1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Machine check handler.
4  *
5  * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
6  * Rest from unknown author(s).
7  * 2004 Andi Kleen. Rewrote most of it.
8  * Copyright 2008 Intel Corporation
9  * Author: Andi Kleen
10  */
11 
12 #include <linux/thread_info.h>
13 #include <linux/capability.h>
14 #include <linux/miscdevice.h>
15 #include <linux/ratelimit.h>
16 #include <linux/rcupdate.h>
17 #include <linux/kobject.h>
18 #include <linux/uaccess.h>
19 #include <linux/kdebug.h>
20 #include <linux/kernel.h>
21 #include <linux/percpu.h>
22 #include <linux/string.h>
23 #include <linux/device.h>
24 #include <linux/syscore_ops.h>
25 #include <linux/delay.h>
26 #include <linux/ctype.h>
27 #include <linux/sched.h>
28 #include <linux/sysfs.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/kmod.h>
33 #include <linux/poll.h>
34 #include <linux/nmi.h>
35 #include <linux/cpu.h>
36 #include <linux/ras.h>
37 #include <linux/smp.h>
38 #include <linux/fs.h>
39 #include <linux/mm.h>
40 #include <linux/debugfs.h>
41 #include <linux/irq_work.h>
42 #include <linux/export.h>
43 #include <linux/set_memory.h>
44 #include <linux/sync_core.h>
45 #include <linux/task_work.h>
46 #include <linux/hardirq.h>
47 
48 #include <asm/intel-family.h>
49 #include <asm/processor.h>
50 #include <asm/traps.h>
51 #include <asm/tlbflush.h>
52 #include <asm/mce.h>
53 #include <asm/msr.h>
54 #include <asm/reboot.h>
55 
56 #include "internal.h"
57 
58 /* sysfs synchronization */
59 static DEFINE_MUTEX(mce_sysfs_mutex);
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/mce.h>
63 
64 #define SPINUNIT		100	/* 100ns */
65 
66 DEFINE_PER_CPU(unsigned, mce_exception_count);
67 
68 DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks);
69 
70 struct mce_bank {
71 	u64			ctl;			/* subevents to enable */
72 
73 	__u64 init			: 1,		/* initialise bank? */
74 	      __reserved_1		: 63;
75 };
76 static DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array);
77 
78 #define ATTR_LEN               16
79 /* One object for each MCE bank, shared by all CPUs */
80 struct mce_bank_dev {
81 	struct device_attribute	attr;			/* device attribute */
82 	char			attrname[ATTR_LEN];	/* attribute name */
83 	u8			bank;			/* bank number */
84 };
85 static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS];
86 
87 struct mce_vendor_flags mce_flags __read_mostly;
88 
89 struct mca_config mca_cfg __read_mostly = {
90 	.bootlog  = -1,
91 	.monarch_timeout = -1
92 };
93 
94 static DEFINE_PER_CPU(struct mce, mces_seen);
95 static unsigned long mce_need_notify;
96 
97 /*
98  * MCA banks polled by the period polling timer for corrected events.
99  * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
100  */
101 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
102 	[0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
103 };
104 
105 /*
106  * MCA banks controlled through firmware first for corrected errors.
107  * This is a global list of banks for which we won't enable CMCI and we
108  * won't poll. Firmware controls these banks and is responsible for
109  * reporting corrected errors through GHES. Uncorrected/recoverable
110  * errors are still notified through a machine check.
111  */
112 mce_banks_t mce_banks_ce_disabled;
113 
114 static struct work_struct mce_work;
115 static struct irq_work mce_irq_work;
116 
117 /*
118  * CPU/chipset specific EDAC code can register a notifier call here to print
119  * MCE errors in a human-readable form.
120  */
121 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain);
122 
123 /* Do initial initialization of a struct mce */
mce_setup(struct mce * m)124 void mce_setup(struct mce *m)
125 {
126 	memset(m, 0, sizeof(struct mce));
127 	m->cpu = m->extcpu = smp_processor_id();
128 	/* need the internal __ version to avoid deadlocks */
129 	m->time = __ktime_get_real_seconds();
130 	m->cpuvendor = boot_cpu_data.x86_vendor;
131 	m->cpuid = cpuid_eax(1);
132 	m->socketid = cpu_data(m->extcpu).phys_proc_id;
133 	m->apicid = cpu_data(m->extcpu).initial_apicid;
134 	m->mcgcap = __rdmsr(MSR_IA32_MCG_CAP);
135 	m->ppin = cpu_data(m->extcpu).ppin;
136 	m->microcode = boot_cpu_data.microcode;
137 }
138 
139 DEFINE_PER_CPU(struct mce, injectm);
140 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
141 
mce_log(struct mce * m)142 void mce_log(struct mce *m)
143 {
144 	if (!mce_gen_pool_add(m))
145 		irq_work_queue(&mce_irq_work);
146 }
147 EXPORT_SYMBOL_GPL(mce_log);
148 
mce_register_decode_chain(struct notifier_block * nb)149 void mce_register_decode_chain(struct notifier_block *nb)
150 {
151 	if (WARN_ON(nb->priority < MCE_PRIO_LOWEST ||
152 		    nb->priority > MCE_PRIO_HIGHEST))
153 		return;
154 
155 	blocking_notifier_chain_register(&x86_mce_decoder_chain, nb);
156 }
157 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
158 
mce_unregister_decode_chain(struct notifier_block * nb)159 void mce_unregister_decode_chain(struct notifier_block *nb)
160 {
161 	blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
162 }
163 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
164 
__print_mce(struct mce * m)165 static void __print_mce(struct mce *m)
166 {
167 	pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n",
168 		 m->extcpu,
169 		 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""),
170 		 m->mcgstatus, m->bank, m->status);
171 
172 	if (m->ip) {
173 		pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
174 			!(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
175 			m->cs, m->ip);
176 
177 		if (m->cs == __KERNEL_CS)
178 			pr_cont("{%pS}", (void *)(unsigned long)m->ip);
179 		pr_cont("\n");
180 	}
181 
182 	pr_emerg(HW_ERR "TSC %llx ", m->tsc);
183 	if (m->addr)
184 		pr_cont("ADDR %llx ", m->addr);
185 	if (m->misc)
186 		pr_cont("MISC %llx ", m->misc);
187 	if (m->ppin)
188 		pr_cont("PPIN %llx ", m->ppin);
189 
190 	if (mce_flags.smca) {
191 		if (m->synd)
192 			pr_cont("SYND %llx ", m->synd);
193 		if (m->ipid)
194 			pr_cont("IPID %llx ", m->ipid);
195 	}
196 
197 	pr_cont("\n");
198 
199 	/*
200 	 * Note this output is parsed by external tools and old fields
201 	 * should not be changed.
202 	 */
203 	pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
204 		m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
205 		m->microcode);
206 }
207 
print_mce(struct mce * m)208 static void print_mce(struct mce *m)
209 {
210 	__print_mce(m);
211 
212 	if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON)
213 		pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
214 }
215 
216 #define PANIC_TIMEOUT 5 /* 5 seconds */
217 
218 static atomic_t mce_panicked;
219 
220 static int fake_panic;
221 static atomic_t mce_fake_panicked;
222 
223 /* Panic in progress. Enable interrupts and wait for final IPI */
wait_for_panic(void)224 static void wait_for_panic(void)
225 {
226 	long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
227 
228 	preempt_disable();
229 	local_irq_enable();
230 	while (timeout-- > 0)
231 		udelay(1);
232 	if (panic_timeout == 0)
233 		panic_timeout = mca_cfg.panic_timeout;
234 	panic("Panicing machine check CPU died");
235 }
236 
mce_panic(const char * msg,struct mce * final,char * exp)237 static noinstr void mce_panic(const char *msg, struct mce *final, char *exp)
238 {
239 	struct llist_node *pending;
240 	struct mce_evt_llist *l;
241 	int apei_err = 0;
242 
243 	/*
244 	 * Allow instrumentation around external facilities usage. Not that it
245 	 * matters a whole lot since the machine is going to panic anyway.
246 	 */
247 	instrumentation_begin();
248 
249 	if (!fake_panic) {
250 		/*
251 		 * Make sure only one CPU runs in machine check panic
252 		 */
253 		if (atomic_inc_return(&mce_panicked) > 1)
254 			wait_for_panic();
255 		barrier();
256 
257 		bust_spinlocks(1);
258 		console_verbose();
259 	} else {
260 		/* Don't log too much for fake panic */
261 		if (atomic_inc_return(&mce_fake_panicked) > 1)
262 			goto out;
263 	}
264 	pending = mce_gen_pool_prepare_records();
265 	/* First print corrected ones that are still unlogged */
266 	llist_for_each_entry(l, pending, llnode) {
267 		struct mce *m = &l->mce;
268 		if (!(m->status & MCI_STATUS_UC)) {
269 			print_mce(m);
270 			if (!apei_err)
271 				apei_err = apei_write_mce(m);
272 		}
273 	}
274 	/* Now print uncorrected but with the final one last */
275 	llist_for_each_entry(l, pending, llnode) {
276 		struct mce *m = &l->mce;
277 		if (!(m->status & MCI_STATUS_UC))
278 			continue;
279 		if (!final || mce_cmp(m, final)) {
280 			print_mce(m);
281 			if (!apei_err)
282 				apei_err = apei_write_mce(m);
283 		}
284 	}
285 	if (final) {
286 		print_mce(final);
287 		if (!apei_err)
288 			apei_err = apei_write_mce(final);
289 	}
290 	if (exp)
291 		pr_emerg(HW_ERR "Machine check: %s\n", exp);
292 	if (!fake_panic) {
293 		if (panic_timeout == 0)
294 			panic_timeout = mca_cfg.panic_timeout;
295 		panic(msg);
296 	} else
297 		pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
298 
299 out:
300 	instrumentation_end();
301 }
302 
303 /* Support code for software error injection */
304 
msr_to_offset(u32 msr)305 static int msr_to_offset(u32 msr)
306 {
307 	unsigned bank = __this_cpu_read(injectm.bank);
308 
309 	if (msr == mca_cfg.rip_msr)
310 		return offsetof(struct mce, ip);
311 	if (msr == mca_msr_reg(bank, MCA_STATUS))
312 		return offsetof(struct mce, status);
313 	if (msr == mca_msr_reg(bank, MCA_ADDR))
314 		return offsetof(struct mce, addr);
315 	if (msr == mca_msr_reg(bank, MCA_MISC))
316 		return offsetof(struct mce, misc);
317 	if (msr == MSR_IA32_MCG_STATUS)
318 		return offsetof(struct mce, mcgstatus);
319 	return -1;
320 }
321 
ex_handler_msr_mce(struct pt_regs * regs,bool wrmsr)322 void ex_handler_msr_mce(struct pt_regs *regs, bool wrmsr)
323 {
324 	if (wrmsr) {
325 		pr_emerg("MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n",
326 			 (unsigned int)regs->cx, (unsigned int)regs->dx, (unsigned int)regs->ax,
327 			 regs->ip, (void *)regs->ip);
328 	} else {
329 		pr_emerg("MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n",
330 			 (unsigned int)regs->cx, regs->ip, (void *)regs->ip);
331 	}
332 
333 	show_stack_regs(regs);
334 
335 	panic("MCA architectural violation!\n");
336 
337 	while (true)
338 		cpu_relax();
339 }
340 
341 /* MSR access wrappers used for error injection */
mce_rdmsrl(u32 msr)342 noinstr u64 mce_rdmsrl(u32 msr)
343 {
344 	DECLARE_ARGS(val, low, high);
345 
346 	if (__this_cpu_read(injectm.finished)) {
347 		int offset;
348 		u64 ret;
349 
350 		instrumentation_begin();
351 
352 		offset = msr_to_offset(msr);
353 		if (offset < 0)
354 			ret = 0;
355 		else
356 			ret = *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
357 
358 		instrumentation_end();
359 
360 		return ret;
361 	}
362 
363 	/*
364 	 * RDMSR on MCA MSRs should not fault. If they do, this is very much an
365 	 * architectural violation and needs to be reported to hw vendor. Panic
366 	 * the box to not allow any further progress.
367 	 */
368 	asm volatile("1: rdmsr\n"
369 		     "2:\n"
370 		     _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_RDMSR_IN_MCE)
371 		     : EAX_EDX_RET(val, low, high) : "c" (msr));
372 
373 
374 	return EAX_EDX_VAL(val, low, high);
375 }
376 
mce_wrmsrl(u32 msr,u64 v)377 static noinstr void mce_wrmsrl(u32 msr, u64 v)
378 {
379 	u32 low, high;
380 
381 	if (__this_cpu_read(injectm.finished)) {
382 		int offset;
383 
384 		instrumentation_begin();
385 
386 		offset = msr_to_offset(msr);
387 		if (offset >= 0)
388 			*(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
389 
390 		instrumentation_end();
391 
392 		return;
393 	}
394 
395 	low  = (u32)v;
396 	high = (u32)(v >> 32);
397 
398 	/* See comment in mce_rdmsrl() */
399 	asm volatile("1: wrmsr\n"
400 		     "2:\n"
401 		     _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_WRMSR_IN_MCE)
402 		     : : "c" (msr), "a"(low), "d" (high) : "memory");
403 }
404 
405 /*
406  * Collect all global (w.r.t. this processor) status about this machine
407  * check into our "mce" struct so that we can use it later to assess
408  * the severity of the problem as we read per-bank specific details.
409  */
mce_gather_info(struct mce * m,struct pt_regs * regs)410 static noinstr void mce_gather_info(struct mce *m, struct pt_regs *regs)
411 {
412 	/*
413 	 * Enable instrumentation around mce_setup() which calls external
414 	 * facilities.
415 	 */
416 	instrumentation_begin();
417 	mce_setup(m);
418 	instrumentation_end();
419 
420 	m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
421 	if (regs) {
422 		/*
423 		 * Get the address of the instruction at the time of
424 		 * the machine check error.
425 		 */
426 		if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
427 			m->ip = regs->ip;
428 			m->cs = regs->cs;
429 
430 			/*
431 			 * When in VM86 mode make the cs look like ring 3
432 			 * always. This is a lie, but it's better than passing
433 			 * the additional vm86 bit around everywhere.
434 			 */
435 			if (v8086_mode(regs))
436 				m->cs |= 3;
437 		}
438 		/* Use accurate RIP reporting if available. */
439 		if (mca_cfg.rip_msr)
440 			m->ip = mce_rdmsrl(mca_cfg.rip_msr);
441 	}
442 }
443 
mce_available(struct cpuinfo_x86 * c)444 int mce_available(struct cpuinfo_x86 *c)
445 {
446 	if (mca_cfg.disabled)
447 		return 0;
448 	return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
449 }
450 
mce_schedule_work(void)451 static void mce_schedule_work(void)
452 {
453 	if (!mce_gen_pool_empty())
454 		schedule_work(&mce_work);
455 }
456 
mce_irq_work_cb(struct irq_work * entry)457 static void mce_irq_work_cb(struct irq_work *entry)
458 {
459 	mce_schedule_work();
460 }
461 
462 /*
463  * Check if the address reported by the CPU is in a format we can parse.
464  * It would be possible to add code for most other cases, but all would
465  * be somewhat complicated (e.g. segment offset would require an instruction
466  * parser). So only support physical addresses up to page granularity for now.
467  */
mce_usable_address(struct mce * m)468 int mce_usable_address(struct mce *m)
469 {
470 	if (!(m->status & MCI_STATUS_ADDRV))
471 		return 0;
472 
473 	/* Checks after this one are Intel/Zhaoxin-specific: */
474 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL &&
475 	    boot_cpu_data.x86_vendor != X86_VENDOR_ZHAOXIN)
476 		return 1;
477 
478 	if (!(m->status & MCI_STATUS_MISCV))
479 		return 0;
480 
481 	if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
482 		return 0;
483 
484 	if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
485 		return 0;
486 
487 	return 1;
488 }
489 EXPORT_SYMBOL_GPL(mce_usable_address);
490 
mce_is_memory_error(struct mce * m)491 bool mce_is_memory_error(struct mce *m)
492 {
493 	switch (m->cpuvendor) {
494 	case X86_VENDOR_AMD:
495 	case X86_VENDOR_HYGON:
496 		return amd_mce_is_memory_error(m);
497 
498 	case X86_VENDOR_INTEL:
499 	case X86_VENDOR_ZHAOXIN:
500 		/*
501 		 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
502 		 *
503 		 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
504 		 * indicating a memory error. Bit 8 is used for indicating a
505 		 * cache hierarchy error. The combination of bit 2 and bit 3
506 		 * is used for indicating a `generic' cache hierarchy error
507 		 * But we can't just blindly check the above bits, because if
508 		 * bit 11 is set, then it is a bus/interconnect error - and
509 		 * either way the above bits just gives more detail on what
510 		 * bus/interconnect error happened. Note that bit 12 can be
511 		 * ignored, as it's the "filter" bit.
512 		 */
513 		return (m->status & 0xef80) == BIT(7) ||
514 		       (m->status & 0xef00) == BIT(8) ||
515 		       (m->status & 0xeffc) == 0xc;
516 
517 	default:
518 		return false;
519 	}
520 }
521 EXPORT_SYMBOL_GPL(mce_is_memory_error);
522 
whole_page(struct mce * m)523 static bool whole_page(struct mce *m)
524 {
525 	if (!mca_cfg.ser || !(m->status & MCI_STATUS_MISCV))
526 		return true;
527 
528 	return MCI_MISC_ADDR_LSB(m->misc) >= PAGE_SHIFT;
529 }
530 
mce_is_correctable(struct mce * m)531 bool mce_is_correctable(struct mce *m)
532 {
533 	if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED)
534 		return false;
535 
536 	if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED)
537 		return false;
538 
539 	if (m->status & MCI_STATUS_UC)
540 		return false;
541 
542 	return true;
543 }
544 EXPORT_SYMBOL_GPL(mce_is_correctable);
545 
mce_early_notifier(struct notifier_block * nb,unsigned long val,void * data)546 static int mce_early_notifier(struct notifier_block *nb, unsigned long val,
547 			      void *data)
548 {
549 	struct mce *m = (struct mce *)data;
550 
551 	if (!m)
552 		return NOTIFY_DONE;
553 
554 	/* Emit the trace record: */
555 	trace_mce_record(m);
556 
557 	set_bit(0, &mce_need_notify);
558 
559 	mce_notify_irq();
560 
561 	return NOTIFY_DONE;
562 }
563 
564 static struct notifier_block early_nb = {
565 	.notifier_call	= mce_early_notifier,
566 	.priority	= MCE_PRIO_EARLY,
567 };
568 
uc_decode_notifier(struct notifier_block * nb,unsigned long val,void * data)569 static int uc_decode_notifier(struct notifier_block *nb, unsigned long val,
570 			      void *data)
571 {
572 	struct mce *mce = (struct mce *)data;
573 	unsigned long pfn;
574 
575 	if (!mce || !mce_usable_address(mce))
576 		return NOTIFY_DONE;
577 
578 	if (mce->severity != MCE_AO_SEVERITY &&
579 	    mce->severity != MCE_DEFERRED_SEVERITY)
580 		return NOTIFY_DONE;
581 
582 	pfn = mce->addr >> PAGE_SHIFT;
583 	if (!memory_failure(pfn, 0)) {
584 		set_mce_nospec(pfn);
585 		mce->kflags |= MCE_HANDLED_UC;
586 	}
587 
588 	return NOTIFY_OK;
589 }
590 
591 static struct notifier_block mce_uc_nb = {
592 	.notifier_call	= uc_decode_notifier,
593 	.priority	= MCE_PRIO_UC,
594 };
595 
mce_default_notifier(struct notifier_block * nb,unsigned long val,void * data)596 static int mce_default_notifier(struct notifier_block *nb, unsigned long val,
597 				void *data)
598 {
599 	struct mce *m = (struct mce *)data;
600 
601 	if (!m)
602 		return NOTIFY_DONE;
603 
604 	if (mca_cfg.print_all || !m->kflags)
605 		__print_mce(m);
606 
607 	return NOTIFY_DONE;
608 }
609 
610 static struct notifier_block mce_default_nb = {
611 	.notifier_call	= mce_default_notifier,
612 	/* lowest prio, we want it to run last. */
613 	.priority	= MCE_PRIO_LOWEST,
614 };
615 
616 /*
617  * Read ADDR and MISC registers.
618  */
mce_read_aux(struct mce * m,int i)619 static noinstr void mce_read_aux(struct mce *m, int i)
620 {
621 	if (m->status & MCI_STATUS_MISCV)
622 		m->misc = mce_rdmsrl(mca_msr_reg(i, MCA_MISC));
623 
624 	if (m->status & MCI_STATUS_ADDRV) {
625 		m->addr = mce_rdmsrl(mca_msr_reg(i, MCA_ADDR));
626 
627 		/*
628 		 * Mask the reported address by the reported granularity.
629 		 */
630 		if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
631 			u8 shift = MCI_MISC_ADDR_LSB(m->misc);
632 			m->addr >>= shift;
633 			m->addr <<= shift;
634 		}
635 
636 		/*
637 		 * Extract [55:<lsb>] where lsb is the least significant
638 		 * *valid* bit of the address bits.
639 		 */
640 		if (mce_flags.smca) {
641 			u8 lsb = (m->addr >> 56) & 0x3f;
642 
643 			m->addr &= GENMASK_ULL(55, lsb);
644 		}
645 	}
646 
647 	if (mce_flags.smca) {
648 		m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i));
649 
650 		if (m->status & MCI_STATUS_SYNDV)
651 			m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i));
652 	}
653 }
654 
655 DEFINE_PER_CPU(unsigned, mce_poll_count);
656 
657 /*
658  * Poll for corrected events or events that happened before reset.
659  * Those are just logged through /dev/mcelog.
660  *
661  * This is executed in standard interrupt context.
662  *
663  * Note: spec recommends to panic for fatal unsignalled
664  * errors here. However this would be quite problematic --
665  * we would need to reimplement the Monarch handling and
666  * it would mess up the exclusion between exception handler
667  * and poll handler -- * so we skip this for now.
668  * These cases should not happen anyways, or only when the CPU
669  * is already totally * confused. In this case it's likely it will
670  * not fully execute the machine check handler either.
671  */
machine_check_poll(enum mcp_flags flags,mce_banks_t * b)672 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
673 {
674 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
675 	bool error_seen = false;
676 	struct mce m;
677 	int i;
678 
679 	this_cpu_inc(mce_poll_count);
680 
681 	mce_gather_info(&m, NULL);
682 
683 	if (flags & MCP_TIMESTAMP)
684 		m.tsc = rdtsc();
685 
686 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
687 		if (!mce_banks[i].ctl || !test_bit(i, *b))
688 			continue;
689 
690 		m.misc = 0;
691 		m.addr = 0;
692 		m.bank = i;
693 
694 		barrier();
695 		m.status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
696 
697 		/* If this entry is not valid, ignore it */
698 		if (!(m.status & MCI_STATUS_VAL))
699 			continue;
700 
701 		/*
702 		 * If we are logging everything (at CPU online) or this
703 		 * is a corrected error, then we must log it.
704 		 */
705 		if ((flags & MCP_UC) || !(m.status & MCI_STATUS_UC))
706 			goto log_it;
707 
708 		/*
709 		 * Newer Intel systems that support software error
710 		 * recovery need to make additional checks. Other
711 		 * CPUs should skip over uncorrected errors, but log
712 		 * everything else.
713 		 */
714 		if (!mca_cfg.ser) {
715 			if (m.status & MCI_STATUS_UC)
716 				continue;
717 			goto log_it;
718 		}
719 
720 		/* Log "not enabled" (speculative) errors */
721 		if (!(m.status & MCI_STATUS_EN))
722 			goto log_it;
723 
724 		/*
725 		 * Log UCNA (SDM: 15.6.3 "UCR Error Classification")
726 		 * UC == 1 && PCC == 0 && S == 0
727 		 */
728 		if (!(m.status & MCI_STATUS_PCC) && !(m.status & MCI_STATUS_S))
729 			goto log_it;
730 
731 		/*
732 		 * Skip anything else. Presumption is that our read of this
733 		 * bank is racing with a machine check. Leave the log alone
734 		 * for do_machine_check() to deal with it.
735 		 */
736 		continue;
737 
738 log_it:
739 		error_seen = true;
740 
741 		if (flags & MCP_DONTLOG)
742 			goto clear_it;
743 
744 		mce_read_aux(&m, i);
745 		m.severity = mce_severity(&m, NULL, NULL, false);
746 		/*
747 		 * Don't get the IP here because it's unlikely to
748 		 * have anything to do with the actual error location.
749 		 */
750 
751 		if (mca_cfg.dont_log_ce && !mce_usable_address(&m))
752 			goto clear_it;
753 
754 		if (flags & MCP_QUEUE_LOG)
755 			mce_gen_pool_add(&m);
756 		else
757 			mce_log(&m);
758 
759 clear_it:
760 		/*
761 		 * Clear state for this bank.
762 		 */
763 		mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
764 	}
765 
766 	/*
767 	 * Don't clear MCG_STATUS here because it's only defined for
768 	 * exceptions.
769 	 */
770 
771 	sync_core();
772 
773 	return error_seen;
774 }
775 EXPORT_SYMBOL_GPL(machine_check_poll);
776 
777 /*
778  * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
779  * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
780  * Vol 3B Table 15-20). But this confuses both the code that determines
781  * whether the machine check occurred in kernel or user mode, and also
782  * the severity assessment code. Pretend that EIPV was set, and take the
783  * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
784  */
785 static __always_inline void
quirk_sandybridge_ifu(int bank,struct mce * m,struct pt_regs * regs)786 quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
787 {
788 	if (bank != 0)
789 		return;
790 	if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
791 		return;
792 	if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
793 		          MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
794 			  MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
795 			  MCACOD)) !=
796 			 (MCI_STATUS_UC|MCI_STATUS_EN|
797 			  MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
798 			  MCI_STATUS_AR|MCACOD_INSTR))
799 		return;
800 
801 	m->mcgstatus |= MCG_STATUS_EIPV;
802 	m->ip = regs->ip;
803 	m->cs = regs->cs;
804 }
805 
806 /*
807  * Disable fast string copy and return from the MCE handler upon the first SRAR
808  * MCE on bank 1 due to a CPU erratum on Intel Skylake/Cascade Lake/Cooper Lake
809  * CPUs.
810  * The fast string copy instructions ("REP; MOVS*") could consume an
811  * uncorrectable memory error in the cache line _right after_ the desired region
812  * to copy and raise an MCE with RIP pointing to the instruction _after_ the
813  * "REP; MOVS*".
814  * This mitigation addresses the issue completely with the caveat of performance
815  * degradation on the CPU affected. This is still better than the OS crashing on
816  * MCEs raised on an irrelevant process due to "REP; MOVS*" accesses from a
817  * kernel context (e.g., copy_page).
818  *
819  * Returns true when fast string copy on CPU has been disabled.
820  */
quirk_skylake_repmov(void)821 static noinstr bool quirk_skylake_repmov(void)
822 {
823 	u64 mcgstatus   = mce_rdmsrl(MSR_IA32_MCG_STATUS);
824 	u64 misc_enable = mce_rdmsrl(MSR_IA32_MISC_ENABLE);
825 	u64 mc1_status;
826 
827 	/*
828 	 * Apply the quirk only to local machine checks, i.e., no broadcast
829 	 * sync is needed.
830 	 */
831 	if (!(mcgstatus & MCG_STATUS_LMCES) ||
832 	    !(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING))
833 		return false;
834 
835 	mc1_status = mce_rdmsrl(MSR_IA32_MCx_STATUS(1));
836 
837 	/* Check for a software-recoverable data fetch error. */
838 	if ((mc1_status &
839 	     (MCI_STATUS_VAL | MCI_STATUS_OVER | MCI_STATUS_UC | MCI_STATUS_EN |
840 	      MCI_STATUS_ADDRV | MCI_STATUS_MISCV | MCI_STATUS_PCC |
841 	      MCI_STATUS_AR | MCI_STATUS_S)) ==
842 	     (MCI_STATUS_VAL |                   MCI_STATUS_UC | MCI_STATUS_EN |
843 	      MCI_STATUS_ADDRV | MCI_STATUS_MISCV |
844 	      MCI_STATUS_AR | MCI_STATUS_S)) {
845 		misc_enable &= ~MSR_IA32_MISC_ENABLE_FAST_STRING;
846 		mce_wrmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
847 		mce_wrmsrl(MSR_IA32_MCx_STATUS(1), 0);
848 
849 		instrumentation_begin();
850 		pr_err_once("Erratum detected, disable fast string copy instructions.\n");
851 		instrumentation_end();
852 
853 		return true;
854 	}
855 
856 	return false;
857 }
858 
859 /*
860  * Do a quick check if any of the events requires a panic.
861  * This decides if we keep the events around or clear them.
862  */
mce_no_way_out(struct mce * m,char ** msg,unsigned long * validp,struct pt_regs * regs)863 static __always_inline int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
864 					  struct pt_regs *regs)
865 {
866 	char *tmp = *msg;
867 	int i;
868 
869 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
870 		m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
871 		if (!(m->status & MCI_STATUS_VAL))
872 			continue;
873 
874 		arch___set_bit(i, validp);
875 		if (mce_flags.snb_ifu_quirk)
876 			quirk_sandybridge_ifu(i, m, regs);
877 
878 		m->bank = i;
879 		if (mce_severity(m, regs, &tmp, true) >= MCE_PANIC_SEVERITY) {
880 			mce_read_aux(m, i);
881 			*msg = tmp;
882 			return 1;
883 		}
884 	}
885 	return 0;
886 }
887 
888 /*
889  * Variable to establish order between CPUs while scanning.
890  * Each CPU spins initially until executing is equal its number.
891  */
892 static atomic_t mce_executing;
893 
894 /*
895  * Defines order of CPUs on entry. First CPU becomes Monarch.
896  */
897 static atomic_t mce_callin;
898 
899 /*
900  * Track which CPUs entered the MCA broadcast synchronization and which not in
901  * order to print holdouts.
902  */
903 static cpumask_t mce_missing_cpus = CPU_MASK_ALL;
904 
905 /*
906  * Check if a timeout waiting for other CPUs happened.
907  */
mce_timed_out(u64 * t,const char * msg)908 static noinstr int mce_timed_out(u64 *t, const char *msg)
909 {
910 	int ret = 0;
911 
912 	/* Enable instrumentation around calls to external facilities */
913 	instrumentation_begin();
914 
915 	/*
916 	 * The others already did panic for some reason.
917 	 * Bail out like in a timeout.
918 	 * rmb() to tell the compiler that system_state
919 	 * might have been modified by someone else.
920 	 */
921 	rmb();
922 	if (atomic_read(&mce_panicked))
923 		wait_for_panic();
924 	if (!mca_cfg.monarch_timeout)
925 		goto out;
926 	if ((s64)*t < SPINUNIT) {
927 		if (cpumask_and(&mce_missing_cpus, cpu_online_mask, &mce_missing_cpus))
928 			pr_emerg("CPUs not responding to MCE broadcast (may include false positives): %*pbl\n",
929 				 cpumask_pr_args(&mce_missing_cpus));
930 		mce_panic(msg, NULL, NULL);
931 
932 		ret = 1;
933 		goto out;
934 	}
935 	*t -= SPINUNIT;
936 
937 out:
938 	touch_nmi_watchdog();
939 
940 	instrumentation_end();
941 
942 	return ret;
943 }
944 
945 /*
946  * The Monarch's reign.  The Monarch is the CPU who entered
947  * the machine check handler first. It waits for the others to
948  * raise the exception too and then grades them. When any
949  * error is fatal panic. Only then let the others continue.
950  *
951  * The other CPUs entering the MCE handler will be controlled by the
952  * Monarch. They are called Subjects.
953  *
954  * This way we prevent any potential data corruption in a unrecoverable case
955  * and also makes sure always all CPU's errors are examined.
956  *
957  * Also this detects the case of a machine check event coming from outer
958  * space (not detected by any CPUs) In this case some external agent wants
959  * us to shut down, so panic too.
960  *
961  * The other CPUs might still decide to panic if the handler happens
962  * in a unrecoverable place, but in this case the system is in a semi-stable
963  * state and won't corrupt anything by itself. It's ok to let the others
964  * continue for a bit first.
965  *
966  * All the spin loops have timeouts; when a timeout happens a CPU
967  * typically elects itself to be Monarch.
968  */
mce_reign(void)969 static void mce_reign(void)
970 {
971 	int cpu;
972 	struct mce *m = NULL;
973 	int global_worst = 0;
974 	char *msg = NULL;
975 
976 	/*
977 	 * This CPU is the Monarch and the other CPUs have run
978 	 * through their handlers.
979 	 * Grade the severity of the errors of all the CPUs.
980 	 */
981 	for_each_possible_cpu(cpu) {
982 		struct mce *mtmp = &per_cpu(mces_seen, cpu);
983 
984 		if (mtmp->severity > global_worst) {
985 			global_worst = mtmp->severity;
986 			m = &per_cpu(mces_seen, cpu);
987 		}
988 	}
989 
990 	/*
991 	 * Cannot recover? Panic here then.
992 	 * This dumps all the mces in the log buffer and stops the
993 	 * other CPUs.
994 	 */
995 	if (m && global_worst >= MCE_PANIC_SEVERITY) {
996 		/* call mce_severity() to get "msg" for panic */
997 		mce_severity(m, NULL, &msg, true);
998 		mce_panic("Fatal machine check", m, msg);
999 	}
1000 
1001 	/*
1002 	 * For UC somewhere we let the CPU who detects it handle it.
1003 	 * Also must let continue the others, otherwise the handling
1004 	 * CPU could deadlock on a lock.
1005 	 */
1006 
1007 	/*
1008 	 * No machine check event found. Must be some external
1009 	 * source or one CPU is hung. Panic.
1010 	 */
1011 	if (global_worst <= MCE_KEEP_SEVERITY)
1012 		mce_panic("Fatal machine check from unknown source", NULL, NULL);
1013 
1014 	/*
1015 	 * Now clear all the mces_seen so that they don't reappear on
1016 	 * the next mce.
1017 	 */
1018 	for_each_possible_cpu(cpu)
1019 		memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
1020 }
1021 
1022 static atomic_t global_nwo;
1023 
1024 /*
1025  * Start of Monarch synchronization. This waits until all CPUs have
1026  * entered the exception handler and then determines if any of them
1027  * saw a fatal event that requires panic. Then it executes them
1028  * in the entry order.
1029  * TBD double check parallel CPU hotunplug
1030  */
mce_start(int * no_way_out)1031 static noinstr int mce_start(int *no_way_out)
1032 {
1033 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1034 	int order, ret = -1;
1035 
1036 	if (!timeout)
1037 		return ret;
1038 
1039 	arch_atomic_add(*no_way_out, &global_nwo);
1040 	/*
1041 	 * Rely on the implied barrier below, such that global_nwo
1042 	 * is updated before mce_callin.
1043 	 */
1044 	order = arch_atomic_inc_return(&mce_callin);
1045 	arch_cpumask_clear_cpu(smp_processor_id(), &mce_missing_cpus);
1046 
1047 	/* Enable instrumentation around calls to external facilities */
1048 	instrumentation_begin();
1049 
1050 	/*
1051 	 * Wait for everyone.
1052 	 */
1053 	while (arch_atomic_read(&mce_callin) != num_online_cpus()) {
1054 		if (mce_timed_out(&timeout,
1055 				  "Timeout: Not all CPUs entered broadcast exception handler")) {
1056 			arch_atomic_set(&global_nwo, 0);
1057 			goto out;
1058 		}
1059 		ndelay(SPINUNIT);
1060 	}
1061 
1062 	/*
1063 	 * mce_callin should be read before global_nwo
1064 	 */
1065 	smp_rmb();
1066 
1067 	if (order == 1) {
1068 		/*
1069 		 * Monarch: Starts executing now, the others wait.
1070 		 */
1071 		arch_atomic_set(&mce_executing, 1);
1072 	} else {
1073 		/*
1074 		 * Subject: Now start the scanning loop one by one in
1075 		 * the original callin order.
1076 		 * This way when there are any shared banks it will be
1077 		 * only seen by one CPU before cleared, avoiding duplicates.
1078 		 */
1079 		while (arch_atomic_read(&mce_executing) < order) {
1080 			if (mce_timed_out(&timeout,
1081 					  "Timeout: Subject CPUs unable to finish machine check processing")) {
1082 				arch_atomic_set(&global_nwo, 0);
1083 				goto out;
1084 			}
1085 			ndelay(SPINUNIT);
1086 		}
1087 	}
1088 
1089 	/*
1090 	 * Cache the global no_way_out state.
1091 	 */
1092 	*no_way_out = arch_atomic_read(&global_nwo);
1093 
1094 	ret = order;
1095 
1096 out:
1097 	instrumentation_end();
1098 
1099 	return ret;
1100 }
1101 
1102 /*
1103  * Synchronize between CPUs after main scanning loop.
1104  * This invokes the bulk of the Monarch processing.
1105  */
mce_end(int order)1106 static noinstr int mce_end(int order)
1107 {
1108 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1109 	int ret = -1;
1110 
1111 	/* Allow instrumentation around external facilities. */
1112 	instrumentation_begin();
1113 
1114 	if (!timeout)
1115 		goto reset;
1116 	if (order < 0)
1117 		goto reset;
1118 
1119 	/*
1120 	 * Allow others to run.
1121 	 */
1122 	atomic_inc(&mce_executing);
1123 
1124 	if (order == 1) {
1125 		/*
1126 		 * Monarch: Wait for everyone to go through their scanning
1127 		 * loops.
1128 		 */
1129 		while (atomic_read(&mce_executing) <= num_online_cpus()) {
1130 			if (mce_timed_out(&timeout,
1131 					  "Timeout: Monarch CPU unable to finish machine check processing"))
1132 				goto reset;
1133 			ndelay(SPINUNIT);
1134 		}
1135 
1136 		mce_reign();
1137 		barrier();
1138 		ret = 0;
1139 	} else {
1140 		/*
1141 		 * Subject: Wait for Monarch to finish.
1142 		 */
1143 		while (atomic_read(&mce_executing) != 0) {
1144 			if (mce_timed_out(&timeout,
1145 					  "Timeout: Monarch CPU did not finish machine check processing"))
1146 				goto reset;
1147 			ndelay(SPINUNIT);
1148 		}
1149 
1150 		/*
1151 		 * Don't reset anything. That's done by the Monarch.
1152 		 */
1153 		ret = 0;
1154 		goto out;
1155 	}
1156 
1157 	/*
1158 	 * Reset all global state.
1159 	 */
1160 reset:
1161 	atomic_set(&global_nwo, 0);
1162 	atomic_set(&mce_callin, 0);
1163 	cpumask_setall(&mce_missing_cpus);
1164 	barrier();
1165 
1166 	/*
1167 	 * Let others run again.
1168 	 */
1169 	atomic_set(&mce_executing, 0);
1170 
1171 out:
1172 	instrumentation_end();
1173 
1174 	return ret;
1175 }
1176 
mce_clear_state(unsigned long * toclear)1177 static __always_inline void mce_clear_state(unsigned long *toclear)
1178 {
1179 	int i;
1180 
1181 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1182 		if (arch_test_bit(i, toclear))
1183 			mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
1184 	}
1185 }
1186 
1187 /*
1188  * Cases where we avoid rendezvous handler timeout:
1189  * 1) If this CPU is offline.
1190  *
1191  * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to
1192  *  skip those CPUs which remain looping in the 1st kernel - see
1193  *  crash_nmi_callback().
1194  *
1195  * Note: there still is a small window between kexec-ing and the new,
1196  * kdump kernel establishing a new #MC handler where a broadcasted MCE
1197  * might not get handled properly.
1198  */
mce_check_crashing_cpu(void)1199 static noinstr bool mce_check_crashing_cpu(void)
1200 {
1201 	unsigned int cpu = smp_processor_id();
1202 
1203 	if (arch_cpu_is_offline(cpu) ||
1204 	    (crashing_cpu != -1 && crashing_cpu != cpu)) {
1205 		u64 mcgstatus;
1206 
1207 		mcgstatus = __rdmsr(MSR_IA32_MCG_STATUS);
1208 
1209 		if (boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) {
1210 			if (mcgstatus & MCG_STATUS_LMCES)
1211 				return false;
1212 		}
1213 
1214 		if (mcgstatus & MCG_STATUS_RIPV) {
1215 			__wrmsr(MSR_IA32_MCG_STATUS, 0, 0);
1216 			return true;
1217 		}
1218 	}
1219 	return false;
1220 }
1221 
1222 static __always_inline int
__mc_scan_banks(struct mce * m,struct pt_regs * regs,struct mce * final,unsigned long * toclear,unsigned long * valid_banks,int no_way_out,int * worst)1223 __mc_scan_banks(struct mce *m, struct pt_regs *regs, struct mce *final,
1224 		unsigned long *toclear, unsigned long *valid_banks, int no_way_out,
1225 		int *worst)
1226 {
1227 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1228 	struct mca_config *cfg = &mca_cfg;
1229 	int severity, i, taint = 0;
1230 
1231 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1232 		arch___clear_bit(i, toclear);
1233 		if (!arch_test_bit(i, valid_banks))
1234 			continue;
1235 
1236 		if (!mce_banks[i].ctl)
1237 			continue;
1238 
1239 		m->misc = 0;
1240 		m->addr = 0;
1241 		m->bank = i;
1242 
1243 		m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
1244 		if (!(m->status & MCI_STATUS_VAL))
1245 			continue;
1246 
1247 		/*
1248 		 * Corrected or non-signaled errors are handled by
1249 		 * machine_check_poll(). Leave them alone, unless this panics.
1250 		 */
1251 		if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1252 			!no_way_out)
1253 			continue;
1254 
1255 		/* Set taint even when machine check was not enabled. */
1256 		taint++;
1257 
1258 		severity = mce_severity(m, regs, NULL, true);
1259 
1260 		/*
1261 		 * When machine check was for corrected/deferred handler don't
1262 		 * touch, unless we're panicking.
1263 		 */
1264 		if ((severity == MCE_KEEP_SEVERITY ||
1265 		     severity == MCE_UCNA_SEVERITY) && !no_way_out)
1266 			continue;
1267 
1268 		arch___set_bit(i, toclear);
1269 
1270 		/* Machine check event was not enabled. Clear, but ignore. */
1271 		if (severity == MCE_NO_SEVERITY)
1272 			continue;
1273 
1274 		mce_read_aux(m, i);
1275 
1276 		/* assuming valid severity level != 0 */
1277 		m->severity = severity;
1278 
1279 		/*
1280 		 * Enable instrumentation around the mce_log() call which is
1281 		 * done in #MC context, where instrumentation is disabled.
1282 		 */
1283 		instrumentation_begin();
1284 		mce_log(m);
1285 		instrumentation_end();
1286 
1287 		if (severity > *worst) {
1288 			*final = *m;
1289 			*worst = severity;
1290 		}
1291 	}
1292 
1293 	/* mce_clear_state will clear *final, save locally for use later */
1294 	*m = *final;
1295 
1296 	return taint;
1297 }
1298 
kill_me_now(struct callback_head * ch)1299 static void kill_me_now(struct callback_head *ch)
1300 {
1301 	struct task_struct *p = container_of(ch, struct task_struct, mce_kill_me);
1302 
1303 	p->mce_count = 0;
1304 	force_sig(SIGBUS);
1305 }
1306 
kill_me_maybe(struct callback_head * cb)1307 static void kill_me_maybe(struct callback_head *cb)
1308 {
1309 	struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1310 	int flags = MF_ACTION_REQUIRED;
1311 	int ret;
1312 
1313 	p->mce_count = 0;
1314 	pr_err("Uncorrected hardware memory error in user-access at %llx", p->mce_addr);
1315 
1316 	if (!p->mce_ripv)
1317 		flags |= MF_MUST_KILL;
1318 
1319 	ret = memory_failure(p->mce_addr >> PAGE_SHIFT, flags);
1320 	if (!ret) {
1321 		set_mce_nospec(p->mce_addr >> PAGE_SHIFT);
1322 		sync_core();
1323 		return;
1324 	}
1325 
1326 	/*
1327 	 * -EHWPOISON from memory_failure() means that it already sent SIGBUS
1328 	 * to the current process with the proper error info,
1329 	 * -EOPNOTSUPP means hwpoison_filter() filtered the error event,
1330 	 *
1331 	 * In both cases, no further processing is required.
1332 	 */
1333 	if (ret == -EHWPOISON || ret == -EOPNOTSUPP)
1334 		return;
1335 
1336 	pr_err("Memory error not recovered");
1337 	kill_me_now(cb);
1338 }
1339 
kill_me_never(struct callback_head * cb)1340 static void kill_me_never(struct callback_head *cb)
1341 {
1342 	struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1343 
1344 	p->mce_count = 0;
1345 	pr_err("Kernel accessed poison in user space at %llx\n", p->mce_addr);
1346 	if (!memory_failure(p->mce_addr >> PAGE_SHIFT, 0))
1347 		set_mce_nospec(p->mce_addr >> PAGE_SHIFT);
1348 }
1349 
queue_task_work(struct mce * m,char * msg,void (* func)(struct callback_head *))1350 static void queue_task_work(struct mce *m, char *msg, void (*func)(struct callback_head *))
1351 {
1352 	int count = ++current->mce_count;
1353 
1354 	/* First call, save all the details */
1355 	if (count == 1) {
1356 		current->mce_addr = m->addr;
1357 		current->mce_kflags = m->kflags;
1358 		current->mce_ripv = !!(m->mcgstatus & MCG_STATUS_RIPV);
1359 		current->mce_whole_page = whole_page(m);
1360 		current->mce_kill_me.func = func;
1361 	}
1362 
1363 	/* Ten is likely overkill. Don't expect more than two faults before task_work() */
1364 	if (count > 10)
1365 		mce_panic("Too many consecutive machine checks while accessing user data", m, msg);
1366 
1367 	/* Second or later call, make sure page address matches the one from first call */
1368 	if (count > 1 && (current->mce_addr >> PAGE_SHIFT) != (m->addr >> PAGE_SHIFT))
1369 		mce_panic("Consecutive machine checks to different user pages", m, msg);
1370 
1371 	/* Do not call task_work_add() more than once */
1372 	if (count > 1)
1373 		return;
1374 
1375 	task_work_add(current, &current->mce_kill_me, TWA_RESUME);
1376 }
1377 
1378 /* Handle unconfigured int18 (should never happen) */
unexpected_machine_check(struct pt_regs * regs)1379 static noinstr void unexpected_machine_check(struct pt_regs *regs)
1380 {
1381 	instrumentation_begin();
1382 	pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1383 	       smp_processor_id());
1384 	instrumentation_end();
1385 }
1386 
1387 /*
1388  * The actual machine check handler. This only handles real exceptions when
1389  * something got corrupted coming in through int 18.
1390  *
1391  * This is executed in #MC context not subject to normal locking rules.
1392  * This implies that most kernel services cannot be safely used. Don't even
1393  * think about putting a printk in there!
1394  *
1395  * On Intel systems this is entered on all CPUs in parallel through
1396  * MCE broadcast. However some CPUs might be broken beyond repair,
1397  * so be always careful when synchronizing with others.
1398  *
1399  * Tracing and kprobes are disabled: if we interrupted a kernel context
1400  * with IF=1, we need to minimize stack usage.  There are also recursion
1401  * issues: if the machine check was due to a failure of the memory
1402  * backing the user stack, tracing that reads the user stack will cause
1403  * potentially infinite recursion.
1404  *
1405  * Currently, the #MC handler calls out to a number of external facilities
1406  * and, therefore, allows instrumentation around them. The optimal thing to
1407  * have would be to do the absolutely minimal work required in #MC context
1408  * and have instrumentation disabled only around that. Further processing can
1409  * then happen in process context where instrumentation is allowed. Achieving
1410  * that requires careful auditing and modifications. Until then, the code
1411  * allows instrumentation temporarily, where required. *
1412  */
do_machine_check(struct pt_regs * regs)1413 noinstr void do_machine_check(struct pt_regs *regs)
1414 {
1415 	int worst = 0, order, no_way_out, kill_current_task, lmce, taint = 0;
1416 	DECLARE_BITMAP(valid_banks, MAX_NR_BANKS) = { 0 };
1417 	DECLARE_BITMAP(toclear, MAX_NR_BANKS) = { 0 };
1418 	struct mce m, *final;
1419 	char *msg = NULL;
1420 
1421 	if (unlikely(mce_flags.p5))
1422 		return pentium_machine_check(regs);
1423 	else if (unlikely(mce_flags.winchip))
1424 		return winchip_machine_check(regs);
1425 	else if (unlikely(!mca_cfg.initialized))
1426 		return unexpected_machine_check(regs);
1427 
1428 	if (mce_flags.skx_repmov_quirk && quirk_skylake_repmov())
1429 		goto clear;
1430 
1431 	/*
1432 	 * Establish sequential order between the CPUs entering the machine
1433 	 * check handler.
1434 	 */
1435 	order = -1;
1436 
1437 	/*
1438 	 * If no_way_out gets set, there is no safe way to recover from this
1439 	 * MCE.
1440 	 */
1441 	no_way_out = 0;
1442 
1443 	/*
1444 	 * If kill_current_task is not set, there might be a way to recover from this
1445 	 * error.
1446 	 */
1447 	kill_current_task = 0;
1448 
1449 	/*
1450 	 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES
1451 	 * on Intel.
1452 	 */
1453 	lmce = 1;
1454 
1455 	this_cpu_inc(mce_exception_count);
1456 
1457 	mce_gather_info(&m, regs);
1458 	m.tsc = rdtsc();
1459 
1460 	final = this_cpu_ptr(&mces_seen);
1461 	*final = m;
1462 
1463 	no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1464 
1465 	barrier();
1466 
1467 	/*
1468 	 * When no restart IP might need to kill or panic.
1469 	 * Assume the worst for now, but if we find the
1470 	 * severity is MCE_AR_SEVERITY we have other options.
1471 	 */
1472 	if (!(m.mcgstatus & MCG_STATUS_RIPV))
1473 		kill_current_task = 1;
1474 	/*
1475 	 * Check if this MCE is signaled to only this logical processor,
1476 	 * on Intel, Zhaoxin only.
1477 	 */
1478 	if (m.cpuvendor == X86_VENDOR_INTEL ||
1479 	    m.cpuvendor == X86_VENDOR_ZHAOXIN)
1480 		lmce = m.mcgstatus & MCG_STATUS_LMCES;
1481 
1482 	/*
1483 	 * Local machine check may already know that we have to panic.
1484 	 * Broadcast machine check begins rendezvous in mce_start()
1485 	 * Go through all banks in exclusion of the other CPUs. This way we
1486 	 * don't report duplicated events on shared banks because the first one
1487 	 * to see it will clear it.
1488 	 */
1489 	if (lmce) {
1490 		if (no_way_out)
1491 			mce_panic("Fatal local machine check", &m, msg);
1492 	} else {
1493 		order = mce_start(&no_way_out);
1494 	}
1495 
1496 	taint = __mc_scan_banks(&m, regs, final, toclear, valid_banks, no_way_out, &worst);
1497 
1498 	if (!no_way_out)
1499 		mce_clear_state(toclear);
1500 
1501 	/*
1502 	 * Do most of the synchronization with other CPUs.
1503 	 * When there's any problem use only local no_way_out state.
1504 	 */
1505 	if (!lmce) {
1506 		if (mce_end(order) < 0) {
1507 			if (!no_way_out)
1508 				no_way_out = worst >= MCE_PANIC_SEVERITY;
1509 
1510 			if (no_way_out)
1511 				mce_panic("Fatal machine check on current CPU", &m, msg);
1512 		}
1513 	} else {
1514 		/*
1515 		 * If there was a fatal machine check we should have
1516 		 * already called mce_panic earlier in this function.
1517 		 * Since we re-read the banks, we might have found
1518 		 * something new. Check again to see if we found a
1519 		 * fatal error. We call "mce_severity()" again to
1520 		 * make sure we have the right "msg".
1521 		 */
1522 		if (worst >= MCE_PANIC_SEVERITY) {
1523 			mce_severity(&m, regs, &msg, true);
1524 			mce_panic("Local fatal machine check!", &m, msg);
1525 		}
1526 	}
1527 
1528 	/*
1529 	 * Enable instrumentation around the external facilities like task_work_add()
1530 	 * (via queue_task_work()), fixup_exception() etc. For now, that is. Fixing this
1531 	 * properly would need a lot more involved reorganization.
1532 	 */
1533 	instrumentation_begin();
1534 
1535 	if (taint)
1536 		add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1537 
1538 	if (worst != MCE_AR_SEVERITY && !kill_current_task)
1539 		goto out;
1540 
1541 	/* Fault was in user mode and we need to take some action */
1542 	if ((m.cs & 3) == 3) {
1543 		/* If this triggers there is no way to recover. Die hard. */
1544 		BUG_ON(!on_thread_stack() || !user_mode(regs));
1545 
1546 		if (kill_current_task)
1547 			queue_task_work(&m, msg, kill_me_now);
1548 		else
1549 			queue_task_work(&m, msg, kill_me_maybe);
1550 
1551 	} else {
1552 		/*
1553 		 * Handle an MCE which has happened in kernel space but from
1554 		 * which the kernel can recover: ex_has_fault_handler() has
1555 		 * already verified that the rIP at which the error happened is
1556 		 * a rIP from which the kernel can recover (by jumping to
1557 		 * recovery code specified in _ASM_EXTABLE_FAULT()) and the
1558 		 * corresponding exception handler which would do that is the
1559 		 * proper one.
1560 		 */
1561 		if (m.kflags & MCE_IN_KERNEL_RECOV) {
1562 			if (!fixup_exception(regs, X86_TRAP_MC, 0, 0))
1563 				mce_panic("Failed kernel mode recovery", &m, msg);
1564 		}
1565 
1566 		if (m.kflags & MCE_IN_KERNEL_COPYIN)
1567 			queue_task_work(&m, msg, kill_me_never);
1568 	}
1569 
1570 out:
1571 	instrumentation_end();
1572 
1573 clear:
1574 	mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1575 }
1576 EXPORT_SYMBOL_GPL(do_machine_check);
1577 
1578 #ifndef CONFIG_MEMORY_FAILURE
memory_failure(unsigned long pfn,int flags)1579 int memory_failure(unsigned long pfn, int flags)
1580 {
1581 	/* mce_severity() should not hand us an ACTION_REQUIRED error */
1582 	BUG_ON(flags & MF_ACTION_REQUIRED);
1583 	pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1584 	       "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1585 	       pfn);
1586 
1587 	return 0;
1588 }
1589 #endif
1590 
1591 /*
1592  * Periodic polling timer for "silent" machine check errors.  If the
1593  * poller finds an MCE, poll 2x faster.  When the poller finds no more
1594  * errors, poll 2x slower (up to check_interval seconds).
1595  */
1596 static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
1597 
1598 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1599 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1600 
mce_adjust_timer_default(unsigned long interval)1601 static unsigned long mce_adjust_timer_default(unsigned long interval)
1602 {
1603 	return interval;
1604 }
1605 
1606 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default;
1607 
__start_timer(struct timer_list * t,unsigned long interval)1608 static void __start_timer(struct timer_list *t, unsigned long interval)
1609 {
1610 	unsigned long when = jiffies + interval;
1611 	unsigned long flags;
1612 
1613 	local_irq_save(flags);
1614 
1615 	if (!timer_pending(t) || time_before(when, t->expires))
1616 		mod_timer(t, round_jiffies(when));
1617 
1618 	local_irq_restore(flags);
1619 }
1620 
mce_timer_fn(struct timer_list * t)1621 static void mce_timer_fn(struct timer_list *t)
1622 {
1623 	struct timer_list *cpu_t = this_cpu_ptr(&mce_timer);
1624 	unsigned long iv;
1625 
1626 	WARN_ON(cpu_t != t);
1627 
1628 	iv = __this_cpu_read(mce_next_interval);
1629 
1630 	if (mce_available(this_cpu_ptr(&cpu_info))) {
1631 		machine_check_poll(0, this_cpu_ptr(&mce_poll_banks));
1632 
1633 		if (mce_intel_cmci_poll()) {
1634 			iv = mce_adjust_timer(iv);
1635 			goto done;
1636 		}
1637 	}
1638 
1639 	/*
1640 	 * Alert userspace if needed. If we logged an MCE, reduce the polling
1641 	 * interval, otherwise increase the polling interval.
1642 	 */
1643 	if (mce_notify_irq())
1644 		iv = max(iv / 2, (unsigned long) HZ/100);
1645 	else
1646 		iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1647 
1648 done:
1649 	__this_cpu_write(mce_next_interval, iv);
1650 	__start_timer(t, iv);
1651 }
1652 
1653 /*
1654  * Ensure that the timer is firing in @interval from now.
1655  */
mce_timer_kick(unsigned long interval)1656 void mce_timer_kick(unsigned long interval)
1657 {
1658 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1659 	unsigned long iv = __this_cpu_read(mce_next_interval);
1660 
1661 	__start_timer(t, interval);
1662 
1663 	if (interval < iv)
1664 		__this_cpu_write(mce_next_interval, interval);
1665 }
1666 
1667 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
mce_timer_delete_all(void)1668 static void mce_timer_delete_all(void)
1669 {
1670 	int cpu;
1671 
1672 	for_each_online_cpu(cpu)
1673 		del_timer_sync(&per_cpu(mce_timer, cpu));
1674 }
1675 
1676 /*
1677  * Notify the user(s) about new machine check events.
1678  * Can be called from interrupt context, but not from machine check/NMI
1679  * context.
1680  */
mce_notify_irq(void)1681 int mce_notify_irq(void)
1682 {
1683 	/* Not more than two messages every minute */
1684 	static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1685 
1686 	if (test_and_clear_bit(0, &mce_need_notify)) {
1687 		mce_work_trigger();
1688 
1689 		if (__ratelimit(&ratelimit))
1690 			pr_info(HW_ERR "Machine check events logged\n");
1691 
1692 		return 1;
1693 	}
1694 	return 0;
1695 }
1696 EXPORT_SYMBOL_GPL(mce_notify_irq);
1697 
__mcheck_cpu_mce_banks_init(void)1698 static void __mcheck_cpu_mce_banks_init(void)
1699 {
1700 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1701 	u8 n_banks = this_cpu_read(mce_num_banks);
1702 	int i;
1703 
1704 	for (i = 0; i < n_banks; i++) {
1705 		struct mce_bank *b = &mce_banks[i];
1706 
1707 		/*
1708 		 * Init them all, __mcheck_cpu_apply_quirks() is going to apply
1709 		 * the required vendor quirks before
1710 		 * __mcheck_cpu_init_clear_banks() does the final bank setup.
1711 		 */
1712 		b->ctl = -1ULL;
1713 		b->init = true;
1714 	}
1715 }
1716 
1717 /*
1718  * Initialize Machine Checks for a CPU.
1719  */
__mcheck_cpu_cap_init(void)1720 static void __mcheck_cpu_cap_init(void)
1721 {
1722 	u64 cap;
1723 	u8 b;
1724 
1725 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1726 
1727 	b = cap & MCG_BANKCNT_MASK;
1728 
1729 	if (b > MAX_NR_BANKS) {
1730 		pr_warn("CPU%d: Using only %u machine check banks out of %u\n",
1731 			smp_processor_id(), MAX_NR_BANKS, b);
1732 		b = MAX_NR_BANKS;
1733 	}
1734 
1735 	this_cpu_write(mce_num_banks, b);
1736 
1737 	__mcheck_cpu_mce_banks_init();
1738 
1739 	/* Use accurate RIP reporting if available. */
1740 	if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1741 		mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1742 
1743 	if (cap & MCG_SER_P)
1744 		mca_cfg.ser = 1;
1745 }
1746 
__mcheck_cpu_init_generic(void)1747 static void __mcheck_cpu_init_generic(void)
1748 {
1749 	enum mcp_flags m_fl = 0;
1750 	mce_banks_t all_banks;
1751 	u64 cap;
1752 
1753 	if (!mca_cfg.bootlog)
1754 		m_fl = MCP_DONTLOG;
1755 
1756 	/*
1757 	 * Log the machine checks left over from the previous reset. Log them
1758 	 * only, do not start processing them. That will happen in mcheck_late_init()
1759 	 * when all consumers have been registered on the notifier chain.
1760 	 */
1761 	bitmap_fill(all_banks, MAX_NR_BANKS);
1762 	machine_check_poll(MCP_UC | MCP_QUEUE_LOG | m_fl, &all_banks);
1763 
1764 	cr4_set_bits(X86_CR4_MCE);
1765 
1766 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1767 	if (cap & MCG_CTL_P)
1768 		wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1769 }
1770 
__mcheck_cpu_init_clear_banks(void)1771 static void __mcheck_cpu_init_clear_banks(void)
1772 {
1773 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1774 	int i;
1775 
1776 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1777 		struct mce_bank *b = &mce_banks[i];
1778 
1779 		if (!b->init)
1780 			continue;
1781 		wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl);
1782 		wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
1783 	}
1784 }
1785 
1786 /*
1787  * Do a final check to see if there are any unused/RAZ banks.
1788  *
1789  * This must be done after the banks have been initialized and any quirks have
1790  * been applied.
1791  *
1792  * Do not call this from any user-initiated flows, e.g. CPU hotplug or sysfs.
1793  * Otherwise, a user who disables a bank will not be able to re-enable it
1794  * without a system reboot.
1795  */
__mcheck_cpu_check_banks(void)1796 static void __mcheck_cpu_check_banks(void)
1797 {
1798 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1799 	u64 msrval;
1800 	int i;
1801 
1802 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1803 		struct mce_bank *b = &mce_banks[i];
1804 
1805 		if (!b->init)
1806 			continue;
1807 
1808 		rdmsrl(mca_msr_reg(i, MCA_CTL), msrval);
1809 		b->init = !!msrval;
1810 	}
1811 }
1812 
1813 /* Add per CPU specific workarounds here */
__mcheck_cpu_apply_quirks(struct cpuinfo_x86 * c)1814 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1815 {
1816 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1817 	struct mca_config *cfg = &mca_cfg;
1818 
1819 	if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1820 		pr_info("unknown CPU type - not enabling MCE support\n");
1821 		return -EOPNOTSUPP;
1822 	}
1823 
1824 	/* This should be disabled by the BIOS, but isn't always */
1825 	if (c->x86_vendor == X86_VENDOR_AMD) {
1826 		if (c->x86 == 15 && this_cpu_read(mce_num_banks) > 4) {
1827 			/*
1828 			 * disable GART TBL walk error reporting, which
1829 			 * trips off incorrectly with the IOMMU & 3ware
1830 			 * & Cerberus:
1831 			 */
1832 			clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1833 		}
1834 		if (c->x86 < 0x11 && cfg->bootlog < 0) {
1835 			/*
1836 			 * Lots of broken BIOS around that don't clear them
1837 			 * by default and leave crap in there. Don't log:
1838 			 */
1839 			cfg->bootlog = 0;
1840 		}
1841 		/*
1842 		 * Various K7s with broken bank 0 around. Always disable
1843 		 * by default.
1844 		 */
1845 		if (c->x86 == 6 && this_cpu_read(mce_num_banks) > 0)
1846 			mce_banks[0].ctl = 0;
1847 
1848 		/*
1849 		 * overflow_recov is supported for F15h Models 00h-0fh
1850 		 * even though we don't have a CPUID bit for it.
1851 		 */
1852 		if (c->x86 == 0x15 && c->x86_model <= 0xf)
1853 			mce_flags.overflow_recov = 1;
1854 
1855 	}
1856 
1857 	if (c->x86_vendor == X86_VENDOR_INTEL) {
1858 		/*
1859 		 * SDM documents that on family 6 bank 0 should not be written
1860 		 * because it aliases to another special BIOS controlled
1861 		 * register.
1862 		 * But it's not aliased anymore on model 0x1a+
1863 		 * Don't ignore bank 0 completely because there could be a
1864 		 * valid event later, merely don't write CTL0.
1865 		 */
1866 
1867 		if (c->x86 == 6 && c->x86_model < 0x1A && this_cpu_read(mce_num_banks) > 0)
1868 			mce_banks[0].init = false;
1869 
1870 		/*
1871 		 * All newer Intel systems support MCE broadcasting. Enable
1872 		 * synchronization with a one second timeout.
1873 		 */
1874 		if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1875 			cfg->monarch_timeout < 0)
1876 			cfg->monarch_timeout = USEC_PER_SEC;
1877 
1878 		/*
1879 		 * There are also broken BIOSes on some Pentium M and
1880 		 * earlier systems:
1881 		 */
1882 		if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1883 			cfg->bootlog = 0;
1884 
1885 		if (c->x86 == 6 && c->x86_model == 45)
1886 			mce_flags.snb_ifu_quirk = 1;
1887 
1888 		/*
1889 		 * Skylake, Cascacde Lake and Cooper Lake require a quirk on
1890 		 * rep movs.
1891 		 */
1892 		if (c->x86 == 6 && c->x86_model == INTEL_FAM6_SKYLAKE_X)
1893 			mce_flags.skx_repmov_quirk = 1;
1894 	}
1895 
1896 	if (c->x86_vendor == X86_VENDOR_ZHAOXIN) {
1897 		/*
1898 		 * All newer Zhaoxin CPUs support MCE broadcasting. Enable
1899 		 * synchronization with a one second timeout.
1900 		 */
1901 		if (c->x86 > 6 || (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1902 			if (cfg->monarch_timeout < 0)
1903 				cfg->monarch_timeout = USEC_PER_SEC;
1904 		}
1905 	}
1906 
1907 	if (cfg->monarch_timeout < 0)
1908 		cfg->monarch_timeout = 0;
1909 	if (cfg->bootlog != 0)
1910 		cfg->panic_timeout = 30;
1911 
1912 	return 0;
1913 }
1914 
__mcheck_cpu_ancient_init(struct cpuinfo_x86 * c)1915 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1916 {
1917 	if (c->x86 != 5)
1918 		return 0;
1919 
1920 	switch (c->x86_vendor) {
1921 	case X86_VENDOR_INTEL:
1922 		intel_p5_mcheck_init(c);
1923 		mce_flags.p5 = 1;
1924 		return 1;
1925 	case X86_VENDOR_CENTAUR:
1926 		winchip_mcheck_init(c);
1927 		mce_flags.winchip = 1;
1928 		return 1;
1929 	default:
1930 		return 0;
1931 	}
1932 
1933 	return 0;
1934 }
1935 
1936 /*
1937  * Init basic CPU features needed for early decoding of MCEs.
1938  */
__mcheck_cpu_init_early(struct cpuinfo_x86 * c)1939 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c)
1940 {
1941 	if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) {
1942 		mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV);
1943 		mce_flags.succor	 = !!cpu_has(c, X86_FEATURE_SUCCOR);
1944 		mce_flags.smca		 = !!cpu_has(c, X86_FEATURE_SMCA);
1945 		mce_flags.amd_threshold	 = 1;
1946 	}
1947 }
1948 
mce_centaur_feature_init(struct cpuinfo_x86 * c)1949 static void mce_centaur_feature_init(struct cpuinfo_x86 *c)
1950 {
1951 	struct mca_config *cfg = &mca_cfg;
1952 
1953 	 /*
1954 	  * All newer Centaur CPUs support MCE broadcasting. Enable
1955 	  * synchronization with a one second timeout.
1956 	  */
1957 	if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) ||
1958 	     c->x86 > 6) {
1959 		if (cfg->monarch_timeout < 0)
1960 			cfg->monarch_timeout = USEC_PER_SEC;
1961 	}
1962 }
1963 
mce_zhaoxin_feature_init(struct cpuinfo_x86 * c)1964 static void mce_zhaoxin_feature_init(struct cpuinfo_x86 *c)
1965 {
1966 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1967 
1968 	/*
1969 	 * These CPUs have MCA bank 8 which reports only one error type called
1970 	 * SVAD (System View Address Decoder). The reporting of that error is
1971 	 * controlled by IA32_MC8.CTL.0.
1972 	 *
1973 	 * If enabled, prefetching on these CPUs will cause SVAD MCE when
1974 	 * virtual machines start and result in a system  panic. Always disable
1975 	 * bank 8 SVAD error by default.
1976 	 */
1977 	if ((c->x86 == 7 && c->x86_model == 0x1b) ||
1978 	    (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1979 		if (this_cpu_read(mce_num_banks) > 8)
1980 			mce_banks[8].ctl = 0;
1981 	}
1982 
1983 	intel_init_cmci();
1984 	intel_init_lmce();
1985 	mce_adjust_timer = cmci_intel_adjust_timer;
1986 }
1987 
mce_zhaoxin_feature_clear(struct cpuinfo_x86 * c)1988 static void mce_zhaoxin_feature_clear(struct cpuinfo_x86 *c)
1989 {
1990 	intel_clear_lmce();
1991 }
1992 
__mcheck_cpu_init_vendor(struct cpuinfo_x86 * c)1993 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1994 {
1995 	switch (c->x86_vendor) {
1996 	case X86_VENDOR_INTEL:
1997 		mce_intel_feature_init(c);
1998 		mce_adjust_timer = cmci_intel_adjust_timer;
1999 		break;
2000 
2001 	case X86_VENDOR_AMD: {
2002 		mce_amd_feature_init(c);
2003 		break;
2004 		}
2005 
2006 	case X86_VENDOR_HYGON:
2007 		mce_hygon_feature_init(c);
2008 		break;
2009 
2010 	case X86_VENDOR_CENTAUR:
2011 		mce_centaur_feature_init(c);
2012 		break;
2013 
2014 	case X86_VENDOR_ZHAOXIN:
2015 		mce_zhaoxin_feature_init(c);
2016 		break;
2017 
2018 	default:
2019 		break;
2020 	}
2021 }
2022 
__mcheck_cpu_clear_vendor(struct cpuinfo_x86 * c)2023 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
2024 {
2025 	switch (c->x86_vendor) {
2026 	case X86_VENDOR_INTEL:
2027 		mce_intel_feature_clear(c);
2028 		break;
2029 
2030 	case X86_VENDOR_ZHAOXIN:
2031 		mce_zhaoxin_feature_clear(c);
2032 		break;
2033 
2034 	default:
2035 		break;
2036 	}
2037 }
2038 
mce_start_timer(struct timer_list * t)2039 static void mce_start_timer(struct timer_list *t)
2040 {
2041 	unsigned long iv = check_interval * HZ;
2042 
2043 	if (mca_cfg.ignore_ce || !iv)
2044 		return;
2045 
2046 	this_cpu_write(mce_next_interval, iv);
2047 	__start_timer(t, iv);
2048 }
2049 
__mcheck_cpu_setup_timer(void)2050 static void __mcheck_cpu_setup_timer(void)
2051 {
2052 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2053 
2054 	timer_setup(t, mce_timer_fn, TIMER_PINNED);
2055 }
2056 
__mcheck_cpu_init_timer(void)2057 static void __mcheck_cpu_init_timer(void)
2058 {
2059 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2060 
2061 	timer_setup(t, mce_timer_fn, TIMER_PINNED);
2062 	mce_start_timer(t);
2063 }
2064 
filter_mce(struct mce * m)2065 bool filter_mce(struct mce *m)
2066 {
2067 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
2068 		return amd_filter_mce(m);
2069 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2070 		return intel_filter_mce(m);
2071 
2072 	return false;
2073 }
2074 
exc_machine_check_kernel(struct pt_regs * regs)2075 static __always_inline void exc_machine_check_kernel(struct pt_regs *regs)
2076 {
2077 	irqentry_state_t irq_state;
2078 
2079 	WARN_ON_ONCE(user_mode(regs));
2080 
2081 	/*
2082 	 * Only required when from kernel mode. See
2083 	 * mce_check_crashing_cpu() for details.
2084 	 */
2085 	if (mca_cfg.initialized && mce_check_crashing_cpu())
2086 		return;
2087 
2088 	irq_state = irqentry_nmi_enter(regs);
2089 
2090 	do_machine_check(regs);
2091 
2092 	irqentry_nmi_exit(regs, irq_state);
2093 }
2094 
exc_machine_check_user(struct pt_regs * regs)2095 static __always_inline void exc_machine_check_user(struct pt_regs *regs)
2096 {
2097 	irqentry_enter_from_user_mode(regs);
2098 
2099 	do_machine_check(regs);
2100 
2101 	irqentry_exit_to_user_mode(regs);
2102 }
2103 
2104 #ifdef CONFIG_X86_64
2105 /* MCE hit kernel mode */
DEFINE_IDTENTRY_MCE(exc_machine_check)2106 DEFINE_IDTENTRY_MCE(exc_machine_check)
2107 {
2108 	unsigned long dr7;
2109 
2110 	dr7 = local_db_save();
2111 	exc_machine_check_kernel(regs);
2112 	local_db_restore(dr7);
2113 }
2114 
2115 /* The user mode variant. */
DEFINE_IDTENTRY_MCE_USER(exc_machine_check)2116 DEFINE_IDTENTRY_MCE_USER(exc_machine_check)
2117 {
2118 	unsigned long dr7;
2119 
2120 	dr7 = local_db_save();
2121 	exc_machine_check_user(regs);
2122 	local_db_restore(dr7);
2123 }
2124 #else
2125 /* 32bit unified entry point */
DEFINE_IDTENTRY_RAW(exc_machine_check)2126 DEFINE_IDTENTRY_RAW(exc_machine_check)
2127 {
2128 	unsigned long dr7;
2129 
2130 	dr7 = local_db_save();
2131 	if (user_mode(regs))
2132 		exc_machine_check_user(regs);
2133 	else
2134 		exc_machine_check_kernel(regs);
2135 	local_db_restore(dr7);
2136 }
2137 #endif
2138 
2139 /*
2140  * Called for each booted CPU to set up machine checks.
2141  * Must be called with preempt off:
2142  */
mcheck_cpu_init(struct cpuinfo_x86 * c)2143 void mcheck_cpu_init(struct cpuinfo_x86 *c)
2144 {
2145 	if (mca_cfg.disabled)
2146 		return;
2147 
2148 	if (__mcheck_cpu_ancient_init(c))
2149 		return;
2150 
2151 	if (!mce_available(c))
2152 		return;
2153 
2154 	__mcheck_cpu_cap_init();
2155 
2156 	if (__mcheck_cpu_apply_quirks(c) < 0) {
2157 		mca_cfg.disabled = 1;
2158 		return;
2159 	}
2160 
2161 	if (mce_gen_pool_init()) {
2162 		mca_cfg.disabled = 1;
2163 		pr_emerg("Couldn't allocate MCE records pool!\n");
2164 		return;
2165 	}
2166 
2167 	mca_cfg.initialized = 1;
2168 
2169 	__mcheck_cpu_init_early(c);
2170 	__mcheck_cpu_init_generic();
2171 	__mcheck_cpu_init_vendor(c);
2172 	__mcheck_cpu_init_clear_banks();
2173 	__mcheck_cpu_check_banks();
2174 	__mcheck_cpu_setup_timer();
2175 }
2176 
2177 /*
2178  * Called for each booted CPU to clear some machine checks opt-ins
2179  */
mcheck_cpu_clear(struct cpuinfo_x86 * c)2180 void mcheck_cpu_clear(struct cpuinfo_x86 *c)
2181 {
2182 	if (mca_cfg.disabled)
2183 		return;
2184 
2185 	if (!mce_available(c))
2186 		return;
2187 
2188 	/*
2189 	 * Possibly to clear general settings generic to x86
2190 	 * __mcheck_cpu_clear_generic(c);
2191 	 */
2192 	__mcheck_cpu_clear_vendor(c);
2193 
2194 }
2195 
__mce_disable_bank(void * arg)2196 static void __mce_disable_bank(void *arg)
2197 {
2198 	int bank = *((int *)arg);
2199 	__clear_bit(bank, this_cpu_ptr(mce_poll_banks));
2200 	cmci_disable_bank(bank);
2201 }
2202 
mce_disable_bank(int bank)2203 void mce_disable_bank(int bank)
2204 {
2205 	if (bank >= this_cpu_read(mce_num_banks)) {
2206 		pr_warn(FW_BUG
2207 			"Ignoring request to disable invalid MCA bank %d.\n",
2208 			bank);
2209 		return;
2210 	}
2211 	set_bit(bank, mce_banks_ce_disabled);
2212 	on_each_cpu(__mce_disable_bank, &bank, 1);
2213 }
2214 
2215 /*
2216  * mce=off Disables machine check
2217  * mce=no_cmci Disables CMCI
2218  * mce=no_lmce Disables LMCE
2219  * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
2220  * mce=print_all Print all machine check logs to console
2221  * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
2222  * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
2223  *	monarchtimeout is how long to wait for other CPUs on machine
2224  *	check, or 0 to not wait
2225  * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h
2226 	and older.
2227  * mce=nobootlog Don't log MCEs from before booting.
2228  * mce=bios_cmci_threshold Don't program the CMCI threshold
2229  * mce=recovery force enable copy_mc_fragile()
2230  */
mcheck_enable(char * str)2231 static int __init mcheck_enable(char *str)
2232 {
2233 	struct mca_config *cfg = &mca_cfg;
2234 
2235 	if (*str == 0) {
2236 		enable_p5_mce();
2237 		return 1;
2238 	}
2239 	if (*str == '=')
2240 		str++;
2241 	if (!strcmp(str, "off"))
2242 		cfg->disabled = 1;
2243 	else if (!strcmp(str, "no_cmci"))
2244 		cfg->cmci_disabled = true;
2245 	else if (!strcmp(str, "no_lmce"))
2246 		cfg->lmce_disabled = 1;
2247 	else if (!strcmp(str, "dont_log_ce"))
2248 		cfg->dont_log_ce = true;
2249 	else if (!strcmp(str, "print_all"))
2250 		cfg->print_all = true;
2251 	else if (!strcmp(str, "ignore_ce"))
2252 		cfg->ignore_ce = true;
2253 	else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
2254 		cfg->bootlog = (str[0] == 'b');
2255 	else if (!strcmp(str, "bios_cmci_threshold"))
2256 		cfg->bios_cmci_threshold = 1;
2257 	else if (!strcmp(str, "recovery"))
2258 		cfg->recovery = 1;
2259 	else if (isdigit(str[0]))
2260 		get_option(&str, &(cfg->monarch_timeout));
2261 	else {
2262 		pr_info("mce argument %s ignored. Please use /sys\n", str);
2263 		return 0;
2264 	}
2265 	return 1;
2266 }
2267 __setup("mce", mcheck_enable);
2268 
mcheck_init(void)2269 int __init mcheck_init(void)
2270 {
2271 	mce_register_decode_chain(&early_nb);
2272 	mce_register_decode_chain(&mce_uc_nb);
2273 	mce_register_decode_chain(&mce_default_nb);
2274 
2275 	INIT_WORK(&mce_work, mce_gen_pool_process);
2276 	init_irq_work(&mce_irq_work, mce_irq_work_cb);
2277 
2278 	return 0;
2279 }
2280 
2281 /*
2282  * mce_syscore: PM support
2283  */
2284 
2285 /*
2286  * Disable machine checks on suspend and shutdown. We can't really handle
2287  * them later.
2288  */
mce_disable_error_reporting(void)2289 static void mce_disable_error_reporting(void)
2290 {
2291 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2292 	int i;
2293 
2294 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2295 		struct mce_bank *b = &mce_banks[i];
2296 
2297 		if (b->init)
2298 			wrmsrl(mca_msr_reg(i, MCA_CTL), 0);
2299 	}
2300 	return;
2301 }
2302 
vendor_disable_error_reporting(void)2303 static void vendor_disable_error_reporting(void)
2304 {
2305 	/*
2306 	 * Don't clear on Intel or AMD or Hygon or Zhaoxin CPUs. Some of these
2307 	 * MSRs are socket-wide. Disabling them for just a single offlined CPU
2308 	 * is bad, since it will inhibit reporting for all shared resources on
2309 	 * the socket like the last level cache (LLC), the integrated memory
2310 	 * controller (iMC), etc.
2311 	 */
2312 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL ||
2313 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON ||
2314 	    boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
2315 	    boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN)
2316 		return;
2317 
2318 	mce_disable_error_reporting();
2319 }
2320 
mce_syscore_suspend(void)2321 static int mce_syscore_suspend(void)
2322 {
2323 	vendor_disable_error_reporting();
2324 	return 0;
2325 }
2326 
mce_syscore_shutdown(void)2327 static void mce_syscore_shutdown(void)
2328 {
2329 	vendor_disable_error_reporting();
2330 }
2331 
2332 /*
2333  * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
2334  * Only one CPU is active at this time, the others get re-added later using
2335  * CPU hotplug:
2336  */
mce_syscore_resume(void)2337 static void mce_syscore_resume(void)
2338 {
2339 	__mcheck_cpu_init_generic();
2340 	__mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
2341 	__mcheck_cpu_init_clear_banks();
2342 }
2343 
2344 static struct syscore_ops mce_syscore_ops = {
2345 	.suspend	= mce_syscore_suspend,
2346 	.shutdown	= mce_syscore_shutdown,
2347 	.resume		= mce_syscore_resume,
2348 };
2349 
2350 /*
2351  * mce_device: Sysfs support
2352  */
2353 
mce_cpu_restart(void * data)2354 static void mce_cpu_restart(void *data)
2355 {
2356 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2357 		return;
2358 	__mcheck_cpu_init_generic();
2359 	__mcheck_cpu_init_clear_banks();
2360 	__mcheck_cpu_init_timer();
2361 }
2362 
2363 /* Reinit MCEs after user configuration changes */
mce_restart(void)2364 static void mce_restart(void)
2365 {
2366 	mce_timer_delete_all();
2367 	on_each_cpu(mce_cpu_restart, NULL, 1);
2368 }
2369 
2370 /* Toggle features for corrected errors */
mce_disable_cmci(void * data)2371 static void mce_disable_cmci(void *data)
2372 {
2373 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2374 		return;
2375 	cmci_clear();
2376 }
2377 
mce_enable_ce(void * all)2378 static void mce_enable_ce(void *all)
2379 {
2380 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2381 		return;
2382 	cmci_reenable();
2383 	cmci_recheck();
2384 	if (all)
2385 		__mcheck_cpu_init_timer();
2386 }
2387 
2388 static struct bus_type mce_subsys = {
2389 	.name		= "machinecheck",
2390 	.dev_name	= "machinecheck",
2391 };
2392 
2393 DEFINE_PER_CPU(struct device *, mce_device);
2394 
attr_to_bank(struct device_attribute * attr)2395 static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr)
2396 {
2397 	return container_of(attr, struct mce_bank_dev, attr);
2398 }
2399 
show_bank(struct device * s,struct device_attribute * attr,char * buf)2400 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2401 			 char *buf)
2402 {
2403 	u8 bank = attr_to_bank(attr)->bank;
2404 	struct mce_bank *b;
2405 
2406 	if (bank >= per_cpu(mce_num_banks, s->id))
2407 		return -EINVAL;
2408 
2409 	b = &per_cpu(mce_banks_array, s->id)[bank];
2410 
2411 	if (!b->init)
2412 		return -ENODEV;
2413 
2414 	return sprintf(buf, "%llx\n", b->ctl);
2415 }
2416 
set_bank(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2417 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2418 			const char *buf, size_t size)
2419 {
2420 	u8 bank = attr_to_bank(attr)->bank;
2421 	struct mce_bank *b;
2422 	u64 new;
2423 
2424 	if (kstrtou64(buf, 0, &new) < 0)
2425 		return -EINVAL;
2426 
2427 	if (bank >= per_cpu(mce_num_banks, s->id))
2428 		return -EINVAL;
2429 
2430 	b = &per_cpu(mce_banks_array, s->id)[bank];
2431 
2432 	if (!b->init)
2433 		return -ENODEV;
2434 
2435 	b->ctl = new;
2436 	mce_restart();
2437 
2438 	return size;
2439 }
2440 
set_ignore_ce(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2441 static ssize_t set_ignore_ce(struct device *s,
2442 			     struct device_attribute *attr,
2443 			     const char *buf, size_t size)
2444 {
2445 	u64 new;
2446 
2447 	if (kstrtou64(buf, 0, &new) < 0)
2448 		return -EINVAL;
2449 
2450 	mutex_lock(&mce_sysfs_mutex);
2451 	if (mca_cfg.ignore_ce ^ !!new) {
2452 		if (new) {
2453 			/* disable ce features */
2454 			mce_timer_delete_all();
2455 			on_each_cpu(mce_disable_cmci, NULL, 1);
2456 			mca_cfg.ignore_ce = true;
2457 		} else {
2458 			/* enable ce features */
2459 			mca_cfg.ignore_ce = false;
2460 			on_each_cpu(mce_enable_ce, (void *)1, 1);
2461 		}
2462 	}
2463 	mutex_unlock(&mce_sysfs_mutex);
2464 
2465 	return size;
2466 }
2467 
set_cmci_disabled(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2468 static ssize_t set_cmci_disabled(struct device *s,
2469 				 struct device_attribute *attr,
2470 				 const char *buf, size_t size)
2471 {
2472 	u64 new;
2473 
2474 	if (kstrtou64(buf, 0, &new) < 0)
2475 		return -EINVAL;
2476 
2477 	mutex_lock(&mce_sysfs_mutex);
2478 	if (mca_cfg.cmci_disabled ^ !!new) {
2479 		if (new) {
2480 			/* disable cmci */
2481 			on_each_cpu(mce_disable_cmci, NULL, 1);
2482 			mca_cfg.cmci_disabled = true;
2483 		} else {
2484 			/* enable cmci */
2485 			mca_cfg.cmci_disabled = false;
2486 			on_each_cpu(mce_enable_ce, NULL, 1);
2487 		}
2488 	}
2489 	mutex_unlock(&mce_sysfs_mutex);
2490 
2491 	return size;
2492 }
2493 
store_int_with_restart(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2494 static ssize_t store_int_with_restart(struct device *s,
2495 				      struct device_attribute *attr,
2496 				      const char *buf, size_t size)
2497 {
2498 	unsigned long old_check_interval = check_interval;
2499 	ssize_t ret = device_store_ulong(s, attr, buf, size);
2500 
2501 	if (check_interval == old_check_interval)
2502 		return ret;
2503 
2504 	mutex_lock(&mce_sysfs_mutex);
2505 	mce_restart();
2506 	mutex_unlock(&mce_sysfs_mutex);
2507 
2508 	return ret;
2509 }
2510 
2511 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2512 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2513 static DEVICE_BOOL_ATTR(print_all, 0644, mca_cfg.print_all);
2514 
2515 static struct dev_ext_attribute dev_attr_check_interval = {
2516 	__ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2517 	&check_interval
2518 };
2519 
2520 static struct dev_ext_attribute dev_attr_ignore_ce = {
2521 	__ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2522 	&mca_cfg.ignore_ce
2523 };
2524 
2525 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2526 	__ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2527 	&mca_cfg.cmci_disabled
2528 };
2529 
2530 static struct device_attribute *mce_device_attrs[] = {
2531 	&dev_attr_check_interval.attr,
2532 #ifdef CONFIG_X86_MCELOG_LEGACY
2533 	&dev_attr_trigger,
2534 #endif
2535 	&dev_attr_monarch_timeout.attr,
2536 	&dev_attr_dont_log_ce.attr,
2537 	&dev_attr_print_all.attr,
2538 	&dev_attr_ignore_ce.attr,
2539 	&dev_attr_cmci_disabled.attr,
2540 	NULL
2541 };
2542 
2543 static cpumask_var_t mce_device_initialized;
2544 
mce_device_release(struct device * dev)2545 static void mce_device_release(struct device *dev)
2546 {
2547 	kfree(dev);
2548 }
2549 
2550 /* Per CPU device init. All of the CPUs still share the same bank device: */
mce_device_create(unsigned int cpu)2551 static int mce_device_create(unsigned int cpu)
2552 {
2553 	struct device *dev;
2554 	int err;
2555 	int i, j;
2556 
2557 	if (!mce_available(&boot_cpu_data))
2558 		return -EIO;
2559 
2560 	dev = per_cpu(mce_device, cpu);
2561 	if (dev)
2562 		return 0;
2563 
2564 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2565 	if (!dev)
2566 		return -ENOMEM;
2567 	dev->id  = cpu;
2568 	dev->bus = &mce_subsys;
2569 	dev->release = &mce_device_release;
2570 
2571 	err = device_register(dev);
2572 	if (err) {
2573 		put_device(dev);
2574 		return err;
2575 	}
2576 
2577 	for (i = 0; mce_device_attrs[i]; i++) {
2578 		err = device_create_file(dev, mce_device_attrs[i]);
2579 		if (err)
2580 			goto error;
2581 	}
2582 	for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) {
2583 		err = device_create_file(dev, &mce_bank_devs[j].attr);
2584 		if (err)
2585 			goto error2;
2586 	}
2587 	cpumask_set_cpu(cpu, mce_device_initialized);
2588 	per_cpu(mce_device, cpu) = dev;
2589 
2590 	return 0;
2591 error2:
2592 	while (--j >= 0)
2593 		device_remove_file(dev, &mce_bank_devs[j].attr);
2594 error:
2595 	while (--i >= 0)
2596 		device_remove_file(dev, mce_device_attrs[i]);
2597 
2598 	device_unregister(dev);
2599 
2600 	return err;
2601 }
2602 
mce_device_remove(unsigned int cpu)2603 static void mce_device_remove(unsigned int cpu)
2604 {
2605 	struct device *dev = per_cpu(mce_device, cpu);
2606 	int i;
2607 
2608 	if (!cpumask_test_cpu(cpu, mce_device_initialized))
2609 		return;
2610 
2611 	for (i = 0; mce_device_attrs[i]; i++)
2612 		device_remove_file(dev, mce_device_attrs[i]);
2613 
2614 	for (i = 0; i < per_cpu(mce_num_banks, cpu); i++)
2615 		device_remove_file(dev, &mce_bank_devs[i].attr);
2616 
2617 	device_unregister(dev);
2618 	cpumask_clear_cpu(cpu, mce_device_initialized);
2619 	per_cpu(mce_device, cpu) = NULL;
2620 }
2621 
2622 /* Make sure there are no machine checks on offlined CPUs. */
mce_disable_cpu(void)2623 static void mce_disable_cpu(void)
2624 {
2625 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2626 		return;
2627 
2628 	if (!cpuhp_tasks_frozen)
2629 		cmci_clear();
2630 
2631 	vendor_disable_error_reporting();
2632 }
2633 
mce_reenable_cpu(void)2634 static void mce_reenable_cpu(void)
2635 {
2636 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2637 	int i;
2638 
2639 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2640 		return;
2641 
2642 	if (!cpuhp_tasks_frozen)
2643 		cmci_reenable();
2644 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2645 		struct mce_bank *b = &mce_banks[i];
2646 
2647 		if (b->init)
2648 			wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl);
2649 	}
2650 }
2651 
mce_cpu_dead(unsigned int cpu)2652 static int mce_cpu_dead(unsigned int cpu)
2653 {
2654 	mce_intel_hcpu_update(cpu);
2655 
2656 	/* intentionally ignoring frozen here */
2657 	if (!cpuhp_tasks_frozen)
2658 		cmci_rediscover();
2659 	return 0;
2660 }
2661 
mce_cpu_online(unsigned int cpu)2662 static int mce_cpu_online(unsigned int cpu)
2663 {
2664 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2665 	int ret;
2666 
2667 	mce_device_create(cpu);
2668 
2669 	ret = mce_threshold_create_device(cpu);
2670 	if (ret) {
2671 		mce_device_remove(cpu);
2672 		return ret;
2673 	}
2674 	mce_reenable_cpu();
2675 	mce_start_timer(t);
2676 	return 0;
2677 }
2678 
mce_cpu_pre_down(unsigned int cpu)2679 static int mce_cpu_pre_down(unsigned int cpu)
2680 {
2681 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2682 
2683 	mce_disable_cpu();
2684 	del_timer_sync(t);
2685 	mce_threshold_remove_device(cpu);
2686 	mce_device_remove(cpu);
2687 	return 0;
2688 }
2689 
mce_init_banks(void)2690 static __init void mce_init_banks(void)
2691 {
2692 	int i;
2693 
2694 	for (i = 0; i < MAX_NR_BANKS; i++) {
2695 		struct mce_bank_dev *b = &mce_bank_devs[i];
2696 		struct device_attribute *a = &b->attr;
2697 
2698 		b->bank = i;
2699 
2700 		sysfs_attr_init(&a->attr);
2701 		a->attr.name	= b->attrname;
2702 		snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2703 
2704 		a->attr.mode	= 0644;
2705 		a->show		= show_bank;
2706 		a->store	= set_bank;
2707 	}
2708 }
2709 
2710 /*
2711  * When running on XEN, this initcall is ordered against the XEN mcelog
2712  * initcall:
2713  *
2714  *   device_initcall(xen_late_init_mcelog);
2715  *   device_initcall_sync(mcheck_init_device);
2716  */
mcheck_init_device(void)2717 static __init int mcheck_init_device(void)
2718 {
2719 	int err;
2720 
2721 	/*
2722 	 * Check if we have a spare virtual bit. This will only become
2723 	 * a problem if/when we move beyond 5-level page tables.
2724 	 */
2725 	MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63);
2726 
2727 	if (!mce_available(&boot_cpu_data)) {
2728 		err = -EIO;
2729 		goto err_out;
2730 	}
2731 
2732 	if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2733 		err = -ENOMEM;
2734 		goto err_out;
2735 	}
2736 
2737 	mce_init_banks();
2738 
2739 	err = subsys_system_register(&mce_subsys, NULL);
2740 	if (err)
2741 		goto err_out_mem;
2742 
2743 	err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL,
2744 				mce_cpu_dead);
2745 	if (err)
2746 		goto err_out_mem;
2747 
2748 	/*
2749 	 * Invokes mce_cpu_online() on all CPUs which are online when
2750 	 * the state is installed.
2751 	 */
2752 	err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online",
2753 				mce_cpu_online, mce_cpu_pre_down);
2754 	if (err < 0)
2755 		goto err_out_online;
2756 
2757 	register_syscore_ops(&mce_syscore_ops);
2758 
2759 	return 0;
2760 
2761 err_out_online:
2762 	cpuhp_remove_state(CPUHP_X86_MCE_DEAD);
2763 
2764 err_out_mem:
2765 	free_cpumask_var(mce_device_initialized);
2766 
2767 err_out:
2768 	pr_err("Unable to init MCE device (rc: %d)\n", err);
2769 
2770 	return err;
2771 }
2772 device_initcall_sync(mcheck_init_device);
2773 
2774 /*
2775  * Old style boot options parsing. Only for compatibility.
2776  */
mcheck_disable(char * str)2777 static int __init mcheck_disable(char *str)
2778 {
2779 	mca_cfg.disabled = 1;
2780 	return 1;
2781 }
2782 __setup("nomce", mcheck_disable);
2783 
2784 #ifdef CONFIG_DEBUG_FS
mce_get_debugfs_dir(void)2785 struct dentry *mce_get_debugfs_dir(void)
2786 {
2787 	static struct dentry *dmce;
2788 
2789 	if (!dmce)
2790 		dmce = debugfs_create_dir("mce", NULL);
2791 
2792 	return dmce;
2793 }
2794 
mce_reset(void)2795 static void mce_reset(void)
2796 {
2797 	atomic_set(&mce_fake_panicked, 0);
2798 	atomic_set(&mce_executing, 0);
2799 	atomic_set(&mce_callin, 0);
2800 	atomic_set(&global_nwo, 0);
2801 	cpumask_setall(&mce_missing_cpus);
2802 }
2803 
fake_panic_get(void * data,u64 * val)2804 static int fake_panic_get(void *data, u64 *val)
2805 {
2806 	*val = fake_panic;
2807 	return 0;
2808 }
2809 
fake_panic_set(void * data,u64 val)2810 static int fake_panic_set(void *data, u64 val)
2811 {
2812 	mce_reset();
2813 	fake_panic = val;
2814 	return 0;
2815 }
2816 
2817 DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set,
2818 			 "%llu\n");
2819 
mcheck_debugfs_init(void)2820 static void __init mcheck_debugfs_init(void)
2821 {
2822 	struct dentry *dmce;
2823 
2824 	dmce = mce_get_debugfs_dir();
2825 	debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL,
2826 				   &fake_panic_fops);
2827 }
2828 #else
mcheck_debugfs_init(void)2829 static void __init mcheck_debugfs_init(void) { }
2830 #endif
2831 
mcheck_late_init(void)2832 static int __init mcheck_late_init(void)
2833 {
2834 	if (mca_cfg.recovery)
2835 		enable_copy_mc_fragile();
2836 
2837 	mcheck_debugfs_init();
2838 
2839 	/*
2840 	 * Flush out everything that has been logged during early boot, now that
2841 	 * everything has been initialized (workqueues, decoders, ...).
2842 	 */
2843 	mce_schedule_work();
2844 
2845 	return 0;
2846 }
2847 late_initcall(mcheck_late_init);
2848