1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /**************************************************************************
3 *
4 * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #include "vmwgfx_drv.h"
29 #include <drm/ttm/ttm_bo_driver.h>
30 #include <drm/ttm/ttm_placement.h>
31
32 static const struct ttm_place vram_placement_flags = {
33 .fpfn = 0,
34 .lpfn = 0,
35 .mem_type = TTM_PL_VRAM,
36 .flags = 0
37 };
38
39 static const struct ttm_place sys_placement_flags = {
40 .fpfn = 0,
41 .lpfn = 0,
42 .mem_type = TTM_PL_SYSTEM,
43 .flags = 0
44 };
45
46 static const struct ttm_place gmr_placement_flags = {
47 .fpfn = 0,
48 .lpfn = 0,
49 .mem_type = VMW_PL_GMR,
50 .flags = 0
51 };
52
53 static const struct ttm_place mob_placement_flags = {
54 .fpfn = 0,
55 .lpfn = 0,
56 .mem_type = VMW_PL_MOB,
57 .flags = 0
58 };
59
60 struct ttm_placement vmw_vram_placement = {
61 .num_placement = 1,
62 .placement = &vram_placement_flags,
63 .num_busy_placement = 1,
64 .busy_placement = &vram_placement_flags
65 };
66
67 static const struct ttm_place vram_gmr_placement_flags[] = {
68 {
69 .fpfn = 0,
70 .lpfn = 0,
71 .mem_type = TTM_PL_VRAM,
72 .flags = 0
73 }, {
74 .fpfn = 0,
75 .lpfn = 0,
76 .mem_type = VMW_PL_GMR,
77 .flags = 0
78 }
79 };
80
81 static const struct ttm_place gmr_vram_placement_flags[] = {
82 {
83 .fpfn = 0,
84 .lpfn = 0,
85 .mem_type = VMW_PL_GMR,
86 .flags = 0
87 }, {
88 .fpfn = 0,
89 .lpfn = 0,
90 .mem_type = TTM_PL_VRAM,
91 .flags = 0
92 }
93 };
94
95 static const struct ttm_place vmw_sys_placement_flags = {
96 .fpfn = 0,
97 .lpfn = 0,
98 .mem_type = VMW_PL_SYSTEM,
99 .flags = 0
100 };
101
102 struct ttm_placement vmw_vram_gmr_placement = {
103 .num_placement = 2,
104 .placement = vram_gmr_placement_flags,
105 .num_busy_placement = 1,
106 .busy_placement = &gmr_placement_flags
107 };
108
109 struct ttm_placement vmw_vram_sys_placement = {
110 .num_placement = 1,
111 .placement = &vram_placement_flags,
112 .num_busy_placement = 1,
113 .busy_placement = &sys_placement_flags
114 };
115
116 struct ttm_placement vmw_sys_placement = {
117 .num_placement = 1,
118 .placement = &sys_placement_flags,
119 .num_busy_placement = 1,
120 .busy_placement = &sys_placement_flags
121 };
122
123 struct ttm_placement vmw_pt_sys_placement = {
124 .num_placement = 1,
125 .placement = &vmw_sys_placement_flags,
126 .num_busy_placement = 1,
127 .busy_placement = &vmw_sys_placement_flags
128 };
129
130 static const struct ttm_place nonfixed_placement_flags[] = {
131 {
132 .fpfn = 0,
133 .lpfn = 0,
134 .mem_type = TTM_PL_SYSTEM,
135 .flags = 0
136 }, {
137 .fpfn = 0,
138 .lpfn = 0,
139 .mem_type = VMW_PL_GMR,
140 .flags = 0
141 }, {
142 .fpfn = 0,
143 .lpfn = 0,
144 .mem_type = VMW_PL_MOB,
145 .flags = 0
146 }
147 };
148
149 struct ttm_placement vmw_srf_placement = {
150 .num_placement = 1,
151 .num_busy_placement = 2,
152 .placement = &gmr_placement_flags,
153 .busy_placement = gmr_vram_placement_flags
154 };
155
156 struct ttm_placement vmw_mob_placement = {
157 .num_placement = 1,
158 .num_busy_placement = 1,
159 .placement = &mob_placement_flags,
160 .busy_placement = &mob_placement_flags
161 };
162
163 struct ttm_placement vmw_nonfixed_placement = {
164 .num_placement = 3,
165 .placement = nonfixed_placement_flags,
166 .num_busy_placement = 1,
167 .busy_placement = &sys_placement_flags
168 };
169
170 const size_t vmw_tt_size = sizeof(struct vmw_ttm_tt);
171
172 /**
173 * __vmw_piter_non_sg_next: Helper functions to advance
174 * a struct vmw_piter iterator.
175 *
176 * @viter: Pointer to the iterator.
177 *
178 * These functions return false if past the end of the list,
179 * true otherwise. Functions are selected depending on the current
180 * DMA mapping mode.
181 */
__vmw_piter_non_sg_next(struct vmw_piter * viter)182 static bool __vmw_piter_non_sg_next(struct vmw_piter *viter)
183 {
184 return ++(viter->i) < viter->num_pages;
185 }
186
__vmw_piter_sg_next(struct vmw_piter * viter)187 static bool __vmw_piter_sg_next(struct vmw_piter *viter)
188 {
189 bool ret = __vmw_piter_non_sg_next(viter);
190
191 return __sg_page_iter_dma_next(&viter->iter) && ret;
192 }
193
194
__vmw_piter_dma_addr(struct vmw_piter * viter)195 static dma_addr_t __vmw_piter_dma_addr(struct vmw_piter *viter)
196 {
197 return viter->addrs[viter->i];
198 }
199
__vmw_piter_sg_addr(struct vmw_piter * viter)200 static dma_addr_t __vmw_piter_sg_addr(struct vmw_piter *viter)
201 {
202 return sg_page_iter_dma_address(&viter->iter);
203 }
204
205
206 /**
207 * vmw_piter_start - Initialize a struct vmw_piter.
208 *
209 * @viter: Pointer to the iterator to initialize
210 * @vsgt: Pointer to a struct vmw_sg_table to initialize from
211 * @p_offset: Pointer offset used to update current array position
212 *
213 * Note that we're following the convention of __sg_page_iter_start, so that
214 * the iterator doesn't point to a valid page after initialization; it has
215 * to be advanced one step first.
216 */
vmw_piter_start(struct vmw_piter * viter,const struct vmw_sg_table * vsgt,unsigned long p_offset)217 void vmw_piter_start(struct vmw_piter *viter, const struct vmw_sg_table *vsgt,
218 unsigned long p_offset)
219 {
220 viter->i = p_offset - 1;
221 viter->num_pages = vsgt->num_pages;
222 viter->pages = vsgt->pages;
223 switch (vsgt->mode) {
224 case vmw_dma_alloc_coherent:
225 viter->next = &__vmw_piter_non_sg_next;
226 viter->dma_address = &__vmw_piter_dma_addr;
227 viter->addrs = vsgt->addrs;
228 break;
229 case vmw_dma_map_populate:
230 case vmw_dma_map_bind:
231 viter->next = &__vmw_piter_sg_next;
232 viter->dma_address = &__vmw_piter_sg_addr;
233 __sg_page_iter_start(&viter->iter.base, vsgt->sgt->sgl,
234 vsgt->sgt->orig_nents, p_offset);
235 break;
236 default:
237 BUG();
238 }
239 }
240
241 /**
242 * vmw_ttm_unmap_from_dma - unmap device addresses previsouly mapped for
243 * TTM pages
244 *
245 * @vmw_tt: Pointer to a struct vmw_ttm_backend
246 *
247 * Used to free dma mappings previously mapped by vmw_ttm_map_for_dma.
248 */
vmw_ttm_unmap_from_dma(struct vmw_ttm_tt * vmw_tt)249 static void vmw_ttm_unmap_from_dma(struct vmw_ttm_tt *vmw_tt)
250 {
251 struct device *dev = vmw_tt->dev_priv->drm.dev;
252
253 dma_unmap_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0);
254 vmw_tt->sgt.nents = vmw_tt->sgt.orig_nents;
255 }
256
257 /**
258 * vmw_ttm_map_for_dma - map TTM pages to get device addresses
259 *
260 * @vmw_tt: Pointer to a struct vmw_ttm_backend
261 *
262 * This function is used to get device addresses from the kernel DMA layer.
263 * However, it's violating the DMA API in that when this operation has been
264 * performed, it's illegal for the CPU to write to the pages without first
265 * unmapping the DMA mappings, or calling dma_sync_sg_for_cpu(). It is
266 * therefore only legal to call this function if we know that the function
267 * dma_sync_sg_for_cpu() is a NOP, and dma_sync_sg_for_device() is at most
268 * a CPU write buffer flush.
269 */
vmw_ttm_map_for_dma(struct vmw_ttm_tt * vmw_tt)270 static int vmw_ttm_map_for_dma(struct vmw_ttm_tt *vmw_tt)
271 {
272 struct device *dev = vmw_tt->dev_priv->drm.dev;
273
274 return dma_map_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0);
275 }
276
277 /**
278 * vmw_ttm_map_dma - Make sure TTM pages are visible to the device
279 *
280 * @vmw_tt: Pointer to a struct vmw_ttm_tt
281 *
282 * Select the correct function for and make sure the TTM pages are
283 * visible to the device. Allocate storage for the device mappings.
284 * If a mapping has already been performed, indicated by the storage
285 * pointer being non NULL, the function returns success.
286 */
vmw_ttm_map_dma(struct vmw_ttm_tt * vmw_tt)287 static int vmw_ttm_map_dma(struct vmw_ttm_tt *vmw_tt)
288 {
289 struct vmw_private *dev_priv = vmw_tt->dev_priv;
290 struct vmw_sg_table *vsgt = &vmw_tt->vsgt;
291 int ret = 0;
292
293 if (vmw_tt->mapped)
294 return 0;
295
296 vsgt->mode = dev_priv->map_mode;
297 vsgt->pages = vmw_tt->dma_ttm.pages;
298 vsgt->num_pages = vmw_tt->dma_ttm.num_pages;
299 vsgt->addrs = vmw_tt->dma_ttm.dma_address;
300 vsgt->sgt = NULL;
301
302 switch (dev_priv->map_mode) {
303 case vmw_dma_map_bind:
304 case vmw_dma_map_populate:
305 vsgt->sgt = &vmw_tt->sgt;
306 ret = sg_alloc_table_from_pages_segment(
307 &vmw_tt->sgt, vsgt->pages, vsgt->num_pages, 0,
308 (unsigned long)vsgt->num_pages << PAGE_SHIFT,
309 dma_get_max_seg_size(dev_priv->drm.dev), GFP_KERNEL);
310 if (ret)
311 goto out_sg_alloc_fail;
312
313 ret = vmw_ttm_map_for_dma(vmw_tt);
314 if (unlikely(ret != 0))
315 goto out_map_fail;
316
317 break;
318 default:
319 break;
320 }
321
322 vmw_tt->mapped = true;
323 return 0;
324
325 out_map_fail:
326 sg_free_table(vmw_tt->vsgt.sgt);
327 vmw_tt->vsgt.sgt = NULL;
328 out_sg_alloc_fail:
329 return ret;
330 }
331
332 /**
333 * vmw_ttm_unmap_dma - Tear down any TTM page device mappings
334 *
335 * @vmw_tt: Pointer to a struct vmw_ttm_tt
336 *
337 * Tear down any previously set up device DMA mappings and free
338 * any storage space allocated for them. If there are no mappings set up,
339 * this function is a NOP.
340 */
vmw_ttm_unmap_dma(struct vmw_ttm_tt * vmw_tt)341 static void vmw_ttm_unmap_dma(struct vmw_ttm_tt *vmw_tt)
342 {
343 struct vmw_private *dev_priv = vmw_tt->dev_priv;
344
345 if (!vmw_tt->vsgt.sgt)
346 return;
347
348 switch (dev_priv->map_mode) {
349 case vmw_dma_map_bind:
350 case vmw_dma_map_populate:
351 vmw_ttm_unmap_from_dma(vmw_tt);
352 sg_free_table(vmw_tt->vsgt.sgt);
353 vmw_tt->vsgt.sgt = NULL;
354 break;
355 default:
356 break;
357 }
358 vmw_tt->mapped = false;
359 }
360
361 /**
362 * vmw_bo_sg_table - Return a struct vmw_sg_table object for a
363 * TTM buffer object
364 *
365 * @bo: Pointer to a struct ttm_buffer_object
366 *
367 * Returns a pointer to a struct vmw_sg_table object. The object should
368 * not be freed after use.
369 * Note that for the device addresses to be valid, the buffer object must
370 * either be reserved or pinned.
371 */
vmw_bo_sg_table(struct ttm_buffer_object * bo)372 const struct vmw_sg_table *vmw_bo_sg_table(struct ttm_buffer_object *bo)
373 {
374 struct vmw_ttm_tt *vmw_tt =
375 container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm);
376
377 return &vmw_tt->vsgt;
378 }
379
380
vmw_ttm_bind(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_resource * bo_mem)381 static int vmw_ttm_bind(struct ttm_device *bdev,
382 struct ttm_tt *ttm, struct ttm_resource *bo_mem)
383 {
384 struct vmw_ttm_tt *vmw_be =
385 container_of(ttm, struct vmw_ttm_tt, dma_ttm);
386 int ret = 0;
387
388 if (!bo_mem)
389 return -EINVAL;
390
391 if (vmw_be->bound)
392 return 0;
393
394 ret = vmw_ttm_map_dma(vmw_be);
395 if (unlikely(ret != 0))
396 return ret;
397
398 vmw_be->gmr_id = bo_mem->start;
399 vmw_be->mem_type = bo_mem->mem_type;
400
401 switch (bo_mem->mem_type) {
402 case VMW_PL_GMR:
403 ret = vmw_gmr_bind(vmw_be->dev_priv, &vmw_be->vsgt,
404 ttm->num_pages, vmw_be->gmr_id);
405 break;
406 case VMW_PL_MOB:
407 if (unlikely(vmw_be->mob == NULL)) {
408 vmw_be->mob =
409 vmw_mob_create(ttm->num_pages);
410 if (unlikely(vmw_be->mob == NULL))
411 return -ENOMEM;
412 }
413
414 ret = vmw_mob_bind(vmw_be->dev_priv, vmw_be->mob,
415 &vmw_be->vsgt, ttm->num_pages,
416 vmw_be->gmr_id);
417 break;
418 case VMW_PL_SYSTEM:
419 /* Nothing to be done for a system bind */
420 break;
421 default:
422 BUG();
423 }
424 vmw_be->bound = true;
425 return ret;
426 }
427
vmw_ttm_unbind(struct ttm_device * bdev,struct ttm_tt * ttm)428 static void vmw_ttm_unbind(struct ttm_device *bdev,
429 struct ttm_tt *ttm)
430 {
431 struct vmw_ttm_tt *vmw_be =
432 container_of(ttm, struct vmw_ttm_tt, dma_ttm);
433
434 if (!vmw_be->bound)
435 return;
436
437 switch (vmw_be->mem_type) {
438 case VMW_PL_GMR:
439 vmw_gmr_unbind(vmw_be->dev_priv, vmw_be->gmr_id);
440 break;
441 case VMW_PL_MOB:
442 vmw_mob_unbind(vmw_be->dev_priv, vmw_be->mob);
443 break;
444 case VMW_PL_SYSTEM:
445 break;
446 default:
447 BUG();
448 }
449
450 if (vmw_be->dev_priv->map_mode == vmw_dma_map_bind)
451 vmw_ttm_unmap_dma(vmw_be);
452 vmw_be->bound = false;
453 }
454
455
vmw_ttm_destroy(struct ttm_device * bdev,struct ttm_tt * ttm)456 static void vmw_ttm_destroy(struct ttm_device *bdev, struct ttm_tt *ttm)
457 {
458 struct vmw_ttm_tt *vmw_be =
459 container_of(ttm, struct vmw_ttm_tt, dma_ttm);
460
461 vmw_ttm_unmap_dma(vmw_be);
462 ttm_tt_fini(ttm);
463 if (vmw_be->mob)
464 vmw_mob_destroy(vmw_be->mob);
465
466 kfree(vmw_be);
467 }
468
469
vmw_ttm_populate(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_operation_ctx * ctx)470 static int vmw_ttm_populate(struct ttm_device *bdev,
471 struct ttm_tt *ttm, struct ttm_operation_ctx *ctx)
472 {
473 int ret;
474
475 /* TODO: maybe completely drop this ? */
476 if (ttm_tt_is_populated(ttm))
477 return 0;
478
479 ret = ttm_pool_alloc(&bdev->pool, ttm, ctx);
480
481 return ret;
482 }
483
vmw_ttm_unpopulate(struct ttm_device * bdev,struct ttm_tt * ttm)484 static void vmw_ttm_unpopulate(struct ttm_device *bdev,
485 struct ttm_tt *ttm)
486 {
487 struct vmw_ttm_tt *vmw_tt = container_of(ttm, struct vmw_ttm_tt,
488 dma_ttm);
489
490 vmw_ttm_unbind(bdev, ttm);
491
492 if (vmw_tt->mob) {
493 vmw_mob_destroy(vmw_tt->mob);
494 vmw_tt->mob = NULL;
495 }
496
497 vmw_ttm_unmap_dma(vmw_tt);
498
499 ttm_pool_free(&bdev->pool, ttm);
500 }
501
vmw_ttm_tt_create(struct ttm_buffer_object * bo,uint32_t page_flags)502 static struct ttm_tt *vmw_ttm_tt_create(struct ttm_buffer_object *bo,
503 uint32_t page_flags)
504 {
505 struct vmw_ttm_tt *vmw_be;
506 int ret;
507
508 vmw_be = kzalloc(sizeof(*vmw_be), GFP_KERNEL);
509 if (!vmw_be)
510 return NULL;
511
512 vmw_be->dev_priv = container_of(bo->bdev, struct vmw_private, bdev);
513 vmw_be->mob = NULL;
514
515 if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
516 ret = ttm_sg_tt_init(&vmw_be->dma_ttm, bo, page_flags,
517 ttm_cached);
518 else
519 ret = ttm_tt_init(&vmw_be->dma_ttm, bo, page_flags,
520 ttm_cached, 0);
521 if (unlikely(ret != 0))
522 goto out_no_init;
523
524 return &vmw_be->dma_ttm;
525 out_no_init:
526 kfree(vmw_be);
527 return NULL;
528 }
529
vmw_evict_flags(struct ttm_buffer_object * bo,struct ttm_placement * placement)530 static void vmw_evict_flags(struct ttm_buffer_object *bo,
531 struct ttm_placement *placement)
532 {
533 *placement = vmw_sys_placement;
534 }
535
vmw_ttm_io_mem_reserve(struct ttm_device * bdev,struct ttm_resource * mem)536 static int vmw_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *mem)
537 {
538 struct vmw_private *dev_priv = container_of(bdev, struct vmw_private, bdev);
539
540 switch (mem->mem_type) {
541 case TTM_PL_SYSTEM:
542 case VMW_PL_SYSTEM:
543 case VMW_PL_GMR:
544 case VMW_PL_MOB:
545 return 0;
546 case TTM_PL_VRAM:
547 mem->bus.offset = (mem->start << PAGE_SHIFT) +
548 dev_priv->vram_start;
549 mem->bus.is_iomem = true;
550 mem->bus.caching = ttm_cached;
551 break;
552 default:
553 return -EINVAL;
554 }
555 return 0;
556 }
557
558 /**
559 * vmw_move_notify - TTM move_notify_callback
560 *
561 * @bo: The TTM buffer object about to move.
562 * @old_mem: The old memory where we move from
563 * @new_mem: The struct ttm_resource indicating to what memory
564 * region the move is taking place.
565 *
566 * Calls move_notify for all subsystems needing it.
567 * (currently only resources).
568 */
vmw_move_notify(struct ttm_buffer_object * bo,struct ttm_resource * old_mem,struct ttm_resource * new_mem)569 static void vmw_move_notify(struct ttm_buffer_object *bo,
570 struct ttm_resource *old_mem,
571 struct ttm_resource *new_mem)
572 {
573 vmw_bo_move_notify(bo, new_mem);
574 vmw_query_move_notify(bo, old_mem, new_mem);
575 }
576
577
578 /**
579 * vmw_swap_notify - TTM move_notify_callback
580 *
581 * @bo: The TTM buffer object about to be swapped out.
582 */
vmw_swap_notify(struct ttm_buffer_object * bo)583 static void vmw_swap_notify(struct ttm_buffer_object *bo)
584 {
585 vmw_bo_swap_notify(bo);
586 (void) ttm_bo_wait(bo, false, false);
587 }
588
vmw_memtype_is_system(uint32_t mem_type)589 static bool vmw_memtype_is_system(uint32_t mem_type)
590 {
591 return mem_type == TTM_PL_SYSTEM || mem_type == VMW_PL_SYSTEM;
592 }
593
vmw_move(struct ttm_buffer_object * bo,bool evict,struct ttm_operation_ctx * ctx,struct ttm_resource * new_mem,struct ttm_place * hop)594 static int vmw_move(struct ttm_buffer_object *bo,
595 bool evict,
596 struct ttm_operation_ctx *ctx,
597 struct ttm_resource *new_mem,
598 struct ttm_place *hop)
599 {
600 struct ttm_resource_manager *old_man = ttm_manager_type(bo->bdev, bo->resource->mem_type);
601 struct ttm_resource_manager *new_man = ttm_manager_type(bo->bdev, new_mem->mem_type);
602 int ret;
603
604 if (new_man->use_tt && !vmw_memtype_is_system(new_mem->mem_type)) {
605 ret = vmw_ttm_bind(bo->bdev, bo->ttm, new_mem);
606 if (ret)
607 return ret;
608 }
609
610 vmw_move_notify(bo, bo->resource, new_mem);
611
612 if (old_man->use_tt && new_man->use_tt) {
613 if (vmw_memtype_is_system(bo->resource->mem_type)) {
614 ttm_bo_move_null(bo, new_mem);
615 return 0;
616 }
617 ret = ttm_bo_wait_ctx(bo, ctx);
618 if (ret)
619 goto fail;
620
621 vmw_ttm_unbind(bo->bdev, bo->ttm);
622 ttm_resource_free(bo, &bo->resource);
623 ttm_bo_assign_mem(bo, new_mem);
624 return 0;
625 } else {
626 ret = ttm_bo_move_memcpy(bo, ctx, new_mem);
627 if (ret)
628 goto fail;
629 }
630 return 0;
631 fail:
632 vmw_move_notify(bo, new_mem, bo->resource);
633 return ret;
634 }
635
636 struct ttm_device_funcs vmw_bo_driver = {
637 .ttm_tt_create = &vmw_ttm_tt_create,
638 .ttm_tt_populate = &vmw_ttm_populate,
639 .ttm_tt_unpopulate = &vmw_ttm_unpopulate,
640 .ttm_tt_destroy = &vmw_ttm_destroy,
641 .eviction_valuable = ttm_bo_eviction_valuable,
642 .evict_flags = vmw_evict_flags,
643 .move = vmw_move,
644 .swap_notify = vmw_swap_notify,
645 .io_mem_reserve = &vmw_ttm_io_mem_reserve,
646 };
647
vmw_bo_create_and_populate(struct vmw_private * dev_priv,unsigned long bo_size,struct ttm_buffer_object ** bo_p)648 int vmw_bo_create_and_populate(struct vmw_private *dev_priv,
649 unsigned long bo_size,
650 struct ttm_buffer_object **bo_p)
651 {
652 struct ttm_operation_ctx ctx = {
653 .interruptible = false,
654 .no_wait_gpu = false
655 };
656 struct ttm_buffer_object *bo;
657 int ret;
658
659 ret = vmw_bo_create_kernel(dev_priv, bo_size,
660 &vmw_pt_sys_placement,
661 &bo);
662 if (unlikely(ret != 0))
663 return ret;
664
665 ret = ttm_bo_reserve(bo, false, true, NULL);
666 BUG_ON(ret != 0);
667 ret = vmw_ttm_populate(bo->bdev, bo->ttm, &ctx);
668 if (likely(ret == 0)) {
669 struct vmw_ttm_tt *vmw_tt =
670 container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm);
671 ret = vmw_ttm_map_dma(vmw_tt);
672 }
673
674 ttm_bo_unreserve(bo);
675
676 if (likely(ret == 0))
677 *bo_p = bo;
678 return ret;
679 }
680