1 // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
2
3 /* Authors: Bernard Metzler <bmt@zurich.ibm.com> */
4 /* Copyright (c) 2008-2019, IBM Corporation */
5
6 #include <linux/errno.h>
7 #include <linux/types.h>
8 #include <linux/uaccess.h>
9 #include <linux/vmalloc.h>
10 #include <linux/xarray.h>
11 #include <net/addrconf.h>
12
13 #include <rdma/iw_cm.h>
14 #include <rdma/ib_verbs.h>
15 #include <rdma/ib_user_verbs.h>
16 #include <rdma/uverbs_ioctl.h>
17
18 #include "siw.h"
19 #include "siw_verbs.h"
20 #include "siw_mem.h"
21
22 static int ib_qp_state_to_siw_qp_state[IB_QPS_ERR + 1] = {
23 [IB_QPS_RESET] = SIW_QP_STATE_IDLE,
24 [IB_QPS_INIT] = SIW_QP_STATE_IDLE,
25 [IB_QPS_RTR] = SIW_QP_STATE_RTR,
26 [IB_QPS_RTS] = SIW_QP_STATE_RTS,
27 [IB_QPS_SQD] = SIW_QP_STATE_CLOSING,
28 [IB_QPS_SQE] = SIW_QP_STATE_TERMINATE,
29 [IB_QPS_ERR] = SIW_QP_STATE_ERROR
30 };
31
32 static char ib_qp_state_to_string[IB_QPS_ERR + 1][sizeof("RESET")] = {
33 [IB_QPS_RESET] = "RESET", [IB_QPS_INIT] = "INIT", [IB_QPS_RTR] = "RTR",
34 [IB_QPS_RTS] = "RTS", [IB_QPS_SQD] = "SQD", [IB_QPS_SQE] = "SQE",
35 [IB_QPS_ERR] = "ERR"
36 };
37
siw_mmap_free(struct rdma_user_mmap_entry * rdma_entry)38 void siw_mmap_free(struct rdma_user_mmap_entry *rdma_entry)
39 {
40 struct siw_user_mmap_entry *entry = to_siw_mmap_entry(rdma_entry);
41
42 kfree(entry);
43 }
44
siw_mmap(struct ib_ucontext * ctx,struct vm_area_struct * vma)45 int siw_mmap(struct ib_ucontext *ctx, struct vm_area_struct *vma)
46 {
47 struct siw_ucontext *uctx = to_siw_ctx(ctx);
48 size_t size = vma->vm_end - vma->vm_start;
49 struct rdma_user_mmap_entry *rdma_entry;
50 struct siw_user_mmap_entry *entry;
51 int rv = -EINVAL;
52
53 /*
54 * Must be page aligned
55 */
56 if (vma->vm_start & (PAGE_SIZE - 1)) {
57 pr_warn("siw: mmap not page aligned\n");
58 return -EINVAL;
59 }
60 rdma_entry = rdma_user_mmap_entry_get(&uctx->base_ucontext, vma);
61 if (!rdma_entry) {
62 siw_dbg(&uctx->sdev->base_dev, "mmap lookup failed: %lu, %#zx\n",
63 vma->vm_pgoff, size);
64 return -EINVAL;
65 }
66 entry = to_siw_mmap_entry(rdma_entry);
67
68 rv = remap_vmalloc_range(vma, entry->address, 0);
69 if (rv) {
70 pr_warn("remap_vmalloc_range failed: %lu, %zu\n", vma->vm_pgoff,
71 size);
72 goto out;
73 }
74 out:
75 rdma_user_mmap_entry_put(rdma_entry);
76
77 return rv;
78 }
79
siw_alloc_ucontext(struct ib_ucontext * base_ctx,struct ib_udata * udata)80 int siw_alloc_ucontext(struct ib_ucontext *base_ctx, struct ib_udata *udata)
81 {
82 struct siw_device *sdev = to_siw_dev(base_ctx->device);
83 struct siw_ucontext *ctx = to_siw_ctx(base_ctx);
84 struct siw_uresp_alloc_ctx uresp = {};
85 int rv;
86
87 if (atomic_inc_return(&sdev->num_ctx) > SIW_MAX_CONTEXT) {
88 rv = -ENOMEM;
89 goto err_out;
90 }
91 ctx->sdev = sdev;
92
93 uresp.dev_id = sdev->vendor_part_id;
94
95 if (udata->outlen < sizeof(uresp)) {
96 rv = -EINVAL;
97 goto err_out;
98 }
99 rv = ib_copy_to_udata(udata, &uresp, sizeof(uresp));
100 if (rv)
101 goto err_out;
102
103 siw_dbg(base_ctx->device, "success. now %d context(s)\n",
104 atomic_read(&sdev->num_ctx));
105
106 return 0;
107
108 err_out:
109 atomic_dec(&sdev->num_ctx);
110 siw_dbg(base_ctx->device, "failure %d. now %d context(s)\n", rv,
111 atomic_read(&sdev->num_ctx));
112
113 return rv;
114 }
115
siw_dealloc_ucontext(struct ib_ucontext * base_ctx)116 void siw_dealloc_ucontext(struct ib_ucontext *base_ctx)
117 {
118 struct siw_ucontext *uctx = to_siw_ctx(base_ctx);
119
120 atomic_dec(&uctx->sdev->num_ctx);
121 }
122
siw_query_device(struct ib_device * base_dev,struct ib_device_attr * attr,struct ib_udata * udata)123 int siw_query_device(struct ib_device *base_dev, struct ib_device_attr *attr,
124 struct ib_udata *udata)
125 {
126 struct siw_device *sdev = to_siw_dev(base_dev);
127
128 if (udata->inlen || udata->outlen)
129 return -EINVAL;
130
131 memset(attr, 0, sizeof(*attr));
132
133 /* Revisit atomic caps if RFC 7306 gets supported */
134 attr->atomic_cap = 0;
135 attr->device_cap_flags = IB_DEVICE_MEM_MGT_EXTENSIONS;
136 attr->kernel_cap_flags = IBK_ALLOW_USER_UNREG;
137 attr->max_cq = sdev->attrs.max_cq;
138 attr->max_cqe = sdev->attrs.max_cqe;
139 attr->max_fast_reg_page_list_len = SIW_MAX_SGE_PBL;
140 attr->max_mr = sdev->attrs.max_mr;
141 attr->max_mw = sdev->attrs.max_mw;
142 attr->max_mr_size = ~0ull;
143 attr->max_pd = sdev->attrs.max_pd;
144 attr->max_qp = sdev->attrs.max_qp;
145 attr->max_qp_init_rd_atom = sdev->attrs.max_ird;
146 attr->max_qp_rd_atom = sdev->attrs.max_ord;
147 attr->max_qp_wr = sdev->attrs.max_qp_wr;
148 attr->max_recv_sge = sdev->attrs.max_sge;
149 attr->max_res_rd_atom = sdev->attrs.max_qp * sdev->attrs.max_ird;
150 attr->max_send_sge = sdev->attrs.max_sge;
151 attr->max_sge_rd = sdev->attrs.max_sge_rd;
152 attr->max_srq = sdev->attrs.max_srq;
153 attr->max_srq_sge = sdev->attrs.max_srq_sge;
154 attr->max_srq_wr = sdev->attrs.max_srq_wr;
155 attr->page_size_cap = PAGE_SIZE;
156 attr->vendor_id = SIW_VENDOR_ID;
157 attr->vendor_part_id = sdev->vendor_part_id;
158
159 addrconf_addr_eui48((u8 *)&attr->sys_image_guid,
160 sdev->netdev->dev_addr);
161
162 return 0;
163 }
164
siw_query_port(struct ib_device * base_dev,u32 port,struct ib_port_attr * attr)165 int siw_query_port(struct ib_device *base_dev, u32 port,
166 struct ib_port_attr *attr)
167 {
168 struct siw_device *sdev = to_siw_dev(base_dev);
169 int rv;
170
171 memset(attr, 0, sizeof(*attr));
172
173 rv = ib_get_eth_speed(base_dev, port, &attr->active_speed,
174 &attr->active_width);
175 attr->gid_tbl_len = 1;
176 attr->max_msg_sz = -1;
177 attr->max_mtu = ib_mtu_int_to_enum(sdev->netdev->mtu);
178 attr->active_mtu = ib_mtu_int_to_enum(sdev->netdev->mtu);
179 attr->phys_state = sdev->state == IB_PORT_ACTIVE ?
180 IB_PORT_PHYS_STATE_LINK_UP : IB_PORT_PHYS_STATE_DISABLED;
181 attr->port_cap_flags = IB_PORT_CM_SUP | IB_PORT_DEVICE_MGMT_SUP;
182 attr->state = sdev->state;
183 /*
184 * All zero
185 *
186 * attr->lid = 0;
187 * attr->bad_pkey_cntr = 0;
188 * attr->qkey_viol_cntr = 0;
189 * attr->sm_lid = 0;
190 * attr->lmc = 0;
191 * attr->max_vl_num = 0;
192 * attr->sm_sl = 0;
193 * attr->subnet_timeout = 0;
194 * attr->init_type_repy = 0;
195 */
196 return rv;
197 }
198
siw_get_port_immutable(struct ib_device * base_dev,u32 port,struct ib_port_immutable * port_immutable)199 int siw_get_port_immutable(struct ib_device *base_dev, u32 port,
200 struct ib_port_immutable *port_immutable)
201 {
202 struct ib_port_attr attr;
203 int rv = siw_query_port(base_dev, port, &attr);
204
205 if (rv)
206 return rv;
207
208 port_immutable->gid_tbl_len = attr.gid_tbl_len;
209 port_immutable->core_cap_flags = RDMA_CORE_PORT_IWARP;
210
211 return 0;
212 }
213
siw_query_gid(struct ib_device * base_dev,u32 port,int idx,union ib_gid * gid)214 int siw_query_gid(struct ib_device *base_dev, u32 port, int idx,
215 union ib_gid *gid)
216 {
217 struct siw_device *sdev = to_siw_dev(base_dev);
218
219 /* subnet_prefix == interface_id == 0; */
220 memset(gid, 0, sizeof(*gid));
221 memcpy(&gid->raw[0], sdev->netdev->dev_addr, 6);
222
223 return 0;
224 }
225
siw_alloc_pd(struct ib_pd * pd,struct ib_udata * udata)226 int siw_alloc_pd(struct ib_pd *pd, struct ib_udata *udata)
227 {
228 struct siw_device *sdev = to_siw_dev(pd->device);
229
230 if (atomic_inc_return(&sdev->num_pd) > SIW_MAX_PD) {
231 atomic_dec(&sdev->num_pd);
232 return -ENOMEM;
233 }
234 siw_dbg_pd(pd, "now %d PD's(s)\n", atomic_read(&sdev->num_pd));
235
236 return 0;
237 }
238
siw_dealloc_pd(struct ib_pd * pd,struct ib_udata * udata)239 int siw_dealloc_pd(struct ib_pd *pd, struct ib_udata *udata)
240 {
241 struct siw_device *sdev = to_siw_dev(pd->device);
242
243 siw_dbg_pd(pd, "free PD\n");
244 atomic_dec(&sdev->num_pd);
245 return 0;
246 }
247
siw_qp_get_ref(struct ib_qp * base_qp)248 void siw_qp_get_ref(struct ib_qp *base_qp)
249 {
250 siw_qp_get(to_siw_qp(base_qp));
251 }
252
siw_qp_put_ref(struct ib_qp * base_qp)253 void siw_qp_put_ref(struct ib_qp *base_qp)
254 {
255 siw_qp_put(to_siw_qp(base_qp));
256 }
257
258 static struct rdma_user_mmap_entry *
siw_mmap_entry_insert(struct siw_ucontext * uctx,void * address,size_t length,u64 * offset)259 siw_mmap_entry_insert(struct siw_ucontext *uctx,
260 void *address, size_t length,
261 u64 *offset)
262 {
263 struct siw_user_mmap_entry *entry = kzalloc(sizeof(*entry), GFP_KERNEL);
264 int rv;
265
266 *offset = SIW_INVAL_UOBJ_KEY;
267 if (!entry)
268 return NULL;
269
270 entry->address = address;
271
272 rv = rdma_user_mmap_entry_insert(&uctx->base_ucontext,
273 &entry->rdma_entry,
274 length);
275 if (rv) {
276 kfree(entry);
277 return NULL;
278 }
279
280 *offset = rdma_user_mmap_get_offset(&entry->rdma_entry);
281
282 return &entry->rdma_entry;
283 }
284
285 /*
286 * siw_create_qp()
287 *
288 * Create QP of requested size on given device.
289 *
290 * @qp: Queue pait
291 * @attrs: Initial QP attributes.
292 * @udata: used to provide QP ID, SQ and RQ size back to user.
293 */
294
siw_create_qp(struct ib_qp * ibqp,struct ib_qp_init_attr * attrs,struct ib_udata * udata)295 int siw_create_qp(struct ib_qp *ibqp, struct ib_qp_init_attr *attrs,
296 struct ib_udata *udata)
297 {
298 struct ib_pd *pd = ibqp->pd;
299 struct siw_qp *qp = to_siw_qp(ibqp);
300 struct ib_device *base_dev = pd->device;
301 struct siw_device *sdev = to_siw_dev(base_dev);
302 struct siw_ucontext *uctx =
303 rdma_udata_to_drv_context(udata, struct siw_ucontext,
304 base_ucontext);
305 unsigned long flags;
306 int num_sqe, num_rqe, rv = 0;
307 size_t length;
308
309 siw_dbg(base_dev, "create new QP\n");
310
311 if (attrs->create_flags)
312 return -EOPNOTSUPP;
313
314 if (atomic_inc_return(&sdev->num_qp) > SIW_MAX_QP) {
315 siw_dbg(base_dev, "too many QP's\n");
316 rv = -ENOMEM;
317 goto err_atomic;
318 }
319 if (attrs->qp_type != IB_QPT_RC) {
320 siw_dbg(base_dev, "only RC QP's supported\n");
321 rv = -EOPNOTSUPP;
322 goto err_atomic;
323 }
324 if ((attrs->cap.max_send_wr > SIW_MAX_QP_WR) ||
325 (attrs->cap.max_recv_wr > SIW_MAX_QP_WR) ||
326 (attrs->cap.max_send_sge > SIW_MAX_SGE) ||
327 (attrs->cap.max_recv_sge > SIW_MAX_SGE)) {
328 siw_dbg(base_dev, "QP size error\n");
329 rv = -EINVAL;
330 goto err_atomic;
331 }
332 if (attrs->cap.max_inline_data > SIW_MAX_INLINE) {
333 siw_dbg(base_dev, "max inline send: %d > %d\n",
334 attrs->cap.max_inline_data, (int)SIW_MAX_INLINE);
335 rv = -EINVAL;
336 goto err_atomic;
337 }
338 /*
339 * NOTE: we allow for zero element SQ and RQ WQE's SGL's
340 * but not for a QP unable to hold any WQE (SQ + RQ)
341 */
342 if (attrs->cap.max_send_wr + attrs->cap.max_recv_wr == 0) {
343 siw_dbg(base_dev, "QP must have send or receive queue\n");
344 rv = -EINVAL;
345 goto err_atomic;
346 }
347
348 if (!attrs->send_cq || (!attrs->recv_cq && !attrs->srq)) {
349 siw_dbg(base_dev, "send CQ or receive CQ invalid\n");
350 rv = -EINVAL;
351 goto err_atomic;
352 }
353
354 init_rwsem(&qp->state_lock);
355 spin_lock_init(&qp->sq_lock);
356 spin_lock_init(&qp->rq_lock);
357 spin_lock_init(&qp->orq_lock);
358
359 rv = siw_qp_add(sdev, qp);
360 if (rv)
361 goto err_atomic;
362
363 num_sqe = attrs->cap.max_send_wr;
364 num_rqe = attrs->cap.max_recv_wr;
365
366 /* All queue indices are derived from modulo operations
367 * on a free running 'get' (consumer) and 'put' (producer)
368 * unsigned counter. Having queue sizes at power of two
369 * avoids handling counter wrap around.
370 */
371 if (num_sqe)
372 num_sqe = roundup_pow_of_two(num_sqe);
373 else {
374 /* Zero sized SQ is not supported */
375 rv = -EINVAL;
376 goto err_out_xa;
377 }
378 if (num_rqe)
379 num_rqe = roundup_pow_of_two(num_rqe);
380
381 if (udata)
382 qp->sendq = vmalloc_user(num_sqe * sizeof(struct siw_sqe));
383 else
384 qp->sendq = vzalloc(num_sqe * sizeof(struct siw_sqe));
385
386 if (qp->sendq == NULL) {
387 rv = -ENOMEM;
388 goto err_out_xa;
389 }
390 if (attrs->sq_sig_type != IB_SIGNAL_REQ_WR) {
391 if (attrs->sq_sig_type == IB_SIGNAL_ALL_WR)
392 qp->attrs.flags |= SIW_SIGNAL_ALL_WR;
393 else {
394 rv = -EINVAL;
395 goto err_out_xa;
396 }
397 }
398 qp->pd = pd;
399 qp->scq = to_siw_cq(attrs->send_cq);
400 qp->rcq = to_siw_cq(attrs->recv_cq);
401
402 if (attrs->srq) {
403 /*
404 * SRQ support.
405 * Verbs 6.3.7: ignore RQ size, if SRQ present
406 * Verbs 6.3.5: do not check PD of SRQ against PD of QP
407 */
408 qp->srq = to_siw_srq(attrs->srq);
409 qp->attrs.rq_size = 0;
410 siw_dbg(base_dev, "QP [%u]: SRQ attached\n",
411 qp->base_qp.qp_num);
412 } else if (num_rqe) {
413 if (udata)
414 qp->recvq =
415 vmalloc_user(num_rqe * sizeof(struct siw_rqe));
416 else
417 qp->recvq = vzalloc(num_rqe * sizeof(struct siw_rqe));
418
419 if (qp->recvq == NULL) {
420 rv = -ENOMEM;
421 goto err_out_xa;
422 }
423 qp->attrs.rq_size = num_rqe;
424 }
425 qp->attrs.sq_size = num_sqe;
426 qp->attrs.sq_max_sges = attrs->cap.max_send_sge;
427 qp->attrs.rq_max_sges = attrs->cap.max_recv_sge;
428
429 /* Make those two tunables fixed for now. */
430 qp->tx_ctx.gso_seg_limit = 1;
431 qp->tx_ctx.zcopy_tx = zcopy_tx;
432
433 qp->attrs.state = SIW_QP_STATE_IDLE;
434
435 if (udata) {
436 struct siw_uresp_create_qp uresp = {};
437
438 uresp.num_sqe = num_sqe;
439 uresp.num_rqe = num_rqe;
440 uresp.qp_id = qp_id(qp);
441
442 if (qp->sendq) {
443 length = num_sqe * sizeof(struct siw_sqe);
444 qp->sq_entry =
445 siw_mmap_entry_insert(uctx, qp->sendq,
446 length, &uresp.sq_key);
447 if (!qp->sq_entry) {
448 rv = -ENOMEM;
449 goto err_out_xa;
450 }
451 }
452
453 if (qp->recvq) {
454 length = num_rqe * sizeof(struct siw_rqe);
455 qp->rq_entry =
456 siw_mmap_entry_insert(uctx, qp->recvq,
457 length, &uresp.rq_key);
458 if (!qp->rq_entry) {
459 uresp.sq_key = SIW_INVAL_UOBJ_KEY;
460 rv = -ENOMEM;
461 goto err_out_xa;
462 }
463 }
464
465 if (udata->outlen < sizeof(uresp)) {
466 rv = -EINVAL;
467 goto err_out_xa;
468 }
469 rv = ib_copy_to_udata(udata, &uresp, sizeof(uresp));
470 if (rv)
471 goto err_out_xa;
472 }
473 qp->tx_cpu = siw_get_tx_cpu(sdev);
474 if (qp->tx_cpu < 0) {
475 rv = -EINVAL;
476 goto err_out_xa;
477 }
478 INIT_LIST_HEAD(&qp->devq);
479 spin_lock_irqsave(&sdev->lock, flags);
480 list_add_tail(&qp->devq, &sdev->qp_list);
481 spin_unlock_irqrestore(&sdev->lock, flags);
482
483 return 0;
484
485 err_out_xa:
486 xa_erase(&sdev->qp_xa, qp_id(qp));
487 if (uctx) {
488 rdma_user_mmap_entry_remove(qp->sq_entry);
489 rdma_user_mmap_entry_remove(qp->rq_entry);
490 }
491 vfree(qp->sendq);
492 vfree(qp->recvq);
493
494 err_atomic:
495 atomic_dec(&sdev->num_qp);
496 return rv;
497 }
498
499 /*
500 * Minimum siw_query_qp() verb interface.
501 *
502 * @qp_attr_mask is not used but all available information is provided
503 */
siw_query_qp(struct ib_qp * base_qp,struct ib_qp_attr * qp_attr,int qp_attr_mask,struct ib_qp_init_attr * qp_init_attr)504 int siw_query_qp(struct ib_qp *base_qp, struct ib_qp_attr *qp_attr,
505 int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr)
506 {
507 struct siw_qp *qp;
508 struct siw_device *sdev;
509
510 if (base_qp && qp_attr && qp_init_attr) {
511 qp = to_siw_qp(base_qp);
512 sdev = to_siw_dev(base_qp->device);
513 } else {
514 return -EINVAL;
515 }
516 qp_attr->cap.max_inline_data = SIW_MAX_INLINE;
517 qp_attr->cap.max_send_wr = qp->attrs.sq_size;
518 qp_attr->cap.max_send_sge = qp->attrs.sq_max_sges;
519 qp_attr->cap.max_recv_wr = qp->attrs.rq_size;
520 qp_attr->cap.max_recv_sge = qp->attrs.rq_max_sges;
521 qp_attr->path_mtu = ib_mtu_int_to_enum(sdev->netdev->mtu);
522 qp_attr->max_rd_atomic = qp->attrs.irq_size;
523 qp_attr->max_dest_rd_atomic = qp->attrs.orq_size;
524
525 qp_attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE |
526 IB_ACCESS_REMOTE_WRITE |
527 IB_ACCESS_REMOTE_READ;
528
529 qp_init_attr->qp_type = base_qp->qp_type;
530 qp_init_attr->send_cq = base_qp->send_cq;
531 qp_init_attr->recv_cq = base_qp->recv_cq;
532 qp_init_attr->srq = base_qp->srq;
533
534 qp_init_attr->cap = qp_attr->cap;
535
536 return 0;
537 }
538
siw_verbs_modify_qp(struct ib_qp * base_qp,struct ib_qp_attr * attr,int attr_mask,struct ib_udata * udata)539 int siw_verbs_modify_qp(struct ib_qp *base_qp, struct ib_qp_attr *attr,
540 int attr_mask, struct ib_udata *udata)
541 {
542 struct siw_qp_attrs new_attrs;
543 enum siw_qp_attr_mask siw_attr_mask = 0;
544 struct siw_qp *qp = to_siw_qp(base_qp);
545 int rv = 0;
546
547 if (!attr_mask)
548 return 0;
549
550 if (attr_mask & ~IB_QP_ATTR_STANDARD_BITS)
551 return -EOPNOTSUPP;
552
553 memset(&new_attrs, 0, sizeof(new_attrs));
554
555 if (attr_mask & IB_QP_ACCESS_FLAGS) {
556 siw_attr_mask = SIW_QP_ATTR_ACCESS_FLAGS;
557
558 if (attr->qp_access_flags & IB_ACCESS_REMOTE_READ)
559 new_attrs.flags |= SIW_RDMA_READ_ENABLED;
560 if (attr->qp_access_flags & IB_ACCESS_REMOTE_WRITE)
561 new_attrs.flags |= SIW_RDMA_WRITE_ENABLED;
562 if (attr->qp_access_flags & IB_ACCESS_MW_BIND)
563 new_attrs.flags |= SIW_RDMA_BIND_ENABLED;
564 }
565 if (attr_mask & IB_QP_STATE) {
566 siw_dbg_qp(qp, "desired IB QP state: %s\n",
567 ib_qp_state_to_string[attr->qp_state]);
568
569 new_attrs.state = ib_qp_state_to_siw_qp_state[attr->qp_state];
570
571 if (new_attrs.state > SIW_QP_STATE_RTS)
572 qp->tx_ctx.tx_suspend = 1;
573
574 siw_attr_mask |= SIW_QP_ATTR_STATE;
575 }
576 if (!siw_attr_mask)
577 goto out;
578
579 down_write(&qp->state_lock);
580
581 rv = siw_qp_modify(qp, &new_attrs, siw_attr_mask);
582
583 up_write(&qp->state_lock);
584 out:
585 return rv;
586 }
587
siw_destroy_qp(struct ib_qp * base_qp,struct ib_udata * udata)588 int siw_destroy_qp(struct ib_qp *base_qp, struct ib_udata *udata)
589 {
590 struct siw_qp *qp = to_siw_qp(base_qp);
591 struct siw_ucontext *uctx =
592 rdma_udata_to_drv_context(udata, struct siw_ucontext,
593 base_ucontext);
594 struct siw_qp_attrs qp_attrs;
595
596 siw_dbg_qp(qp, "state %d\n", qp->attrs.state);
597
598 /*
599 * Mark QP as in process of destruction to prevent from
600 * any async callbacks to RDMA core
601 */
602 qp->attrs.flags |= SIW_QP_IN_DESTROY;
603 qp->rx_stream.rx_suspend = 1;
604
605 if (uctx) {
606 rdma_user_mmap_entry_remove(qp->sq_entry);
607 rdma_user_mmap_entry_remove(qp->rq_entry);
608 }
609
610 down_write(&qp->state_lock);
611
612 qp_attrs.state = SIW_QP_STATE_ERROR;
613 siw_qp_modify(qp, &qp_attrs, SIW_QP_ATTR_STATE);
614
615 if (qp->cep) {
616 siw_cep_put(qp->cep);
617 qp->cep = NULL;
618 }
619 up_write(&qp->state_lock);
620
621 kfree(qp->tx_ctx.mpa_crc_hd);
622 kfree(qp->rx_stream.mpa_crc_hd);
623
624 qp->scq = qp->rcq = NULL;
625
626 siw_qp_put(qp);
627
628 return 0;
629 }
630
631 /*
632 * siw_copy_inline_sgl()
633 *
634 * Prepare sgl of inlined data for sending. For userland callers
635 * function checks if given buffer addresses and len's are within
636 * process context bounds.
637 * Data from all provided sge's are copied together into the wqe,
638 * referenced by a single sge.
639 */
siw_copy_inline_sgl(const struct ib_send_wr * core_wr,struct siw_sqe * sqe)640 static int siw_copy_inline_sgl(const struct ib_send_wr *core_wr,
641 struct siw_sqe *sqe)
642 {
643 struct ib_sge *core_sge = core_wr->sg_list;
644 void *kbuf = &sqe->sge[1];
645 int num_sge = core_wr->num_sge, bytes = 0;
646
647 sqe->sge[0].laddr = (uintptr_t)kbuf;
648 sqe->sge[0].lkey = 0;
649
650 while (num_sge--) {
651 if (!core_sge->length) {
652 core_sge++;
653 continue;
654 }
655 bytes += core_sge->length;
656 if (bytes > SIW_MAX_INLINE) {
657 bytes = -EINVAL;
658 break;
659 }
660 memcpy(kbuf, (void *)(uintptr_t)core_sge->addr,
661 core_sge->length);
662
663 kbuf += core_sge->length;
664 core_sge++;
665 }
666 sqe->sge[0].length = max(bytes, 0);
667 sqe->num_sge = bytes > 0 ? 1 : 0;
668
669 return bytes;
670 }
671
672 /* Complete SQ WR's without processing */
siw_sq_flush_wr(struct siw_qp * qp,const struct ib_send_wr * wr,const struct ib_send_wr ** bad_wr)673 static int siw_sq_flush_wr(struct siw_qp *qp, const struct ib_send_wr *wr,
674 const struct ib_send_wr **bad_wr)
675 {
676 struct siw_sqe sqe = {};
677 int rv = 0;
678
679 while (wr) {
680 sqe.id = wr->wr_id;
681 sqe.opcode = wr->opcode;
682 rv = siw_sqe_complete(qp, &sqe, 0, SIW_WC_WR_FLUSH_ERR);
683 if (rv) {
684 if (bad_wr)
685 *bad_wr = wr;
686 break;
687 }
688 wr = wr->next;
689 }
690 return rv;
691 }
692
693 /* Complete RQ WR's without processing */
siw_rq_flush_wr(struct siw_qp * qp,const struct ib_recv_wr * wr,const struct ib_recv_wr ** bad_wr)694 static int siw_rq_flush_wr(struct siw_qp *qp, const struct ib_recv_wr *wr,
695 const struct ib_recv_wr **bad_wr)
696 {
697 struct siw_rqe rqe = {};
698 int rv = 0;
699
700 while (wr) {
701 rqe.id = wr->wr_id;
702 rv = siw_rqe_complete(qp, &rqe, 0, 0, SIW_WC_WR_FLUSH_ERR);
703 if (rv) {
704 if (bad_wr)
705 *bad_wr = wr;
706 break;
707 }
708 wr = wr->next;
709 }
710 return rv;
711 }
712
713 /*
714 * siw_post_send()
715 *
716 * Post a list of S-WR's to a SQ.
717 *
718 * @base_qp: Base QP contained in siw QP
719 * @wr: Null terminated list of user WR's
720 * @bad_wr: Points to failing WR in case of synchronous failure.
721 */
siw_post_send(struct ib_qp * base_qp,const struct ib_send_wr * wr,const struct ib_send_wr ** bad_wr)722 int siw_post_send(struct ib_qp *base_qp, const struct ib_send_wr *wr,
723 const struct ib_send_wr **bad_wr)
724 {
725 struct siw_qp *qp = to_siw_qp(base_qp);
726 struct siw_wqe *wqe = tx_wqe(qp);
727
728 unsigned long flags;
729 int rv = 0;
730
731 if (wr && !rdma_is_kernel_res(&qp->base_qp.res)) {
732 siw_dbg_qp(qp, "wr must be empty for user mapped sq\n");
733 *bad_wr = wr;
734 return -EINVAL;
735 }
736
737 /*
738 * Try to acquire QP state lock. Must be non-blocking
739 * to accommodate kernel clients needs.
740 */
741 if (!down_read_trylock(&qp->state_lock)) {
742 if (qp->attrs.state == SIW_QP_STATE_ERROR) {
743 /*
744 * ERROR state is final, so we can be sure
745 * this state will not change as long as the QP
746 * exists.
747 *
748 * This handles an ib_drain_sq() call with
749 * a concurrent request to set the QP state
750 * to ERROR.
751 */
752 rv = siw_sq_flush_wr(qp, wr, bad_wr);
753 } else {
754 siw_dbg_qp(qp, "QP locked, state %d\n",
755 qp->attrs.state);
756 *bad_wr = wr;
757 rv = -ENOTCONN;
758 }
759 return rv;
760 }
761 if (unlikely(qp->attrs.state != SIW_QP_STATE_RTS)) {
762 if (qp->attrs.state == SIW_QP_STATE_ERROR) {
763 /*
764 * Immediately flush this WR to CQ, if QP
765 * is in ERROR state. SQ is guaranteed to
766 * be empty, so WR complets in-order.
767 *
768 * Typically triggered by ib_drain_sq().
769 */
770 rv = siw_sq_flush_wr(qp, wr, bad_wr);
771 } else {
772 siw_dbg_qp(qp, "QP out of state %d\n",
773 qp->attrs.state);
774 *bad_wr = wr;
775 rv = -ENOTCONN;
776 }
777 up_read(&qp->state_lock);
778 return rv;
779 }
780 spin_lock_irqsave(&qp->sq_lock, flags);
781
782 while (wr) {
783 u32 idx = qp->sq_put % qp->attrs.sq_size;
784 struct siw_sqe *sqe = &qp->sendq[idx];
785
786 if (sqe->flags) {
787 siw_dbg_qp(qp, "sq full\n");
788 rv = -ENOMEM;
789 break;
790 }
791 if (wr->num_sge > qp->attrs.sq_max_sges) {
792 siw_dbg_qp(qp, "too many sge's: %d\n", wr->num_sge);
793 rv = -EINVAL;
794 break;
795 }
796 sqe->id = wr->wr_id;
797
798 if ((wr->send_flags & IB_SEND_SIGNALED) ||
799 (qp->attrs.flags & SIW_SIGNAL_ALL_WR))
800 sqe->flags |= SIW_WQE_SIGNALLED;
801
802 if (wr->send_flags & IB_SEND_FENCE)
803 sqe->flags |= SIW_WQE_READ_FENCE;
804
805 switch (wr->opcode) {
806 case IB_WR_SEND:
807 case IB_WR_SEND_WITH_INV:
808 if (wr->send_flags & IB_SEND_SOLICITED)
809 sqe->flags |= SIW_WQE_SOLICITED;
810
811 if (!(wr->send_flags & IB_SEND_INLINE)) {
812 siw_copy_sgl(wr->sg_list, sqe->sge,
813 wr->num_sge);
814 sqe->num_sge = wr->num_sge;
815 } else {
816 rv = siw_copy_inline_sgl(wr, sqe);
817 if (rv <= 0) {
818 rv = -EINVAL;
819 break;
820 }
821 sqe->flags |= SIW_WQE_INLINE;
822 sqe->num_sge = 1;
823 }
824 if (wr->opcode == IB_WR_SEND)
825 sqe->opcode = SIW_OP_SEND;
826 else {
827 sqe->opcode = SIW_OP_SEND_REMOTE_INV;
828 sqe->rkey = wr->ex.invalidate_rkey;
829 }
830 break;
831
832 case IB_WR_RDMA_READ_WITH_INV:
833 case IB_WR_RDMA_READ:
834 /*
835 * iWarp restricts RREAD sink to SGL containing
836 * 1 SGE only. we could relax to SGL with multiple
837 * elements referring the SAME ltag or even sending
838 * a private per-rreq tag referring to a checked
839 * local sgl with MULTIPLE ltag's.
840 */
841 if (unlikely(wr->num_sge != 1)) {
842 rv = -EINVAL;
843 break;
844 }
845 siw_copy_sgl(wr->sg_list, &sqe->sge[0], 1);
846 /*
847 * NOTE: zero length RREAD is allowed!
848 */
849 sqe->raddr = rdma_wr(wr)->remote_addr;
850 sqe->rkey = rdma_wr(wr)->rkey;
851 sqe->num_sge = 1;
852
853 if (wr->opcode == IB_WR_RDMA_READ)
854 sqe->opcode = SIW_OP_READ;
855 else
856 sqe->opcode = SIW_OP_READ_LOCAL_INV;
857 break;
858
859 case IB_WR_RDMA_WRITE:
860 if (!(wr->send_flags & IB_SEND_INLINE)) {
861 siw_copy_sgl(wr->sg_list, &sqe->sge[0],
862 wr->num_sge);
863 sqe->num_sge = wr->num_sge;
864 } else {
865 rv = siw_copy_inline_sgl(wr, sqe);
866 if (unlikely(rv < 0)) {
867 rv = -EINVAL;
868 break;
869 }
870 sqe->flags |= SIW_WQE_INLINE;
871 sqe->num_sge = 1;
872 }
873 sqe->raddr = rdma_wr(wr)->remote_addr;
874 sqe->rkey = rdma_wr(wr)->rkey;
875 sqe->opcode = SIW_OP_WRITE;
876 break;
877
878 case IB_WR_REG_MR:
879 sqe->base_mr = (uintptr_t)reg_wr(wr)->mr;
880 sqe->rkey = reg_wr(wr)->key;
881 sqe->access = reg_wr(wr)->access & IWARP_ACCESS_MASK;
882 sqe->opcode = SIW_OP_REG_MR;
883 break;
884
885 case IB_WR_LOCAL_INV:
886 sqe->rkey = wr->ex.invalidate_rkey;
887 sqe->opcode = SIW_OP_INVAL_STAG;
888 break;
889
890 default:
891 siw_dbg_qp(qp, "ib wr type %d unsupported\n",
892 wr->opcode);
893 rv = -EINVAL;
894 break;
895 }
896 siw_dbg_qp(qp, "opcode %d, flags 0x%x, wr_id 0x%pK\n",
897 sqe->opcode, sqe->flags,
898 (void *)(uintptr_t)sqe->id);
899
900 if (unlikely(rv < 0))
901 break;
902
903 /* make SQE only valid after completely written */
904 smp_wmb();
905 sqe->flags |= SIW_WQE_VALID;
906
907 qp->sq_put++;
908 wr = wr->next;
909 }
910
911 /*
912 * Send directly if SQ processing is not in progress.
913 * Eventual immediate errors (rv < 0) do not affect the involved
914 * RI resources (Verbs, 8.3.1) and thus do not prevent from SQ
915 * processing, if new work is already pending. But rv must be passed
916 * to caller.
917 */
918 if (wqe->wr_status != SIW_WR_IDLE) {
919 spin_unlock_irqrestore(&qp->sq_lock, flags);
920 goto skip_direct_sending;
921 }
922 rv = siw_activate_tx(qp);
923 spin_unlock_irqrestore(&qp->sq_lock, flags);
924
925 if (rv <= 0)
926 goto skip_direct_sending;
927
928 if (rdma_is_kernel_res(&qp->base_qp.res)) {
929 rv = siw_sq_start(qp);
930 } else {
931 qp->tx_ctx.in_syscall = 1;
932
933 if (siw_qp_sq_process(qp) != 0 && !(qp->tx_ctx.tx_suspend))
934 siw_qp_cm_drop(qp, 0);
935
936 qp->tx_ctx.in_syscall = 0;
937 }
938 skip_direct_sending:
939
940 up_read(&qp->state_lock);
941
942 if (rv >= 0)
943 return 0;
944 /*
945 * Immediate error
946 */
947 siw_dbg_qp(qp, "error %d\n", rv);
948
949 *bad_wr = wr;
950 return rv;
951 }
952
953 /*
954 * siw_post_receive()
955 *
956 * Post a list of R-WR's to a RQ.
957 *
958 * @base_qp: Base QP contained in siw QP
959 * @wr: Null terminated list of user WR's
960 * @bad_wr: Points to failing WR in case of synchronous failure.
961 */
siw_post_receive(struct ib_qp * base_qp,const struct ib_recv_wr * wr,const struct ib_recv_wr ** bad_wr)962 int siw_post_receive(struct ib_qp *base_qp, const struct ib_recv_wr *wr,
963 const struct ib_recv_wr **bad_wr)
964 {
965 struct siw_qp *qp = to_siw_qp(base_qp);
966 unsigned long flags;
967 int rv = 0;
968
969 if (qp->srq || qp->attrs.rq_size == 0) {
970 *bad_wr = wr;
971 return -EINVAL;
972 }
973 if (!rdma_is_kernel_res(&qp->base_qp.res)) {
974 siw_dbg_qp(qp, "no kernel post_recv for user mapped rq\n");
975 *bad_wr = wr;
976 return -EINVAL;
977 }
978
979 /*
980 * Try to acquire QP state lock. Must be non-blocking
981 * to accommodate kernel clients needs.
982 */
983 if (!down_read_trylock(&qp->state_lock)) {
984 if (qp->attrs.state == SIW_QP_STATE_ERROR) {
985 /*
986 * ERROR state is final, so we can be sure
987 * this state will not change as long as the QP
988 * exists.
989 *
990 * This handles an ib_drain_rq() call with
991 * a concurrent request to set the QP state
992 * to ERROR.
993 */
994 rv = siw_rq_flush_wr(qp, wr, bad_wr);
995 } else {
996 siw_dbg_qp(qp, "QP locked, state %d\n",
997 qp->attrs.state);
998 *bad_wr = wr;
999 rv = -ENOTCONN;
1000 }
1001 return rv;
1002 }
1003 if (qp->attrs.state > SIW_QP_STATE_RTS) {
1004 if (qp->attrs.state == SIW_QP_STATE_ERROR) {
1005 /*
1006 * Immediately flush this WR to CQ, if QP
1007 * is in ERROR state. RQ is guaranteed to
1008 * be empty, so WR complets in-order.
1009 *
1010 * Typically triggered by ib_drain_rq().
1011 */
1012 rv = siw_rq_flush_wr(qp, wr, bad_wr);
1013 } else {
1014 siw_dbg_qp(qp, "QP out of state %d\n",
1015 qp->attrs.state);
1016 *bad_wr = wr;
1017 rv = -ENOTCONN;
1018 }
1019 up_read(&qp->state_lock);
1020 return rv;
1021 }
1022 /*
1023 * Serialize potentially multiple producers.
1024 * Not needed for single threaded consumer side.
1025 */
1026 spin_lock_irqsave(&qp->rq_lock, flags);
1027
1028 while (wr) {
1029 u32 idx = qp->rq_put % qp->attrs.rq_size;
1030 struct siw_rqe *rqe = &qp->recvq[idx];
1031
1032 if (rqe->flags) {
1033 siw_dbg_qp(qp, "RQ full\n");
1034 rv = -ENOMEM;
1035 break;
1036 }
1037 if (wr->num_sge > qp->attrs.rq_max_sges) {
1038 siw_dbg_qp(qp, "too many sge's: %d\n", wr->num_sge);
1039 rv = -EINVAL;
1040 break;
1041 }
1042 rqe->id = wr->wr_id;
1043 rqe->num_sge = wr->num_sge;
1044 siw_copy_sgl(wr->sg_list, rqe->sge, wr->num_sge);
1045
1046 /* make sure RQE is completely written before valid */
1047 smp_wmb();
1048
1049 rqe->flags = SIW_WQE_VALID;
1050
1051 qp->rq_put++;
1052 wr = wr->next;
1053 }
1054 spin_unlock_irqrestore(&qp->rq_lock, flags);
1055
1056 up_read(&qp->state_lock);
1057
1058 if (rv < 0) {
1059 siw_dbg_qp(qp, "error %d\n", rv);
1060 *bad_wr = wr;
1061 }
1062 return rv > 0 ? 0 : rv;
1063 }
1064
siw_destroy_cq(struct ib_cq * base_cq,struct ib_udata * udata)1065 int siw_destroy_cq(struct ib_cq *base_cq, struct ib_udata *udata)
1066 {
1067 struct siw_cq *cq = to_siw_cq(base_cq);
1068 struct siw_device *sdev = to_siw_dev(base_cq->device);
1069 struct siw_ucontext *ctx =
1070 rdma_udata_to_drv_context(udata, struct siw_ucontext,
1071 base_ucontext);
1072
1073 siw_dbg_cq(cq, "free CQ resources\n");
1074
1075 siw_cq_flush(cq);
1076
1077 if (ctx)
1078 rdma_user_mmap_entry_remove(cq->cq_entry);
1079
1080 atomic_dec(&sdev->num_cq);
1081
1082 vfree(cq->queue);
1083 return 0;
1084 }
1085
1086 /*
1087 * siw_create_cq()
1088 *
1089 * Populate CQ of requested size
1090 *
1091 * @base_cq: CQ as allocated by RDMA midlayer
1092 * @attr: Initial CQ attributes
1093 * @udata: relates to user context
1094 */
1095
siw_create_cq(struct ib_cq * base_cq,const struct ib_cq_init_attr * attr,struct ib_udata * udata)1096 int siw_create_cq(struct ib_cq *base_cq, const struct ib_cq_init_attr *attr,
1097 struct ib_udata *udata)
1098 {
1099 struct siw_device *sdev = to_siw_dev(base_cq->device);
1100 struct siw_cq *cq = to_siw_cq(base_cq);
1101 int rv, size = attr->cqe;
1102
1103 if (attr->flags)
1104 return -EOPNOTSUPP;
1105
1106 if (atomic_inc_return(&sdev->num_cq) > SIW_MAX_CQ) {
1107 siw_dbg(base_cq->device, "too many CQ's\n");
1108 rv = -ENOMEM;
1109 goto err_out;
1110 }
1111 if (size < 1 || size > sdev->attrs.max_cqe) {
1112 siw_dbg(base_cq->device, "CQ size error: %d\n", size);
1113 rv = -EINVAL;
1114 goto err_out;
1115 }
1116 size = roundup_pow_of_two(size);
1117 cq->base_cq.cqe = size;
1118 cq->num_cqe = size;
1119
1120 if (udata)
1121 cq->queue = vmalloc_user(size * sizeof(struct siw_cqe) +
1122 sizeof(struct siw_cq_ctrl));
1123 else
1124 cq->queue = vzalloc(size * sizeof(struct siw_cqe) +
1125 sizeof(struct siw_cq_ctrl));
1126
1127 if (cq->queue == NULL) {
1128 rv = -ENOMEM;
1129 goto err_out;
1130 }
1131 get_random_bytes(&cq->id, 4);
1132 siw_dbg(base_cq->device, "new CQ [%u]\n", cq->id);
1133
1134 spin_lock_init(&cq->lock);
1135
1136 cq->notify = (struct siw_cq_ctrl *)&cq->queue[size];
1137
1138 if (udata) {
1139 struct siw_uresp_create_cq uresp = {};
1140 struct siw_ucontext *ctx =
1141 rdma_udata_to_drv_context(udata, struct siw_ucontext,
1142 base_ucontext);
1143 size_t length = size * sizeof(struct siw_cqe) +
1144 sizeof(struct siw_cq_ctrl);
1145
1146 cq->cq_entry =
1147 siw_mmap_entry_insert(ctx, cq->queue,
1148 length, &uresp.cq_key);
1149 if (!cq->cq_entry) {
1150 rv = -ENOMEM;
1151 goto err_out;
1152 }
1153
1154 uresp.cq_id = cq->id;
1155 uresp.num_cqe = size;
1156
1157 if (udata->outlen < sizeof(uresp)) {
1158 rv = -EINVAL;
1159 goto err_out;
1160 }
1161 rv = ib_copy_to_udata(udata, &uresp, sizeof(uresp));
1162 if (rv)
1163 goto err_out;
1164 }
1165 return 0;
1166
1167 err_out:
1168 siw_dbg(base_cq->device, "CQ creation failed: %d", rv);
1169
1170 if (cq && cq->queue) {
1171 struct siw_ucontext *ctx =
1172 rdma_udata_to_drv_context(udata, struct siw_ucontext,
1173 base_ucontext);
1174 if (ctx)
1175 rdma_user_mmap_entry_remove(cq->cq_entry);
1176 vfree(cq->queue);
1177 }
1178 atomic_dec(&sdev->num_cq);
1179
1180 return rv;
1181 }
1182
1183 /*
1184 * siw_poll_cq()
1185 *
1186 * Reap CQ entries if available and copy work completion status into
1187 * array of WC's provided by caller. Returns number of reaped CQE's.
1188 *
1189 * @base_cq: Base CQ contained in siw CQ.
1190 * @num_cqe: Maximum number of CQE's to reap.
1191 * @wc: Array of work completions to be filled by siw.
1192 */
siw_poll_cq(struct ib_cq * base_cq,int num_cqe,struct ib_wc * wc)1193 int siw_poll_cq(struct ib_cq *base_cq, int num_cqe, struct ib_wc *wc)
1194 {
1195 struct siw_cq *cq = to_siw_cq(base_cq);
1196 int i;
1197
1198 for (i = 0; i < num_cqe; i++) {
1199 if (!siw_reap_cqe(cq, wc))
1200 break;
1201 wc++;
1202 }
1203 return i;
1204 }
1205
1206 /*
1207 * siw_req_notify_cq()
1208 *
1209 * Request notification for new CQE's added to that CQ.
1210 * Defined flags:
1211 * o SIW_CQ_NOTIFY_SOLICITED lets siw trigger a notification
1212 * event if a WQE with notification flag set enters the CQ
1213 * o SIW_CQ_NOTIFY_NEXT_COMP lets siw trigger a notification
1214 * event if a WQE enters the CQ.
1215 * o IB_CQ_REPORT_MISSED_EVENTS: return value will provide the
1216 * number of not reaped CQE's regardless of its notification
1217 * type and current or new CQ notification settings.
1218 *
1219 * @base_cq: Base CQ contained in siw CQ.
1220 * @flags: Requested notification flags.
1221 */
siw_req_notify_cq(struct ib_cq * base_cq,enum ib_cq_notify_flags flags)1222 int siw_req_notify_cq(struct ib_cq *base_cq, enum ib_cq_notify_flags flags)
1223 {
1224 struct siw_cq *cq = to_siw_cq(base_cq);
1225
1226 siw_dbg_cq(cq, "flags: 0x%02x\n", flags);
1227
1228 if ((flags & IB_CQ_SOLICITED_MASK) == IB_CQ_SOLICITED)
1229 /*
1230 * Enable CQ event for next solicited completion.
1231 * and make it visible to all associated producers.
1232 */
1233 smp_store_mb(cq->notify->flags, SIW_NOTIFY_SOLICITED);
1234 else
1235 /*
1236 * Enable CQ event for any signalled completion.
1237 * and make it visible to all associated producers.
1238 */
1239 smp_store_mb(cq->notify->flags, SIW_NOTIFY_ALL);
1240
1241 if (flags & IB_CQ_REPORT_MISSED_EVENTS)
1242 return cq->cq_put - cq->cq_get;
1243
1244 return 0;
1245 }
1246
1247 /*
1248 * siw_dereg_mr()
1249 *
1250 * Release Memory Region.
1251 *
1252 * @base_mr: Base MR contained in siw MR.
1253 * @udata: points to user context, unused.
1254 */
siw_dereg_mr(struct ib_mr * base_mr,struct ib_udata * udata)1255 int siw_dereg_mr(struct ib_mr *base_mr, struct ib_udata *udata)
1256 {
1257 struct siw_mr *mr = to_siw_mr(base_mr);
1258 struct siw_device *sdev = to_siw_dev(base_mr->device);
1259
1260 siw_dbg_mem(mr->mem, "deregister MR\n");
1261
1262 atomic_dec(&sdev->num_mr);
1263
1264 siw_mr_drop_mem(mr);
1265 kfree_rcu(mr, rcu);
1266
1267 return 0;
1268 }
1269
1270 /*
1271 * siw_reg_user_mr()
1272 *
1273 * Register Memory Region.
1274 *
1275 * @pd: Protection Domain
1276 * @start: starting address of MR (virtual address)
1277 * @len: len of MR
1278 * @rnic_va: not used by siw
1279 * @rights: MR access rights
1280 * @udata: user buffer to communicate STag and Key.
1281 */
siw_reg_user_mr(struct ib_pd * pd,u64 start,u64 len,u64 rnic_va,int rights,struct ib_udata * udata)1282 struct ib_mr *siw_reg_user_mr(struct ib_pd *pd, u64 start, u64 len,
1283 u64 rnic_va, int rights, struct ib_udata *udata)
1284 {
1285 struct siw_mr *mr = NULL;
1286 struct siw_umem *umem = NULL;
1287 struct siw_ureq_reg_mr ureq;
1288 struct siw_device *sdev = to_siw_dev(pd->device);
1289
1290 unsigned long mem_limit = rlimit(RLIMIT_MEMLOCK);
1291 int rv;
1292
1293 siw_dbg_pd(pd, "start: 0x%pK, va: 0x%pK, len: %llu\n",
1294 (void *)(uintptr_t)start, (void *)(uintptr_t)rnic_va,
1295 (unsigned long long)len);
1296
1297 if (atomic_inc_return(&sdev->num_mr) > SIW_MAX_MR) {
1298 siw_dbg_pd(pd, "too many mr's\n");
1299 rv = -ENOMEM;
1300 goto err_out;
1301 }
1302 if (!len) {
1303 rv = -EINVAL;
1304 goto err_out;
1305 }
1306 if (mem_limit != RLIM_INFINITY) {
1307 unsigned long num_pages =
1308 (PAGE_ALIGN(len + (start & ~PAGE_MASK))) >> PAGE_SHIFT;
1309 mem_limit >>= PAGE_SHIFT;
1310
1311 if (num_pages > mem_limit - current->mm->locked_vm) {
1312 siw_dbg_pd(pd, "pages req %lu, max %lu, lock %lu\n",
1313 num_pages, mem_limit,
1314 current->mm->locked_vm);
1315 rv = -ENOMEM;
1316 goto err_out;
1317 }
1318 }
1319 umem = siw_umem_get(start, len, ib_access_writable(rights));
1320 if (IS_ERR(umem)) {
1321 rv = PTR_ERR(umem);
1322 siw_dbg_pd(pd, "getting user memory failed: %d\n", rv);
1323 umem = NULL;
1324 goto err_out;
1325 }
1326 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1327 if (!mr) {
1328 rv = -ENOMEM;
1329 goto err_out;
1330 }
1331 rv = siw_mr_add_mem(mr, pd, umem, start, len, rights);
1332 if (rv)
1333 goto err_out;
1334
1335 if (udata) {
1336 struct siw_uresp_reg_mr uresp = {};
1337 struct siw_mem *mem = mr->mem;
1338
1339 if (udata->inlen < sizeof(ureq)) {
1340 rv = -EINVAL;
1341 goto err_out;
1342 }
1343 rv = ib_copy_from_udata(&ureq, udata, sizeof(ureq));
1344 if (rv)
1345 goto err_out;
1346
1347 mr->base_mr.lkey |= ureq.stag_key;
1348 mr->base_mr.rkey |= ureq.stag_key;
1349 mem->stag |= ureq.stag_key;
1350 uresp.stag = mem->stag;
1351
1352 if (udata->outlen < sizeof(uresp)) {
1353 rv = -EINVAL;
1354 goto err_out;
1355 }
1356 rv = ib_copy_to_udata(udata, &uresp, sizeof(uresp));
1357 if (rv)
1358 goto err_out;
1359 }
1360 mr->mem->stag_valid = 1;
1361
1362 return &mr->base_mr;
1363
1364 err_out:
1365 atomic_dec(&sdev->num_mr);
1366 if (mr) {
1367 if (mr->mem)
1368 siw_mr_drop_mem(mr);
1369 kfree_rcu(mr, rcu);
1370 } else {
1371 if (umem)
1372 siw_umem_release(umem, false);
1373 }
1374 return ERR_PTR(rv);
1375 }
1376
siw_alloc_mr(struct ib_pd * pd,enum ib_mr_type mr_type,u32 max_sge)1377 struct ib_mr *siw_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
1378 u32 max_sge)
1379 {
1380 struct siw_device *sdev = to_siw_dev(pd->device);
1381 struct siw_mr *mr = NULL;
1382 struct siw_pbl *pbl = NULL;
1383 int rv;
1384
1385 if (atomic_inc_return(&sdev->num_mr) > SIW_MAX_MR) {
1386 siw_dbg_pd(pd, "too many mr's\n");
1387 rv = -ENOMEM;
1388 goto err_out;
1389 }
1390 if (mr_type != IB_MR_TYPE_MEM_REG) {
1391 siw_dbg_pd(pd, "mr type %d unsupported\n", mr_type);
1392 rv = -EOPNOTSUPP;
1393 goto err_out;
1394 }
1395 if (max_sge > SIW_MAX_SGE_PBL) {
1396 siw_dbg_pd(pd, "too many sge's: %d\n", max_sge);
1397 rv = -ENOMEM;
1398 goto err_out;
1399 }
1400 pbl = siw_pbl_alloc(max_sge);
1401 if (IS_ERR(pbl)) {
1402 rv = PTR_ERR(pbl);
1403 siw_dbg_pd(pd, "pbl allocation failed: %d\n", rv);
1404 pbl = NULL;
1405 goto err_out;
1406 }
1407 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1408 if (!mr) {
1409 rv = -ENOMEM;
1410 goto err_out;
1411 }
1412 rv = siw_mr_add_mem(mr, pd, pbl, 0, max_sge * PAGE_SIZE, 0);
1413 if (rv)
1414 goto err_out;
1415
1416 mr->mem->is_pbl = 1;
1417
1418 siw_dbg_pd(pd, "[MEM %u]: success\n", mr->mem->stag);
1419
1420 return &mr->base_mr;
1421
1422 err_out:
1423 atomic_dec(&sdev->num_mr);
1424
1425 if (!mr) {
1426 kfree(pbl);
1427 } else {
1428 if (mr->mem)
1429 siw_mr_drop_mem(mr);
1430 kfree_rcu(mr, rcu);
1431 }
1432 siw_dbg_pd(pd, "failed: %d\n", rv);
1433
1434 return ERR_PTR(rv);
1435 }
1436
1437 /* Just used to count number of pages being mapped */
siw_set_pbl_page(struct ib_mr * base_mr,u64 buf_addr)1438 static int siw_set_pbl_page(struct ib_mr *base_mr, u64 buf_addr)
1439 {
1440 return 0;
1441 }
1442
siw_map_mr_sg(struct ib_mr * base_mr,struct scatterlist * sl,int num_sle,unsigned int * sg_off)1443 int siw_map_mr_sg(struct ib_mr *base_mr, struct scatterlist *sl, int num_sle,
1444 unsigned int *sg_off)
1445 {
1446 struct scatterlist *slp;
1447 struct siw_mr *mr = to_siw_mr(base_mr);
1448 struct siw_mem *mem = mr->mem;
1449 struct siw_pbl *pbl = mem->pbl;
1450 struct siw_pble *pble;
1451 unsigned long pbl_size;
1452 int i, rv;
1453
1454 if (!pbl) {
1455 siw_dbg_mem(mem, "no PBL allocated\n");
1456 return -EINVAL;
1457 }
1458 pble = pbl->pbe;
1459
1460 if (pbl->max_buf < num_sle) {
1461 siw_dbg_mem(mem, "too many SGE's: %d > %d\n",
1462 mem->pbl->max_buf, num_sle);
1463 return -ENOMEM;
1464 }
1465 for_each_sg(sl, slp, num_sle, i) {
1466 if (sg_dma_len(slp) == 0) {
1467 siw_dbg_mem(mem, "empty SGE\n");
1468 return -EINVAL;
1469 }
1470 if (i == 0) {
1471 pble->addr = sg_dma_address(slp);
1472 pble->size = sg_dma_len(slp);
1473 pble->pbl_off = 0;
1474 pbl_size = pble->size;
1475 pbl->num_buf = 1;
1476 } else {
1477 /* Merge PBL entries if adjacent */
1478 if (pble->addr + pble->size == sg_dma_address(slp)) {
1479 pble->size += sg_dma_len(slp);
1480 } else {
1481 pble++;
1482 pbl->num_buf++;
1483 pble->addr = sg_dma_address(slp);
1484 pble->size = sg_dma_len(slp);
1485 pble->pbl_off = pbl_size;
1486 }
1487 pbl_size += sg_dma_len(slp);
1488 }
1489 siw_dbg_mem(mem,
1490 "sge[%d], size %u, addr 0x%p, total %lu\n",
1491 i, pble->size, (void *)(uintptr_t)pble->addr,
1492 pbl_size);
1493 }
1494 rv = ib_sg_to_pages(base_mr, sl, num_sle, sg_off, siw_set_pbl_page);
1495 if (rv > 0) {
1496 mem->len = base_mr->length;
1497 mem->va = base_mr->iova;
1498 siw_dbg_mem(mem,
1499 "%llu bytes, start 0x%pK, %u SLE to %u entries\n",
1500 mem->len, (void *)(uintptr_t)mem->va, num_sle,
1501 pbl->num_buf);
1502 }
1503 return rv;
1504 }
1505
1506 /*
1507 * siw_get_dma_mr()
1508 *
1509 * Create a (empty) DMA memory region, where no umem is attached.
1510 */
siw_get_dma_mr(struct ib_pd * pd,int rights)1511 struct ib_mr *siw_get_dma_mr(struct ib_pd *pd, int rights)
1512 {
1513 struct siw_device *sdev = to_siw_dev(pd->device);
1514 struct siw_mr *mr = NULL;
1515 int rv;
1516
1517 if (atomic_inc_return(&sdev->num_mr) > SIW_MAX_MR) {
1518 siw_dbg_pd(pd, "too many mr's\n");
1519 rv = -ENOMEM;
1520 goto err_out;
1521 }
1522 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1523 if (!mr) {
1524 rv = -ENOMEM;
1525 goto err_out;
1526 }
1527 rv = siw_mr_add_mem(mr, pd, NULL, 0, ULONG_MAX, rights);
1528 if (rv)
1529 goto err_out;
1530
1531 mr->mem->stag_valid = 1;
1532
1533 siw_dbg_pd(pd, "[MEM %u]: success\n", mr->mem->stag);
1534
1535 return &mr->base_mr;
1536
1537 err_out:
1538 if (rv)
1539 kfree(mr);
1540
1541 atomic_dec(&sdev->num_mr);
1542
1543 return ERR_PTR(rv);
1544 }
1545
1546 /*
1547 * siw_create_srq()
1548 *
1549 * Create Shared Receive Queue of attributes @init_attrs
1550 * within protection domain given by @pd.
1551 *
1552 * @base_srq: Base SRQ contained in siw SRQ.
1553 * @init_attrs: SRQ init attributes.
1554 * @udata: points to user context
1555 */
siw_create_srq(struct ib_srq * base_srq,struct ib_srq_init_attr * init_attrs,struct ib_udata * udata)1556 int siw_create_srq(struct ib_srq *base_srq,
1557 struct ib_srq_init_attr *init_attrs, struct ib_udata *udata)
1558 {
1559 struct siw_srq *srq = to_siw_srq(base_srq);
1560 struct ib_srq_attr *attrs = &init_attrs->attr;
1561 struct siw_device *sdev = to_siw_dev(base_srq->device);
1562 struct siw_ucontext *ctx =
1563 rdma_udata_to_drv_context(udata, struct siw_ucontext,
1564 base_ucontext);
1565 int rv;
1566
1567 if (init_attrs->srq_type != IB_SRQT_BASIC)
1568 return -EOPNOTSUPP;
1569
1570 if (atomic_inc_return(&sdev->num_srq) > SIW_MAX_SRQ) {
1571 siw_dbg_pd(base_srq->pd, "too many SRQ's\n");
1572 rv = -ENOMEM;
1573 goto err_out;
1574 }
1575 if (attrs->max_wr == 0 || attrs->max_wr > SIW_MAX_SRQ_WR ||
1576 attrs->max_sge > SIW_MAX_SGE || attrs->srq_limit > attrs->max_wr) {
1577 rv = -EINVAL;
1578 goto err_out;
1579 }
1580 srq->max_sge = attrs->max_sge;
1581 srq->num_rqe = roundup_pow_of_two(attrs->max_wr);
1582 srq->limit = attrs->srq_limit;
1583 if (srq->limit)
1584 srq->armed = true;
1585
1586 srq->is_kernel_res = !udata;
1587
1588 if (udata)
1589 srq->recvq =
1590 vmalloc_user(srq->num_rqe * sizeof(struct siw_rqe));
1591 else
1592 srq->recvq = vzalloc(srq->num_rqe * sizeof(struct siw_rqe));
1593
1594 if (srq->recvq == NULL) {
1595 rv = -ENOMEM;
1596 goto err_out;
1597 }
1598 if (udata) {
1599 struct siw_uresp_create_srq uresp = {};
1600 size_t length = srq->num_rqe * sizeof(struct siw_rqe);
1601
1602 srq->srq_entry =
1603 siw_mmap_entry_insert(ctx, srq->recvq,
1604 length, &uresp.srq_key);
1605 if (!srq->srq_entry) {
1606 rv = -ENOMEM;
1607 goto err_out;
1608 }
1609
1610 uresp.num_rqe = srq->num_rqe;
1611
1612 if (udata->outlen < sizeof(uresp)) {
1613 rv = -EINVAL;
1614 goto err_out;
1615 }
1616 rv = ib_copy_to_udata(udata, &uresp, sizeof(uresp));
1617 if (rv)
1618 goto err_out;
1619 }
1620 spin_lock_init(&srq->lock);
1621
1622 siw_dbg_pd(base_srq->pd, "[SRQ]: success\n");
1623
1624 return 0;
1625
1626 err_out:
1627 if (srq->recvq) {
1628 if (ctx)
1629 rdma_user_mmap_entry_remove(srq->srq_entry);
1630 vfree(srq->recvq);
1631 }
1632 atomic_dec(&sdev->num_srq);
1633
1634 return rv;
1635 }
1636
1637 /*
1638 * siw_modify_srq()
1639 *
1640 * Modify SRQ. The caller may resize SRQ and/or set/reset notification
1641 * limit and (re)arm IB_EVENT_SRQ_LIMIT_REACHED notification.
1642 *
1643 * NOTE: it is unclear if RDMA core allows for changing the MAX_SGE
1644 * parameter. siw_modify_srq() does not check the attrs->max_sge param.
1645 */
siw_modify_srq(struct ib_srq * base_srq,struct ib_srq_attr * attrs,enum ib_srq_attr_mask attr_mask,struct ib_udata * udata)1646 int siw_modify_srq(struct ib_srq *base_srq, struct ib_srq_attr *attrs,
1647 enum ib_srq_attr_mask attr_mask, struct ib_udata *udata)
1648 {
1649 struct siw_srq *srq = to_siw_srq(base_srq);
1650 unsigned long flags;
1651 int rv = 0;
1652
1653 spin_lock_irqsave(&srq->lock, flags);
1654
1655 if (attr_mask & IB_SRQ_MAX_WR) {
1656 /* resize request not yet supported */
1657 rv = -EOPNOTSUPP;
1658 goto out;
1659 }
1660 if (attr_mask & IB_SRQ_LIMIT) {
1661 if (attrs->srq_limit) {
1662 if (unlikely(attrs->srq_limit > srq->num_rqe)) {
1663 rv = -EINVAL;
1664 goto out;
1665 }
1666 srq->armed = true;
1667 } else {
1668 srq->armed = false;
1669 }
1670 srq->limit = attrs->srq_limit;
1671 }
1672 out:
1673 spin_unlock_irqrestore(&srq->lock, flags);
1674
1675 return rv;
1676 }
1677
1678 /*
1679 * siw_query_srq()
1680 *
1681 * Query SRQ attributes.
1682 */
siw_query_srq(struct ib_srq * base_srq,struct ib_srq_attr * attrs)1683 int siw_query_srq(struct ib_srq *base_srq, struct ib_srq_attr *attrs)
1684 {
1685 struct siw_srq *srq = to_siw_srq(base_srq);
1686 unsigned long flags;
1687
1688 spin_lock_irqsave(&srq->lock, flags);
1689
1690 attrs->max_wr = srq->num_rqe;
1691 attrs->max_sge = srq->max_sge;
1692 attrs->srq_limit = srq->limit;
1693
1694 spin_unlock_irqrestore(&srq->lock, flags);
1695
1696 return 0;
1697 }
1698
1699 /*
1700 * siw_destroy_srq()
1701 *
1702 * Destroy SRQ.
1703 * It is assumed that the SRQ is not referenced by any
1704 * QP anymore - the code trusts the RDMA core environment to keep track
1705 * of QP references.
1706 */
siw_destroy_srq(struct ib_srq * base_srq,struct ib_udata * udata)1707 int siw_destroy_srq(struct ib_srq *base_srq, struct ib_udata *udata)
1708 {
1709 struct siw_srq *srq = to_siw_srq(base_srq);
1710 struct siw_device *sdev = to_siw_dev(base_srq->device);
1711 struct siw_ucontext *ctx =
1712 rdma_udata_to_drv_context(udata, struct siw_ucontext,
1713 base_ucontext);
1714
1715 if (ctx)
1716 rdma_user_mmap_entry_remove(srq->srq_entry);
1717 vfree(srq->recvq);
1718 atomic_dec(&sdev->num_srq);
1719 return 0;
1720 }
1721
1722 /*
1723 * siw_post_srq_recv()
1724 *
1725 * Post a list of receive queue elements to SRQ.
1726 * NOTE: The function does not check or lock a certain SRQ state
1727 * during the post operation. The code simply trusts the
1728 * RDMA core environment.
1729 *
1730 * @base_srq: Base SRQ contained in siw SRQ
1731 * @wr: List of R-WR's
1732 * @bad_wr: Updated to failing WR if posting fails.
1733 */
siw_post_srq_recv(struct ib_srq * base_srq,const struct ib_recv_wr * wr,const struct ib_recv_wr ** bad_wr)1734 int siw_post_srq_recv(struct ib_srq *base_srq, const struct ib_recv_wr *wr,
1735 const struct ib_recv_wr **bad_wr)
1736 {
1737 struct siw_srq *srq = to_siw_srq(base_srq);
1738 unsigned long flags;
1739 int rv = 0;
1740
1741 if (unlikely(!srq->is_kernel_res)) {
1742 siw_dbg_pd(base_srq->pd,
1743 "[SRQ]: no kernel post_recv for mapped srq\n");
1744 rv = -EINVAL;
1745 goto out;
1746 }
1747 /*
1748 * Serialize potentially multiple producers.
1749 * Also needed to serialize potentially multiple
1750 * consumers.
1751 */
1752 spin_lock_irqsave(&srq->lock, flags);
1753
1754 while (wr) {
1755 u32 idx = srq->rq_put % srq->num_rqe;
1756 struct siw_rqe *rqe = &srq->recvq[idx];
1757
1758 if (rqe->flags) {
1759 siw_dbg_pd(base_srq->pd, "SRQ full\n");
1760 rv = -ENOMEM;
1761 break;
1762 }
1763 if (unlikely(wr->num_sge > srq->max_sge)) {
1764 siw_dbg_pd(base_srq->pd,
1765 "[SRQ]: too many sge's: %d\n", wr->num_sge);
1766 rv = -EINVAL;
1767 break;
1768 }
1769 rqe->id = wr->wr_id;
1770 rqe->num_sge = wr->num_sge;
1771 siw_copy_sgl(wr->sg_list, rqe->sge, wr->num_sge);
1772
1773 /* Make sure S-RQE is completely written before valid */
1774 smp_wmb();
1775
1776 rqe->flags = SIW_WQE_VALID;
1777
1778 srq->rq_put++;
1779 wr = wr->next;
1780 }
1781 spin_unlock_irqrestore(&srq->lock, flags);
1782 out:
1783 if (unlikely(rv < 0)) {
1784 siw_dbg_pd(base_srq->pd, "[SRQ]: error %d\n", rv);
1785 *bad_wr = wr;
1786 }
1787 return rv;
1788 }
1789
siw_qp_event(struct siw_qp * qp,enum ib_event_type etype)1790 void siw_qp_event(struct siw_qp *qp, enum ib_event_type etype)
1791 {
1792 struct ib_event event;
1793 struct ib_qp *base_qp = &qp->base_qp;
1794
1795 /*
1796 * Do not report asynchronous errors on QP which gets
1797 * destroyed via verbs interface (siw_destroy_qp())
1798 */
1799 if (qp->attrs.flags & SIW_QP_IN_DESTROY)
1800 return;
1801
1802 event.event = etype;
1803 event.device = base_qp->device;
1804 event.element.qp = base_qp;
1805
1806 if (base_qp->event_handler) {
1807 siw_dbg_qp(qp, "reporting event %d\n", etype);
1808 base_qp->event_handler(&event, base_qp->qp_context);
1809 }
1810 }
1811
siw_cq_event(struct siw_cq * cq,enum ib_event_type etype)1812 void siw_cq_event(struct siw_cq *cq, enum ib_event_type etype)
1813 {
1814 struct ib_event event;
1815 struct ib_cq *base_cq = &cq->base_cq;
1816
1817 event.event = etype;
1818 event.device = base_cq->device;
1819 event.element.cq = base_cq;
1820
1821 if (base_cq->event_handler) {
1822 siw_dbg_cq(cq, "reporting CQ event %d\n", etype);
1823 base_cq->event_handler(&event, base_cq->cq_context);
1824 }
1825 }
1826
siw_srq_event(struct siw_srq * srq,enum ib_event_type etype)1827 void siw_srq_event(struct siw_srq *srq, enum ib_event_type etype)
1828 {
1829 struct ib_event event;
1830 struct ib_srq *base_srq = &srq->base_srq;
1831
1832 event.event = etype;
1833 event.device = base_srq->device;
1834 event.element.srq = base_srq;
1835
1836 if (base_srq->event_handler) {
1837 siw_dbg_pd(srq->base_srq.pd,
1838 "reporting SRQ event %d\n", etype);
1839 base_srq->event_handler(&event, base_srq->srq_context);
1840 }
1841 }
1842
siw_port_event(struct siw_device * sdev,u32 port,enum ib_event_type etype)1843 void siw_port_event(struct siw_device *sdev, u32 port, enum ib_event_type etype)
1844 {
1845 struct ib_event event;
1846
1847 event.event = etype;
1848 event.device = &sdev->base_dev;
1849 event.element.port_num = port;
1850
1851 siw_dbg(&sdev->base_dev, "reporting port event %d\n", etype);
1852
1853 ib_dispatch_event(&event);
1854 }
1855