1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * IBM PowerNV platform sensors for temperature/fan/voltage/power
4 * Copyright (C) 2014 IBM
5 */
6
7 #define DRVNAME "ibmpowernv"
8 #define pr_fmt(fmt) DRVNAME ": " fmt
9
10 #include <linux/init.h>
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/hwmon.h>
14 #include <linux/hwmon-sysfs.h>
15 #include <linux/of.h>
16 #include <linux/slab.h>
17
18 #include <linux/platform_device.h>
19 #include <asm/opal.h>
20 #include <linux/err.h>
21 #include <asm/cputhreads.h>
22 #include <asm/smp.h>
23
24 #define MAX_ATTR_LEN 32
25 #define MAX_LABEL_LEN 64
26
27 /* Sensor suffix name from DT */
28 #define DT_FAULT_ATTR_SUFFIX "faulted"
29 #define DT_DATA_ATTR_SUFFIX "data"
30 #define DT_THRESHOLD_ATTR_SUFFIX "thrs"
31
32 /*
33 * Enumerates all the types of sensors in the POWERNV platform and does index
34 * into 'struct sensor_group'
35 */
36 enum sensors {
37 FAN,
38 TEMP,
39 POWER_SUPPLY,
40 POWER_INPUT,
41 CURRENT,
42 ENERGY,
43 MAX_SENSOR_TYPE,
44 };
45
46 #define INVALID_INDEX (-1U)
47
48 /*
49 * 'compatible' string properties for sensor types as defined in old
50 * PowerNV firmware (skiboot). These are ordered as 'enum sensors'.
51 */
52 static const char * const legacy_compatibles[] = {
53 "ibm,opal-sensor-cooling-fan",
54 "ibm,opal-sensor-amb-temp",
55 "ibm,opal-sensor-power-supply",
56 "ibm,opal-sensor-power"
57 };
58
59 static struct sensor_group {
60 const char *name; /* matches property 'sensor-type' */
61 struct attribute_group group;
62 u32 attr_count;
63 u32 hwmon_index;
64 } sensor_groups[] = {
65 { "fan" },
66 { "temp" },
67 { "in" },
68 { "power" },
69 { "curr" },
70 { "energy" },
71 };
72
73 struct sensor_data {
74 u32 id; /* An opaque id of the firmware for each sensor */
75 u32 hwmon_index;
76 u32 opal_index;
77 enum sensors type;
78 char label[MAX_LABEL_LEN];
79 char name[MAX_ATTR_LEN];
80 struct device_attribute dev_attr;
81 struct sensor_group_data *sgrp_data;
82 };
83
84 struct sensor_group_data {
85 struct mutex mutex;
86 u32 gid;
87 bool enable;
88 };
89
90 struct platform_data {
91 const struct attribute_group *attr_groups[MAX_SENSOR_TYPE + 1];
92 struct sensor_group_data *sgrp_data;
93 u32 sensors_count; /* Total count of sensors from each group */
94 u32 nr_sensor_groups; /* Total number of sensor groups */
95 };
96
show_sensor(struct device * dev,struct device_attribute * devattr,char * buf)97 static ssize_t show_sensor(struct device *dev, struct device_attribute *devattr,
98 char *buf)
99 {
100 struct sensor_data *sdata = container_of(devattr, struct sensor_data,
101 dev_attr);
102 ssize_t ret;
103 u64 x;
104
105 if (sdata->sgrp_data && !sdata->sgrp_data->enable)
106 return -ENODATA;
107
108 ret = opal_get_sensor_data_u64(sdata->id, &x);
109
110 if (ret)
111 return ret;
112
113 /* Convert temperature to milli-degrees */
114 if (sdata->type == TEMP)
115 x *= 1000;
116 /* Convert power to micro-watts */
117 else if (sdata->type == POWER_INPUT)
118 x *= 1000000;
119
120 return sprintf(buf, "%llu\n", x);
121 }
122
show_enable(struct device * dev,struct device_attribute * devattr,char * buf)123 static ssize_t show_enable(struct device *dev,
124 struct device_attribute *devattr, char *buf)
125 {
126 struct sensor_data *sdata = container_of(devattr, struct sensor_data,
127 dev_attr);
128
129 return sprintf(buf, "%u\n", sdata->sgrp_data->enable);
130 }
131
store_enable(struct device * dev,struct device_attribute * devattr,const char * buf,size_t count)132 static ssize_t store_enable(struct device *dev,
133 struct device_attribute *devattr,
134 const char *buf, size_t count)
135 {
136 struct sensor_data *sdata = container_of(devattr, struct sensor_data,
137 dev_attr);
138 struct sensor_group_data *sgrp_data = sdata->sgrp_data;
139 int ret;
140 bool data;
141
142 ret = kstrtobool(buf, &data);
143 if (ret)
144 return ret;
145
146 ret = mutex_lock_interruptible(&sgrp_data->mutex);
147 if (ret)
148 return ret;
149
150 if (data != sgrp_data->enable) {
151 ret = sensor_group_enable(sgrp_data->gid, data);
152 if (!ret)
153 sgrp_data->enable = data;
154 }
155
156 if (!ret)
157 ret = count;
158
159 mutex_unlock(&sgrp_data->mutex);
160 return ret;
161 }
162
show_label(struct device * dev,struct device_attribute * devattr,char * buf)163 static ssize_t show_label(struct device *dev, struct device_attribute *devattr,
164 char *buf)
165 {
166 struct sensor_data *sdata = container_of(devattr, struct sensor_data,
167 dev_attr);
168
169 return sprintf(buf, "%s\n", sdata->label);
170 }
171
get_logical_cpu(int hwcpu)172 static int get_logical_cpu(int hwcpu)
173 {
174 int cpu;
175
176 for_each_possible_cpu(cpu)
177 if (get_hard_smp_processor_id(cpu) == hwcpu)
178 return cpu;
179
180 return -ENOENT;
181 }
182
make_sensor_label(struct device_node * np,struct sensor_data * sdata,const char * label)183 static void make_sensor_label(struct device_node *np,
184 struct sensor_data *sdata, const char *label)
185 {
186 u32 id;
187 size_t n;
188
189 n = scnprintf(sdata->label, sizeof(sdata->label), "%s", label);
190
191 /*
192 * Core temp pretty print
193 */
194 if (!of_property_read_u32(np, "ibm,pir", &id)) {
195 int cpuid = get_logical_cpu(id);
196
197 if (cpuid >= 0)
198 /*
199 * The digital thermal sensors are associated
200 * with a core.
201 */
202 n += scnprintf(sdata->label + n,
203 sizeof(sdata->label) - n, " %d",
204 cpuid);
205 else
206 n += scnprintf(sdata->label + n,
207 sizeof(sdata->label) - n, " phy%d", id);
208 }
209
210 /*
211 * Membuffer pretty print
212 */
213 if (!of_property_read_u32(np, "ibm,chip-id", &id))
214 n += scnprintf(sdata->label + n, sizeof(sdata->label) - n,
215 " %d", id & 0xffff);
216 }
217
get_sensor_index_attr(const char * name,u32 * index,char * attr)218 static int get_sensor_index_attr(const char *name, u32 *index, char *attr)
219 {
220 char *hash_pos = strchr(name, '#');
221 char buf[8] = { 0 };
222 char *dash_pos;
223 u32 copy_len;
224 int err;
225
226 if (!hash_pos)
227 return -EINVAL;
228
229 dash_pos = strchr(hash_pos, '-');
230 if (!dash_pos)
231 return -EINVAL;
232
233 copy_len = dash_pos - hash_pos - 1;
234 if (copy_len >= sizeof(buf))
235 return -EINVAL;
236
237 strncpy(buf, hash_pos + 1, copy_len);
238
239 err = kstrtou32(buf, 10, index);
240 if (err)
241 return err;
242
243 strscpy(attr, dash_pos + 1, MAX_ATTR_LEN);
244
245 return 0;
246 }
247
convert_opal_attr_name(enum sensors type,const char * opal_attr)248 static const char *convert_opal_attr_name(enum sensors type,
249 const char *opal_attr)
250 {
251 const char *attr_name = NULL;
252
253 if (!strcmp(opal_attr, DT_FAULT_ATTR_SUFFIX)) {
254 attr_name = "fault";
255 } else if (!strcmp(opal_attr, DT_DATA_ATTR_SUFFIX)) {
256 attr_name = "input";
257 } else if (!strcmp(opal_attr, DT_THRESHOLD_ATTR_SUFFIX)) {
258 if (type == TEMP)
259 attr_name = "max";
260 else if (type == FAN)
261 attr_name = "min";
262 }
263
264 return attr_name;
265 }
266
267 /*
268 * This function translates the DT node name into the 'hwmon' attribute name.
269 * IBMPOWERNV device node appear like cooling-fan#2-data, amb-temp#1-thrs etc.
270 * which need to be mapped as fan2_input, temp1_max respectively before
271 * populating them inside hwmon device class.
272 */
parse_opal_node_name(const char * node_name,enum sensors type,u32 * index)273 static const char *parse_opal_node_name(const char *node_name,
274 enum sensors type, u32 *index)
275 {
276 char attr_suffix[MAX_ATTR_LEN];
277 const char *attr_name;
278 int err;
279
280 err = get_sensor_index_attr(node_name, index, attr_suffix);
281 if (err)
282 return ERR_PTR(err);
283
284 attr_name = convert_opal_attr_name(type, attr_suffix);
285 if (!attr_name)
286 return ERR_PTR(-ENOENT);
287
288 return attr_name;
289 }
290
get_sensor_type(struct device_node * np)291 static int get_sensor_type(struct device_node *np)
292 {
293 enum sensors type;
294 const char *str;
295
296 for (type = 0; type < ARRAY_SIZE(legacy_compatibles); type++) {
297 if (of_device_is_compatible(np, legacy_compatibles[type]))
298 return type;
299 }
300
301 /*
302 * Let's check if we have a newer device tree
303 */
304 if (!of_device_is_compatible(np, "ibm,opal-sensor"))
305 return MAX_SENSOR_TYPE;
306
307 if (of_property_read_string(np, "sensor-type", &str))
308 return MAX_SENSOR_TYPE;
309
310 for (type = 0; type < MAX_SENSOR_TYPE; type++)
311 if (!strcmp(str, sensor_groups[type].name))
312 return type;
313
314 return MAX_SENSOR_TYPE;
315 }
316
get_sensor_hwmon_index(struct sensor_data * sdata,struct sensor_data * sdata_table,int count)317 static u32 get_sensor_hwmon_index(struct sensor_data *sdata,
318 struct sensor_data *sdata_table, int count)
319 {
320 int i;
321
322 /*
323 * We don't use the OPAL index on newer device trees
324 */
325 if (sdata->opal_index != INVALID_INDEX) {
326 for (i = 0; i < count; i++)
327 if (sdata_table[i].opal_index == sdata->opal_index &&
328 sdata_table[i].type == sdata->type)
329 return sdata_table[i].hwmon_index;
330 }
331 return ++sensor_groups[sdata->type].hwmon_index;
332 }
333
init_sensor_group_data(struct platform_device * pdev,struct platform_data * pdata)334 static int init_sensor_group_data(struct platform_device *pdev,
335 struct platform_data *pdata)
336 {
337 struct sensor_group_data *sgrp_data;
338 struct device_node *groups, *sgrp;
339 int count = 0, ret = 0;
340 enum sensors type;
341
342 groups = of_find_compatible_node(NULL, NULL, "ibm,opal-sensor-group");
343 if (!groups)
344 return ret;
345
346 for_each_child_of_node(groups, sgrp) {
347 type = get_sensor_type(sgrp);
348 if (type != MAX_SENSOR_TYPE)
349 pdata->nr_sensor_groups++;
350 }
351
352 if (!pdata->nr_sensor_groups)
353 goto out;
354
355 sgrp_data = devm_kcalloc(&pdev->dev, pdata->nr_sensor_groups,
356 sizeof(*sgrp_data), GFP_KERNEL);
357 if (!sgrp_data) {
358 ret = -ENOMEM;
359 goto out;
360 }
361
362 for_each_child_of_node(groups, sgrp) {
363 u32 gid;
364
365 type = get_sensor_type(sgrp);
366 if (type == MAX_SENSOR_TYPE)
367 continue;
368
369 if (of_property_read_u32(sgrp, "sensor-group-id", &gid))
370 continue;
371
372 if (of_count_phandle_with_args(sgrp, "sensors", NULL) <= 0)
373 continue;
374
375 sensor_groups[type].attr_count++;
376 sgrp_data[count].gid = gid;
377 mutex_init(&sgrp_data[count].mutex);
378 sgrp_data[count++].enable = false;
379 }
380
381 pdata->sgrp_data = sgrp_data;
382 out:
383 of_node_put(groups);
384 return ret;
385 }
386
get_sensor_group(struct platform_data * pdata,struct device_node * node,enum sensors gtype)387 static struct sensor_group_data *get_sensor_group(struct platform_data *pdata,
388 struct device_node *node,
389 enum sensors gtype)
390 {
391 struct sensor_group_data *sgrp_data = pdata->sgrp_data;
392 struct device_node *groups, *sgrp;
393
394 groups = of_find_compatible_node(NULL, NULL, "ibm,opal-sensor-group");
395 if (!groups)
396 return NULL;
397
398 for_each_child_of_node(groups, sgrp) {
399 struct of_phandle_iterator it;
400 u32 gid;
401 int rc, i;
402 enum sensors type;
403
404 type = get_sensor_type(sgrp);
405 if (type != gtype)
406 continue;
407
408 if (of_property_read_u32(sgrp, "sensor-group-id", &gid))
409 continue;
410
411 of_for_each_phandle(&it, rc, sgrp, "sensors", NULL, 0)
412 if (it.phandle == node->phandle) {
413 of_node_put(it.node);
414 break;
415 }
416
417 if (rc)
418 continue;
419
420 for (i = 0; i < pdata->nr_sensor_groups; i++)
421 if (gid == sgrp_data[i].gid) {
422 of_node_put(sgrp);
423 of_node_put(groups);
424 return &sgrp_data[i];
425 }
426 }
427
428 of_node_put(groups);
429 return NULL;
430 }
431
populate_attr_groups(struct platform_device * pdev)432 static int populate_attr_groups(struct platform_device *pdev)
433 {
434 struct platform_data *pdata = platform_get_drvdata(pdev);
435 const struct attribute_group **pgroups = pdata->attr_groups;
436 struct device_node *opal, *np;
437 enum sensors type;
438 int ret;
439
440 ret = init_sensor_group_data(pdev, pdata);
441 if (ret)
442 return ret;
443
444 opal = of_find_node_by_path("/ibm,opal/sensors");
445 for_each_child_of_node(opal, np) {
446 const char *label;
447
448 type = get_sensor_type(np);
449 if (type == MAX_SENSOR_TYPE)
450 continue;
451
452 sensor_groups[type].attr_count++;
453
454 /*
455 * add attributes for labels, min and max
456 */
457 if (!of_property_read_string(np, "label", &label))
458 sensor_groups[type].attr_count++;
459 if (of_find_property(np, "sensor-data-min", NULL))
460 sensor_groups[type].attr_count++;
461 if (of_find_property(np, "sensor-data-max", NULL))
462 sensor_groups[type].attr_count++;
463 }
464
465 of_node_put(opal);
466
467 for (type = 0; type < MAX_SENSOR_TYPE; type++) {
468 sensor_groups[type].group.attrs = devm_kcalloc(&pdev->dev,
469 sensor_groups[type].attr_count + 1,
470 sizeof(struct attribute *),
471 GFP_KERNEL);
472 if (!sensor_groups[type].group.attrs)
473 return -ENOMEM;
474
475 pgroups[type] = &sensor_groups[type].group;
476 pdata->sensors_count += sensor_groups[type].attr_count;
477 sensor_groups[type].attr_count = 0;
478 }
479
480 return 0;
481 }
482
create_hwmon_attr(struct sensor_data * sdata,const char * attr_name,ssize_t (* show)(struct device * dev,struct device_attribute * attr,char * buf),ssize_t (* store)(struct device * dev,struct device_attribute * attr,const char * buf,size_t count))483 static void create_hwmon_attr(struct sensor_data *sdata, const char *attr_name,
484 ssize_t (*show)(struct device *dev,
485 struct device_attribute *attr,
486 char *buf),
487 ssize_t (*store)(struct device *dev,
488 struct device_attribute *attr,
489 const char *buf, size_t count))
490 {
491 snprintf(sdata->name, MAX_ATTR_LEN, "%s%d_%s",
492 sensor_groups[sdata->type].name, sdata->hwmon_index,
493 attr_name);
494
495 sysfs_attr_init(&sdata->dev_attr.attr);
496 sdata->dev_attr.attr.name = sdata->name;
497 sdata->dev_attr.show = show;
498 if (store) {
499 sdata->dev_attr.store = store;
500 sdata->dev_attr.attr.mode = 0664;
501 } else {
502 sdata->dev_attr.attr.mode = 0444;
503 }
504 }
505
populate_sensor(struct sensor_data * sdata,int od,int hd,int sid,const char * attr_name,enum sensors type,const struct attribute_group * pgroup,struct sensor_group_data * sgrp_data,ssize_t (* show)(struct device * dev,struct device_attribute * attr,char * buf),ssize_t (* store)(struct device * dev,struct device_attribute * attr,const char * buf,size_t count))506 static void populate_sensor(struct sensor_data *sdata, int od, int hd, int sid,
507 const char *attr_name, enum sensors type,
508 const struct attribute_group *pgroup,
509 struct sensor_group_data *sgrp_data,
510 ssize_t (*show)(struct device *dev,
511 struct device_attribute *attr,
512 char *buf),
513 ssize_t (*store)(struct device *dev,
514 struct device_attribute *attr,
515 const char *buf, size_t count))
516 {
517 sdata->id = sid;
518 sdata->type = type;
519 sdata->opal_index = od;
520 sdata->hwmon_index = hd;
521 create_hwmon_attr(sdata, attr_name, show, store);
522 pgroup->attrs[sensor_groups[type].attr_count++] = &sdata->dev_attr.attr;
523 sdata->sgrp_data = sgrp_data;
524 }
525
get_max_attr(enum sensors type)526 static char *get_max_attr(enum sensors type)
527 {
528 switch (type) {
529 case POWER_INPUT:
530 return "input_highest";
531 default:
532 return "highest";
533 }
534 }
535
get_min_attr(enum sensors type)536 static char *get_min_attr(enum sensors type)
537 {
538 switch (type) {
539 case POWER_INPUT:
540 return "input_lowest";
541 default:
542 return "lowest";
543 }
544 }
545
546 /*
547 * Iterate through the device tree for each child of 'sensors' node, create
548 * a sysfs attribute file, the file is named by translating the DT node name
549 * to the name required by the higher 'hwmon' driver like fan1_input, temp1_max
550 * etc..
551 */
create_device_attrs(struct platform_device * pdev)552 static int create_device_attrs(struct platform_device *pdev)
553 {
554 struct platform_data *pdata = platform_get_drvdata(pdev);
555 const struct attribute_group **pgroups = pdata->attr_groups;
556 struct device_node *opal, *np;
557 struct sensor_data *sdata;
558 u32 count = 0;
559 u32 group_attr_id[MAX_SENSOR_TYPE] = {0};
560
561 sdata = devm_kcalloc(&pdev->dev,
562 pdata->sensors_count, sizeof(*sdata),
563 GFP_KERNEL);
564 if (!sdata)
565 return -ENOMEM;
566
567 opal = of_find_node_by_path("/ibm,opal/sensors");
568 for_each_child_of_node(opal, np) {
569 struct sensor_group_data *sgrp_data;
570 const char *attr_name;
571 u32 opal_index, hw_id;
572 u32 sensor_id;
573 const char *label;
574 enum sensors type;
575
576 type = get_sensor_type(np);
577 if (type == MAX_SENSOR_TYPE)
578 continue;
579
580 /*
581 * Newer device trees use a "sensor-data" property
582 * name for input.
583 */
584 if (of_property_read_u32(np, "sensor-id", &sensor_id) &&
585 of_property_read_u32(np, "sensor-data", &sensor_id)) {
586 dev_info(&pdev->dev,
587 "'sensor-id' missing in the node '%pOFn'\n",
588 np);
589 continue;
590 }
591
592 sdata[count].id = sensor_id;
593 sdata[count].type = type;
594
595 /*
596 * If we can not parse the node name, it means we are
597 * running on a newer device tree. We can just forget
598 * about the OPAL index and use a defaut value for the
599 * hwmon attribute name
600 */
601 attr_name = parse_opal_node_name(np->name, type, &opal_index);
602 if (IS_ERR(attr_name)) {
603 attr_name = "input";
604 opal_index = INVALID_INDEX;
605 }
606
607 hw_id = get_sensor_hwmon_index(&sdata[count], sdata, count);
608 sgrp_data = get_sensor_group(pdata, np, type);
609 populate_sensor(&sdata[count], opal_index, hw_id, sensor_id,
610 attr_name, type, pgroups[type], sgrp_data,
611 show_sensor, NULL);
612 count++;
613
614 if (!of_property_read_string(np, "label", &label)) {
615 /*
616 * For the label attribute, we can reuse the
617 * "properties" of the previous "input"
618 * attribute. They are related to the same
619 * sensor.
620 */
621
622 make_sensor_label(np, &sdata[count], label);
623 populate_sensor(&sdata[count], opal_index, hw_id,
624 sensor_id, "label", type, pgroups[type],
625 NULL, show_label, NULL);
626 count++;
627 }
628
629 if (!of_property_read_u32(np, "sensor-data-max", &sensor_id)) {
630 attr_name = get_max_attr(type);
631 populate_sensor(&sdata[count], opal_index, hw_id,
632 sensor_id, attr_name, type,
633 pgroups[type], sgrp_data, show_sensor,
634 NULL);
635 count++;
636 }
637
638 if (!of_property_read_u32(np, "sensor-data-min", &sensor_id)) {
639 attr_name = get_min_attr(type);
640 populate_sensor(&sdata[count], opal_index, hw_id,
641 sensor_id, attr_name, type,
642 pgroups[type], sgrp_data, show_sensor,
643 NULL);
644 count++;
645 }
646
647 if (sgrp_data && !sgrp_data->enable) {
648 sgrp_data->enable = true;
649 hw_id = ++group_attr_id[type];
650 populate_sensor(&sdata[count], opal_index, hw_id,
651 sgrp_data->gid, "enable", type,
652 pgroups[type], sgrp_data, show_enable,
653 store_enable);
654 count++;
655 }
656 }
657
658 of_node_put(opal);
659 return 0;
660 }
661
ibmpowernv_probe(struct platform_device * pdev)662 static int ibmpowernv_probe(struct platform_device *pdev)
663 {
664 struct platform_data *pdata;
665 struct device *hwmon_dev;
666 int err;
667
668 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
669 if (!pdata)
670 return -ENOMEM;
671
672 platform_set_drvdata(pdev, pdata);
673 pdata->sensors_count = 0;
674 pdata->nr_sensor_groups = 0;
675 err = populate_attr_groups(pdev);
676 if (err)
677 return err;
678
679 /* Create sysfs attribute data for each sensor found in the DT */
680 err = create_device_attrs(pdev);
681 if (err)
682 return err;
683
684 /* Finally, register with hwmon */
685 hwmon_dev = devm_hwmon_device_register_with_groups(&pdev->dev, DRVNAME,
686 pdata,
687 pdata->attr_groups);
688
689 return PTR_ERR_OR_ZERO(hwmon_dev);
690 }
691
692 static const struct platform_device_id opal_sensor_driver_ids[] = {
693 {
694 .name = "opal-sensor",
695 },
696 { }
697 };
698 MODULE_DEVICE_TABLE(platform, opal_sensor_driver_ids);
699
700 static const struct of_device_id opal_sensor_match[] = {
701 { .compatible = "ibm,opal-sensor" },
702 { },
703 };
704 MODULE_DEVICE_TABLE(of, opal_sensor_match);
705
706 static struct platform_driver ibmpowernv_driver = {
707 .probe = ibmpowernv_probe,
708 .id_table = opal_sensor_driver_ids,
709 .driver = {
710 .name = DRVNAME,
711 .of_match_table = opal_sensor_match,
712 },
713 };
714
715 module_platform_driver(ibmpowernv_driver);
716
717 MODULE_AUTHOR("Neelesh Gupta <neelegup@linux.vnet.ibm.com>");
718 MODULE_DESCRIPTION("IBM POWERNV platform sensors");
719 MODULE_LICENSE("GPL");
720