155 if (ret)
2156 return ret;
2157 group->domain = new_domain;
2158 return 0;
2159 }
2160
iommu_detach_group(struct iommu_domain * domain,struct iommu_group * group)2161 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group)
2162 {
2163 mutex_lock(&group->mutex);
2164 __iommu_group_set_core_domain(group);
2165 mutex_unlock(&group->mutex);
2166 }
2167 EXPORT_SYMBOL_GPL(iommu_detach_group);
2168
iommu_iova_to_phys(struct iommu_domain * domain,dma_addr_t iova)2169 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
2170 {
2171 if (domain->type == IOMMU_DOMAIN_IDENTITY)
2172 return iova;
2173
2174 if (domain->type == IOMMU_DOMAIN_BLOCKED)
2175 return 0;
2176
2177 return domain->ops->iova_to_phys(domain, iova);
2178 }
2179 EXPORT_SYMBOL_GPL(iommu_iova_to_phys);
2180
iommu_pgsize(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,size_t * count)2181 static size_t iommu_pgsize(struct iommu_domain *domain, unsigned long iova,
2182 phys_addr_t paddr, size_t size, size_t *count)
2183 {
2184 unsigned int pgsize_idx, pgsize_idx_next;
2185 unsigned long pgsizes;
2186 size_t offset, pgsize, pgsize_next;
2187 unsigned long addr_merge = paddr | iova;
2188
2189 /* Page sizes supported by the hardware and small enough for @size */
2190 pgsizes = domain->pgsize_bitmap & GENMASK(__fls(size), 0);
2191
2192 /* Constrain the page sizes further based on the maximum alignment */
2193 if (likely(addr_merge))
2194 pgsizes &= GENMASK(__ffs(addr_merge), 0);
2195
2196 /* Make sure we have at least one suitable page size */
2197 BUG_ON(!pgsizes);
2198
2199 /* Pick the biggest page size remaining */
2200 pgsize_idx = __fls(pgsizes);
2201 pgsize = BIT(pgsize_idx);
2202 if (!count)
2203 return pgsize;
2204
2205 /* Find the next biggest support page size, if it exists */
2206 pgsizes = domain->pgsize_bitmap & ~GENMASK(pgsize_idx, 0);
2207 if (!pgsizes)
2208 goto out_set_count;
2209
2210 pgsize_idx_next = __ffs(pgsizes);
2211 pgsize_next = BIT(pgsize_idx_next);
2212
2213 /*
2214 * There's no point trying a bigger page size unless the virtual
2215 * and physical addresses are similarly offset within the larger page.
2216 */
2217 if ((iova ^ paddr) & (pgsize_next - 1))
2218 goto out_set_count;
2219
2220 /* Calculate the offset to the next page size alignment boundary */
2221 offset = pgsize_next - (addr_merge & (pgsize_next - 1));
2222
2223 /*
2224 * If size is big enough to accommodate the larger page, reduce
2225 * the number of smaller pages.
2226 */
2227 if (offset + pgsize_next <= size)
2228 size = offset;
2229
2230 out_set_count:
2231 *count = size >> pgsize_idx;
2232 return pgsize;
2233 }
2234
__iommu_map_pages(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,int prot,gfp_t gfp,size_t * mapped)2235 static int __iommu_map_pages(struct iommu_domain *domain, unsigned long iova,
2236 phys_addr_t paddr, size_t size, int prot,
2237 gfp_t gfp, size_t *mapped)
2238 {
2239 const struct iommu_domain_ops *ops = domain->ops;
2240 size_t pgsize, count;
2241 int ret;
2242
2243 pgsize = iommu_pgsize(domain, iova, paddr, size, &count);
2244
2245 pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx count %zu\n",
2246 iova, &paddr, pgsize, count);
2247
2248 if (ops->map_pages) {
2249 ret = ops->map_pages(domain, iova, paddr, pgsize, count, prot,
2250 gfp, mapped);
2251 } else {
2252 ret = ops->map(domain, iova, paddr, pgsize, prot, gfp);
2253 *mapped = ret ? 0 : pgsize;
2254 }
2255
2256 return ret;
2257 }
2258
__iommu_map(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,int prot,gfp_t gfp)2259 static int __iommu_map(struct iommu_domain *domain, unsigned long iova,
2260 phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2261 {
2262 const struct iommu_domain_ops *ops = domain->ops;
2263 unsigned long orig_iova = iova;
2264 unsigned int min_pagesz;
2265 size_t orig_size = size;
2266 phys_addr_t orig_paddr = paddr;
2267 int ret = 0;
2268
2269 if (unlikely(!(ops->map || ops->map_pages) ||
2270 domain->pgsize_bitmap == 0UL))
2271 return -ENODEV;
2272
2273 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2274 return -EINVAL;
2275
2276 /* find out the minimum page size supported */
2277 min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2278
2279 /*
2280 * both the virtual address and the physical one, as well as
2281 * the size of the mapping, must be aligned (at least) to the
2282 * size of the smallest page supported by the hardware
2283 */
2284 if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) {
2285 pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n",
2286 iova, &paddr, size, min_pagesz);
2287 return -EINVAL;
2288 }
2289
2290 pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size);
2291
2292 while (size) {
2293 size_t mapped = 0;
2294
2295 ret = __iommu_map_pages(domain, iova, paddr, size, prot, gfp,
2296 &mapped);
2297 /*
2298 * Some pages may have been mapped, even if an error occurred,
2299 * so we should account for those so they can be unmapped.
2300 */
2301 size -= mapped;
2302
2303 if (ret)
2304 break;
2305
2306 iova += mapped;
2307 paddr += mapped;
2308 }
2309
2310 /* unroll mapping in case something went wrong */
2311 if (ret)
2312 iommu_unmap(domain, orig_iova, orig_size - size);
2313 else
2314 trace_map(orig_iova, orig_paddr, orig_size);
2315
2316 return ret;
2317 }
2318
_iommu_map(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,int prot,gfp_t gfp)2319 static int _iommu_map(struct iommu_domain *domain, unsigned long iova,
2320 phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2321 {
2322 const struct iommu_domain_ops *ops = domain->ops;
2323 int ret;
2324
2325 ret = __iommu_map(domain, iova, paddr, size, prot, gfp);
2326 if (ret == 0 && ops->iotlb_sync_map)
2327 ops->iotlb_sync_map(domain, iova, size);
2328
2329 return ret;
2330 }
2331
iommu_map(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,int prot)2332 int iommu_map(struct iommu_domain *domain, unsigned long iova,
2333 phys_addr_t paddr, size_t size, int prot)
2334 {
2335 might_sleep();
2336 return _iommu_map(domain, iova, paddr, size, prot, GFP_KERNEL);
2337 }
2338 EXPORT_SYMBOL_GPL(iommu_map);
2339
iommu_map_atomic(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,int prot)2340 int iommu_map_atomic(struct iommu_domain *domain, unsigned long iova,
2341 phys_addr_t paddr, size_t size, int prot)
2342 {
2343 return _iommu_map(domain, iova, paddr, size, prot, GFP_ATOMIC);
2344 }
2345 EXPORT_SYMBOL_GPL(iommu_map_atomic);
2346
__iommu_unmap_pages(struct iommu_domain * domain,unsigned long iova,size_t size,struct iommu_iotlb_gather * iotlb_gather)2347 static size_t __iommu_unmap_pages(struct iommu_domain *domain,
2348 unsigned long iova, size_t size,
2349 struct iommu_iotlb_gather *iotlb_gather)
2350 {
2351 const struct iommu_domain_ops *ops = domain->ops;
2352 size_t pgsize, count;
2353
2354 pgsize = iommu_pgsize(domain, iova, iova, size, &count);
2355 return ops->unmap_pages ?
2356 ops->unmap_pages(domain, iova, pgsize, count, iotlb_gather) :
2357 ops->unmap(domain, iova, pgsize, iotlb_gather);
2358 }
2359
__iommu_unmap(struct iommu_domain * domain,unsigned long iova,size_t size,struct iommu_iotlb_gather * iotlb_gather)2360 static size_t __iommu_unmap(struct iommu_domain *domain,
2361 unsigned long iova, size_t size,
2362 struct iommu_iotlb_gather *iotlb_gather)
2363 {
2364 const struct iommu_domain_ops *ops = domain->ops;
2365 size_t unmapped_page, unmapped = 0;
2366 unsigned long orig_iova = iova;
2367 unsigned int min_pagesz;
2368
2369 if (unlikely(!(ops->unmap || ops->unmap_pages) ||
2370 domain->pgsize_bitmap == 0UL))
2371 return 0;
2372
2373 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2374 return 0;
2375
2376 /* find out the minimum page size supported */
2377 min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2378
2379 /*
2380 * The virtual address, as well as the size of the mapping, must be
2381 * aligned (at least) to the size of the smallest page supported
2382 * by the hardware
2383 */
2384 if (!IS_ALIGNED(iova | size, min_pagesz)) {
2385 pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n",
2386 iova, size, min_pagesz);
2387 return 0;
2388 }
2389
2390 pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size);
2391
2392 /*
2393 * Keep iterating until we either unmap 'size' bytes (or more)
2394 * or we hit an area that isn't mapped.
2395 */
2396 while (unmapped < size) {
2397 unmapped_page = __iommu_unmap_pages(domain, iova,
2398 size - unmapped,
2399 iotlb_gather);
2400 if (!unmapped_page)
2401 break;
2402
2403 pr_debug("unmapped: iova 0x%lx size 0x%zx\n",
2404 iova, unmapped_page);
2405
2406 iova += unmapped_page;
2407 unmapped += unmapped_page;
2408 }
2409
2410 trace_unmap(orig_iova, size, unmapped);
2411 return unmapped;
2412 }
2413
iommu_unmap(struct iommu_domain * domain,unsigned long iova,size_t size)2414 size_t iommu_unmap(struct iommu_domain *domain,
2415 unsigned long iova, size_t size)
2416 {
2417 struct iommu_iotlb_gather iotlb_gather;
2418 size_t ret;
2419
2420 iommu_iotlb_gather_init(&iotlb_gather);
2421 ret = __iommu_unmap(domain, iova, size, &iotlb_gather);
2422 iommu_iotlb_sync(domain, &iotlb_gather);
2423
2424 return ret;
2425 }
2426 EXPORT_SYMBOL_GPL(iommu_unmap);
2427
iommu_unmap_fast(struct iommu_domain * domain,unsigned long iova,size_t size,struct iommu_iotlb_gather * iotlb_gather)2428 size_t iommu_unmap_fast(struct iommu_domain *domain,
2429 unsigned long iova, size_t size,
2430 struct iommu_iotlb_gather *iotlb_gather)
2431 {
2432 return __iommu_unmap(domain, iova, size, iotlb_gather);
2433 }
2434 EXPORT_SYMBOL_GPL(iommu_unmap_fast);
2435
__iommu_map_sg(struct iommu_domain * domain,unsigned long iova,struct scatterlist * sg,unsigned int nents,int prot,gfp_t gfp)2436 static ssize_t __iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
2437 struct scatterlist *sg, unsigned int nents, int prot,
2438 gfp_t gfp)
2439 {
2440 const struct iommu_domain_ops *ops = domain->ops;
2441 size_t len = 0, mapped = 0;
2442 phys_addr_t start;
2443 unsigned int i = 0;
2444 int ret;
2445
2446 while (i <= nents) {
2447 phys_addr_t s_phys = sg_phys(sg);
2448
2449 if (len && s_phys != start + len) {
2450 ret = __iommu_map(domain, iova + mapped, start,
2451 len, prot, gfp);
2452
2453 if (ret)
2454 goto out_err;
2455
2456 mapped += len;
2457 len = 0;
2458 }
2459
2460 if (len) {
2461 len += sg->length;
2462 } else {
2463 len = sg->length;
2464 start = s_phys;
2465 }
2466
2467 if (++i < nents)
2468 sg = sg_next(sg);
2469 }
2470
2471 if (ops->iotlb_sync_map)
2472 ops->iotlb_sync_map(domain, iova, mapped);
2473 return mapped;
2474
2475 out_err:
2476 /* undo mappings already done */
2477 iommu_unmap(domain, iova, mapped);
2478
2479 return ret;
2480 }
2481
iommu_map_sg(struct iommu_domain * domain,unsigned long iova,struct scatterlist * sg,unsigned int nents,int prot)2482 ssize_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
2483 struct scatterlist *sg, unsigned int nents, int prot)
2484 {
2485 might_sleep();
2486 return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_KERNEL);
2487 }
2488 EXPORT_SYMBOL_GPL(iommu_map_sg);
2489
iommu_map_sg_atomic(struct iommu_domain * domain,unsigned long iova,struct scatterlist * sg,unsigned int nents,int prot)2490 ssize_t iommu_map_sg_atomic(struct iommu_domain *domain, unsigned long iova,
2491 struct scatterlist *sg, unsigned int nents, int prot)
2492 {
2493 return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC);
2494 }
2495
2496 /**
2497 * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework
2498 * @domain: the iommu domain where the fault has happened
2499 * @dev: the device where the fault has happened
2500 * @iova: the faulting address
2501 * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...)
2502 *
2503 * This function should be called by the low-level IOMMU implementations
2504 * whenever IOMMU faults happen, to allow high-level users, that are
2505 * interested in such events, to know about them.
2506 *
2507 * This event may be useful for several possible use cases:
2508 * - mere logging of the event
2509 * - dynamic TLB/PTE loading
2510 * - if restarting of the faulting device is required
2511 *
2512 * Returns 0 on success and an appropriate error code otherwise (if dynamic
2513 * PTE/TLB loading will one day be supported, implementations will be able
2514 * to tell whether it succeeded or not according to this return value).
2515 *
2516 * Specifically, -ENOSYS is returned if a fault handler isn't installed
2517 * (though fault handlers can also return -ENOSYS, in case they want to
2518 * elicit the default behavior of the IOMMU drivers).
2519 */
report_iommu_fault(struct iommu_domain * domain,struct device * dev,unsigned long iova,int flags)2520 int report_iommu_fault(struct iommu_domain *domain, struct device *dev,
2521 unsigned long iova, int flags)
2522 {
2523 int ret = -ENOSYS;
2524
2525 /*
2526 * if upper layers showed interest and installed a fault handler,
2527 * invoke it.
2528 */
2529 if (domain->handler)
2530 ret = domain->handler(domain, dev, iova, flags,
2531 domain->handler_token);
2532
2533 trace_io_page_fault(dev, iova, flags);
2534 return ret;
2535 }
2536 EXPORT_SYMBOL_GPL(report_iommu_fault);
2537
iommu_init(void)2538 static int __init iommu_init(void)
2539 {
2540 iommu_group_kset = kset_create_and_add("iommu_groups",
2541 NULL, kernel_kobj);
2542 BUG_ON(!iommu_group_kset);
2543
2544 iommu_debugfs_setup();
2545
2546 return 0;
2547 }
2548 core_initcall(iommu_init);
2549
iommu_enable_nesting(struct iommu_domain * domain)2550 int iommu_enable_nesting(struct iommu_domain *domain)
2551 {
2552 if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2553 return -EINVAL;
2554 if (!domain->ops->enable_nesting)
2555 return -EINVAL;
2556 return domain->ops->enable_nesting(domain);
2557 }
2558 EXPORT_SYMBOL_GPL(iommu_enable_nesting);
2559
iommu_set_pgtable_quirks(struct iommu_domain * domain,unsigned long quirk)2560 int iommu_set_pgtable_quirks(struct iommu_domain *domain,
2561 unsigned long quirk)
2562 {
2563 if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2564 return -EINVAL;
2565 if (!domain->ops->set_pgtable_quirks)
2566 return -EINVAL;
2567 return domain->ops->set_pgtable_quirks(domain, quirk);
2568 }
2569 EXPORT_SYMBOL_GPL(iommu_set_pgtable_quirks);
2570
iommu_get_resv_regions(struct device * dev,struct list_head * list)2571 void iommu_get_resv_regions(struct device *dev, struct list_head *list)
2572 {
2573 const struct iommu_ops *ops = dev_iommu_ops(dev);
2574
2575 if (ops->get_resv_regions)
2576 ops->get_resv_regions(dev, list);
2577 }
2578
iommu_put_resv_regions(struct device * dev,struct list_head * list)2579 void iommu_put_resv_regions(struct device *dev, struct list_head *list)
2580 {
2581 const struct iommu_ops *ops = dev_iommu_ops(dev);
2582
2583 if (ops->put_resv_regions)
2584 ops->put_resv_regions(dev, list);
2585 }
2586
2587 /**
2588 * generic_iommu_put_resv_regions - Reserved region driver helper
2589 * @dev: device for which to free reserved regions
2590 * @list: reserved region list for device
2591 *
2592 * IOMMU drivers can use this to implement their .put_resv_regions() callback
2593 * for simple reservations. Memory allocated for each reserved region will be
2594 * freed. If an IOMMU driver allocates additional resources per region, it is
2595 * going to have to implement a custom callback.
2596 */
generic_iommu_put_resv_regions(struct device * dev,struct list_head * list)2597 void generic_iommu_put_resv_regions(struct device *dev, struct list_head *list)
2598 {
2599 struct iommu_resv_region *entry, *next;
2600
2601 list_for_each_entry_safe(entry, next, list, list)
2602 kfree(entry);
2603 }
2604 EXPORT_SYMBOL(generic_iommu_put_resv_regions);
2605
iommu_alloc_resv_region(phys_addr_t start,size_t length,int prot,enum iommu_resv_type type)2606 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start,
2607 size_t length, int prot,
2608 enum iommu_resv_type type)
2609 {
2610 struct iommu_resv_region *region;
2611
2612 region = kzalloc(sizeof(*region), GFP_KERNEL);
2613 if (!region)
2614 return NULL;
2615
2616 INIT_LIST_HEAD(®ion->list);
2617 region->start = start;
2618 region->length = length;
2619 region->prot = prot;
2620 region->type = type;
2621 return region;
2622 }
2623 EXPORT_SYMBOL_GPL(iommu_alloc_resv_region);
2624
iommu_set_default_passthrough(bool cmd_line)2625 void iommu_set_default_passthrough(bool cmd_line)
2626 {
2627 if (cmd_line)
2628 iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2629 iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY;
2630 }
2631
iommu_set_default_translated(bool cmd_line)2632 void iommu_set_default_translated(bool cmd_line)
2633 {
2634 if (cmd_line)
2635 iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2636 iommu_def_domain_type = IOMMU_DOMAIN_DMA;
2637 }
2638
iommu_default_passthrough(void)2639 bool iommu_default_passthrough(void)
2640 {
2641 return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY;
2642 }
2643 EXPORT_SYMBOL_GPL(iommu_default_passthrough);
2644
iommu_ops_from_fwnode(struct fwnode_handle * fwnode)2645 const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode)
2646 {
2647 const struct iommu_ops *ops = NULL;
2648 struct iommu_device *iommu;
2649
2650 spin_lock(&iommu_device_lock);
2651 list_for_each_entry(iommu, &iommu_device_list, list)
2652 if (iommu->fwnode == fwnode) {
2653 ops = iommu->ops;
2654 break;
2655 }
2656 spin_unlock(&iommu_device_lock);
2657 return ops;
2658 }
2659
iommu_fwspec_init(struct device * dev,struct fwnode_handle * iommu_fwnode,const struct iommu_ops * ops)2660 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode,
2661 const struct iommu_ops *ops)
2662 {
2663 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2664
2665 if (fwspec)
2666 return ops == fwspec->ops ? 0 : -EINVAL;
2667
2668 if (!dev_iommu_get(dev))
2669 return -ENOMEM;
2670
2671 /* Preallocate for the overwhelmingly common case of 1 ID */
2672 fwspec = kzalloc(struct_size(fwspec, ids, 1), GFP_KERNEL);
2673 if (!fwspec)
2674 return -ENOMEM;
2675
2676 of_node_get(to_of_node(iommu_fwnode));
2677 fwspec->iommu_fwnode = iommu_fwnode;
2678 fwspec->ops = ops;
2679 dev_iommu_fwspec_set(dev, fwspec);
2680 return 0;
2681 }
2682 EXPORT_SYMBOL_GPL(iommu_fwspec_init);
2683
iommu_fwspec_free(struct device * dev)2684 void iommu_fwspec_free(struct device *dev)
2685 {
2686 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2687
2688 if (fwspec) {
2689 fwnode_handle_put(fwspec->iommu_fwnode);
2690 kfree(fwspec);
2691 dev_iommu_fwspec_set(dev, NULL);
2692 }
2693 }
2694 EXPORT_SYMBOL_GPL(iommu_fwspec_free);
2695
iommu_fwspec_add_ids(struct device * dev,u32 * ids,int num_ids)2696 int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids)
2697 {
2698 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2699 int i, new_num;
2700
2701 if (!fwspec)
2702 return -EINVAL;
2703
2704 new_num = fwspec->num_ids + num_ids;
2705 if (new_num > 1) {
2706 fwspec = krealloc(fwspec, struct_size(fwspec, ids, new_num),
2707 GFP_KERNEL);
2708 if (!fwspec)
2709 return -ENOMEM;
2710
2711 dev_iommu_fwspec_set(dev, fwspec);
2712 }
2713
2714 for (i = 0; i < num_ids; i++)
2715 fwspec->ids[fwspec->num_ids + i] = ids[i];
2716
2717 fwspec->num_ids = new_num;
2718 return 0;
2719 }
2720 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids);
2721
2722 /*
2723 * Per device IOMMU features.
2724 */
iommu_dev_enable_feature(struct device * dev,enum iommu_dev_features feat)2725 int iommu_dev_enable_feature(struct device *dev, enum iommu_dev_features feat)
2726 {
2727 if (dev->iommu && dev->iommu->iommu_dev) {
2728 const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
2729
2730 if (ops->dev_enable_feat)
2731 return ops->dev_enable_feat(dev, feat);
2732 }
2733
2734 return -ENODEV;
2735 }
2736 EXPORT_SYMBOL_GPL(iommu_dev_enable_feature);
2737
2738 /*
2739 * The device drivers should do the necessary cleanups before calling this.
2740 */
iommu_dev_disable_feature(struct device * dev,enum iommu_dev_features feat)2741 int iommu_dev_disable_feature(struct device *dev, enum iommu_dev_features feat)
2742 {
2743 if (dev->iommu && dev->iommu->iommu_dev) {
2744 const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
2745
2746 if (ops->dev_disable_feat)
2747 return ops->dev_disable_feat(dev, feat);
2748 }
2749
2750 return -EBUSY;
2751 }
2752 EXPORT_SYMBOL_GPL(iommu_dev_disable_feature);
2753
iommu_dev_feature_enabled(struct device * dev,enum iommu_dev_features feat)2754 bool iommu_dev_feature_enabled(struct device *dev, enum iommu_dev_features feat)
2755 {
2756 if (dev->iommu && dev->iommu->iommu_dev) {
2757 const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
2758
2759 if (ops->dev_feat_enabled)
2760 return ops->dev_feat_enabled(dev, feat);
2761 }
2762
2763 return false;
2764 }
2765 EXPORT_SYMBOL_GPL(iommu_dev_feature_enabled);
2766
2767 /**
2768 * iommu_sva_bind_device() - Bind a process address space to a device
2769 * @dev: the device
2770 * @mm: the mm to bind, caller must hold a reference to it
2771 * @drvdata: opaque data pointer to pass to bind callback
2772 *
2773 * Create a bond between device and address space, allowing the device to access
2774 * the mm using the returned PASID. If a bond already exists between @device and
2775 * @mm, it is returned and an additional reference is taken. Caller must call
2776 * iommu_sva_unbind_device() to release each reference.
2777 *
2778 * iommu_dev_enable_feature(dev, IOMMU_DEV_FEAT_SVA) must be called first, to
2779 * initialize the required SVA features.
2780 *
2781 * On error, returns an ERR_PTR value.
2782 */
2783 struct iommu_sva *
iommu_sva_bind_device(struct device * dev,struct mm_struct * mm,void * drvdata)2784 iommu_sva_bind_device(struct device *dev, struct mm_struct *mm, void *drvdata)
2785 {
2786 struct iommu_group *group;
2787 struct iommu_sva *handle = ERR_PTR(-EINVAL);
2788 const struct iommu_ops *ops = dev_iommu_ops(dev);
2789
2790 if (!ops->sva_bind)
2791 return ERR_PTR(-ENODEV);
2792
2793 group = iommu_group_get(dev);
2794 if (!group)
2795 return ERR_PTR(-ENODEV);
2796
2797 /* Ensure device count and domain don't change while we're binding */
2798 mutex_lock(&group->mutex);
2799
2800 /*
2801 * To keep things simple, SVA currently doesn't support IOMMU groups
2802 * with more than one device. Existing SVA-capable systems are not
2803 * affected by the problems that required IOMMU groups (lack of ACS
2804 * isolation, device ID aliasing and other hardware issues).
2805 */
2806 if (iommu_group_device_count(group) != 1)
2807 goto out_unlock;
2808
2809 handle = ops->sva_bind(dev, mm, drvdata);
2810
2811 out_unlock:
2812 mutex_unlock(&group->mutex);
2813 iommu_group_put(group);
2814
2815 return handle;
2816 }
2817 EXPORT_SYMBOL_GPL(iommu_sva_bind_device);
2818
2819 /**
2820 * iommu_sva_unbind_device() - Remove a bond created with iommu_sva_bind_device
2821 * @handle: the handle returned by iommu_sva_bind_device()
2822 *
2823 * Put reference to a bond between device and address space. The device should
2824 * not be issuing any more transaction for this PASID. All outstanding page
2825 * requests for this PASID must have been flushed to the IOMMU.
2826 */
iommu_sva_unbind_device(struct iommu_sva * handle)2827 void iommu_sva_unbind_device(struct iommu_sva *handle)
2828 {
2829 struct iommu_group *group;
2830 struct device *dev = handle->dev;
2831 const struct iommu_ops *ops = dev_iommu_ops(dev);
2832
2833 if (!ops->sva_unbind)
2834 return;
2835
2836 group = iommu_group_get(dev);
2837 if (!group)
2838 return;
2839
2840 mutex_lock(&group->mutex);
2841 ops->sva_unbind(handle);
2842 mutex_unlock(&group->mutex);
2843
2844 iommu_group_put(group);
2845 }
2846 EXPORT_SYMBOL_GPL(iommu_sva_unbind_device);
2847
iommu_sva_get_pasid(struct iommu_sva * handle)2848 u32 iommu_sva_get_pasid(struct iommu_sva *handle)
2849 {
2850 const struct iommu_ops *ops = dev_iommu_ops(handle->dev);
2851
2852 if (!ops->sva_get_pasid)
2853 return IOMMU_PASID_INVALID;
2854
2855 return ops->sva_get_pasid(handle);
2856 }
2857 EXPORT_SYMBOL_GPL(iommu_sva_get_pasid);
2858
2859 /*
2860 * Changes the default domain of an iommu group that has *only* one device
2861 *
2862 * @group: The group for which the default domain should be changed
2863 * @prev_dev: The device in the group (this is used to make sure that the device
2864 * hasn't changed after the caller has called this function)
2865 * @type: The type of the new default domain that gets associated with the group
2866 *
2867 * Returns 0 on success and error code on failure
2868 *
2869 * Note:
2870 * 1. Presently, this function is called only when user requests to change the
2871 * group's default domain type through /sys/kernel/iommu_groups/<grp_id>/type
2872 * Please take a closer look if intended to use for other purposes.
2873 */
iommu_change_dev_def_domain(struct iommu_group * group,struct device * prev_dev,int type)2874 static int iommu_change_dev_def_domain(struct iommu_group *group,
2875 struct device *prev_dev, int type)
2876 {
2877 struct iommu_domain *prev_dom;
2878 struct group_device *grp_dev;
2879 int ret, dev_def_dom;
2880 struct device *dev;
2881
2882 mutex_lock(&group->mutex);
2883
2884 if (group->default_domain != group->domain) {
2885 dev_err_ratelimited(prev_dev, "Group not assigned to default domain\n");
2886 ret = -EBUSY;
2887 goto out;
2888 }
2889
2890 /*
2891 * iommu group wasn't locked while acquiring device lock in
2892 * iommu_group_store_type(). So, make sure that the device count hasn't
2893 * changed while acquiring device lock.
2894 *
2895 * Changing default domain of an iommu group with two or more devices
2896 * isn't supported because there could be a potential deadlock. Consider
2897 * the following scenario. T1 is trying to acquire device locks of all
2898 * the devices in the group and before it could acquire all of them,
2899 * there could be another thread T2 (from different sub-system and use
2900 * case) that has already acquired some of the device locks and might be
2901 * waiting for T1 to release other device locks.
2902 */
2903 if (iommu_group_device_count(group) != 1) {
2904 dev_err_ratelimited(prev_dev, "Cannot change default domain: Group has more than one device\n");
2905 ret = -EINVAL;
2906 goto out;
2907 }
2908
2909 /* Since group has only one device */
2910 grp_dev = list_first_entry(&group->devices, struct group_device, list);
2911 dev = grp_dev->dev;
2912
2913 if (prev_dev != dev) {
2914 dev_err_ratelimited(prev_dev, "Cannot change default domain: Device has been changed\n");
2915 ret = -EBUSY;
2916 goto out;
2917 }
2918
2919 prev_dom = group->default_domain;
2920 if (!prev_dom) {
2921 ret = -EINVAL;
2922 goto out;
2923 }
2924
2925 dev_def_dom = iommu_get_def_domain_type(dev);
2926 if (!type) {
2927 /*
2928 * If the user hasn't requested any specific type of domain and
2929 * if the device supports both the domains, then default to the
2930 * domain the device was booted with
2931 */
2932 type = dev_def_dom ? : iommu_def_domain_type;
2933 } else if (dev_def_dom && type != dev_def_dom) {
2934 dev_err_ratelimited(prev_dev, "Device cannot be in %s domain\n",
2935 iommu_domain_type_str(type));
2936 ret = -EINVAL;
2937 goto out;
2938 }
2939
2940 /*
2941 * Switch to a new domain only if the requested domain type is different
2942 * from the existing default domain type
2943 */
2944 if (prev_dom->type == type) {
2945 ret = 0;
2946 goto out;
2947 }
2948
2949 /* We can bring up a flush queue without tearing down the domain */
2950 if (type == IOMMU_DOMAIN_DMA_FQ && prev_dom->type == IOMMU_DOMAIN_DMA) {
2951 ret = iommu_dma_init_fq(prev_dom);
2952 if (!ret)
2953 prev_dom->type = IOMMU_DOMAIN_DMA_FQ;
2954 goto out;
2955 }
2956
2957 /* Sets group->default_domain to the newly allocated domain */
2958 ret = iommu_group_alloc_default_domain(dev->bus, group, type);
2959 if (ret)
2960 goto out;
2961
2962 ret = iommu_create_device_direct_mappings(group, dev);
2963 if (ret)
2964 goto free_new_domain;
2965
2966 ret = __iommu_attach_device(group->default_domain, dev);
2967 if (ret)
2968 goto free_new_domain;
2969
2970 group->domain = group->default_domain;
2971
2972 /*
2973 * Release the mutex here because ops->probe_finalize() call-back of
2974 * some vendor IOMMU drivers calls arm_iommu_attach_device() which
2975 * in-turn might call back into IOMMU core code, where it tries to take
2976 * group->mutex, resulting in a deadlock.
2977 */
2978 mutex_unlock(&group->mutex);
2979
2980 /* Make sure dma_ops is appropriatley set */
2981 iommu_group_do_probe_finalize(dev, group->default_domain);
2982 iommu_domain_free(prev_dom);
2983 return 0;
2984
2985 free_new_domain:
2986 iommu_domain_free(group->default_domain);
2987 group->default_domain = prev_dom;
2988 group->domain = prev_dom;
2989
2990 out:
2991 mutex_unlock(&group->mutex);
2992
2993 return ret;
2994 }
2995
2996 /*
2997 * Changing the default domain through sysfs requires the users to unbind the
2998 * drivers from the devices in the iommu group, except for a DMA -> DMA-FQ
2999 * transition. Return failure if this isn't met.
3000 *
3001 * We need to consider the race between this and the device release path.
3002 * device_lock(dev) is used here to guarantee that the device release path
3003 * will not be entered at the same time.
3004 */
iommu_group_store_type(struct iommu_group * group,const char * buf,size_t count)3005 static ssize_t iommu_group_store_type(struct iommu_group *group,
3006 const char *buf, size_t count)
3007 {
3008 struct group_device *grp_dev;
3009 struct device *dev;
3010 int ret, req_type;
3011
3012 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
3013 return -EACCES;
3014
3015 if (WARN_ON(!group) || !group->default_domain)
3016 return -EINVAL;
3017
3018 if (sysfs_streq(buf, "identity"))
3019 req_type = IOMMU_DOMAIN_IDENTITY;
3020 else if (sysfs_streq(buf, "DMA"))
3021 req_type = IOMMU_DOMAIN_DMA;
3022 else if (sysfs_streq(buf, "DMA-FQ"))
3023 req_type = IOMMU_DOMAIN_DMA_FQ;
3024 else if (sysfs_streq(buf, "auto"))
3025 req_type = 0;
3026 else
3027 return -EINVAL;
3028
3029 /*
3030 * Lock/Unlock the group mutex here before device lock to
3031 * 1. Make sure that the iommu group has only one device (this is a
3032 * prerequisite for step 2)
3033 * 2. Get struct *dev which is needed to lock device
3034 */
3035 mutex_lock(&group->mutex);
3036 if (iommu_group_device_count(group) != 1) {
3037 mutex_unlock(&group->mutex);
3038 pr_err_ratelimited("Cannot change default domain: Group has more than one device\n");
3039 return -EINVAL;
3040 }
3041
3042 /* Since group has only one device */
3043 grp_dev = list_first_entry(&group->devices, struct group_device, list);
3044 dev = grp_dev->dev;
3045 get_device(dev);
3046
3047 /*
3048 * Don't hold the group mutex because taking group mutex first and then
3049 * the device lock could potentially cause a deadlock as below. Assume
3050 * two threads T1 and T2. T1 is trying to change default domain of an
3051 * iommu group and T2 is trying to hot unplug a device or release [1] VF
3052 * of a PCIe device which is in the same iommu group. T1 takes group
3053 * mutex and before it could take device lock assume T2 has taken device
3054 * lock and is yet to take group mutex. Now, both the threads will be
3055 * waiting for the other thread to release lock. Below, lock order was
3056 * suggested.
3057 * device_lock(dev);
3058 * mutex_lock(&group->mutex);
3059 * iommu_change_dev_def_domain();
3060 * mutex_unlock(&group->mutex);
3061 * device_unlock(dev);
3062 *
3063 * [1] Typical device release path
3064 * device_lock() from device/driver core code
3065 * -> bus_notifier()
3066 * -> iommu_bus_notifier()
3067 * -> iommu_release_device()
3068 * -> ops->release_device() vendor driver calls back iommu core code
3069 * -> mutex_lock() from iommu core code
3070 */
3071 mutex_unlock(&group->mutex);
3072
3073 /* Check if the device in the group still has a driver bound to it */
3074 device_lock(dev);
3075 if (device_is_bound(dev) && !(req_type == IOMMU_DOMAIN_DMA_FQ &&
3076 group->default_domain->type == IOMMU_DOMAIN_DMA)) {
3077 pr_err_ratelimited("Device is still bound to driver\n");
3078 ret = -EBUSY;
3079 goto out;
3080 }
3081
3082 ret = iommu_change_dev_def_domain(group, dev, req_type);
3083 ret = ret ?: count;
3084
3085 out:
3086 device_unlock(dev);
3087 put_device(dev);
3088
3089 return ret;
3090 }
3091
iommu_is_default_domain(struct iommu_group * group)3092 static bool iommu_is_default_domain(struct iommu_group *group)
3093 {
3094 if (group->domain == group->default_domain)
3095 return true;
3096
3097 /*
3098 * If the default domain was set to identity and it is still an identity
3099 * domain then we consider this a pass. This happens because of
3100 * amd_iommu_init_device() replacing the default idenytity domain with an
3101 * identity domain that has a different configuration for AMDGPU.
3102 */
3103 if (group->default_domain &&
3104 group->default_domain->type == IOMMU_DOMAIN_IDENTITY &&
3105 group->domain && group->domain->type == IOMMU_DOMAIN_IDENTITY)
3106 return true;
3107 return false;
3108 }
3109
3110 /**
3111 * iommu_device_use_default_domain() - Device driver wants to handle device
3112 * DMA through the kernel DMA API.
3113 * @dev: The device.
3114 *
3115 * The device driver about to bind @dev wants to do DMA through the kernel
3116 * DMA API. Return 0 if it is allowed, otherwise an error.
3117 */
iommu_device_use_default_domain(struct device * dev)3118 int iommu_device_use_default_domain(struct device *dev)
3119 {
3120 struct iommu_group *group = iommu_group_get(dev);
3121 int ret = 0;
3122
3123 if (!group)
3124 return 0;
3125
3126 mutex_lock(&group->mutex);
3127 if (group->owner_cnt) {
3128 if (group->owner || !iommu_is_default_domain(group)) {
3129 ret = -EBUSY;
3130 goto unlock_out;
3131 }
3132 }
3133
3134 group->owner_cnt++;
3135
3136 unlock_out:
3137 mutex_unlock(&group->mutex);
3138 iommu_group_put(group);
3139
3140 return ret;
3141 }
3142
3143 /**
3144 * iommu_device_unuse_default_domain() - Device driver stops handling device
3145 * DMA through the kernel DMA API.
3146 * @dev: The device.
3147 *
3148 * The device driver doesn't want to do DMA through kernel DMA API anymore.
3149 * It must be called after iommu_device_use_default_domain().
3150 */
iommu_device_unuse_default_domain(struct device * dev)3151 void iommu_device_unuse_default_domain(struct device *dev)
3152 {
3153 struct iommu_group *group = iommu_group_get(dev);
3154
3155 if (!group)
3156 return;
3157
3158 mutex_lock(&group->mutex);
3159 if (!WARN_ON(!group->owner_cnt))
3160 group->owner_cnt--;
3161
3162 mutex_unlock(&group->mutex);
3163 iommu_group_put(group);
3164 }
3165
__iommu_group_alloc_blocking_domain(struct iommu_group * group)3166 static int __iommu_group_alloc_blocking_domain(struct iommu_group *group)
3167 {
3168 struct group_device *dev =
3169 list_first_entry(&group->devices, struct group_device, list);
3170
3171 if (group->blocking_domain)
3172 return 0;
3173
3174 group->blocking_domain =
3175 __iommu_domain_alloc(dev->dev->bus, IOMMU_DOMAIN_BLOCKED);
3176 if (!group->blocking_domain) {
3177 /*
3178 * For drivers that do not yet understand IOMMU_DOMAIN_BLOCKED
3179 * create an empty domain instead.
3180 */
3181 group->blocking_domain = __iommu_domain_alloc(
3182 dev->dev->bus, IOMMU_DOMAIN_UNMANAGED);
3183 if (!group->blocking_domain)
3184 return -EINVAL;
3185 }
3186 return 0;
3187 }
3188
3189 /**
3190 * iommu_group_claim_dma_owner() - Set DMA ownership of a group
3191 * @group: The group.
3192 * @owner: Caller specified pointer. Used for exclusive ownership.
3193 *
3194 * This is to support backward compatibility for vfio which manages
3195 * the dma ownership in iommu_group level. New invocations on this
3196 * interface should be prohibited.
3197 */
iommu_group_claim_dma_owner(struct iommu_group * group,void * owner)3198 int iommu_group_claim_dma_owner(struct iommu_group *group, void *owner)
3199 {
3200 int ret = 0;
3201
3202 mutex_lock(&group->mutex);
3203 if (group->owner_cnt) {
3204 ret = -EPERM;
3205 goto unlock_out;
3206 } else {
3207 if (group->domain && group->domain != group->default_domain) {
3208 ret = -EBUSY;
3209 goto unlock_out;
3210 }
3211
3212 ret = __iommu_group_alloc_blocking_domain(group);
3213 if (ret)
3214 goto unlock_out;
3215
3216 ret = __iommu_group_set_domain(group, group->blocking_domain);
3217 if (ret)
3218 goto unlock_out;
3219 group->owner = owner;
3220 }
3221
3222 group->owner_cnt++;
3223 unlock_out:
3224 mutex_unlock(&group->mutex);
3225
3226 return ret;
3227 }
3228 EXPORT_SYMBOL_GPL(iommu_group_claim_dma_owner);
3229
3230 /**
3231 * iommu_group_release_dma_owner() - Release DMA ownership of a group
3232 * @group: The group.
3233 *
3234 * Release the DMA ownership claimed by iommu_group_claim_dma_owner().
3235 */
iommu_group_release_dma_owner(struct iommu_group * group)3236 void iommu_group_release_dma_owner(struct iommu_group *group)
3237 {
3238 int ret;
3239
3240 mutex_lock(&group->mutex);
3241 if (WARN_ON(!group->owner_cnt || !group->owner))
3242 goto unlock_out;
3243
3244 group->owner_cnt = 0;
3245 group->owner = NULL;
3246 ret = __iommu_group_set_domain(group, group->default_domain);
3247 WARN(ret, "iommu driver failed to attach the default domain");
3248
3249 unlock_out:
3250 mutex_unlock(&group->mutex);
3251 }
3252 EXPORT_SYMBOL_GPL(iommu_group_release_dma_owner);
3253
3254 /**
3255 * iommu_group_dma_owner_claimed() - Query group dma ownership status
3256 * @group: The group.
3257 *
3258 * This provides status query on a given group. It is racy and only for
3259 * non-binding status reporting.
3260 */
iommu_group_dma_owner_claimed(struct iommu_group * group)3261 bool iommu_group_dma_owner_claimed(struct iommu_group *group)
3262 {
3263 unsigned int user;
3264
3265 mutex_lock(&group->mutex);
3266 user = group->owner_cnt;
3267 mutex_unlock(&group->mutex);
3268
3269 return user;
3270 }
3271 EXPORT_SYMBOL_GPL(iommu_group_dma_owner_claimed);
3272