1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Mellanox BlueField I2C bus driver
4 *
5 * Copyright (C) 2020 Mellanox Technologies, Ltd.
6 */
7
8 #include <linux/acpi.h>
9 #include <linux/delay.h>
10 #include <linux/err.h>
11 #include <linux/interrupt.h>
12 #include <linux/i2c.h>
13 #include <linux/io.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/of_device.h>
18 #include <linux/platform_device.h>
19 #include <linux/string.h>
20
21 /* Defines what functionality is present. */
22 #define MLXBF_I2C_FUNC_SMBUS_BLOCK \
23 (I2C_FUNC_SMBUS_BLOCK_DATA | I2C_FUNC_SMBUS_BLOCK_PROC_CALL)
24
25 #define MLXBF_I2C_FUNC_SMBUS_DEFAULT \
26 (I2C_FUNC_SMBUS_BYTE | I2C_FUNC_SMBUS_BYTE_DATA | \
27 I2C_FUNC_SMBUS_WORD_DATA | I2C_FUNC_SMBUS_I2C_BLOCK | \
28 I2C_FUNC_SMBUS_PROC_CALL)
29
30 #define MLXBF_I2C_FUNC_ALL \
31 (MLXBF_I2C_FUNC_SMBUS_DEFAULT | MLXBF_I2C_FUNC_SMBUS_BLOCK | \
32 I2C_FUNC_SMBUS_QUICK | I2C_FUNC_SLAVE)
33
34 #define MLXBF_I2C_SMBUS_MAX 3
35
36 /* Shared resources info in BlueField platforms. */
37
38 #define MLXBF_I2C_COALESCE_TYU_ADDR 0x02801300
39 #define MLXBF_I2C_COALESCE_TYU_SIZE 0x010
40
41 #define MLXBF_I2C_GPIO_TYU_ADDR 0x02802000
42 #define MLXBF_I2C_GPIO_TYU_SIZE 0x100
43
44 #define MLXBF_I2C_COREPLL_TYU_ADDR 0x02800358
45 #define MLXBF_I2C_COREPLL_TYU_SIZE 0x008
46
47 #define MLXBF_I2C_COREPLL_YU_ADDR 0x02800c30
48 #define MLXBF_I2C_COREPLL_YU_SIZE 0x00c
49
50 #define MLXBF_I2C_SHARED_RES_MAX 3
51
52 /*
53 * Note that the following SMBus, CAUSE, GPIO and PLL register addresses
54 * refer to their respective offsets relative to the corresponding
55 * memory-mapped region whose addresses are specified in either the DT or
56 * the ACPI tables or above.
57 */
58
59 /*
60 * SMBus Master core clock frequency. Timing configurations are
61 * strongly dependent on the core clock frequency of the SMBus
62 * Master. Default value is set to 400MHz.
63 */
64 #define MLXBF_I2C_TYU_PLL_OUT_FREQ (400 * 1000 * 1000)
65 /* Reference clock for Bluefield - 156 MHz. */
66 #define MLXBF_I2C_PLL_IN_FREQ (156 * 1000 * 1000)
67
68 /* Constant used to determine the PLL frequency. */
69 #define MLNXBF_I2C_COREPLL_CONST 16384
70
71 /* PLL registers. */
72 #define MLXBF_I2C_CORE_PLL_REG0 0x0
73 #define MLXBF_I2C_CORE_PLL_REG1 0x4
74 #define MLXBF_I2C_CORE_PLL_REG2 0x8
75
76 /* OR cause register. */
77 #define MLXBF_I2C_CAUSE_OR_EVTEN0 0x14
78 #define MLXBF_I2C_CAUSE_OR_CLEAR 0x18
79
80 /* Arbiter Cause Register. */
81 #define MLXBF_I2C_CAUSE_ARBITER 0x1c
82
83 /*
84 * Cause Status flags. Note that those bits might be considered
85 * as interrupt enabled bits.
86 */
87
88 /* Transaction ended with STOP. */
89 #define MLXBF_I2C_CAUSE_TRANSACTION_ENDED BIT(0)
90 /* Master arbitration lost. */
91 #define MLXBF_I2C_CAUSE_M_ARBITRATION_LOST BIT(1)
92 /* Unexpected start detected. */
93 #define MLXBF_I2C_CAUSE_UNEXPECTED_START BIT(2)
94 /* Unexpected stop detected. */
95 #define MLXBF_I2C_CAUSE_UNEXPECTED_STOP BIT(3)
96 /* Wait for transfer continuation. */
97 #define MLXBF_I2C_CAUSE_WAIT_FOR_FW_DATA BIT(4)
98 /* Failed to generate STOP. */
99 #define MLXBF_I2C_CAUSE_PUT_STOP_FAILED BIT(5)
100 /* Failed to generate START. */
101 #define MLXBF_I2C_CAUSE_PUT_START_FAILED BIT(6)
102 /* Clock toggle completed. */
103 #define MLXBF_I2C_CAUSE_CLK_TOGGLE_DONE BIT(7)
104 /* Transfer timeout occurred. */
105 #define MLXBF_I2C_CAUSE_M_FW_TIMEOUT BIT(8)
106 /* Master busy bit reset. */
107 #define MLXBF_I2C_CAUSE_M_GW_BUSY_FALL BIT(9)
108
109 #define MLXBF_I2C_CAUSE_MASTER_ARBITER_BITS_MASK GENMASK(9, 0)
110
111 #define MLXBF_I2C_CAUSE_MASTER_STATUS_ERROR \
112 (MLXBF_I2C_CAUSE_M_ARBITRATION_LOST | \
113 MLXBF_I2C_CAUSE_UNEXPECTED_START | \
114 MLXBF_I2C_CAUSE_UNEXPECTED_STOP | \
115 MLXBF_I2C_CAUSE_PUT_STOP_FAILED | \
116 MLXBF_I2C_CAUSE_PUT_START_FAILED | \
117 MLXBF_I2C_CAUSE_CLK_TOGGLE_DONE | \
118 MLXBF_I2C_CAUSE_M_FW_TIMEOUT)
119
120 /*
121 * Slave cause status flags. Note that those bits might be considered
122 * as interrupt enabled bits.
123 */
124
125 /* Write transaction received successfully. */
126 #define MLXBF_I2C_CAUSE_WRITE_SUCCESS BIT(0)
127 /* Read transaction received, waiting for response. */
128 #define MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE BIT(13)
129 /* Slave busy bit reset. */
130 #define MLXBF_I2C_CAUSE_S_GW_BUSY_FALL BIT(18)
131
132 #define MLXBF_I2C_CAUSE_SLAVE_ARBITER_BITS_MASK GENMASK(20, 0)
133
134 /* Cause coalesce registers. */
135 #define MLXBF_I2C_CAUSE_COALESCE_0 0x00
136 #define MLXBF_I2C_CAUSE_COALESCE_1 0x04
137 #define MLXBF_I2C_CAUSE_COALESCE_2 0x08
138
139 #define MLXBF_I2C_CAUSE_TYU_SLAVE_BIT MLXBF_I2C_SMBUS_MAX
140 #define MLXBF_I2C_CAUSE_YU_SLAVE_BIT 1
141
142 /* Functional enable register. */
143 #define MLXBF_I2C_GPIO_0_FUNC_EN_0 0x28
144 /* Force OE enable register. */
145 #define MLXBF_I2C_GPIO_0_FORCE_OE_EN 0x30
146 /*
147 * Note that Smbus GWs are on GPIOs 30:25. Two pins are used to control
148 * SDA/SCL lines:
149 *
150 * SMBUS GW0 -> bits[26:25]
151 * SMBUS GW1 -> bits[28:27]
152 * SMBUS GW2 -> bits[30:29]
153 */
154 #define MLXBF_I2C_GPIO_SMBUS_GW_PINS(num) (25 + ((num) << 1))
155
156 /* Note that gw_id can be 0,1 or 2. */
157 #define MLXBF_I2C_GPIO_SMBUS_GW_MASK(num) \
158 (0xffffffff & (~(0x3 << MLXBF_I2C_GPIO_SMBUS_GW_PINS(num))))
159
160 #define MLXBF_I2C_GPIO_SMBUS_GW_RESET_PINS(num, val) \
161 ((val) & MLXBF_I2C_GPIO_SMBUS_GW_MASK(num))
162
163 #define MLXBF_I2C_GPIO_SMBUS_GW_ASSERT_PINS(num, val) \
164 ((val) | (0x3 << MLXBF_I2C_GPIO_SMBUS_GW_PINS(num)))
165
166 /* SMBus timing parameters. */
167 #define MLXBF_I2C_SMBUS_TIMER_SCL_LOW_SCL_HIGH 0x00
168 #define MLXBF_I2C_SMBUS_TIMER_FALL_RISE_SPIKE 0x04
169 #define MLXBF_I2C_SMBUS_TIMER_THOLD 0x08
170 #define MLXBF_I2C_SMBUS_TIMER_TSETUP_START_STOP 0x0c
171 #define MLXBF_I2C_SMBUS_TIMER_TSETUP_DATA 0x10
172 #define MLXBF_I2C_SMBUS_THIGH_MAX_TBUF 0x14
173 #define MLXBF_I2C_SMBUS_SCL_LOW_TIMEOUT 0x18
174
175 /*
176 * Defines SMBus operating frequency and core clock frequency.
177 * According to ADB files, default values are compliant to 100KHz SMBus
178 * @ 400MHz core clock. The driver should be able to calculate core
179 * frequency based on PLL parameters.
180 */
181 #define MLXBF_I2C_COREPLL_FREQ MLXBF_I2C_TYU_PLL_OUT_FREQ
182
183 /* Core PLL TYU configuration. */
184 #define MLXBF_I2C_COREPLL_CORE_F_TYU_MASK GENMASK(12, 0)
185 #define MLXBF_I2C_COREPLL_CORE_OD_TYU_MASK GENMASK(3, 0)
186 #define MLXBF_I2C_COREPLL_CORE_R_TYU_MASK GENMASK(5, 0)
187
188 #define MLXBF_I2C_COREPLL_CORE_F_TYU_SHIFT 3
189 #define MLXBF_I2C_COREPLL_CORE_OD_TYU_SHIFT 16
190 #define MLXBF_I2C_COREPLL_CORE_R_TYU_SHIFT 20
191
192 /* Core PLL YU configuration. */
193 #define MLXBF_I2C_COREPLL_CORE_F_YU_MASK GENMASK(25, 0)
194 #define MLXBF_I2C_COREPLL_CORE_OD_YU_MASK GENMASK(3, 0)
195 #define MLXBF_I2C_COREPLL_CORE_R_YU_MASK GENMASK(5, 0)
196
197 #define MLXBF_I2C_COREPLL_CORE_F_YU_SHIFT 0
198 #define MLXBF_I2C_COREPLL_CORE_OD_YU_SHIFT 1
199 #define MLXBF_I2C_COREPLL_CORE_R_YU_SHIFT 26
200
201 /* Core PLL frequency. */
202 static u64 mlxbf_i2c_corepll_frequency;
203
204 /* SMBus Master GW. */
205 #define MLXBF_I2C_SMBUS_MASTER_GW 0x200
206 /* Number of bytes received and sent. */
207 #define MLXBF_I2C_SMBUS_RS_BYTES 0x300
208 /* Packet error check (PEC) value. */
209 #define MLXBF_I2C_SMBUS_MASTER_PEC 0x304
210 /* Status bits (ACK/NACK/FW Timeout). */
211 #define MLXBF_I2C_SMBUS_MASTER_STATUS 0x308
212 /* SMbus Master Finite State Machine. */
213 #define MLXBF_I2C_SMBUS_MASTER_FSM 0x310
214
215 /*
216 * When enabled, the master will issue a stop condition in case of
217 * timeout while waiting for FW response.
218 */
219 #define MLXBF_I2C_SMBUS_EN_FW_TIMEOUT 0x31c
220
221 /* SMBus master GW control bits offset in MLXBF_I2C_SMBUS_MASTER_GW[31:3]. */
222 #define MLXBF_I2C_MASTER_LOCK_BIT BIT(31) /* Lock bit. */
223 #define MLXBF_I2C_MASTER_BUSY_BIT BIT(30) /* Busy bit. */
224 #define MLXBF_I2C_MASTER_START_BIT BIT(29) /* Control start. */
225 #define MLXBF_I2C_MASTER_CTL_WRITE_BIT BIT(28) /* Control write phase. */
226 #define MLXBF_I2C_MASTER_CTL_READ_BIT BIT(19) /* Control read phase. */
227 #define MLXBF_I2C_MASTER_STOP_BIT BIT(3) /* Control stop. */
228
229 #define MLXBF_I2C_MASTER_ENABLE \
230 (MLXBF_I2C_MASTER_LOCK_BIT | MLXBF_I2C_MASTER_BUSY_BIT | \
231 MLXBF_I2C_MASTER_START_BIT | MLXBF_I2C_MASTER_STOP_BIT)
232
233 #define MLXBF_I2C_MASTER_ENABLE_WRITE \
234 (MLXBF_I2C_MASTER_ENABLE | MLXBF_I2C_MASTER_CTL_WRITE_BIT)
235
236 #define MLXBF_I2C_MASTER_ENABLE_READ \
237 (MLXBF_I2C_MASTER_ENABLE | MLXBF_I2C_MASTER_CTL_READ_BIT)
238
239 #define MLXBF_I2C_MASTER_SLV_ADDR_SHIFT 12 /* Slave address shift. */
240 #define MLXBF_I2C_MASTER_WRITE_SHIFT 21 /* Control write bytes shift. */
241 #define MLXBF_I2C_MASTER_SEND_PEC_SHIFT 20 /* Send PEC byte shift. */
242 #define MLXBF_I2C_MASTER_PARSE_EXP_SHIFT 11 /* Parse expected bytes shift. */
243 #define MLXBF_I2C_MASTER_READ_SHIFT 4 /* Control read bytes shift. */
244
245 /* SMBus master GW Data descriptor. */
246 #define MLXBF_I2C_MASTER_DATA_DESC_ADDR 0x280
247 #define MLXBF_I2C_MASTER_DATA_DESC_SIZE 0x80 /* Size in bytes. */
248
249 /* Maximum bytes to read/write per SMBus transaction. */
250 #define MLXBF_I2C_MASTER_DATA_R_LENGTH MLXBF_I2C_MASTER_DATA_DESC_SIZE
251 #define MLXBF_I2C_MASTER_DATA_W_LENGTH (MLXBF_I2C_MASTER_DATA_DESC_SIZE - 1)
252
253 /* All bytes were transmitted. */
254 #define MLXBF_I2C_SMBUS_STATUS_BYTE_CNT_DONE BIT(0)
255 /* NACK received. */
256 #define MLXBF_I2C_SMBUS_STATUS_NACK_RCV BIT(1)
257 /* Slave's byte count >128 bytes. */
258 #define MLXBF_I2C_SMBUS_STATUS_READ_ERR BIT(2)
259 /* Timeout occurred. */
260 #define MLXBF_I2C_SMBUS_STATUS_FW_TIMEOUT BIT(3)
261
262 #define MLXBF_I2C_SMBUS_MASTER_STATUS_MASK GENMASK(3, 0)
263
264 #define MLXBF_I2C_SMBUS_MASTER_STATUS_ERROR \
265 (MLXBF_I2C_SMBUS_STATUS_NACK_RCV | \
266 MLXBF_I2C_SMBUS_STATUS_READ_ERR | \
267 MLXBF_I2C_SMBUS_STATUS_FW_TIMEOUT)
268
269 #define MLXBF_I2C_SMBUS_MASTER_FSM_STOP_MASK BIT(31)
270 #define MLXBF_I2C_SMBUS_MASTER_FSM_PS_STATE_MASK BIT(15)
271
272 /* SMBus slave GW. */
273 #define MLXBF_I2C_SMBUS_SLAVE_GW 0x400
274 /* Number of bytes received and sent from/to master. */
275 #define MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES 0x500
276 /* Packet error check (PEC) value. */
277 #define MLXBF_I2C_SMBUS_SLAVE_PEC 0x504
278 /* SMBus slave Finite State Machine (FSM). */
279 #define MLXBF_I2C_SMBUS_SLAVE_FSM 0x510
280 /*
281 * Should be set when all raised causes handled, and cleared by HW on
282 * every new cause.
283 */
284 #define MLXBF_I2C_SMBUS_SLAVE_READY 0x52c
285
286 /* SMBus slave GW control bits offset in MLXBF_I2C_SMBUS_SLAVE_GW[31:19]. */
287 #define MLXBF_I2C_SLAVE_BUSY_BIT BIT(30) /* Busy bit. */
288 #define MLXBF_I2C_SLAVE_WRITE_BIT BIT(29) /* Control write enable. */
289
290 #define MLXBF_I2C_SLAVE_ENABLE \
291 (MLXBF_I2C_SLAVE_BUSY_BIT | MLXBF_I2C_SLAVE_WRITE_BIT)
292
293 #define MLXBF_I2C_SLAVE_WRITE_BYTES_SHIFT 22 /* Number of bytes to write. */
294 #define MLXBF_I2C_SLAVE_SEND_PEC_SHIFT 21 /* Send PEC byte shift. */
295
296 /* SMBus slave GW Data descriptor. */
297 #define MLXBF_I2C_SLAVE_DATA_DESC_ADDR 0x480
298 #define MLXBF_I2C_SLAVE_DATA_DESC_SIZE 0x80 /* Size in bytes. */
299
300 /* SMbus slave configuration registers. */
301 #define MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG 0x514
302 #define MLXBF_I2C_SMBUS_SLAVE_ADDR_CNT 16
303 #define MLXBF_I2C_SMBUS_SLAVE_ADDR_EN_BIT 7
304 #define MLXBF_I2C_SMBUS_SLAVE_ADDR_MASK GENMASK(6, 0)
305
306 #define MLXBF_I2C_SLAVE_ADDR_ENABLED(addr) \
307 ((addr) & (1 << MLXBF_I2C_SMBUS_SLAVE_ADDR_EN_BIT))
308
309 /*
310 * Timeout is given in microsends. Note also that timeout handling is not
311 * exact.
312 */
313 #define MLXBF_I2C_SMBUS_TIMEOUT (300 * 1000) /* 300ms */
314
315 /* Encapsulates timing parameters. */
316 struct mlxbf_i2c_timings {
317 u16 scl_high; /* Clock high period. */
318 u16 scl_low; /* Clock low period. */
319 u8 sda_rise; /* Data rise time. */
320 u8 sda_fall; /* Data fall time. */
321 u8 scl_rise; /* Clock rise time. */
322 u8 scl_fall; /* Clock fall time. */
323 u16 hold_start; /* Hold time after (REPEATED) START. */
324 u16 hold_data; /* Data hold time. */
325 u16 setup_start; /* REPEATED START condition setup time. */
326 u16 setup_stop; /* STOP condition setup time. */
327 u16 setup_data; /* Data setup time. */
328 u16 pad; /* Padding. */
329 u16 buf; /* Bus free time between STOP and START. */
330 u16 thigh_max; /* Thigh max. */
331 u32 timeout; /* Detect clock low timeout. */
332 };
333
334 enum {
335 MLXBF_I2C_F_READ = BIT(0),
336 MLXBF_I2C_F_WRITE = BIT(1),
337 MLXBF_I2C_F_NORESTART = BIT(3),
338 MLXBF_I2C_F_SMBUS_OPERATION = BIT(4),
339 MLXBF_I2C_F_SMBUS_BLOCK = BIT(5),
340 MLXBF_I2C_F_SMBUS_PEC = BIT(6),
341 MLXBF_I2C_F_SMBUS_PROCESS_CALL = BIT(7),
342 };
343
344 struct mlxbf_i2c_smbus_operation {
345 u32 flags;
346 u32 length; /* Buffer length in bytes. */
347 u8 *buffer;
348 };
349
350 #define MLXBF_I2C_SMBUS_OP_CNT_1 1
351 #define MLXBF_I2C_SMBUS_OP_CNT_2 2
352 #define MLXBF_I2C_SMBUS_OP_CNT_3 3
353 #define MLXBF_I2C_SMBUS_MAX_OP_CNT MLXBF_I2C_SMBUS_OP_CNT_3
354
355 struct mlxbf_i2c_smbus_request {
356 u8 slave;
357 u8 operation_cnt;
358 struct mlxbf_i2c_smbus_operation operation[MLXBF_I2C_SMBUS_MAX_OP_CNT];
359 };
360
361 struct mlxbf_i2c_resource {
362 void __iomem *io;
363 struct resource *params;
364 struct mutex *lock; /* Mutex to protect mlxbf_i2c_resource. */
365 u8 type;
366 };
367
368 /* List of chip resources that are being accessed by the driver. */
369 enum {
370 MLXBF_I2C_SMBUS_RES,
371 MLXBF_I2C_MST_CAUSE_RES,
372 MLXBF_I2C_SLV_CAUSE_RES,
373 MLXBF_I2C_COALESCE_RES,
374 MLXBF_I2C_COREPLL_RES,
375 MLXBF_I2C_GPIO_RES,
376 MLXBF_I2C_END_RES,
377 };
378
379 /* Helper macro to define an I2C resource parameters. */
380 #define MLXBF_I2C_RES_PARAMS(addr, size, str) \
381 { \
382 .start = (addr), \
383 .end = (addr) + (size) - 1, \
384 .name = (str) \
385 }
386
387 static struct resource mlxbf_i2c_coalesce_tyu_params =
388 MLXBF_I2C_RES_PARAMS(MLXBF_I2C_COALESCE_TYU_ADDR,
389 MLXBF_I2C_COALESCE_TYU_SIZE,
390 "COALESCE_MEM");
391 static struct resource mlxbf_i2c_corepll_tyu_params =
392 MLXBF_I2C_RES_PARAMS(MLXBF_I2C_COREPLL_TYU_ADDR,
393 MLXBF_I2C_COREPLL_TYU_SIZE,
394 "COREPLL_MEM");
395 static struct resource mlxbf_i2c_corepll_yu_params =
396 MLXBF_I2C_RES_PARAMS(MLXBF_I2C_COREPLL_YU_ADDR,
397 MLXBF_I2C_COREPLL_YU_SIZE,
398 "COREPLL_MEM");
399 static struct resource mlxbf_i2c_gpio_tyu_params =
400 MLXBF_I2C_RES_PARAMS(MLXBF_I2C_GPIO_TYU_ADDR,
401 MLXBF_I2C_GPIO_TYU_SIZE,
402 "GPIO_MEM");
403
404 static struct mutex mlxbf_i2c_coalesce_lock;
405 static struct mutex mlxbf_i2c_corepll_lock;
406 static struct mutex mlxbf_i2c_gpio_lock;
407
408 /* Mellanox BlueField chip type. */
409 enum mlxbf_i2c_chip_type {
410 MLXBF_I2C_CHIP_TYPE_1, /* Mellanox BlueField-1 chip. */
411 MLXBF_I2C_CHIP_TYPE_2, /* Mallanox BlueField-2 chip. */
412 };
413
414 struct mlxbf_i2c_chip_info {
415 enum mlxbf_i2c_chip_type type;
416 /* Chip shared resources that are being used by the I2C controller. */
417 struct mlxbf_i2c_resource *shared_res[MLXBF_I2C_SHARED_RES_MAX];
418
419 /* Callback to calculate the core PLL frequency. */
420 u64 (*calculate_freq)(struct mlxbf_i2c_resource *corepll_res);
421 };
422
423 struct mlxbf_i2c_priv {
424 const struct mlxbf_i2c_chip_info *chip;
425 struct i2c_adapter adap;
426 struct mlxbf_i2c_resource *smbus;
427 struct mlxbf_i2c_resource *mst_cause;
428 struct mlxbf_i2c_resource *slv_cause;
429 struct mlxbf_i2c_resource *coalesce;
430 u64 frequency; /* Core frequency in Hz. */
431 int bus; /* Physical bus identifier. */
432 int irq;
433 struct i2c_client *slave;
434 };
435
436 static struct mlxbf_i2c_resource mlxbf_i2c_coalesce_res[] = {
437 [MLXBF_I2C_CHIP_TYPE_1] = {
438 .params = &mlxbf_i2c_coalesce_tyu_params,
439 .lock = &mlxbf_i2c_coalesce_lock,
440 .type = MLXBF_I2C_COALESCE_RES
441 },
442 {}
443 };
444
445 static struct mlxbf_i2c_resource mlxbf_i2c_corepll_res[] = {
446 [MLXBF_I2C_CHIP_TYPE_1] = {
447 .params = &mlxbf_i2c_corepll_tyu_params,
448 .lock = &mlxbf_i2c_corepll_lock,
449 .type = MLXBF_I2C_COREPLL_RES
450 },
451 [MLXBF_I2C_CHIP_TYPE_2] = {
452 .params = &mlxbf_i2c_corepll_yu_params,
453 .lock = &mlxbf_i2c_corepll_lock,
454 .type = MLXBF_I2C_COREPLL_RES,
455 }
456 };
457
458 static struct mlxbf_i2c_resource mlxbf_i2c_gpio_res[] = {
459 [MLXBF_I2C_CHIP_TYPE_1] = {
460 .params = &mlxbf_i2c_gpio_tyu_params,
461 .lock = &mlxbf_i2c_gpio_lock,
462 .type = MLXBF_I2C_GPIO_RES
463 },
464 {}
465 };
466
467 static u8 mlxbf_i2c_bus_count;
468
469 static struct mutex mlxbf_i2c_bus_lock;
470
471 /* Polling frequency in microseconds. */
472 #define MLXBF_I2C_POLL_FREQ_IN_USEC 200
473
474 #define MLXBF_I2C_SHIFT_0 0
475 #define MLXBF_I2C_SHIFT_8 8
476 #define MLXBF_I2C_SHIFT_16 16
477 #define MLXBF_I2C_SHIFT_24 24
478
479 #define MLXBF_I2C_MASK_8 GENMASK(7, 0)
480 #define MLXBF_I2C_MASK_16 GENMASK(15, 0)
481
482 #define MLXBF_I2C_FREQUENCY_1GHZ 1000000000
483
484 /*
485 * Function to poll a set of bits at a specific address; it checks whether
486 * the bits are equal to zero when eq_zero is set to 'true', and not equal
487 * to zero when eq_zero is set to 'false'.
488 * Note that the timeout is given in microseconds.
489 */
mlxbf_smbus_poll(void __iomem * io,u32 addr,u32 mask,bool eq_zero,u32 timeout)490 static u32 mlxbf_smbus_poll(void __iomem *io, u32 addr, u32 mask,
491 bool eq_zero, u32 timeout)
492 {
493 u32 bits;
494
495 timeout = (timeout / MLXBF_I2C_POLL_FREQ_IN_USEC) + 1;
496
497 do {
498 bits = readl(io + addr) & mask;
499 if (eq_zero ? bits == 0 : bits != 0)
500 return eq_zero ? 1 : bits;
501 udelay(MLXBF_I2C_POLL_FREQ_IN_USEC);
502 } while (timeout-- != 0);
503
504 return 0;
505 }
506
507 /*
508 * SW must make sure that the SMBus Master GW is idle before starting
509 * a transaction. Accordingly, this function polls the Master FSM stop
510 * bit; it returns false when the bit is asserted, true if not.
511 */
mlxbf_smbus_master_wait_for_idle(struct mlxbf_i2c_priv * priv)512 static bool mlxbf_smbus_master_wait_for_idle(struct mlxbf_i2c_priv *priv)
513 {
514 u32 mask = MLXBF_I2C_SMBUS_MASTER_FSM_STOP_MASK;
515 u32 addr = MLXBF_I2C_SMBUS_MASTER_FSM;
516 u32 timeout = MLXBF_I2C_SMBUS_TIMEOUT;
517
518 if (mlxbf_smbus_poll(priv->smbus->io, addr, mask, true, timeout))
519 return true;
520
521 return false;
522 }
523
mlxbf_i2c_smbus_transaction_success(u32 master_status,u32 cause_status)524 static bool mlxbf_i2c_smbus_transaction_success(u32 master_status,
525 u32 cause_status)
526 {
527 /*
528 * When transaction ended with STOP, all bytes were transmitted,
529 * and no NACK received, then the transaction ended successfully.
530 * On the other hand, when the GW is configured with the stop bit
531 * de-asserted then the SMBus expects the following GW configuration
532 * for transfer continuation.
533 */
534 if ((cause_status & MLXBF_I2C_CAUSE_WAIT_FOR_FW_DATA) ||
535 ((cause_status & MLXBF_I2C_CAUSE_TRANSACTION_ENDED) &&
536 (master_status & MLXBF_I2C_SMBUS_STATUS_BYTE_CNT_DONE) &&
537 !(master_status & MLXBF_I2C_SMBUS_STATUS_NACK_RCV)))
538 return true;
539
540 return false;
541 }
542
543 /*
544 * Poll SMBus master status and return transaction status,
545 * i.e. whether succeeded or failed. I2C and SMBus fault codes
546 * are returned as negative numbers from most calls, with zero
547 * or some positive number indicating a non-fault return.
548 */
mlxbf_i2c_smbus_check_status(struct mlxbf_i2c_priv * priv)549 static int mlxbf_i2c_smbus_check_status(struct mlxbf_i2c_priv *priv)
550 {
551 u32 master_status_bits;
552 u32 cause_status_bits;
553
554 /*
555 * GW busy bit is raised by the driver and cleared by the HW
556 * when the transaction is completed. The busy bit is a good
557 * indicator of transaction status. So poll the busy bit, and
558 * then read the cause and master status bits to determine if
559 * errors occurred during the transaction.
560 */
561 mlxbf_smbus_poll(priv->smbus->io, MLXBF_I2C_SMBUS_MASTER_GW,
562 MLXBF_I2C_MASTER_BUSY_BIT, true,
563 MLXBF_I2C_SMBUS_TIMEOUT);
564
565 /* Read cause status bits. */
566 cause_status_bits = readl(priv->mst_cause->io +
567 MLXBF_I2C_CAUSE_ARBITER);
568 cause_status_bits &= MLXBF_I2C_CAUSE_MASTER_ARBITER_BITS_MASK;
569
570 /*
571 * Parse both Cause and Master GW bits, then return transaction status.
572 */
573
574 master_status_bits = readl(priv->smbus->io +
575 MLXBF_I2C_SMBUS_MASTER_STATUS);
576 master_status_bits &= MLXBF_I2C_SMBUS_MASTER_STATUS_MASK;
577
578 if (mlxbf_i2c_smbus_transaction_success(master_status_bits,
579 cause_status_bits))
580 return 0;
581
582 /*
583 * In case of timeout on GW busy, the ISR will clear busy bit but
584 * transaction ended bits cause will not be set so the transaction
585 * fails. Then, we must check Master GW status bits.
586 */
587 if ((master_status_bits & MLXBF_I2C_SMBUS_MASTER_STATUS_ERROR) &&
588 (cause_status_bits & (MLXBF_I2C_CAUSE_TRANSACTION_ENDED |
589 MLXBF_I2C_CAUSE_M_GW_BUSY_FALL)))
590 return -EIO;
591
592 if (cause_status_bits & MLXBF_I2C_CAUSE_MASTER_STATUS_ERROR)
593 return -EAGAIN;
594
595 return -ETIMEDOUT;
596 }
597
mlxbf_i2c_smbus_write_data(struct mlxbf_i2c_priv * priv,const u8 * data,u8 length,u32 addr)598 static void mlxbf_i2c_smbus_write_data(struct mlxbf_i2c_priv *priv,
599 const u8 *data, u8 length, u32 addr)
600 {
601 u8 offset, aligned_length;
602 u32 data32;
603
604 aligned_length = round_up(length, 4);
605
606 /*
607 * Copy data bytes from 4-byte aligned source buffer.
608 * Data copied to the Master GW Data Descriptor MUST be shifted
609 * left so the data starts at the MSB of the descriptor registers
610 * as required by the underlying hardware. Enable byte swapping
611 * when writing data bytes to the 32 * 32-bit HW Data registers
612 * a.k.a Master GW Data Descriptor.
613 */
614 for (offset = 0; offset < aligned_length; offset += sizeof(u32)) {
615 data32 = *((u32 *)(data + offset));
616 iowrite32be(data32, priv->smbus->io + addr + offset);
617 }
618 }
619
mlxbf_i2c_smbus_read_data(struct mlxbf_i2c_priv * priv,u8 * data,u8 length,u32 addr)620 static void mlxbf_i2c_smbus_read_data(struct mlxbf_i2c_priv *priv,
621 u8 *data, u8 length, u32 addr)
622 {
623 u32 data32, mask;
624 u8 byte, offset;
625
626 mask = sizeof(u32) - 1;
627
628 /*
629 * Data bytes in the Master GW Data Descriptor are shifted left
630 * so the data starts at the MSB of the descriptor registers as
631 * set by the underlying hardware. Enable byte swapping while
632 * reading data bytes from the 32 * 32-bit HW Data registers
633 * a.k.a Master GW Data Descriptor.
634 */
635
636 for (offset = 0; offset < (length & ~mask); offset += sizeof(u32)) {
637 data32 = ioread32be(priv->smbus->io + addr + offset);
638 *((u32 *)(data + offset)) = data32;
639 }
640
641 if (!(length & mask))
642 return;
643
644 data32 = ioread32be(priv->smbus->io + addr + offset);
645
646 for (byte = 0; byte < (length & mask); byte++) {
647 data[offset + byte] = data32 & GENMASK(7, 0);
648 data32 = ror32(data32, MLXBF_I2C_SHIFT_8);
649 }
650 }
651
mlxbf_i2c_smbus_enable(struct mlxbf_i2c_priv * priv,u8 slave,u8 len,u8 block_en,u8 pec_en,bool read)652 static int mlxbf_i2c_smbus_enable(struct mlxbf_i2c_priv *priv, u8 slave,
653 u8 len, u8 block_en, u8 pec_en, bool read)
654 {
655 u32 command;
656
657 /* Set Master GW control word. */
658 if (read) {
659 command = MLXBF_I2C_MASTER_ENABLE_READ;
660 command |= rol32(len, MLXBF_I2C_MASTER_READ_SHIFT);
661 } else {
662 command = MLXBF_I2C_MASTER_ENABLE_WRITE;
663 command |= rol32(len, MLXBF_I2C_MASTER_WRITE_SHIFT);
664 }
665 command |= rol32(slave, MLXBF_I2C_MASTER_SLV_ADDR_SHIFT);
666 command |= rol32(block_en, MLXBF_I2C_MASTER_PARSE_EXP_SHIFT);
667 command |= rol32(pec_en, MLXBF_I2C_MASTER_SEND_PEC_SHIFT);
668
669 /* Clear status bits. */
670 writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_MASTER_STATUS);
671 /* Set the cause data. */
672 writel(~0x0, priv->smbus->io + MLXBF_I2C_CAUSE_OR_CLEAR);
673 /* Zero PEC byte. */
674 writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_MASTER_PEC);
675 /* Zero byte count. */
676 writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_RS_BYTES);
677
678 /* GW activation. */
679 writel(command, priv->smbus->io + MLXBF_I2C_SMBUS_MASTER_GW);
680
681 /*
682 * Poll master status and check status bits. An ACK is sent when
683 * completing writing data to the bus (Master 'byte_count_done' bit
684 * is set to 1).
685 */
686 return mlxbf_i2c_smbus_check_status(priv);
687 }
688
689 static int
mlxbf_i2c_smbus_start_transaction(struct mlxbf_i2c_priv * priv,struct mlxbf_i2c_smbus_request * request)690 mlxbf_i2c_smbus_start_transaction(struct mlxbf_i2c_priv *priv,
691 struct mlxbf_i2c_smbus_request *request)
692 {
693 u8 data_desc[MLXBF_I2C_MASTER_DATA_DESC_SIZE] = { 0 };
694 u8 op_idx, data_idx, data_len, write_len, read_len;
695 struct mlxbf_i2c_smbus_operation *operation;
696 u8 read_en, write_en, block_en, pec_en;
697 u8 slave, flags, addr;
698 u8 *read_buf;
699 int ret = 0;
700
701 if (request->operation_cnt > MLXBF_I2C_SMBUS_MAX_OP_CNT)
702 return -EINVAL;
703
704 read_buf = NULL;
705 data_idx = 0;
706 read_en = 0;
707 write_en = 0;
708 write_len = 0;
709 read_len = 0;
710 block_en = 0;
711 pec_en = 0;
712 slave = request->slave & GENMASK(6, 0);
713 addr = slave << 1;
714
715 /* First of all, check whether the HW is idle. */
716 if (WARN_ON(!mlxbf_smbus_master_wait_for_idle(priv)))
717 return -EBUSY;
718
719 /* Set first byte. */
720 data_desc[data_idx++] = addr;
721
722 for (op_idx = 0; op_idx < request->operation_cnt; op_idx++) {
723 operation = &request->operation[op_idx];
724 flags = operation->flags;
725
726 /*
727 * Note that read and write operations might be handled by a
728 * single command. If the MLXBF_I2C_F_SMBUS_OPERATION is set
729 * then write command byte and set the optional SMBus specific
730 * bits such as block_en and pec_en. These bits MUST be
731 * submitted by the first operation only.
732 */
733 if (op_idx == 0 && flags & MLXBF_I2C_F_SMBUS_OPERATION) {
734 block_en = flags & MLXBF_I2C_F_SMBUS_BLOCK;
735 pec_en = flags & MLXBF_I2C_F_SMBUS_PEC;
736 }
737
738 if (flags & MLXBF_I2C_F_WRITE) {
739 write_en = 1;
740 write_len += operation->length;
741 memcpy(data_desc + data_idx,
742 operation->buffer, operation->length);
743 data_idx += operation->length;
744 }
745 /*
746 * We assume that read operations are performed only once per
747 * SMBus transaction. *TBD* protect this statement so it won't
748 * be executed twice? or return an error if we try to read more
749 * than once?
750 */
751 if (flags & MLXBF_I2C_F_READ) {
752 read_en = 1;
753 /* Subtract 1 as required by HW. */
754 read_len = operation->length - 1;
755 read_buf = operation->buffer;
756 }
757 }
758
759 /* Set Master GW data descriptor. */
760 data_len = write_len + 1; /* Add one byte of the slave address. */
761 /*
762 * Note that data_len cannot be 0. Indeed, the slave address byte
763 * must be written to the data registers.
764 */
765 mlxbf_i2c_smbus_write_data(priv, (const u8 *)data_desc, data_len,
766 MLXBF_I2C_MASTER_DATA_DESC_ADDR);
767
768 if (write_en) {
769 ret = mlxbf_i2c_smbus_enable(priv, slave, write_len, block_en,
770 pec_en, 0);
771 if (ret)
772 return ret;
773 }
774
775 if (read_en) {
776 /* Write slave address to Master GW data descriptor. */
777 mlxbf_i2c_smbus_write_data(priv, (const u8 *)&addr, 1,
778 MLXBF_I2C_MASTER_DATA_DESC_ADDR);
779 ret = mlxbf_i2c_smbus_enable(priv, slave, read_len, block_en,
780 pec_en, 1);
781 if (!ret) {
782 /* Get Master GW data descriptor. */
783 mlxbf_i2c_smbus_read_data(priv, data_desc, read_len + 1,
784 MLXBF_I2C_MASTER_DATA_DESC_ADDR);
785
786 /* Get data from Master GW data descriptor. */
787 memcpy(read_buf, data_desc, read_len + 1);
788 }
789
790 /*
791 * After a read operation the SMBus FSM ps (present state)
792 * needs to be 'manually' reset. This should be removed in
793 * next tag integration.
794 */
795 writel(MLXBF_I2C_SMBUS_MASTER_FSM_PS_STATE_MASK,
796 priv->smbus->io + MLXBF_I2C_SMBUS_MASTER_FSM);
797 }
798
799 return ret;
800 }
801
802 /* I2C SMBus protocols. */
803
804 static void
mlxbf_i2c_smbus_quick_command(struct mlxbf_i2c_smbus_request * request,u8 read)805 mlxbf_i2c_smbus_quick_command(struct mlxbf_i2c_smbus_request *request,
806 u8 read)
807 {
808 request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_1;
809
810 request->operation[0].length = 0;
811 request->operation[0].flags = MLXBF_I2C_F_WRITE;
812 request->operation[0].flags |= read ? MLXBF_I2C_F_READ : 0;
813 }
814
mlxbf_i2c_smbus_byte_func(struct mlxbf_i2c_smbus_request * request,u8 * data,bool read,bool pec_check)815 static void mlxbf_i2c_smbus_byte_func(struct mlxbf_i2c_smbus_request *request,
816 u8 *data, bool read, bool pec_check)
817 {
818 request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_1;
819
820 request->operation[0].length = 1;
821 request->operation[0].length += pec_check;
822
823 request->operation[0].flags = MLXBF_I2C_F_SMBUS_OPERATION;
824 request->operation[0].flags |= read ?
825 MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
826 request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
827
828 request->operation[0].buffer = data;
829 }
830
831 static void
mlxbf_i2c_smbus_data_byte_func(struct mlxbf_i2c_smbus_request * request,u8 * command,u8 * data,bool read,bool pec_check)832 mlxbf_i2c_smbus_data_byte_func(struct mlxbf_i2c_smbus_request *request,
833 u8 *command, u8 *data, bool read, bool pec_check)
834 {
835 request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2;
836
837 request->operation[0].length = 1;
838 request->operation[0].flags =
839 MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
840 request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
841 request->operation[0].buffer = command;
842
843 request->operation[1].length = 1;
844 request->operation[1].length += pec_check;
845 request->operation[1].flags = read ?
846 MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
847 request->operation[1].buffer = data;
848 }
849
850 static void
mlxbf_i2c_smbus_data_word_func(struct mlxbf_i2c_smbus_request * request,u8 * command,u8 * data,bool read,bool pec_check)851 mlxbf_i2c_smbus_data_word_func(struct mlxbf_i2c_smbus_request *request,
852 u8 *command, u8 *data, bool read, bool pec_check)
853 {
854 request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2;
855
856 request->operation[0].length = 1;
857 request->operation[0].flags =
858 MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
859 request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
860 request->operation[0].buffer = command;
861
862 request->operation[1].length = 2;
863 request->operation[1].length += pec_check;
864 request->operation[1].flags = read ?
865 MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
866 request->operation[1].buffer = data;
867 }
868
869 static void
mlxbf_i2c_smbus_i2c_block_func(struct mlxbf_i2c_smbus_request * request,u8 * command,u8 * data,u8 * data_len,bool read,bool pec_check)870 mlxbf_i2c_smbus_i2c_block_func(struct mlxbf_i2c_smbus_request *request,
871 u8 *command, u8 *data, u8 *data_len, bool read,
872 bool pec_check)
873 {
874 request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2;
875
876 request->operation[0].length = 1;
877 request->operation[0].flags =
878 MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
879 request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
880 request->operation[0].buffer = command;
881
882 /*
883 * As specified in the standard, the max number of bytes to read/write
884 * per block operation is 32 bytes. In Golan code, the controller can
885 * read up to 128 bytes and write up to 127 bytes.
886 */
887 request->operation[1].length =
888 (*data_len + pec_check > I2C_SMBUS_BLOCK_MAX) ?
889 I2C_SMBUS_BLOCK_MAX : *data_len + pec_check;
890 request->operation[1].flags = read ?
891 MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
892 /*
893 * Skip the first data byte, which corresponds to the number of bytes
894 * to read/write.
895 */
896 request->operation[1].buffer = data + 1;
897
898 *data_len = request->operation[1].length;
899
900 /* Set the number of byte to read. This will be used by userspace. */
901 if (read)
902 data[0] = *data_len;
903 }
904
mlxbf_i2c_smbus_block_func(struct mlxbf_i2c_smbus_request * request,u8 * command,u8 * data,u8 * data_len,bool read,bool pec_check)905 static void mlxbf_i2c_smbus_block_func(struct mlxbf_i2c_smbus_request *request,
906 u8 *command, u8 *data, u8 *data_len,
907 bool read, bool pec_check)
908 {
909 request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2;
910
911 request->operation[0].length = 1;
912 request->operation[0].flags =
913 MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
914 request->operation[0].flags |= MLXBF_I2C_F_SMBUS_BLOCK;
915 request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
916 request->operation[0].buffer = command;
917
918 request->operation[1].length =
919 (*data_len + pec_check > I2C_SMBUS_BLOCK_MAX) ?
920 I2C_SMBUS_BLOCK_MAX : *data_len + pec_check;
921 request->operation[1].flags = read ?
922 MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
923 request->operation[1].buffer = data + 1;
924
925 *data_len = request->operation[1].length;
926
927 /* Set the number of bytes to read. This will be used by userspace. */
928 if (read)
929 data[0] = *data_len;
930 }
931
932 static void
mlxbf_i2c_smbus_process_call_func(struct mlxbf_i2c_smbus_request * request,u8 * command,u8 * data,bool pec_check)933 mlxbf_i2c_smbus_process_call_func(struct mlxbf_i2c_smbus_request *request,
934 u8 *command, u8 *data, bool pec_check)
935 {
936 request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_3;
937
938 request->operation[0].length = 1;
939 request->operation[0].flags =
940 MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
941 request->operation[0].flags |= MLXBF_I2C_F_SMBUS_BLOCK;
942 request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
943 request->operation[0].buffer = command;
944
945 request->operation[1].length = 2;
946 request->operation[1].flags = MLXBF_I2C_F_WRITE;
947 request->operation[1].buffer = data;
948
949 request->operation[2].length = 3;
950 request->operation[2].flags = MLXBF_I2C_F_READ;
951 request->operation[2].buffer = data;
952 }
953
954 static void
mlxbf_i2c_smbus_blk_process_call_func(struct mlxbf_i2c_smbus_request * request,u8 * command,u8 * data,u8 * data_len,bool pec_check)955 mlxbf_i2c_smbus_blk_process_call_func(struct mlxbf_i2c_smbus_request *request,
956 u8 *command, u8 *data, u8 *data_len,
957 bool pec_check)
958 {
959 u32 length;
960
961 request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_3;
962
963 request->operation[0].length = 1;
964 request->operation[0].flags =
965 MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
966 request->operation[0].flags |= MLXBF_I2C_F_SMBUS_BLOCK;
967 request->operation[0].flags |= (pec_check) ? MLXBF_I2C_F_SMBUS_PEC : 0;
968 request->operation[0].buffer = command;
969
970 length = (*data_len + pec_check > I2C_SMBUS_BLOCK_MAX) ?
971 I2C_SMBUS_BLOCK_MAX : *data_len + pec_check;
972
973 request->operation[1].length = length - pec_check;
974 request->operation[1].flags = MLXBF_I2C_F_WRITE;
975 request->operation[1].buffer = data;
976
977 request->operation[2].length = length;
978 request->operation[2].flags = MLXBF_I2C_F_READ;
979 request->operation[2].buffer = data;
980
981 *data_len = length; /* including PEC byte. */
982 }
983
984 /* Initialization functions. */
985
mlxbf_i2c_has_chip_type(struct mlxbf_i2c_priv * priv,u8 type)986 static bool mlxbf_i2c_has_chip_type(struct mlxbf_i2c_priv *priv, u8 type)
987 {
988 return priv->chip->type == type;
989 }
990
991 static struct mlxbf_i2c_resource *
mlxbf_i2c_get_shared_resource(struct mlxbf_i2c_priv * priv,u8 type)992 mlxbf_i2c_get_shared_resource(struct mlxbf_i2c_priv *priv, u8 type)
993 {
994 const struct mlxbf_i2c_chip_info *chip = priv->chip;
995 struct mlxbf_i2c_resource *res;
996 u8 res_idx = 0;
997
998 for (res_idx = 0; res_idx < MLXBF_I2C_SHARED_RES_MAX; res_idx++) {
999 res = chip->shared_res[res_idx];
1000 if (res && res->type == type)
1001 return res;
1002 }
1003
1004 return NULL;
1005 }
1006
mlxbf_i2c_init_resource(struct platform_device * pdev,struct mlxbf_i2c_resource ** res,u8 type)1007 static int mlxbf_i2c_init_resource(struct platform_device *pdev,
1008 struct mlxbf_i2c_resource **res,
1009 u8 type)
1010 {
1011 struct mlxbf_i2c_resource *tmp_res;
1012 struct device *dev = &pdev->dev;
1013
1014 if (!res || *res || type >= MLXBF_I2C_END_RES)
1015 return -EINVAL;
1016
1017 tmp_res = devm_kzalloc(dev, sizeof(struct mlxbf_i2c_resource),
1018 GFP_KERNEL);
1019 if (!tmp_res)
1020 return -ENOMEM;
1021
1022 tmp_res->params = platform_get_resource(pdev, IORESOURCE_MEM, type);
1023 if (!tmp_res->params) {
1024 devm_kfree(dev, tmp_res);
1025 return -EIO;
1026 }
1027
1028 tmp_res->io = devm_ioremap_resource(dev, tmp_res->params);
1029 if (IS_ERR(tmp_res->io)) {
1030 devm_kfree(dev, tmp_res);
1031 return PTR_ERR(tmp_res->io);
1032 }
1033
1034 tmp_res->type = type;
1035
1036 *res = tmp_res;
1037
1038 return 0;
1039 }
1040
mlxbf_i2c_get_ticks(struct mlxbf_i2c_priv * priv,u64 nanoseconds,bool minimum)1041 static u32 mlxbf_i2c_get_ticks(struct mlxbf_i2c_priv *priv, u64 nanoseconds,
1042 bool minimum)
1043 {
1044 u64 frequency;
1045 u32 ticks;
1046
1047 /*
1048 * Compute ticks as follow:
1049 *
1050 * Ticks
1051 * Time = --------- x 10^9 => Ticks = Time x Frequency x 10^-9
1052 * Frequency
1053 */
1054 frequency = priv->frequency;
1055 ticks = (nanoseconds * frequency) / MLXBF_I2C_FREQUENCY_1GHZ;
1056 /*
1057 * The number of ticks is rounded down and if minimum is equal to 1
1058 * then add one tick.
1059 */
1060 if (minimum)
1061 ticks++;
1062
1063 return ticks;
1064 }
1065
mlxbf_i2c_set_timer(struct mlxbf_i2c_priv * priv,u64 nsec,bool opt,u32 mask,u8 shift)1066 static u32 mlxbf_i2c_set_timer(struct mlxbf_i2c_priv *priv, u64 nsec, bool opt,
1067 u32 mask, u8 shift)
1068 {
1069 u32 val = (mlxbf_i2c_get_ticks(priv, nsec, opt) & mask) << shift;
1070
1071 return val;
1072 }
1073
mlxbf_i2c_set_timings(struct mlxbf_i2c_priv * priv,const struct mlxbf_i2c_timings * timings)1074 static void mlxbf_i2c_set_timings(struct mlxbf_i2c_priv *priv,
1075 const struct mlxbf_i2c_timings *timings)
1076 {
1077 u32 timer;
1078
1079 timer = mlxbf_i2c_set_timer(priv, timings->scl_high,
1080 false, MLXBF_I2C_MASK_16,
1081 MLXBF_I2C_SHIFT_0);
1082 timer |= mlxbf_i2c_set_timer(priv, timings->scl_low,
1083 false, MLXBF_I2C_MASK_16,
1084 MLXBF_I2C_SHIFT_16);
1085 writel(timer, priv->smbus->io +
1086 MLXBF_I2C_SMBUS_TIMER_SCL_LOW_SCL_HIGH);
1087
1088 timer = mlxbf_i2c_set_timer(priv, timings->sda_rise, false,
1089 MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_0);
1090 timer |= mlxbf_i2c_set_timer(priv, timings->sda_fall, false,
1091 MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_8);
1092 timer |= mlxbf_i2c_set_timer(priv, timings->scl_rise, false,
1093 MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_16);
1094 timer |= mlxbf_i2c_set_timer(priv, timings->scl_fall, false,
1095 MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_24);
1096 writel(timer, priv->smbus->io +
1097 MLXBF_I2C_SMBUS_TIMER_FALL_RISE_SPIKE);
1098
1099 timer = mlxbf_i2c_set_timer(priv, timings->hold_start, true,
1100 MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0);
1101 timer |= mlxbf_i2c_set_timer(priv, timings->hold_data, true,
1102 MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_16);
1103 writel(timer, priv->smbus->io + MLXBF_I2C_SMBUS_TIMER_THOLD);
1104
1105 timer = mlxbf_i2c_set_timer(priv, timings->setup_start, true,
1106 MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0);
1107 timer |= mlxbf_i2c_set_timer(priv, timings->setup_stop, true,
1108 MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_16);
1109 writel(timer, priv->smbus->io +
1110 MLXBF_I2C_SMBUS_TIMER_TSETUP_START_STOP);
1111
1112 timer = mlxbf_i2c_set_timer(priv, timings->setup_data, true,
1113 MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0);
1114 writel(timer, priv->smbus->io + MLXBF_I2C_SMBUS_TIMER_TSETUP_DATA);
1115
1116 timer = mlxbf_i2c_set_timer(priv, timings->buf, false,
1117 MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0);
1118 timer |= mlxbf_i2c_set_timer(priv, timings->thigh_max, false,
1119 MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_16);
1120 writel(timer, priv->smbus->io + MLXBF_I2C_SMBUS_THIGH_MAX_TBUF);
1121
1122 timer = timings->timeout;
1123 writel(timer, priv->smbus->io + MLXBF_I2C_SMBUS_SCL_LOW_TIMEOUT);
1124 }
1125
1126 enum mlxbf_i2c_timings_config {
1127 MLXBF_I2C_TIMING_CONFIG_100KHZ,
1128 MLXBF_I2C_TIMING_CONFIG_400KHZ,
1129 MLXBF_I2C_TIMING_CONFIG_1000KHZ,
1130 };
1131
1132 /*
1133 * Note that the mlxbf_i2c_timings->timeout value is not related to the
1134 * bus frequency, it is impacted by the time it takes the driver to
1135 * complete data transmission before transaction abort.
1136 */
1137 static const struct mlxbf_i2c_timings mlxbf_i2c_timings[] = {
1138 [MLXBF_I2C_TIMING_CONFIG_100KHZ] = {
1139 .scl_high = 4810,
1140 .scl_low = 5000,
1141 .hold_start = 4000,
1142 .setup_start = 4800,
1143 .setup_stop = 4000,
1144 .setup_data = 250,
1145 .sda_rise = 50,
1146 .sda_fall = 50,
1147 .scl_rise = 50,
1148 .scl_fall = 50,
1149 .hold_data = 300,
1150 .buf = 20000,
1151 .thigh_max = 5000,
1152 .timeout = 106500
1153 },
1154 [MLXBF_I2C_TIMING_CONFIG_400KHZ] = {
1155 .scl_high = 1011,
1156 .scl_low = 1300,
1157 .hold_start = 600,
1158 .setup_start = 700,
1159 .setup_stop = 600,
1160 .setup_data = 100,
1161 .sda_rise = 50,
1162 .sda_fall = 50,
1163 .scl_rise = 50,
1164 .scl_fall = 50,
1165 .hold_data = 300,
1166 .buf = 20000,
1167 .thigh_max = 5000,
1168 .timeout = 106500
1169 },
1170 [MLXBF_I2C_TIMING_CONFIG_1000KHZ] = {
1171 .scl_high = 600,
1172 .scl_low = 1300,
1173 .hold_start = 600,
1174 .setup_start = 600,
1175 .setup_stop = 600,
1176 .setup_data = 100,
1177 .sda_rise = 50,
1178 .sda_fall = 50,
1179 .scl_rise = 50,
1180 .scl_fall = 50,
1181 .hold_data = 300,
1182 .buf = 20000,
1183 .thigh_max = 5000,
1184 .timeout = 106500
1185 }
1186 };
1187
mlxbf_i2c_init_timings(struct platform_device * pdev,struct mlxbf_i2c_priv * priv)1188 static int mlxbf_i2c_init_timings(struct platform_device *pdev,
1189 struct mlxbf_i2c_priv *priv)
1190 {
1191 enum mlxbf_i2c_timings_config config_idx;
1192 struct device *dev = &pdev->dev;
1193 u32 config_khz;
1194
1195 int ret;
1196
1197 ret = device_property_read_u32(dev, "clock-frequency", &config_khz);
1198 if (ret < 0)
1199 config_khz = I2C_MAX_STANDARD_MODE_FREQ;
1200
1201 switch (config_khz) {
1202 default:
1203 /* Default settings is 100 KHz. */
1204 pr_warn("Illegal value %d: defaulting to 100 KHz\n",
1205 config_khz);
1206 fallthrough;
1207 case I2C_MAX_STANDARD_MODE_FREQ:
1208 config_idx = MLXBF_I2C_TIMING_CONFIG_100KHZ;
1209 break;
1210
1211 case I2C_MAX_FAST_MODE_FREQ:
1212 config_idx = MLXBF_I2C_TIMING_CONFIG_400KHZ;
1213 break;
1214
1215 case I2C_MAX_FAST_MODE_PLUS_FREQ:
1216 config_idx = MLXBF_I2C_TIMING_CONFIG_1000KHZ;
1217 break;
1218 }
1219
1220 mlxbf_i2c_set_timings(priv, &mlxbf_i2c_timings[config_idx]);
1221
1222 return 0;
1223 }
1224
mlxbf_i2c_get_gpio(struct platform_device * pdev,struct mlxbf_i2c_priv * priv)1225 static int mlxbf_i2c_get_gpio(struct platform_device *pdev,
1226 struct mlxbf_i2c_priv *priv)
1227 {
1228 struct mlxbf_i2c_resource *gpio_res;
1229 struct device *dev = &pdev->dev;
1230 struct resource *params;
1231 resource_size_t size;
1232
1233 gpio_res = mlxbf_i2c_get_shared_resource(priv, MLXBF_I2C_GPIO_RES);
1234 if (!gpio_res)
1235 return -EPERM;
1236
1237 /*
1238 * The GPIO region in TYU space is shared among I2C busses.
1239 * This function MUST be serialized to avoid racing when
1240 * claiming the memory region and/or setting up the GPIO.
1241 */
1242 lockdep_assert_held(gpio_res->lock);
1243
1244 /* Check whether the memory map exist. */
1245 if (gpio_res->io)
1246 return 0;
1247
1248 params = gpio_res->params;
1249 size = resource_size(params);
1250
1251 if (!devm_request_mem_region(dev, params->start, size, params->name))
1252 return -EFAULT;
1253
1254 gpio_res->io = devm_ioremap(dev, params->start, size);
1255 if (!gpio_res->io) {
1256 devm_release_mem_region(dev, params->start, size);
1257 return -ENOMEM;
1258 }
1259
1260 return 0;
1261 }
1262
mlxbf_i2c_release_gpio(struct platform_device * pdev,struct mlxbf_i2c_priv * priv)1263 static int mlxbf_i2c_release_gpio(struct platform_device *pdev,
1264 struct mlxbf_i2c_priv *priv)
1265 {
1266 struct mlxbf_i2c_resource *gpio_res;
1267 struct device *dev = &pdev->dev;
1268 struct resource *params;
1269
1270 gpio_res = mlxbf_i2c_get_shared_resource(priv, MLXBF_I2C_GPIO_RES);
1271 if (!gpio_res)
1272 return 0;
1273
1274 mutex_lock(gpio_res->lock);
1275
1276 if (gpio_res->io) {
1277 /* Release the GPIO resource. */
1278 params = gpio_res->params;
1279 devm_iounmap(dev, gpio_res->io);
1280 devm_release_mem_region(dev, params->start,
1281 resource_size(params));
1282 }
1283
1284 mutex_unlock(gpio_res->lock);
1285
1286 return 0;
1287 }
1288
mlxbf_i2c_get_corepll(struct platform_device * pdev,struct mlxbf_i2c_priv * priv)1289 static int mlxbf_i2c_get_corepll(struct platform_device *pdev,
1290 struct mlxbf_i2c_priv *priv)
1291 {
1292 struct mlxbf_i2c_resource *corepll_res;
1293 struct device *dev = &pdev->dev;
1294 struct resource *params;
1295 resource_size_t size;
1296
1297 corepll_res = mlxbf_i2c_get_shared_resource(priv,
1298 MLXBF_I2C_COREPLL_RES);
1299 if (!corepll_res)
1300 return -EPERM;
1301
1302 /*
1303 * The COREPLL region in TYU space is shared among I2C busses.
1304 * This function MUST be serialized to avoid racing when
1305 * claiming the memory region.
1306 */
1307 lockdep_assert_held(corepll_res->lock);
1308
1309 /* Check whether the memory map exist. */
1310 if (corepll_res->io)
1311 return 0;
1312
1313 params = corepll_res->params;
1314 size = resource_size(params);
1315
1316 if (!devm_request_mem_region(dev, params->start, size, params->name))
1317 return -EFAULT;
1318
1319 corepll_res->io = devm_ioremap(dev, params->start, size);
1320 if (!corepll_res->io) {
1321 devm_release_mem_region(dev, params->start, size);
1322 return -ENOMEM;
1323 }
1324
1325 return 0;
1326 }
1327
mlxbf_i2c_release_corepll(struct platform_device * pdev,struct mlxbf_i2c_priv * priv)1328 static int mlxbf_i2c_release_corepll(struct platform_device *pdev,
1329 struct mlxbf_i2c_priv *priv)
1330 {
1331 struct mlxbf_i2c_resource *corepll_res;
1332 struct device *dev = &pdev->dev;
1333 struct resource *params;
1334
1335 corepll_res = mlxbf_i2c_get_shared_resource(priv,
1336 MLXBF_I2C_COREPLL_RES);
1337
1338 mutex_lock(corepll_res->lock);
1339
1340 if (corepll_res->io) {
1341 /* Release the CorePLL resource. */
1342 params = corepll_res->params;
1343 devm_iounmap(dev, corepll_res->io);
1344 devm_release_mem_region(dev, params->start,
1345 resource_size(params));
1346 }
1347
1348 mutex_unlock(corepll_res->lock);
1349
1350 return 0;
1351 }
1352
mlxbf_i2c_init_master(struct platform_device * pdev,struct mlxbf_i2c_priv * priv)1353 static int mlxbf_i2c_init_master(struct platform_device *pdev,
1354 struct mlxbf_i2c_priv *priv)
1355 {
1356 struct mlxbf_i2c_resource *gpio_res;
1357 struct device *dev = &pdev->dev;
1358 u32 config_reg;
1359 int ret;
1360
1361 /* This configuration is only needed for BlueField 1. */
1362 if (!mlxbf_i2c_has_chip_type(priv, MLXBF_I2C_CHIP_TYPE_1))
1363 return 0;
1364
1365 gpio_res = mlxbf_i2c_get_shared_resource(priv, MLXBF_I2C_GPIO_RES);
1366 if (!gpio_res)
1367 return -EPERM;
1368
1369 /*
1370 * The GPIO region in TYU space is shared among I2C busses.
1371 * This function MUST be serialized to avoid racing when
1372 * claiming the memory region and/or setting up the GPIO.
1373 */
1374
1375 mutex_lock(gpio_res->lock);
1376
1377 ret = mlxbf_i2c_get_gpio(pdev, priv);
1378 if (ret < 0) {
1379 dev_err(dev, "Failed to get gpio resource");
1380 mutex_unlock(gpio_res->lock);
1381 return ret;
1382 }
1383
1384 /*
1385 * TYU - Configuration for GPIO pins. Those pins must be asserted in
1386 * MLXBF_I2C_GPIO_0_FUNC_EN_0, i.e. GPIO 0 is controlled by HW, and must
1387 * be reset in MLXBF_I2C_GPIO_0_FORCE_OE_EN, i.e. GPIO_OE will be driven
1388 * instead of HW_OE.
1389 * For now, we do not reset the GPIO state when the driver is removed.
1390 * First, it is not necessary to disable the bus since we are using
1391 * the same busses. Then, some busses might be shared among Linux and
1392 * platform firmware; disabling the bus might compromise the system
1393 * functionality.
1394 */
1395 config_reg = readl(gpio_res->io + MLXBF_I2C_GPIO_0_FUNC_EN_0);
1396 config_reg = MLXBF_I2C_GPIO_SMBUS_GW_ASSERT_PINS(priv->bus,
1397 config_reg);
1398 writel(config_reg, gpio_res->io + MLXBF_I2C_GPIO_0_FUNC_EN_0);
1399
1400 config_reg = readl(gpio_res->io + MLXBF_I2C_GPIO_0_FORCE_OE_EN);
1401 config_reg = MLXBF_I2C_GPIO_SMBUS_GW_RESET_PINS(priv->bus,
1402 config_reg);
1403 writel(config_reg, gpio_res->io + MLXBF_I2C_GPIO_0_FORCE_OE_EN);
1404
1405 mutex_unlock(gpio_res->lock);
1406
1407 return 0;
1408 }
1409
mlxbf_calculate_freq_from_tyu(struct mlxbf_i2c_resource * corepll_res)1410 static u64 mlxbf_calculate_freq_from_tyu(struct mlxbf_i2c_resource *corepll_res)
1411 {
1412 u64 core_frequency, pad_frequency;
1413 u8 core_od, core_r;
1414 u32 corepll_val;
1415 u16 core_f;
1416
1417 pad_frequency = MLXBF_I2C_PLL_IN_FREQ;
1418
1419 corepll_val = readl(corepll_res->io + MLXBF_I2C_CORE_PLL_REG1);
1420
1421 /* Get Core PLL configuration bits. */
1422 core_f = rol32(corepll_val, MLXBF_I2C_COREPLL_CORE_F_TYU_SHIFT) &
1423 MLXBF_I2C_COREPLL_CORE_F_TYU_MASK;
1424 core_od = rol32(corepll_val, MLXBF_I2C_COREPLL_CORE_OD_TYU_SHIFT) &
1425 MLXBF_I2C_COREPLL_CORE_OD_TYU_MASK;
1426 core_r = rol32(corepll_val, MLXBF_I2C_COREPLL_CORE_R_TYU_SHIFT) &
1427 MLXBF_I2C_COREPLL_CORE_R_TYU_MASK;
1428
1429 /*
1430 * Compute PLL output frequency as follow:
1431 *
1432 * CORE_F + 1
1433 * PLL_OUT_FREQ = PLL_IN_FREQ * ----------------------------
1434 * (CORE_R + 1) * (CORE_OD + 1)
1435 *
1436 * Where PLL_OUT_FREQ and PLL_IN_FREQ refer to CoreFrequency
1437 * and PadFrequency, respectively.
1438 */
1439 core_frequency = pad_frequency * (++core_f);
1440 core_frequency /= (++core_r) * (++core_od);
1441
1442 return core_frequency;
1443 }
1444
mlxbf_calculate_freq_from_yu(struct mlxbf_i2c_resource * corepll_res)1445 static u64 mlxbf_calculate_freq_from_yu(struct mlxbf_i2c_resource *corepll_res)
1446 {
1447 u32 corepll_reg1_val, corepll_reg2_val;
1448 u64 corepll_frequency, pad_frequency;
1449 u8 core_od, core_r;
1450 u32 core_f;
1451
1452 pad_frequency = MLXBF_I2C_PLL_IN_FREQ;
1453
1454 corepll_reg1_val = readl(corepll_res->io + MLXBF_I2C_CORE_PLL_REG1);
1455 corepll_reg2_val = readl(corepll_res->io + MLXBF_I2C_CORE_PLL_REG2);
1456
1457 /* Get Core PLL configuration bits */
1458 core_f = rol32(corepll_reg1_val, MLXBF_I2C_COREPLL_CORE_F_YU_SHIFT) &
1459 MLXBF_I2C_COREPLL_CORE_F_YU_MASK;
1460 core_r = rol32(corepll_reg1_val, MLXBF_I2C_COREPLL_CORE_R_YU_SHIFT) &
1461 MLXBF_I2C_COREPLL_CORE_R_YU_MASK;
1462 core_od = rol32(corepll_reg2_val, MLXBF_I2C_COREPLL_CORE_OD_YU_SHIFT) &
1463 MLXBF_I2C_COREPLL_CORE_OD_YU_MASK;
1464
1465 /*
1466 * Compute PLL output frequency as follow:
1467 *
1468 * CORE_F / 16384
1469 * PLL_OUT_FREQ = PLL_IN_FREQ * ----------------------------
1470 * (CORE_R + 1) * (CORE_OD + 1)
1471 *
1472 * Where PLL_OUT_FREQ and PLL_IN_FREQ refer to CoreFrequency
1473 * and PadFrequency, respectively.
1474 */
1475 corepll_frequency = (pad_frequency * core_f) / MLNXBF_I2C_COREPLL_CONST;
1476 corepll_frequency /= (++core_r) * (++core_od);
1477
1478 return corepll_frequency;
1479 }
1480
mlxbf_i2c_calculate_corepll_freq(struct platform_device * pdev,struct mlxbf_i2c_priv * priv)1481 static int mlxbf_i2c_calculate_corepll_freq(struct platform_device *pdev,
1482 struct mlxbf_i2c_priv *priv)
1483 {
1484 const struct mlxbf_i2c_chip_info *chip = priv->chip;
1485 struct mlxbf_i2c_resource *corepll_res;
1486 struct device *dev = &pdev->dev;
1487 u64 *freq = &priv->frequency;
1488 int ret;
1489
1490 corepll_res = mlxbf_i2c_get_shared_resource(priv,
1491 MLXBF_I2C_COREPLL_RES);
1492 if (!corepll_res)
1493 return -EPERM;
1494
1495 /*
1496 * First, check whether the TYU core Clock frequency is set.
1497 * The TYU core frequency is the same for all I2C busses; when
1498 * the first device gets probed the frequency is determined and
1499 * stored into a globally visible variable. So, first of all,
1500 * check whether the frequency is already set. Here, we assume
1501 * that the frequency is expected to be greater than 0.
1502 */
1503 mutex_lock(corepll_res->lock);
1504 if (!mlxbf_i2c_corepll_frequency) {
1505 if (!chip->calculate_freq) {
1506 mutex_unlock(corepll_res->lock);
1507 return -EPERM;
1508 }
1509
1510 ret = mlxbf_i2c_get_corepll(pdev, priv);
1511 if (ret < 0) {
1512 dev_err(dev, "Failed to get corePLL resource");
1513 mutex_unlock(corepll_res->lock);
1514 return ret;
1515 }
1516
1517 mlxbf_i2c_corepll_frequency = chip->calculate_freq(corepll_res);
1518 }
1519 mutex_unlock(corepll_res->lock);
1520
1521 *freq = mlxbf_i2c_corepll_frequency;
1522
1523 return 0;
1524 }
1525
mlxbf_slave_enable(struct mlxbf_i2c_priv * priv,u8 addr)1526 static int mlxbf_slave_enable(struct mlxbf_i2c_priv *priv, u8 addr)
1527 {
1528 u32 slave_reg, slave_reg_tmp, slave_reg_avail, slave_addr_mask;
1529 u8 reg, reg_cnt, byte, addr_tmp, reg_avail, byte_avail;
1530 bool avail, disabled;
1531
1532 disabled = false;
1533 avail = false;
1534
1535 if (!priv)
1536 return -EPERM;
1537
1538 reg_cnt = MLXBF_I2C_SMBUS_SLAVE_ADDR_CNT >> 2;
1539 slave_addr_mask = MLXBF_I2C_SMBUS_SLAVE_ADDR_MASK;
1540
1541 /*
1542 * Read the slave registers. There are 4 * 32-bit slave registers.
1543 * Each slave register can hold up to 4 * 8-bit slave configuration
1544 * (7-bit address, 1 status bit (1 if enabled, 0 if not)).
1545 */
1546 for (reg = 0; reg < reg_cnt; reg++) {
1547 slave_reg = readl(priv->smbus->io +
1548 MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG + reg * 0x4);
1549 /*
1550 * Each register holds 4 slave addresses. So, we have to keep
1551 * the byte order consistent with the value read in order to
1552 * update the register correctly, if needed.
1553 */
1554 slave_reg_tmp = slave_reg;
1555 for (byte = 0; byte < 4; byte++) {
1556 addr_tmp = slave_reg_tmp & GENMASK(7, 0);
1557
1558 /*
1559 * Mark the first available slave address slot, i.e. its
1560 * enabled bit should be unset. This slot might be used
1561 * later on to register our slave.
1562 */
1563 if (!avail && !MLXBF_I2C_SLAVE_ADDR_ENABLED(addr_tmp)) {
1564 avail = true;
1565 reg_avail = reg;
1566 byte_avail = byte;
1567 slave_reg_avail = slave_reg;
1568 }
1569
1570 /*
1571 * Parse slave address bytes and check whether the
1572 * slave address already exists and it's enabled,
1573 * i.e. most significant bit is set.
1574 */
1575 if ((addr_tmp & slave_addr_mask) == addr) {
1576 if (MLXBF_I2C_SLAVE_ADDR_ENABLED(addr_tmp))
1577 return 0;
1578 disabled = true;
1579 break;
1580 }
1581
1582 /* Parse next byte. */
1583 slave_reg_tmp >>= 8;
1584 }
1585
1586 /* Exit the loop if the slave address is found. */
1587 if (disabled)
1588 break;
1589 }
1590
1591 if (!avail && !disabled)
1592 return -EINVAL; /* No room for a new slave address. */
1593
1594 if (avail && !disabled) {
1595 reg = reg_avail;
1596 byte = byte_avail;
1597 /* Set the slave address. */
1598 slave_reg_avail &= ~(slave_addr_mask << (byte * 8));
1599 slave_reg_avail |= addr << (byte * 8);
1600 slave_reg = slave_reg_avail;
1601 }
1602
1603 /* Enable the slave address and update the register. */
1604 slave_reg |= (1 << MLXBF_I2C_SMBUS_SLAVE_ADDR_EN_BIT) << (byte * 8);
1605 writel(slave_reg, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG +
1606 reg * 0x4);
1607
1608 return 0;
1609 }
1610
mlxbf_slave_disable(struct mlxbf_i2c_priv * priv)1611 static int mlxbf_slave_disable(struct mlxbf_i2c_priv *priv)
1612 {
1613 u32 slave_reg, slave_reg_tmp, slave_addr_mask;
1614 u8 addr, addr_tmp, reg, reg_cnt, slave_byte;
1615 struct i2c_client *client = priv->slave;
1616 bool exist;
1617
1618 exist = false;
1619
1620 addr = client->addr;
1621 reg_cnt = MLXBF_I2C_SMBUS_SLAVE_ADDR_CNT >> 2;
1622 slave_addr_mask = MLXBF_I2C_SMBUS_SLAVE_ADDR_MASK;
1623
1624 /*
1625 * Read the slave registers. There are 4 * 32-bit slave registers.
1626 * Each slave register can hold up to 4 * 8-bit slave configuration
1627 * (7-bit address, 1 status bit (1 if enabled, 0 if not)).
1628 */
1629 for (reg = 0; reg < reg_cnt; reg++) {
1630 slave_reg = readl(priv->smbus->io +
1631 MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG + reg * 0x4);
1632
1633 /* Check whether the address slots are empty. */
1634 if (slave_reg == 0)
1635 continue;
1636
1637 /*
1638 * Each register holds 4 slave addresses. So, we have to keep
1639 * the byte order consistent with the value read in order to
1640 * update the register correctly, if needed.
1641 */
1642 slave_reg_tmp = slave_reg;
1643 slave_byte = 0;
1644 while (slave_reg_tmp != 0) {
1645 addr_tmp = slave_reg_tmp & slave_addr_mask;
1646 /*
1647 * Parse slave address bytes and check whether the
1648 * slave address already exists.
1649 */
1650 if (addr_tmp == addr) {
1651 exist = true;
1652 break;
1653 }
1654
1655 /* Parse next byte. */
1656 slave_reg_tmp >>= 8;
1657 slave_byte += 1;
1658 }
1659
1660 /* Exit the loop if the slave address is found. */
1661 if (exist)
1662 break;
1663 }
1664
1665 if (!exist)
1666 return 0; /* Slave is not registered, nothing to do. */
1667
1668 /* Cleanup the slave address slot. */
1669 slave_reg &= ~(GENMASK(7, 0) << (slave_byte * 8));
1670 writel(slave_reg, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG +
1671 reg * 0x4);
1672
1673 return 0;
1674 }
1675
mlxbf_i2c_init_coalesce(struct platform_device * pdev,struct mlxbf_i2c_priv * priv)1676 static int mlxbf_i2c_init_coalesce(struct platform_device *pdev,
1677 struct mlxbf_i2c_priv *priv)
1678 {
1679 struct mlxbf_i2c_resource *coalesce_res;
1680 struct resource *params;
1681 resource_size_t size;
1682 int ret = 0;
1683
1684 /*
1685 * Unlike BlueField-1 platform, the coalesce registers is a dedicated
1686 * resource in the next generations of BlueField.
1687 */
1688 if (mlxbf_i2c_has_chip_type(priv, MLXBF_I2C_CHIP_TYPE_1)) {
1689 coalesce_res = mlxbf_i2c_get_shared_resource(priv,
1690 MLXBF_I2C_COALESCE_RES);
1691 if (!coalesce_res)
1692 return -EPERM;
1693
1694 /*
1695 * The Cause Coalesce group in TYU space is shared among
1696 * I2C busses. This function MUST be serialized to avoid
1697 * racing when claiming the memory region.
1698 */
1699 lockdep_assert_held(mlxbf_i2c_gpio_res->lock);
1700
1701 /* Check whether the memory map exist. */
1702 if (coalesce_res->io) {
1703 priv->coalesce = coalesce_res;
1704 return 0;
1705 }
1706
1707 params = coalesce_res->params;
1708 size = resource_size(params);
1709
1710 if (!request_mem_region(params->start, size, params->name))
1711 return -EFAULT;
1712
1713 coalesce_res->io = ioremap(params->start, size);
1714 if (!coalesce_res->io) {
1715 release_mem_region(params->start, size);
1716 return -ENOMEM;
1717 }
1718
1719 priv->coalesce = coalesce_res;
1720
1721 } else {
1722 ret = mlxbf_i2c_init_resource(pdev, &priv->coalesce,
1723 MLXBF_I2C_COALESCE_RES);
1724 }
1725
1726 return ret;
1727 }
1728
mlxbf_i2c_release_coalesce(struct platform_device * pdev,struct mlxbf_i2c_priv * priv)1729 static int mlxbf_i2c_release_coalesce(struct platform_device *pdev,
1730 struct mlxbf_i2c_priv *priv)
1731 {
1732 struct mlxbf_i2c_resource *coalesce_res;
1733 struct device *dev = &pdev->dev;
1734 struct resource *params;
1735 resource_size_t size;
1736
1737 coalesce_res = priv->coalesce;
1738
1739 if (coalesce_res->io) {
1740 params = coalesce_res->params;
1741 size = resource_size(params);
1742 if (mlxbf_i2c_has_chip_type(priv, MLXBF_I2C_CHIP_TYPE_1)) {
1743 mutex_lock(coalesce_res->lock);
1744 iounmap(coalesce_res->io);
1745 release_mem_region(params->start, size);
1746 mutex_unlock(coalesce_res->lock);
1747 } else {
1748 devm_release_mem_region(dev, params->start, size);
1749 }
1750 }
1751
1752 return 0;
1753 }
1754
mlxbf_i2c_init_slave(struct platform_device * pdev,struct mlxbf_i2c_priv * priv)1755 static int mlxbf_i2c_init_slave(struct platform_device *pdev,
1756 struct mlxbf_i2c_priv *priv)
1757 {
1758 struct device *dev = &pdev->dev;
1759 u32 int_reg;
1760 int ret;
1761
1762 /* Reset FSM. */
1763 writel(0, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_FSM);
1764
1765 /*
1766 * Enable slave cause interrupt bits. Drive
1767 * MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE and
1768 * MLXBF_I2C_CAUSE_WRITE_SUCCESS, these are enabled when an external
1769 * masters issue a Read and Write, respectively. But, clear all
1770 * interrupts first.
1771 */
1772 writel(~0, priv->slv_cause->io + MLXBF_I2C_CAUSE_OR_CLEAR);
1773 int_reg = MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE;
1774 int_reg |= MLXBF_I2C_CAUSE_WRITE_SUCCESS;
1775 writel(int_reg, priv->slv_cause->io + MLXBF_I2C_CAUSE_OR_EVTEN0);
1776
1777 /* Finally, set the 'ready' bit to start handling transactions. */
1778 writel(0x1, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_READY);
1779
1780 /* Initialize the cause coalesce resource. */
1781 ret = mlxbf_i2c_init_coalesce(pdev, priv);
1782 if (ret < 0) {
1783 dev_err(dev, "failed to initialize cause coalesce\n");
1784 return ret;
1785 }
1786
1787 return 0;
1788 }
1789
mlxbf_i2c_has_coalesce(struct mlxbf_i2c_priv * priv,bool * read,bool * write)1790 static bool mlxbf_i2c_has_coalesce(struct mlxbf_i2c_priv *priv, bool *read,
1791 bool *write)
1792 {
1793 const struct mlxbf_i2c_chip_info *chip = priv->chip;
1794 u32 coalesce0_reg, cause_reg;
1795 u8 slave_shift, is_set;
1796
1797 *write = false;
1798 *read = false;
1799
1800 slave_shift = chip->type != MLXBF_I2C_CHIP_TYPE_1 ?
1801 MLXBF_I2C_CAUSE_YU_SLAVE_BIT :
1802 priv->bus + MLXBF_I2C_CAUSE_TYU_SLAVE_BIT;
1803
1804 coalesce0_reg = readl(priv->coalesce->io + MLXBF_I2C_CAUSE_COALESCE_0);
1805 is_set = coalesce0_reg & (1 << slave_shift);
1806
1807 if (!is_set)
1808 return false;
1809
1810 /* Check the source of the interrupt, i.e. whether a Read or Write. */
1811 cause_reg = readl(priv->slv_cause->io + MLXBF_I2C_CAUSE_ARBITER);
1812 if (cause_reg & MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE)
1813 *read = true;
1814 else if (cause_reg & MLXBF_I2C_CAUSE_WRITE_SUCCESS)
1815 *write = true;
1816
1817 /* Clear cause bits. */
1818 writel(~0x0, priv->slv_cause->io + MLXBF_I2C_CAUSE_OR_CLEAR);
1819
1820 return true;
1821 }
1822
mlxbf_smbus_slave_wait_for_idle(struct mlxbf_i2c_priv * priv,u32 timeout)1823 static bool mlxbf_smbus_slave_wait_for_idle(struct mlxbf_i2c_priv *priv,
1824 u32 timeout)
1825 {
1826 u32 mask = MLXBF_I2C_CAUSE_S_GW_BUSY_FALL;
1827 u32 addr = MLXBF_I2C_CAUSE_ARBITER;
1828
1829 if (mlxbf_smbus_poll(priv->slv_cause->io, addr, mask, false, timeout))
1830 return true;
1831
1832 return false;
1833 }
1834
1835 /* Send byte to 'external' smbus master. */
mlxbf_smbus_irq_send(struct mlxbf_i2c_priv * priv,u8 recv_bytes)1836 static int mlxbf_smbus_irq_send(struct mlxbf_i2c_priv *priv, u8 recv_bytes)
1837 {
1838 u8 data_desc[MLXBF_I2C_SLAVE_DATA_DESC_SIZE] = { 0 };
1839 u8 write_size, pec_en, addr, byte, value, byte_cnt, desc_size;
1840 struct i2c_client *slave = priv->slave;
1841 u32 control32, data32;
1842 int ret;
1843
1844 if (!slave)
1845 return -EINVAL;
1846
1847 addr = 0;
1848 byte = 0;
1849 desc_size = MLXBF_I2C_SLAVE_DATA_DESC_SIZE;
1850
1851 /*
1852 * Read bytes received from the external master. These bytes should
1853 * be located in the first data descriptor register of the slave GW.
1854 * These bytes are the slave address byte and the internal register
1855 * address, if supplied.
1856 */
1857 if (recv_bytes > 0) {
1858 data32 = ioread32be(priv->smbus->io +
1859 MLXBF_I2C_SLAVE_DATA_DESC_ADDR);
1860
1861 /* Parse the received bytes. */
1862 switch (recv_bytes) {
1863 case 2:
1864 byte = (data32 >> 8) & GENMASK(7, 0);
1865 fallthrough;
1866 case 1:
1867 addr = (data32 & GENMASK(7, 0)) >> 1;
1868 }
1869
1870 /* Check whether it's our slave address. */
1871 if (slave->addr != addr)
1872 return -EINVAL;
1873 }
1874
1875 /*
1876 * I2C read transactions may start by a WRITE followed by a READ.
1877 * Indeed, most slave devices would expect the internal address
1878 * following the slave address byte. So, write that byte first,
1879 * and then, send the requested data bytes to the master.
1880 */
1881 if (recv_bytes > 1) {
1882 i2c_slave_event(slave, I2C_SLAVE_WRITE_REQUESTED, &value);
1883 value = byte;
1884 ret = i2c_slave_event(slave, I2C_SLAVE_WRITE_RECEIVED,
1885 &value);
1886 i2c_slave_event(slave, I2C_SLAVE_STOP, &value);
1887
1888 if (ret < 0)
1889 return ret;
1890 }
1891
1892 /*
1893 * Now, send data to the master; currently, the driver supports
1894 * READ_BYTE, READ_WORD and BLOCK READ protocols. Note that the
1895 * hardware can send up to 128 bytes per transfer. That is the
1896 * size of its data registers.
1897 */
1898 i2c_slave_event(slave, I2C_SLAVE_READ_REQUESTED, &value);
1899
1900 for (byte_cnt = 0; byte_cnt < desc_size; byte_cnt++) {
1901 data_desc[byte_cnt] = value;
1902 i2c_slave_event(slave, I2C_SLAVE_READ_PROCESSED, &value);
1903 }
1904
1905 /* Send a stop condition to the backend. */
1906 i2c_slave_event(slave, I2C_SLAVE_STOP, &value);
1907
1908 /* Handle the actual transfer. */
1909
1910 /* Set the number of bytes to write to master. */
1911 write_size = (byte_cnt - 1) & 0x7f;
1912
1913 /* Write data to Slave GW data descriptor. */
1914 mlxbf_i2c_smbus_write_data(priv, data_desc, byte_cnt,
1915 MLXBF_I2C_SLAVE_DATA_DESC_ADDR);
1916
1917 pec_en = 0; /* Disable PEC since it is not supported. */
1918
1919 /* Prepare control word. */
1920 control32 = MLXBF_I2C_SLAVE_ENABLE;
1921 control32 |= rol32(write_size, MLXBF_I2C_SLAVE_WRITE_BYTES_SHIFT);
1922 control32 |= rol32(pec_en, MLXBF_I2C_SLAVE_SEND_PEC_SHIFT);
1923
1924 writel(control32, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_GW);
1925
1926 /*
1927 * Wait until the transfer is completed; the driver will wait
1928 * until the GW is idle, a cause will rise on fall of GW busy.
1929 */
1930 mlxbf_smbus_slave_wait_for_idle(priv, MLXBF_I2C_SMBUS_TIMEOUT);
1931
1932 /* Release the Slave GW. */
1933 writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES);
1934 writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_PEC);
1935 writel(0x1, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_READY);
1936
1937 return 0;
1938 }
1939
1940 /* Receive bytes from 'external' smbus master. */
mlxbf_smbus_irq_recv(struct mlxbf_i2c_priv * priv,u8 recv_bytes)1941 static int mlxbf_smbus_irq_recv(struct mlxbf_i2c_priv *priv, u8 recv_bytes)
1942 {
1943 u8 data_desc[MLXBF_I2C_SLAVE_DATA_DESC_SIZE] = { 0 };
1944 struct i2c_client *slave = priv->slave;
1945 u8 value, byte, addr;
1946 int ret = 0;
1947
1948 if (!slave)
1949 return -EINVAL;
1950
1951 /* Read data from Slave GW data descriptor. */
1952 mlxbf_i2c_smbus_read_data(priv, data_desc, recv_bytes,
1953 MLXBF_I2C_SLAVE_DATA_DESC_ADDR);
1954
1955 /* Check whether its our slave address. */
1956 addr = data_desc[0] >> 1;
1957 if (slave->addr != addr)
1958 return -EINVAL;
1959
1960 /*
1961 * Notify the slave backend; another I2C master wants to write data
1962 * to us. This event is sent once the slave address and the write bit
1963 * is detected.
1964 */
1965 i2c_slave_event(slave, I2C_SLAVE_WRITE_REQUESTED, &value);
1966
1967 /* Send the received data to the slave backend. */
1968 for (byte = 1; byte < recv_bytes; byte++) {
1969 value = data_desc[byte];
1970 ret = i2c_slave_event(slave, I2C_SLAVE_WRITE_RECEIVED,
1971 &value);
1972 if (ret < 0)
1973 break;
1974 }
1975
1976 /* Send a stop condition to the backend. */
1977 i2c_slave_event(slave, I2C_SLAVE_STOP, &value);
1978
1979 /* Release the Slave GW. */
1980 writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES);
1981 writel(0x0, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_PEC);
1982 writel(0x1, priv->smbus->io + MLXBF_I2C_SMBUS_SLAVE_READY);
1983
1984 return ret;
1985 }
1986
mlxbf_smbus_irq(int irq,void * ptr)1987 static irqreturn_t mlxbf_smbus_irq(int irq, void *ptr)
1988 {
1989 struct mlxbf_i2c_priv *priv = ptr;
1990 bool read, write, irq_is_set;
1991 u32 rw_bytes_reg;
1992 u8 recv_bytes;
1993
1994 /*
1995 * Read TYU interrupt register and determine the source of the
1996 * interrupt. Based on the source of the interrupt one of the
1997 * following actions are performed:
1998 * - Receive data and send response to master.
1999 * - Send data and release slave GW.
2000 *
2001 * Handle read/write transaction only. CRmaster and Iarp requests
2002 * are ignored for now.
2003 */
2004 irq_is_set = mlxbf_i2c_has_coalesce(priv, &read, &write);
2005 if (!irq_is_set || (!read && !write)) {
2006 /* Nothing to do here, interrupt was not from this device. */
2007 return IRQ_NONE;
2008 }
2009
2010 /*
2011 * The MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES includes the number of
2012 * bytes from/to master. These are defined by 8-bits each. If the lower
2013 * 8 bits are set, then the master expect to read N bytes from the
2014 * slave, if the higher 8 bits are sent then the slave expect N bytes
2015 * from the master.
2016 */
2017 rw_bytes_reg = readl(priv->smbus->io +
2018 MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES);
2019 recv_bytes = (rw_bytes_reg >> 8) & GENMASK(7, 0);
2020
2021 /*
2022 * For now, the slave supports 128 bytes transfer. Discard remaining
2023 * data bytes if the master wrote more than
2024 * MLXBF_I2C_SLAVE_DATA_DESC_SIZE, i.e, the actual size of the slave
2025 * data descriptor.
2026 *
2027 * Note that we will never expect to transfer more than 128 bytes; as
2028 * specified in the SMBus standard, block transactions cannot exceed
2029 * 32 bytes.
2030 */
2031 recv_bytes = recv_bytes > MLXBF_I2C_SLAVE_DATA_DESC_SIZE ?
2032 MLXBF_I2C_SLAVE_DATA_DESC_SIZE : recv_bytes;
2033
2034 if (read)
2035 mlxbf_smbus_irq_send(priv, recv_bytes);
2036 else
2037 mlxbf_smbus_irq_recv(priv, recv_bytes);
2038
2039 return IRQ_HANDLED;
2040 }
2041
2042 /* Return negative errno on error. */
mlxbf_i2c_smbus_xfer(struct i2c_adapter * adap,u16 addr,unsigned short flags,char read_write,u8 command,int size,union i2c_smbus_data * data)2043 static s32 mlxbf_i2c_smbus_xfer(struct i2c_adapter *adap, u16 addr,
2044 unsigned short flags, char read_write,
2045 u8 command, int size,
2046 union i2c_smbus_data *data)
2047 {
2048 struct mlxbf_i2c_smbus_request request = { 0 };
2049 struct mlxbf_i2c_priv *priv;
2050 bool read, pec;
2051 u8 byte_cnt;
2052
2053 request.slave = addr;
2054
2055 read = (read_write == I2C_SMBUS_READ);
2056 pec = flags & I2C_FUNC_SMBUS_PEC;
2057
2058 switch (size) {
2059 case I2C_SMBUS_QUICK:
2060 mlxbf_i2c_smbus_quick_command(&request, read);
2061 dev_dbg(&adap->dev, "smbus quick, slave 0x%02x\n", addr);
2062 break;
2063
2064 case I2C_SMBUS_BYTE:
2065 mlxbf_i2c_smbus_byte_func(&request,
2066 read ? &data->byte : &command, read,
2067 pec);
2068 dev_dbg(&adap->dev, "smbus %s byte, slave 0x%02x.\n",
2069 read ? "read" : "write", addr);
2070 break;
2071
2072 case I2C_SMBUS_BYTE_DATA:
2073 mlxbf_i2c_smbus_data_byte_func(&request, &command, &data->byte,
2074 read, pec);
2075 dev_dbg(&adap->dev, "smbus %s byte data at 0x%02x, slave 0x%02x.\n",
2076 read ? "read" : "write", command, addr);
2077 break;
2078
2079 case I2C_SMBUS_WORD_DATA:
2080 mlxbf_i2c_smbus_data_word_func(&request, &command,
2081 (u8 *)&data->word, read, pec);
2082 dev_dbg(&adap->dev, "smbus %s word data at 0x%02x, slave 0x%02x.\n",
2083 read ? "read" : "write", command, addr);
2084 break;
2085
2086 case I2C_SMBUS_I2C_BLOCK_DATA:
2087 byte_cnt = data->block[0];
2088 mlxbf_i2c_smbus_i2c_block_func(&request, &command, data->block,
2089 &byte_cnt, read, pec);
2090 dev_dbg(&adap->dev, "i2c %s block data, %d bytes at 0x%02x, slave 0x%02x.\n",
2091 read ? "read" : "write", byte_cnt, command, addr);
2092 break;
2093
2094 case I2C_SMBUS_BLOCK_DATA:
2095 byte_cnt = read ? I2C_SMBUS_BLOCK_MAX : data->block[0];
2096 mlxbf_i2c_smbus_block_func(&request, &command, data->block,
2097 &byte_cnt, read, pec);
2098 dev_dbg(&adap->dev, "smbus %s block data, %d bytes at 0x%02x, slave 0x%02x.\n",
2099 read ? "read" : "write", byte_cnt, command, addr);
2100 break;
2101
2102 case I2C_FUNC_SMBUS_PROC_CALL:
2103 mlxbf_i2c_smbus_process_call_func(&request, &command,
2104 (u8 *)&data->word, pec);
2105 dev_dbg(&adap->dev, "process call, wr/rd at 0x%02x, slave 0x%02x.\n",
2106 command, addr);
2107 break;
2108
2109 case I2C_FUNC_SMBUS_BLOCK_PROC_CALL:
2110 byte_cnt = data->block[0];
2111 mlxbf_i2c_smbus_blk_process_call_func(&request, &command,
2112 data->block, &byte_cnt,
2113 pec);
2114 dev_dbg(&adap->dev, "block process call, wr/rd %d bytes, slave 0x%02x.\n",
2115 byte_cnt, addr);
2116 break;
2117
2118 default:
2119 dev_dbg(&adap->dev, "Unsupported I2C/SMBus command %d\n",
2120 size);
2121 return -EOPNOTSUPP;
2122 }
2123
2124 priv = i2c_get_adapdata(adap);
2125
2126 return mlxbf_i2c_smbus_start_transaction(priv, &request);
2127 }
2128
mlxbf_i2c_reg_slave(struct i2c_client * slave)2129 static int mlxbf_i2c_reg_slave(struct i2c_client *slave)
2130 {
2131 struct mlxbf_i2c_priv *priv = i2c_get_adapdata(slave->adapter);
2132 int ret;
2133
2134 if (priv->slave)
2135 return -EBUSY;
2136
2137 /*
2138 * Do not support ten bit chip address and do not use Packet Error
2139 * Checking (PEC).
2140 */
2141 if (slave->flags & (I2C_CLIENT_TEN | I2C_CLIENT_PEC))
2142 return -EAFNOSUPPORT;
2143
2144 ret = mlxbf_slave_enable(priv, slave->addr);
2145 if (ret < 0)
2146 return ret;
2147
2148 priv->slave = slave;
2149
2150 return 0;
2151 }
2152
mlxbf_i2c_unreg_slave(struct i2c_client * slave)2153 static int mlxbf_i2c_unreg_slave(struct i2c_client *slave)
2154 {
2155 struct mlxbf_i2c_priv *priv = i2c_get_adapdata(slave->adapter);
2156 int ret;
2157
2158 WARN_ON(!priv->slave);
2159
2160 /* Unregister slave, i.e. disable the slave address in hardware. */
2161 ret = mlxbf_slave_disable(priv);
2162 if (ret < 0)
2163 return ret;
2164
2165 priv->slave = NULL;
2166
2167 return 0;
2168 }
2169
mlxbf_i2c_functionality(struct i2c_adapter * adap)2170 static u32 mlxbf_i2c_functionality(struct i2c_adapter *adap)
2171 {
2172 return MLXBF_I2C_FUNC_ALL;
2173 }
2174
2175 static struct mlxbf_i2c_chip_info mlxbf_i2c_chip[] = {
2176 [MLXBF_I2C_CHIP_TYPE_1] = {
2177 .type = MLXBF_I2C_CHIP_TYPE_1,
2178 .shared_res = {
2179 [0] = &mlxbf_i2c_coalesce_res[MLXBF_I2C_CHIP_TYPE_1],
2180 [1] = &mlxbf_i2c_corepll_res[MLXBF_I2C_CHIP_TYPE_1],
2181 [2] = &mlxbf_i2c_gpio_res[MLXBF_I2C_CHIP_TYPE_1]
2182 },
2183 .calculate_freq = mlxbf_calculate_freq_from_tyu
2184 },
2185 [MLXBF_I2C_CHIP_TYPE_2] = {
2186 .type = MLXBF_I2C_CHIP_TYPE_2,
2187 .shared_res = {
2188 [0] = &mlxbf_i2c_corepll_res[MLXBF_I2C_CHIP_TYPE_2]
2189 },
2190 .calculate_freq = mlxbf_calculate_freq_from_yu
2191 }
2192 };
2193
2194 static const struct i2c_algorithm mlxbf_i2c_algo = {
2195 .smbus_xfer = mlxbf_i2c_smbus_xfer,
2196 .functionality = mlxbf_i2c_functionality,
2197 .reg_slave = mlxbf_i2c_reg_slave,
2198 .unreg_slave = mlxbf_i2c_unreg_slave,
2199 };
2200
2201 static struct i2c_adapter_quirks mlxbf_i2c_quirks = {
2202 .max_read_len = MLXBF_I2C_MASTER_DATA_R_LENGTH,
2203 .max_write_len = MLXBF_I2C_MASTER_DATA_W_LENGTH,
2204 };
2205
2206 static const struct of_device_id mlxbf_i2c_dt_ids[] = {
2207 {
2208 .compatible = "mellanox,i2c-mlxbf1",
2209 .data = &mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_1]
2210 },
2211 {
2212 .compatible = "mellanox,i2c-mlxbf2",
2213 .data = &mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_2]
2214 },
2215 {},
2216 };
2217
2218 MODULE_DEVICE_TABLE(of, mlxbf_i2c_dt_ids);
2219
2220 #ifdef CONFIG_ACPI
2221 static const struct acpi_device_id mlxbf_i2c_acpi_ids[] = {
2222 { "MLNXBF03", (kernel_ulong_t)&mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_1] },
2223 { "MLNXBF23", (kernel_ulong_t)&mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_2] },
2224 {},
2225 };
2226
2227 MODULE_DEVICE_TABLE(acpi, mlxbf_i2c_acpi_ids);
2228
mlxbf_i2c_acpi_probe(struct device * dev,struct mlxbf_i2c_priv * priv)2229 static int mlxbf_i2c_acpi_probe(struct device *dev, struct mlxbf_i2c_priv *priv)
2230 {
2231 const struct acpi_device_id *aid;
2232 struct acpi_device *adev;
2233 unsigned long bus_id = 0;
2234 const char *uid;
2235 int ret;
2236
2237 if (acpi_disabled)
2238 return -ENOENT;
2239
2240 adev = ACPI_COMPANION(dev);
2241 if (!adev)
2242 return -ENXIO;
2243
2244 aid = acpi_match_device(mlxbf_i2c_acpi_ids, dev);
2245 if (!aid)
2246 return -ENODEV;
2247
2248 priv->chip = (struct mlxbf_i2c_chip_info *)aid->driver_data;
2249
2250 uid = acpi_device_uid(adev);
2251 if (!uid || !(*uid)) {
2252 dev_err(dev, "Cannot retrieve UID\n");
2253 return -ENODEV;
2254 }
2255
2256 ret = kstrtoul(uid, 0, &bus_id);
2257 if (!ret)
2258 priv->bus = bus_id;
2259
2260 return ret;
2261 }
2262 #else
mlxbf_i2c_acpi_probe(struct device * dev,struct mlxbf_i2c_priv * priv)2263 static int mlxbf_i2c_acpi_probe(struct device *dev, struct mlxbf_i2c_priv *priv)
2264 {
2265 return -ENOENT;
2266 }
2267 #endif /* CONFIG_ACPI */
2268
mlxbf_i2c_of_probe(struct device * dev,struct mlxbf_i2c_priv * priv)2269 static int mlxbf_i2c_of_probe(struct device *dev, struct mlxbf_i2c_priv *priv)
2270 {
2271 const struct of_device_id *oid;
2272 int bus_id = -1;
2273
2274 if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
2275 oid = of_match_node(mlxbf_i2c_dt_ids, dev->of_node);
2276 if (!oid)
2277 return -ENODEV;
2278
2279 priv->chip = oid->data;
2280
2281 bus_id = of_alias_get_id(dev->of_node, "i2c");
2282 if (bus_id >= 0)
2283 priv->bus = bus_id;
2284 }
2285
2286 if (bus_id < 0) {
2287 dev_err(dev, "Cannot get bus id");
2288 return bus_id;
2289 }
2290
2291 return 0;
2292 }
2293
mlxbf_i2c_probe(struct platform_device * pdev)2294 static int mlxbf_i2c_probe(struct platform_device *pdev)
2295 {
2296 struct device *dev = &pdev->dev;
2297 struct mlxbf_i2c_priv *priv;
2298 struct i2c_adapter *adap;
2299 int irq, ret;
2300
2301 priv = devm_kzalloc(dev, sizeof(struct mlxbf_i2c_priv), GFP_KERNEL);
2302 if (!priv)
2303 return -ENOMEM;
2304
2305 ret = mlxbf_i2c_acpi_probe(dev, priv);
2306 if (ret < 0 && ret != -ENOENT && ret != -ENXIO)
2307 ret = mlxbf_i2c_of_probe(dev, priv);
2308
2309 if (ret < 0)
2310 return ret;
2311
2312 ret = mlxbf_i2c_init_resource(pdev, &priv->smbus,
2313 MLXBF_I2C_SMBUS_RES);
2314 if (ret < 0) {
2315 dev_err(dev, "Cannot fetch smbus resource info");
2316 return ret;
2317 }
2318
2319 ret = mlxbf_i2c_init_resource(pdev, &priv->mst_cause,
2320 MLXBF_I2C_MST_CAUSE_RES);
2321 if (ret < 0) {
2322 dev_err(dev, "Cannot fetch cause master resource info");
2323 return ret;
2324 }
2325
2326 ret = mlxbf_i2c_init_resource(pdev, &priv->slv_cause,
2327 MLXBF_I2C_SLV_CAUSE_RES);
2328 if (ret < 0) {
2329 dev_err(dev, "Cannot fetch cause slave resource info");
2330 return ret;
2331 }
2332
2333 adap = &priv->adap;
2334 adap->owner = THIS_MODULE;
2335 adap->class = I2C_CLASS_HWMON;
2336 adap->algo = &mlxbf_i2c_algo;
2337 adap->quirks = &mlxbf_i2c_quirks;
2338 adap->dev.parent = dev;
2339 adap->dev.of_node = dev->of_node;
2340 adap->nr = priv->bus;
2341
2342 snprintf(adap->name, sizeof(adap->name), "i2c%d", adap->nr);
2343 i2c_set_adapdata(adap, priv);
2344
2345 /* Read Core PLL frequency. */
2346 ret = mlxbf_i2c_calculate_corepll_freq(pdev, priv);
2347 if (ret < 0) {
2348 dev_err(dev, "cannot get core clock frequency\n");
2349 /* Set to default value. */
2350 priv->frequency = MLXBF_I2C_COREPLL_FREQ;
2351 }
2352
2353 /*
2354 * Initialize master.
2355 * Note that a physical bus might be shared among Linux and firmware
2356 * (e.g., ATF). Thus, the bus should be initialized and ready and
2357 * bus initialization would be unnecessary. This requires additional
2358 * knowledge about physical busses. But, since an extra initialization
2359 * does not really hurt, then keep the code as is.
2360 */
2361 ret = mlxbf_i2c_init_master(pdev, priv);
2362 if (ret < 0) {
2363 dev_err(dev, "failed to initialize smbus master %d",
2364 priv->bus);
2365 return ret;
2366 }
2367
2368 mlxbf_i2c_init_timings(pdev, priv);
2369
2370 mlxbf_i2c_init_slave(pdev, priv);
2371
2372 irq = platform_get_irq(pdev, 0);
2373 if (irq < 0)
2374 return irq;
2375 ret = devm_request_irq(dev, irq, mlxbf_smbus_irq,
2376 IRQF_ONESHOT | IRQF_SHARED | IRQF_PROBE_SHARED,
2377 dev_name(dev), priv);
2378 if (ret < 0) {
2379 dev_err(dev, "Cannot get irq %d\n", irq);
2380 return ret;
2381 }
2382
2383 priv->irq = irq;
2384
2385 platform_set_drvdata(pdev, priv);
2386
2387 ret = i2c_add_numbered_adapter(adap);
2388 if (ret < 0)
2389 return ret;
2390
2391 mutex_lock(&mlxbf_i2c_bus_lock);
2392 mlxbf_i2c_bus_count++;
2393 mutex_unlock(&mlxbf_i2c_bus_lock);
2394
2395 return 0;
2396 }
2397
mlxbf_i2c_remove(struct platform_device * pdev)2398 static int mlxbf_i2c_remove(struct platform_device *pdev)
2399 {
2400 struct mlxbf_i2c_priv *priv = platform_get_drvdata(pdev);
2401 struct device *dev = &pdev->dev;
2402 struct resource *params;
2403
2404 params = priv->smbus->params;
2405 devm_release_mem_region(dev, params->start, resource_size(params));
2406
2407 params = priv->mst_cause->params;
2408 devm_release_mem_region(dev, params->start, resource_size(params));
2409
2410 params = priv->slv_cause->params;
2411 devm_release_mem_region(dev, params->start, resource_size(params));
2412
2413 /*
2414 * Release shared resources. This should be done when releasing
2415 * the I2C controller.
2416 */
2417 mutex_lock(&mlxbf_i2c_bus_lock);
2418 if (--mlxbf_i2c_bus_count == 0) {
2419 mlxbf_i2c_release_coalesce(pdev, priv);
2420 mlxbf_i2c_release_corepll(pdev, priv);
2421 mlxbf_i2c_release_gpio(pdev, priv);
2422 }
2423 mutex_unlock(&mlxbf_i2c_bus_lock);
2424
2425 devm_free_irq(dev, priv->irq, priv);
2426
2427 i2c_del_adapter(&priv->adap);
2428
2429 return 0;
2430 }
2431
2432 static struct platform_driver mlxbf_i2c_driver = {
2433 .probe = mlxbf_i2c_probe,
2434 .remove = mlxbf_i2c_remove,
2435 .driver = {
2436 .name = "i2c-mlxbf",
2437 .of_match_table = mlxbf_i2c_dt_ids,
2438 #ifdef CONFIG_ACPI
2439 .acpi_match_table = ACPI_PTR(mlxbf_i2c_acpi_ids),
2440 #endif /* CONFIG_ACPI */
2441 },
2442 };
2443
mlxbf_i2c_init(void)2444 static int __init mlxbf_i2c_init(void)
2445 {
2446 mutex_init(&mlxbf_i2c_coalesce_lock);
2447 mutex_init(&mlxbf_i2c_corepll_lock);
2448 mutex_init(&mlxbf_i2c_gpio_lock);
2449
2450 mutex_init(&mlxbf_i2c_bus_lock);
2451
2452 return platform_driver_register(&mlxbf_i2c_driver);
2453 }
2454 module_init(mlxbf_i2c_init);
2455
mlxbf_i2c_exit(void)2456 static void __exit mlxbf_i2c_exit(void)
2457 {
2458 platform_driver_unregister(&mlxbf_i2c_driver);
2459
2460 mutex_destroy(&mlxbf_i2c_bus_lock);
2461
2462 mutex_destroy(&mlxbf_i2c_gpio_lock);
2463 mutex_destroy(&mlxbf_i2c_corepll_lock);
2464 mutex_destroy(&mlxbf_i2c_coalesce_lock);
2465 }
2466 module_exit(mlxbf_i2c_exit);
2467
2468 MODULE_DESCRIPTION("Mellanox BlueField I2C bus driver");
2469 MODULE_AUTHOR("Khalil Blaiech <kblaiech@nvidia.com>");
2470 MODULE_LICENSE("GPL v2");
2471