1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * arch/sh/kernel/cpu/init.c
4 *
5 * CPU init code
6 *
7 * Copyright (C) 2002 - 2009 Paul Mundt
8 * Copyright (C) 2003 Richard Curnow
9 */
10 #include <linux/init.h>
11 #include <linux/kernel.h>
12 #include <linux/mm.h>
13 #include <linux/log2.h>
14 #include <asm/mmu_context.h>
15 #include <asm/processor.h>
16 #include <linux/uaccess.h>
17 #include <asm/page.h>
18 #include <asm/cacheflush.h>
19 #include <asm/cache.h>
20 #include <asm/elf.h>
21 #include <asm/io.h>
22 #include <asm/smp.h>
23 #include <asm/sh_bios.h>
24 #include <asm/setup.h>
25
26 #ifdef CONFIG_SH_FPU
27 #define cpu_has_fpu 1
28 #else
29 #define cpu_has_fpu 0
30 #endif
31
32 #ifdef CONFIG_SH_DSP
33 #define cpu_has_dsp 1
34 #else
35 #define cpu_has_dsp 0
36 #endif
37
38 /*
39 * Generic wrapper for command line arguments to disable on-chip
40 * peripherals (nofpu, nodsp, and so forth).
41 */
42 #define onchip_setup(x) \
43 static int x##_disabled = !cpu_has_##x; \
44 \
45 static int x##_setup(char *opts) \
46 { \
47 x##_disabled = 1; \
48 return 1; \
49 } \
50 __setup("no" __stringify(x), x##_setup);
51
52 onchip_setup(fpu);
53 onchip_setup(dsp);
54
55 #ifdef CONFIG_SPECULATIVE_EXECUTION
56 #define CPUOPM 0xff2f0000
57 #define CPUOPM_RABD (1 << 5)
58
speculative_execution_init(void)59 static void speculative_execution_init(void)
60 {
61 /* Clear RABD */
62 __raw_writel(__raw_readl(CPUOPM) & ~CPUOPM_RABD, CPUOPM);
63
64 /* Flush the update */
65 (void)__raw_readl(CPUOPM);
66 ctrl_barrier();
67 }
68 #else
69 #define speculative_execution_init() do { } while (0)
70 #endif
71
72 #ifdef CONFIG_CPU_SH4A
73 #define EXPMASK 0xff2f0004
74 #define EXPMASK_RTEDS (1 << 0)
75 #define EXPMASK_BRDSSLP (1 << 1)
76 #define EXPMASK_MMCAW (1 << 4)
77
expmask_init(void)78 static void expmask_init(void)
79 {
80 unsigned long expmask = __raw_readl(EXPMASK);
81
82 /*
83 * Future proofing.
84 *
85 * Disable support for slottable sleep instruction, non-nop
86 * instructions in the rte delay slot, and associative writes to
87 * the memory-mapped cache array.
88 */
89 expmask &= ~(EXPMASK_RTEDS | EXPMASK_BRDSSLP | EXPMASK_MMCAW);
90
91 __raw_writel(expmask, EXPMASK);
92 ctrl_barrier();
93 }
94 #else
95 #define expmask_init() do { } while (0)
96 #endif
97
98 /* 2nd-level cache init */
l2_cache_init(void)99 void __attribute__ ((weak)) l2_cache_init(void)
100 {
101 }
102
103 /*
104 * Generic first-level cache init
105 */
106 #if !defined(CONFIG_CPU_J2)
cache_init(void)107 static void cache_init(void)
108 {
109 unsigned long ccr, flags;
110
111 jump_to_uncached();
112 ccr = __raw_readl(SH_CCR);
113
114 /*
115 * At this point we don't know whether the cache is enabled or not - a
116 * bootloader may have enabled it. There are at least 2 things that
117 * could be dirty in the cache at this point:
118 * 1. kernel command line set up by boot loader
119 * 2. spilled registers from the prolog of this function
120 * => before re-initialising the cache, we must do a purge of the whole
121 * cache out to memory for safety. As long as nothing is spilled
122 * during the loop to lines that have already been done, this is safe.
123 * - RPC
124 */
125 if (ccr & CCR_CACHE_ENABLE) {
126 unsigned long ways, waysize, addrstart;
127
128 waysize = current_cpu_data.dcache.sets;
129
130 #ifdef CCR_CACHE_ORA
131 /*
132 * If the OC is already in RAM mode, we only have
133 * half of the entries to flush..
134 */
135 if (ccr & CCR_CACHE_ORA)
136 waysize >>= 1;
137 #endif
138
139 waysize <<= current_cpu_data.dcache.entry_shift;
140
141 #ifdef CCR_CACHE_EMODE
142 /* If EMODE is not set, we only have 1 way to flush. */
143 if (!(ccr & CCR_CACHE_EMODE))
144 ways = 1;
145 else
146 #endif
147 ways = current_cpu_data.dcache.ways;
148
149 addrstart = CACHE_OC_ADDRESS_ARRAY;
150 do {
151 unsigned long addr;
152
153 for (addr = addrstart;
154 addr < addrstart + waysize;
155 addr += current_cpu_data.dcache.linesz)
156 __raw_writel(0, addr);
157
158 addrstart += current_cpu_data.dcache.way_incr;
159 } while (--ways);
160 }
161
162 /*
163 * Default CCR values .. enable the caches
164 * and invalidate them immediately..
165 */
166 flags = CCR_CACHE_ENABLE | CCR_CACHE_INVALIDATE;
167
168 #ifdef CCR_CACHE_EMODE
169 /* Force EMODE if possible */
170 if (current_cpu_data.dcache.ways > 1)
171 flags |= CCR_CACHE_EMODE;
172 else
173 flags &= ~CCR_CACHE_EMODE;
174 #endif
175
176 #if defined(CONFIG_CACHE_WRITETHROUGH)
177 /* Write-through */
178 flags |= CCR_CACHE_WT;
179 #elif defined(CONFIG_CACHE_WRITEBACK)
180 /* Write-back */
181 flags |= CCR_CACHE_CB;
182 #else
183 /* Off */
184 flags &= ~CCR_CACHE_ENABLE;
185 #endif
186
187 l2_cache_init();
188
189 __raw_writel(flags, SH_CCR);
190 back_to_cached();
191 }
192 #else
193 #define cache_init() do { } while (0)
194 #endif
195
196 #define CSHAPE(totalsize, linesize, assoc) \
197 ((totalsize & ~0xff) | (linesize << 4) | assoc)
198
199 #define CACHE_DESC_SHAPE(desc) \
200 CSHAPE((desc).way_size * (desc).ways, ilog2((desc).linesz), (desc).ways)
201
detect_cache_shape(void)202 static void detect_cache_shape(void)
203 {
204 l1d_cache_shape = CACHE_DESC_SHAPE(current_cpu_data.dcache);
205
206 if (current_cpu_data.dcache.flags & SH_CACHE_COMBINED)
207 l1i_cache_shape = l1d_cache_shape;
208 else
209 l1i_cache_shape = CACHE_DESC_SHAPE(current_cpu_data.icache);
210
211 if (current_cpu_data.flags & CPU_HAS_L2_CACHE)
212 l2_cache_shape = CACHE_DESC_SHAPE(current_cpu_data.scache);
213 else
214 l2_cache_shape = -1; /* No S-cache */
215 }
216
fpu_init(void)217 static void fpu_init(void)
218 {
219 /* Disable the FPU */
220 if (fpu_disabled && (current_cpu_data.flags & CPU_HAS_FPU)) {
221 printk("FPU Disabled\n");
222 current_cpu_data.flags &= ~CPU_HAS_FPU;
223 }
224
225 disable_fpu();
226 clear_used_math();
227 }
228
229 #ifdef CONFIG_SH_DSP
release_dsp(void)230 static void release_dsp(void)
231 {
232 unsigned long sr;
233
234 /* Clear SR.DSP bit */
235 __asm__ __volatile__ (
236 "stc\tsr, %0\n\t"
237 "and\t%1, %0\n\t"
238 "ldc\t%0, sr\n\t"
239 : "=&r" (sr)
240 : "r" (~SR_DSP)
241 );
242 }
243
dsp_init(void)244 static void dsp_init(void)
245 {
246 unsigned long sr;
247
248 /*
249 * Set the SR.DSP bit, wait for one instruction, and then read
250 * back the SR value.
251 */
252 __asm__ __volatile__ (
253 "stc\tsr, %0\n\t"
254 "or\t%1, %0\n\t"
255 "ldc\t%0, sr\n\t"
256 "nop\n\t"
257 "stc\tsr, %0\n\t"
258 : "=&r" (sr)
259 : "r" (SR_DSP)
260 );
261
262 /* If the DSP bit is still set, this CPU has a DSP */
263 if (sr & SR_DSP)
264 current_cpu_data.flags |= CPU_HAS_DSP;
265
266 /* Disable the DSP */
267 if (dsp_disabled && (current_cpu_data.flags & CPU_HAS_DSP)) {
268 printk("DSP Disabled\n");
269 current_cpu_data.flags &= ~CPU_HAS_DSP;
270 }
271
272 /* Now that we've determined the DSP status, clear the DSP bit. */
273 release_dsp();
274 }
275 #else
dsp_init(void)276 static inline void dsp_init(void) { }
277 #endif /* CONFIG_SH_DSP */
278
279 /**
280 * cpu_init
281 *
282 * This is our initial entry point for each CPU, and is invoked on the
283 * boot CPU prior to calling start_kernel(). For SMP, a combination of
284 * this and start_secondary() will bring up each processor to a ready
285 * state prior to hand forking the idle loop.
286 *
287 * We do all of the basic processor init here, including setting up
288 * the caches, FPU, DSP, etc. By the time start_kernel() is hit (and
289 * subsequently platform_setup()) things like determining the CPU
290 * subtype and initial configuration will all be done.
291 *
292 * Each processor family is still responsible for doing its own probing
293 * and cache configuration in cpu_probe().
294 */
cpu_init(void)295 asmlinkage void cpu_init(void)
296 {
297 current_thread_info()->cpu = hard_smp_processor_id();
298
299 /* First, probe the CPU */
300 cpu_probe();
301
302 if (current_cpu_data.type == CPU_SH_NONE)
303 panic("Unknown CPU");
304
305 /* First setup the rest of the I-cache info */
306 current_cpu_data.icache.entry_mask = current_cpu_data.icache.way_incr -
307 current_cpu_data.icache.linesz;
308
309 current_cpu_data.icache.way_size = current_cpu_data.icache.sets *
310 current_cpu_data.icache.linesz;
311
312 /* And the D-cache too */
313 current_cpu_data.dcache.entry_mask = current_cpu_data.dcache.way_incr -
314 current_cpu_data.dcache.linesz;
315
316 current_cpu_data.dcache.way_size = current_cpu_data.dcache.sets *
317 current_cpu_data.dcache.linesz;
318
319 /* Init the cache */
320 cache_init();
321
322 if (raw_smp_processor_id() == 0) {
323 #ifdef CONFIG_MMU
324 shm_align_mask = max_t(unsigned long,
325 current_cpu_data.dcache.way_size - 1,
326 PAGE_SIZE - 1);
327 #else
328 shm_align_mask = PAGE_SIZE - 1;
329 #endif
330
331 /* Boot CPU sets the cache shape */
332 detect_cache_shape();
333 }
334
335 fpu_init();
336 dsp_init();
337
338 /*
339 * Initialize the per-CPU ASID cache very early, since the
340 * TLB flushing routines depend on this being setup.
341 */
342 current_cpu_data.asid_cache = NO_CONTEXT;
343
344 current_cpu_data.phys_bits = __in_29bit_mode() ? 29 : 32;
345
346 speculative_execution_init();
347 expmask_init();
348
349 /* Do the rest of the boot processor setup */
350 if (raw_smp_processor_id() == 0) {
351 /* Save off the BIOS VBR, if there is one */
352 sh_bios_vbr_init();
353
354 /*
355 * Setup VBR for boot CPU. Secondary CPUs do this through
356 * start_secondary().
357 */
358 per_cpu_trap_init();
359
360 /*
361 * Boot processor to setup the FP and extended state
362 * context info.
363 */
364 init_thread_xstate();
365 }
366 }
367