1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * check TSC synchronization.
4 *
5 * Copyright (C) 2006, Red Hat, Inc., Ingo Molnar
6 *
7 * We check whether all boot CPUs have their TSC's synchronized,
8 * print a warning if not and turn off the TSC clock-source.
9 *
10 * The warp-check is point-to-point between two CPUs, the CPU
11 * initiating the bootup is the 'source CPU', the freshly booting
12 * CPU is the 'target CPU'.
13 *
14 * Only two CPUs may participate - they can enter in any order.
15 * ( The serial nature of the boot logic and the CPU hotplug lock
16 * protects against more than 2 CPUs entering this code. )
17 */
18 #include <linux/topology.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/smp.h>
22 #include <linux/nmi.h>
23 #include <asm/tsc.h>
24
25 struct tsc_adjust {
26 s64 bootval;
27 s64 adjusted;
28 unsigned long nextcheck;
29 bool warned;
30 };
31
32 static DEFINE_PER_CPU(struct tsc_adjust, tsc_adjust);
33 static struct timer_list tsc_sync_check_timer;
34
35 /*
36 * TSC's on different sockets may be reset asynchronously.
37 * This may cause the TSC ADJUST value on socket 0 to be NOT 0.
38 */
39 bool __read_mostly tsc_async_resets;
40
mark_tsc_async_resets(char * reason)41 void mark_tsc_async_resets(char *reason)
42 {
43 if (tsc_async_resets)
44 return;
45 tsc_async_resets = true;
46 pr_info("tsc: Marking TSC async resets true due to %s\n", reason);
47 }
48
tsc_verify_tsc_adjust(bool resume)49 void tsc_verify_tsc_adjust(bool resume)
50 {
51 struct tsc_adjust *adj = this_cpu_ptr(&tsc_adjust);
52 s64 curval;
53
54 if (!boot_cpu_has(X86_FEATURE_TSC_ADJUST))
55 return;
56
57 /* Skip unnecessary error messages if TSC already unstable */
58 if (check_tsc_unstable())
59 return;
60
61 /* Rate limit the MSR check */
62 if (!resume && time_before(jiffies, adj->nextcheck))
63 return;
64
65 adj->nextcheck = jiffies + HZ;
66
67 rdmsrl(MSR_IA32_TSC_ADJUST, curval);
68 if (adj->adjusted == curval)
69 return;
70
71 /* Restore the original value */
72 wrmsrl(MSR_IA32_TSC_ADJUST, adj->adjusted);
73
74 if (!adj->warned || resume) {
75 pr_warn(FW_BUG "TSC ADJUST differs: CPU%u %lld --> %lld. Restoring\n",
76 smp_processor_id(), adj->adjusted, curval);
77 adj->warned = true;
78 }
79 }
80
81 /*
82 * Normally the tsc_sync will be checked every time system enters idle
83 * state, but there is still caveat that a system won't enter idle,
84 * either because it's too busy or configured purposely to not enter
85 * idle.
86 *
87 * So setup a periodic timer (every 10 minutes) to make sure the check
88 * is always on.
89 */
90
91 #define SYNC_CHECK_INTERVAL (HZ * 600)
92
tsc_sync_check_timer_fn(struct timer_list * unused)93 static void tsc_sync_check_timer_fn(struct timer_list *unused)
94 {
95 int next_cpu;
96
97 tsc_verify_tsc_adjust(false);
98
99 /* Run the check for all onlined CPUs in turn */
100 next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
101 if (next_cpu >= nr_cpu_ids)
102 next_cpu = cpumask_first(cpu_online_mask);
103
104 tsc_sync_check_timer.expires += SYNC_CHECK_INTERVAL;
105 add_timer_on(&tsc_sync_check_timer, next_cpu);
106 }
107
start_sync_check_timer(void)108 static int __init start_sync_check_timer(void)
109 {
110 if (!cpu_feature_enabled(X86_FEATURE_TSC_ADJUST) || tsc_clocksource_reliable)
111 return 0;
112
113 timer_setup(&tsc_sync_check_timer, tsc_sync_check_timer_fn, 0);
114 tsc_sync_check_timer.expires = jiffies + SYNC_CHECK_INTERVAL;
115 add_timer(&tsc_sync_check_timer);
116
117 return 0;
118 }
119 late_initcall(start_sync_check_timer);
120
tsc_sanitize_first_cpu(struct tsc_adjust * cur,s64 bootval,unsigned int cpu,bool bootcpu)121 static void tsc_sanitize_first_cpu(struct tsc_adjust *cur, s64 bootval,
122 unsigned int cpu, bool bootcpu)
123 {
124 /*
125 * First online CPU in a package stores the boot value in the
126 * adjustment value. This value might change later via the sync
127 * mechanism. If that fails we still can yell about boot values not
128 * being consistent.
129 *
130 * On the boot cpu we just force set the ADJUST value to 0 if it's
131 * non zero. We don't do that on non boot cpus because physical
132 * hotplug should have set the ADJUST register to a value > 0 so
133 * the TSC is in sync with the already running cpus.
134 *
135 * Also don't force the ADJUST value to zero if that is a valid value
136 * for socket 0 as determined by the system arch. This is required
137 * when multiple sockets are reset asynchronously with each other
138 * and socket 0 may not have an TSC ADJUST value of 0.
139 */
140 if (bootcpu && bootval != 0) {
141 if (likely(!tsc_async_resets)) {
142 pr_warn(FW_BUG "TSC ADJUST: CPU%u: %lld force to 0\n",
143 cpu, bootval);
144 wrmsrl(MSR_IA32_TSC_ADJUST, 0);
145 bootval = 0;
146 } else {
147 pr_info("TSC ADJUST: CPU%u: %lld NOT forced to 0\n",
148 cpu, bootval);
149 }
150 }
151 cur->adjusted = bootval;
152 }
153
154 #ifndef CONFIG_SMP
tsc_store_and_check_tsc_adjust(bool bootcpu)155 bool __init tsc_store_and_check_tsc_adjust(bool bootcpu)
156 {
157 struct tsc_adjust *cur = this_cpu_ptr(&tsc_adjust);
158 s64 bootval;
159
160 if (!boot_cpu_has(X86_FEATURE_TSC_ADJUST))
161 return false;
162
163 /* Skip unnecessary error messages if TSC already unstable */
164 if (check_tsc_unstable())
165 return false;
166
167 rdmsrl(MSR_IA32_TSC_ADJUST, bootval);
168 cur->bootval = bootval;
169 cur->nextcheck = jiffies + HZ;
170 tsc_sanitize_first_cpu(cur, bootval, smp_processor_id(), bootcpu);
171 return false;
172 }
173
174 #else /* !CONFIG_SMP */
175
176 /*
177 * Store and check the TSC ADJUST MSR if available
178 */
tsc_store_and_check_tsc_adjust(bool bootcpu)179 bool tsc_store_and_check_tsc_adjust(bool bootcpu)
180 {
181 struct tsc_adjust *ref, *cur = this_cpu_ptr(&tsc_adjust);
182 unsigned int refcpu, cpu = smp_processor_id();
183 struct cpumask *mask;
184 s64 bootval;
185
186 if (!boot_cpu_has(X86_FEATURE_TSC_ADJUST))
187 return false;
188
189 rdmsrl(MSR_IA32_TSC_ADJUST, bootval);
190 cur->bootval = bootval;
191 cur->nextcheck = jiffies + HZ;
192 cur->warned = false;
193
194 /*
195 * If a non-zero TSC value for socket 0 may be valid then the default
196 * adjusted value cannot assumed to be zero either.
197 */
198 if (tsc_async_resets)
199 cur->adjusted = bootval;
200
201 /*
202 * Check whether this CPU is the first in a package to come up. In
203 * this case do not check the boot value against another package
204 * because the new package might have been physically hotplugged,
205 * where TSC_ADJUST is expected to be different. When called on the
206 * boot CPU topology_core_cpumask() might not be available yet.
207 */
208 mask = topology_core_cpumask(cpu);
209 refcpu = mask ? cpumask_any_but(mask, cpu) : nr_cpu_ids;
210
211 if (refcpu >= nr_cpu_ids) {
212 tsc_sanitize_first_cpu(cur, bootval, smp_processor_id(),
213 bootcpu);
214 return false;
215 }
216
217 ref = per_cpu_ptr(&tsc_adjust, refcpu);
218 /*
219 * Compare the boot value and complain if it differs in the
220 * package.
221 */
222 if (bootval != ref->bootval)
223 printk_once(FW_BUG "TSC ADJUST differs within socket(s), fixing all errors\n");
224
225 /*
226 * The TSC_ADJUST values in a package must be the same. If the boot
227 * value on this newly upcoming CPU differs from the adjustment
228 * value of the already online CPU in this package, set it to that
229 * adjusted value.
230 */
231 if (bootval != ref->adjusted) {
232 cur->adjusted = ref->adjusted;
233 wrmsrl(MSR_IA32_TSC_ADJUST, ref->adjusted);
234 }
235 /*
236 * We have the TSCs forced to be in sync on this package. Skip sync
237 * test:
238 */
239 return true;
240 }
241
242 /*
243 * Entry/exit counters that make sure that both CPUs
244 * run the measurement code at once:
245 */
246 static atomic_t start_count;
247 static atomic_t stop_count;
248 static atomic_t skip_test;
249 static atomic_t test_runs;
250
251 /*
252 * We use a raw spinlock in this exceptional case, because
253 * we want to have the fastest, inlined, non-debug version
254 * of a critical section, to be able to prove TSC time-warps:
255 */
256 static arch_spinlock_t sync_lock = __ARCH_SPIN_LOCK_UNLOCKED;
257
258 static cycles_t last_tsc;
259 static cycles_t max_warp;
260 static int nr_warps;
261 static int random_warps;
262
263 /*
264 * TSC-warp measurement loop running on both CPUs. This is not called
265 * if there is no TSC.
266 */
check_tsc_warp(unsigned int timeout)267 static cycles_t check_tsc_warp(unsigned int timeout)
268 {
269 cycles_t start, now, prev, end, cur_max_warp = 0;
270 int i, cur_warps = 0;
271
272 start = rdtsc_ordered();
273 /*
274 * The measurement runs for 'timeout' msecs:
275 */
276 end = start + (cycles_t) tsc_khz * timeout;
277
278 for (i = 0; ; i++) {
279 /*
280 * We take the global lock, measure TSC, save the
281 * previous TSC that was measured (possibly on
282 * another CPU) and update the previous TSC timestamp.
283 */
284 arch_spin_lock(&sync_lock);
285 prev = last_tsc;
286 now = rdtsc_ordered();
287 last_tsc = now;
288 arch_spin_unlock(&sync_lock);
289
290 /*
291 * Be nice every now and then (and also check whether
292 * measurement is done [we also insert a 10 million
293 * loops safety exit, so we dont lock up in case the
294 * TSC readout is totally broken]):
295 */
296 if (unlikely(!(i & 7))) {
297 if (now > end || i > 10000000)
298 break;
299 cpu_relax();
300 touch_nmi_watchdog();
301 }
302 /*
303 * Outside the critical section we can now see whether
304 * we saw a time-warp of the TSC going backwards:
305 */
306 if (unlikely(prev > now)) {
307 arch_spin_lock(&sync_lock);
308 max_warp = max(max_warp, prev - now);
309 cur_max_warp = max_warp;
310 /*
311 * Check whether this bounces back and forth. Only
312 * one CPU should observe time going backwards.
313 */
314 if (cur_warps != nr_warps)
315 random_warps++;
316 nr_warps++;
317 cur_warps = nr_warps;
318 arch_spin_unlock(&sync_lock);
319 }
320 }
321 WARN(!(now-start),
322 "Warning: zero tsc calibration delta: %Ld [max: %Ld]\n",
323 now-start, end-start);
324 return cur_max_warp;
325 }
326
327 /*
328 * If the target CPU coming online doesn't have any of its core-siblings
329 * online, a timeout of 20msec will be used for the TSC-warp measurement
330 * loop. Otherwise a smaller timeout of 2msec will be used, as we have some
331 * information about this socket already (and this information grows as we
332 * have more and more logical-siblings in that socket).
333 *
334 * Ideally we should be able to skip the TSC sync check on the other
335 * core-siblings, if the first logical CPU in a socket passed the sync test.
336 * But as the TSC is per-logical CPU and can potentially be modified wrongly
337 * by the bios, TSC sync test for smaller duration should be able
338 * to catch such errors. Also this will catch the condition where all the
339 * cores in the socket don't get reset at the same time.
340 */
loop_timeout(int cpu)341 static inline unsigned int loop_timeout(int cpu)
342 {
343 return (cpumask_weight(topology_core_cpumask(cpu)) > 1) ? 2 : 20;
344 }
345
346 /*
347 * Source CPU calls into this - it waits for the freshly booted
348 * target CPU to arrive and then starts the measurement:
349 */
check_tsc_sync_source(int cpu)350 void check_tsc_sync_source(int cpu)
351 {
352 int cpus = 2;
353
354 /*
355 * No need to check if we already know that the TSC is not
356 * synchronized or if we have no TSC.
357 */
358 if (unsynchronized_tsc())
359 return;
360
361 /*
362 * Set the maximum number of test runs to
363 * 1 if the CPU does not provide the TSC_ADJUST MSR
364 * 3 if the MSR is available, so the target can try to adjust
365 */
366 if (!boot_cpu_has(X86_FEATURE_TSC_ADJUST))
367 atomic_set(&test_runs, 1);
368 else
369 atomic_set(&test_runs, 3);
370 retry:
371 /*
372 * Wait for the target to start or to skip the test:
373 */
374 while (atomic_read(&start_count) != cpus - 1) {
375 if (atomic_read(&skip_test) > 0) {
376 atomic_set(&skip_test, 0);
377 return;
378 }
379 cpu_relax();
380 }
381
382 /*
383 * Trigger the target to continue into the measurement too:
384 */
385 atomic_inc(&start_count);
386
387 check_tsc_warp(loop_timeout(cpu));
388
389 while (atomic_read(&stop_count) != cpus-1)
390 cpu_relax();
391
392 /*
393 * If the test was successful set the number of runs to zero and
394 * stop. If not, decrement the number of runs an check if we can
395 * retry. In case of random warps no retry is attempted.
396 */
397 if (!nr_warps) {
398 atomic_set(&test_runs, 0);
399
400 pr_debug("TSC synchronization [CPU#%d -> CPU#%d]: passed\n",
401 smp_processor_id(), cpu);
402
403 } else if (atomic_dec_and_test(&test_runs) || random_warps) {
404 /* Force it to 0 if random warps brought us here */
405 atomic_set(&test_runs, 0);
406
407 pr_warn("TSC synchronization [CPU#%d -> CPU#%d]:\n",
408 smp_processor_id(), cpu);
409 pr_warn("Measured %Ld cycles TSC warp between CPUs, "
410 "turning off TSC clock.\n", max_warp);
411 if (random_warps)
412 pr_warn("TSC warped randomly between CPUs\n");
413 mark_tsc_unstable("check_tsc_sync_source failed");
414 }
415
416 /*
417 * Reset it - just in case we boot another CPU later:
418 */
419 atomic_set(&start_count, 0);
420 random_warps = 0;
421 nr_warps = 0;
422 max_warp = 0;
423 last_tsc = 0;
424
425 /*
426 * Let the target continue with the bootup:
427 */
428 atomic_inc(&stop_count);
429
430 /*
431 * Retry, if there is a chance to do so.
432 */
433 if (atomic_read(&test_runs) > 0)
434 goto retry;
435 }
436
437 /*
438 * Freshly booted CPUs call into this:
439 */
check_tsc_sync_target(void)440 void check_tsc_sync_target(void)
441 {
442 struct tsc_adjust *cur = this_cpu_ptr(&tsc_adjust);
443 unsigned int cpu = smp_processor_id();
444 cycles_t cur_max_warp, gbl_max_warp;
445 int cpus = 2;
446
447 /* Also aborts if there is no TSC. */
448 if (unsynchronized_tsc())
449 return;
450
451 /*
452 * Store, verify and sanitize the TSC adjust register. If
453 * successful skip the test.
454 *
455 * The test is also skipped when the TSC is marked reliable. This
456 * is true for SoCs which have no fallback clocksource. On these
457 * SoCs the TSC is frequency synchronized, but still the TSC ADJUST
458 * register might have been wreckaged by the BIOS..
459 */
460 if (tsc_store_and_check_tsc_adjust(false) || tsc_clocksource_reliable) {
461 atomic_inc(&skip_test);
462 return;
463 }
464
465 retry:
466 /*
467 * Register this CPU's participation and wait for the
468 * source CPU to start the measurement:
469 */
470 atomic_inc(&start_count);
471 while (atomic_read(&start_count) != cpus)
472 cpu_relax();
473
474 cur_max_warp = check_tsc_warp(loop_timeout(cpu));
475
476 /*
477 * Store the maximum observed warp value for a potential retry:
478 */
479 gbl_max_warp = max_warp;
480
481 /*
482 * Ok, we are done:
483 */
484 atomic_inc(&stop_count);
485
486 /*
487 * Wait for the source CPU to print stuff:
488 */
489 while (atomic_read(&stop_count) != cpus)
490 cpu_relax();
491
492 /*
493 * Reset it for the next sync test:
494 */
495 atomic_set(&stop_count, 0);
496
497 /*
498 * Check the number of remaining test runs. If not zero, the test
499 * failed and a retry with adjusted TSC is possible. If zero the
500 * test was either successful or failed terminally.
501 */
502 if (!atomic_read(&test_runs))
503 return;
504
505 /*
506 * If the warp value of this CPU is 0, then the other CPU
507 * observed time going backwards so this TSC was ahead and
508 * needs to move backwards.
509 */
510 if (!cur_max_warp)
511 cur_max_warp = -gbl_max_warp;
512
513 /*
514 * Add the result to the previous adjustment value.
515 *
516 * The adjustment value is slightly off by the overhead of the
517 * sync mechanism (observed values are ~200 TSC cycles), but this
518 * really depends on CPU, node distance and frequency. So
519 * compensating for this is hard to get right. Experiments show
520 * that the warp is not longer detectable when the observed warp
521 * value is used. In the worst case the adjustment needs to go
522 * through a 3rd run for fine tuning.
523 */
524 cur->adjusted += cur_max_warp;
525
526 pr_warn("TSC ADJUST compensate: CPU%u observed %lld warp. Adjust: %lld\n",
527 cpu, cur_max_warp, cur->adjusted);
528
529 wrmsrl(MSR_IA32_TSC_ADJUST, cur->adjusted);
530 goto retry;
531
532 }
533
534 #endif /* CONFIG_SMP */
535