1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * guest access functions
4 *
5 * Copyright IBM Corp. 2014
6 *
7 */
8
9 #include <linux/vmalloc.h>
10 #include <linux/mm_types.h>
11 #include <linux/err.h>
12 #include <linux/pgtable.h>
13 #include <linux/bitfield.h>
14
15 #include <asm/gmap.h>
16 #include "kvm-s390.h"
17 #include "gaccess.h"
18 #include <asm/switch_to.h>
19
20 union asce {
21 unsigned long val;
22 struct {
23 unsigned long origin : 52; /* Region- or Segment-Table Origin */
24 unsigned long : 2;
25 unsigned long g : 1; /* Subspace Group Control */
26 unsigned long p : 1; /* Private Space Control */
27 unsigned long s : 1; /* Storage-Alteration-Event Control */
28 unsigned long x : 1; /* Space-Switch-Event Control */
29 unsigned long r : 1; /* Real-Space Control */
30 unsigned long : 1;
31 unsigned long dt : 2; /* Designation-Type Control */
32 unsigned long tl : 2; /* Region- or Segment-Table Length */
33 };
34 };
35
36 enum {
37 ASCE_TYPE_SEGMENT = 0,
38 ASCE_TYPE_REGION3 = 1,
39 ASCE_TYPE_REGION2 = 2,
40 ASCE_TYPE_REGION1 = 3
41 };
42
43 union region1_table_entry {
44 unsigned long val;
45 struct {
46 unsigned long rto: 52;/* Region-Table Origin */
47 unsigned long : 2;
48 unsigned long p : 1; /* DAT-Protection Bit */
49 unsigned long : 1;
50 unsigned long tf : 2; /* Region-Second-Table Offset */
51 unsigned long i : 1; /* Region-Invalid Bit */
52 unsigned long : 1;
53 unsigned long tt : 2; /* Table-Type Bits */
54 unsigned long tl : 2; /* Region-Second-Table Length */
55 };
56 };
57
58 union region2_table_entry {
59 unsigned long val;
60 struct {
61 unsigned long rto: 52;/* Region-Table Origin */
62 unsigned long : 2;
63 unsigned long p : 1; /* DAT-Protection Bit */
64 unsigned long : 1;
65 unsigned long tf : 2; /* Region-Third-Table Offset */
66 unsigned long i : 1; /* Region-Invalid Bit */
67 unsigned long : 1;
68 unsigned long tt : 2; /* Table-Type Bits */
69 unsigned long tl : 2; /* Region-Third-Table Length */
70 };
71 };
72
73 struct region3_table_entry_fc0 {
74 unsigned long sto: 52;/* Segment-Table Origin */
75 unsigned long : 1;
76 unsigned long fc : 1; /* Format-Control */
77 unsigned long p : 1; /* DAT-Protection Bit */
78 unsigned long : 1;
79 unsigned long tf : 2; /* Segment-Table Offset */
80 unsigned long i : 1; /* Region-Invalid Bit */
81 unsigned long cr : 1; /* Common-Region Bit */
82 unsigned long tt : 2; /* Table-Type Bits */
83 unsigned long tl : 2; /* Segment-Table Length */
84 };
85
86 struct region3_table_entry_fc1 {
87 unsigned long rfaa : 33; /* Region-Frame Absolute Address */
88 unsigned long : 14;
89 unsigned long av : 1; /* ACCF-Validity Control */
90 unsigned long acc: 4; /* Access-Control Bits */
91 unsigned long f : 1; /* Fetch-Protection Bit */
92 unsigned long fc : 1; /* Format-Control */
93 unsigned long p : 1; /* DAT-Protection Bit */
94 unsigned long iep: 1; /* Instruction-Execution-Protection */
95 unsigned long : 2;
96 unsigned long i : 1; /* Region-Invalid Bit */
97 unsigned long cr : 1; /* Common-Region Bit */
98 unsigned long tt : 2; /* Table-Type Bits */
99 unsigned long : 2;
100 };
101
102 union region3_table_entry {
103 unsigned long val;
104 struct region3_table_entry_fc0 fc0;
105 struct region3_table_entry_fc1 fc1;
106 struct {
107 unsigned long : 53;
108 unsigned long fc : 1; /* Format-Control */
109 unsigned long : 4;
110 unsigned long i : 1; /* Region-Invalid Bit */
111 unsigned long cr : 1; /* Common-Region Bit */
112 unsigned long tt : 2; /* Table-Type Bits */
113 unsigned long : 2;
114 };
115 };
116
117 struct segment_entry_fc0 {
118 unsigned long pto: 53;/* Page-Table Origin */
119 unsigned long fc : 1; /* Format-Control */
120 unsigned long p : 1; /* DAT-Protection Bit */
121 unsigned long : 3;
122 unsigned long i : 1; /* Segment-Invalid Bit */
123 unsigned long cs : 1; /* Common-Segment Bit */
124 unsigned long tt : 2; /* Table-Type Bits */
125 unsigned long : 2;
126 };
127
128 struct segment_entry_fc1 {
129 unsigned long sfaa : 44; /* Segment-Frame Absolute Address */
130 unsigned long : 3;
131 unsigned long av : 1; /* ACCF-Validity Control */
132 unsigned long acc: 4; /* Access-Control Bits */
133 unsigned long f : 1; /* Fetch-Protection Bit */
134 unsigned long fc : 1; /* Format-Control */
135 unsigned long p : 1; /* DAT-Protection Bit */
136 unsigned long iep: 1; /* Instruction-Execution-Protection */
137 unsigned long : 2;
138 unsigned long i : 1; /* Segment-Invalid Bit */
139 unsigned long cs : 1; /* Common-Segment Bit */
140 unsigned long tt : 2; /* Table-Type Bits */
141 unsigned long : 2;
142 };
143
144 union segment_table_entry {
145 unsigned long val;
146 struct segment_entry_fc0 fc0;
147 struct segment_entry_fc1 fc1;
148 struct {
149 unsigned long : 53;
150 unsigned long fc : 1; /* Format-Control */
151 unsigned long : 4;
152 unsigned long i : 1; /* Segment-Invalid Bit */
153 unsigned long cs : 1; /* Common-Segment Bit */
154 unsigned long tt : 2; /* Table-Type Bits */
155 unsigned long : 2;
156 };
157 };
158
159 enum {
160 TABLE_TYPE_SEGMENT = 0,
161 TABLE_TYPE_REGION3 = 1,
162 TABLE_TYPE_REGION2 = 2,
163 TABLE_TYPE_REGION1 = 3
164 };
165
166 union page_table_entry {
167 unsigned long val;
168 struct {
169 unsigned long pfra : 52; /* Page-Frame Real Address */
170 unsigned long z : 1; /* Zero Bit */
171 unsigned long i : 1; /* Page-Invalid Bit */
172 unsigned long p : 1; /* DAT-Protection Bit */
173 unsigned long iep: 1; /* Instruction-Execution-Protection */
174 unsigned long : 8;
175 };
176 };
177
178 /*
179 * vaddress union in order to easily decode a virtual address into its
180 * region first index, region second index etc. parts.
181 */
182 union vaddress {
183 unsigned long addr;
184 struct {
185 unsigned long rfx : 11;
186 unsigned long rsx : 11;
187 unsigned long rtx : 11;
188 unsigned long sx : 11;
189 unsigned long px : 8;
190 unsigned long bx : 12;
191 };
192 struct {
193 unsigned long rfx01 : 2;
194 unsigned long : 9;
195 unsigned long rsx01 : 2;
196 unsigned long : 9;
197 unsigned long rtx01 : 2;
198 unsigned long : 9;
199 unsigned long sx01 : 2;
200 unsigned long : 29;
201 };
202 };
203
204 /*
205 * raddress union which will contain the result (real or absolute address)
206 * after a page table walk. The rfaa, sfaa and pfra members are used to
207 * simply assign them the value of a region, segment or page table entry.
208 */
209 union raddress {
210 unsigned long addr;
211 unsigned long rfaa : 33; /* Region-Frame Absolute Address */
212 unsigned long sfaa : 44; /* Segment-Frame Absolute Address */
213 unsigned long pfra : 52; /* Page-Frame Real Address */
214 };
215
216 union alet {
217 u32 val;
218 struct {
219 u32 reserved : 7;
220 u32 p : 1;
221 u32 alesn : 8;
222 u32 alen : 16;
223 };
224 };
225
226 union ald {
227 u32 val;
228 struct {
229 u32 : 1;
230 u32 alo : 24;
231 u32 all : 7;
232 };
233 };
234
235 struct ale {
236 unsigned long i : 1; /* ALEN-Invalid Bit */
237 unsigned long : 5;
238 unsigned long fo : 1; /* Fetch-Only Bit */
239 unsigned long p : 1; /* Private Bit */
240 unsigned long alesn : 8; /* Access-List-Entry Sequence Number */
241 unsigned long aleax : 16; /* Access-List-Entry Authorization Index */
242 unsigned long : 32;
243 unsigned long : 1;
244 unsigned long asteo : 25; /* ASN-Second-Table-Entry Origin */
245 unsigned long : 6;
246 unsigned long astesn : 32; /* ASTE Sequence Number */
247 };
248
249 struct aste {
250 unsigned long i : 1; /* ASX-Invalid Bit */
251 unsigned long ato : 29; /* Authority-Table Origin */
252 unsigned long : 1;
253 unsigned long b : 1; /* Base-Space Bit */
254 unsigned long ax : 16; /* Authorization Index */
255 unsigned long atl : 12; /* Authority-Table Length */
256 unsigned long : 2;
257 unsigned long ca : 1; /* Controlled-ASN Bit */
258 unsigned long ra : 1; /* Reusable-ASN Bit */
259 unsigned long asce : 64; /* Address-Space-Control Element */
260 unsigned long ald : 32;
261 unsigned long astesn : 32;
262 /* .. more fields there */
263 };
264
ipte_lock_held(struct kvm_vcpu * vcpu)265 int ipte_lock_held(struct kvm_vcpu *vcpu)
266 {
267 if (vcpu->arch.sie_block->eca & ECA_SII) {
268 int rc;
269
270 read_lock(&vcpu->kvm->arch.sca_lock);
271 rc = kvm_s390_get_ipte_control(vcpu->kvm)->kh != 0;
272 read_unlock(&vcpu->kvm->arch.sca_lock);
273 return rc;
274 }
275 return vcpu->kvm->arch.ipte_lock_count != 0;
276 }
277
ipte_lock_simple(struct kvm_vcpu * vcpu)278 static void ipte_lock_simple(struct kvm_vcpu *vcpu)
279 {
280 union ipte_control old, new, *ic;
281
282 mutex_lock(&vcpu->kvm->arch.ipte_mutex);
283 vcpu->kvm->arch.ipte_lock_count++;
284 if (vcpu->kvm->arch.ipte_lock_count > 1)
285 goto out;
286 retry:
287 read_lock(&vcpu->kvm->arch.sca_lock);
288 ic = kvm_s390_get_ipte_control(vcpu->kvm);
289 do {
290 old = READ_ONCE(*ic);
291 if (old.k) {
292 read_unlock(&vcpu->kvm->arch.sca_lock);
293 cond_resched();
294 goto retry;
295 }
296 new = old;
297 new.k = 1;
298 } while (cmpxchg(&ic->val, old.val, new.val) != old.val);
299 read_unlock(&vcpu->kvm->arch.sca_lock);
300 out:
301 mutex_unlock(&vcpu->kvm->arch.ipte_mutex);
302 }
303
ipte_unlock_simple(struct kvm_vcpu * vcpu)304 static void ipte_unlock_simple(struct kvm_vcpu *vcpu)
305 {
306 union ipte_control old, new, *ic;
307
308 mutex_lock(&vcpu->kvm->arch.ipte_mutex);
309 vcpu->kvm->arch.ipte_lock_count--;
310 if (vcpu->kvm->arch.ipte_lock_count)
311 goto out;
312 read_lock(&vcpu->kvm->arch.sca_lock);
313 ic = kvm_s390_get_ipte_control(vcpu->kvm);
314 do {
315 old = READ_ONCE(*ic);
316 new = old;
317 new.k = 0;
318 } while (cmpxchg(&ic->val, old.val, new.val) != old.val);
319 read_unlock(&vcpu->kvm->arch.sca_lock);
320 wake_up(&vcpu->kvm->arch.ipte_wq);
321 out:
322 mutex_unlock(&vcpu->kvm->arch.ipte_mutex);
323 }
324
ipte_lock_siif(struct kvm_vcpu * vcpu)325 static void ipte_lock_siif(struct kvm_vcpu *vcpu)
326 {
327 union ipte_control old, new, *ic;
328
329 retry:
330 read_lock(&vcpu->kvm->arch.sca_lock);
331 ic = kvm_s390_get_ipte_control(vcpu->kvm);
332 do {
333 old = READ_ONCE(*ic);
334 if (old.kg) {
335 read_unlock(&vcpu->kvm->arch.sca_lock);
336 cond_resched();
337 goto retry;
338 }
339 new = old;
340 new.k = 1;
341 new.kh++;
342 } while (cmpxchg(&ic->val, old.val, new.val) != old.val);
343 read_unlock(&vcpu->kvm->arch.sca_lock);
344 }
345
ipte_unlock_siif(struct kvm_vcpu * vcpu)346 static void ipte_unlock_siif(struct kvm_vcpu *vcpu)
347 {
348 union ipte_control old, new, *ic;
349
350 read_lock(&vcpu->kvm->arch.sca_lock);
351 ic = kvm_s390_get_ipte_control(vcpu->kvm);
352 do {
353 old = READ_ONCE(*ic);
354 new = old;
355 new.kh--;
356 if (!new.kh)
357 new.k = 0;
358 } while (cmpxchg(&ic->val, old.val, new.val) != old.val);
359 read_unlock(&vcpu->kvm->arch.sca_lock);
360 if (!new.kh)
361 wake_up(&vcpu->kvm->arch.ipte_wq);
362 }
363
ipte_lock(struct kvm_vcpu * vcpu)364 void ipte_lock(struct kvm_vcpu *vcpu)
365 {
366 if (vcpu->arch.sie_block->eca & ECA_SII)
367 ipte_lock_siif(vcpu);
368 else
369 ipte_lock_simple(vcpu);
370 }
371
ipte_unlock(struct kvm_vcpu * vcpu)372 void ipte_unlock(struct kvm_vcpu *vcpu)
373 {
374 if (vcpu->arch.sie_block->eca & ECA_SII)
375 ipte_unlock_siif(vcpu);
376 else
377 ipte_unlock_simple(vcpu);
378 }
379
ar_translation(struct kvm_vcpu * vcpu,union asce * asce,u8 ar,enum gacc_mode mode)380 static int ar_translation(struct kvm_vcpu *vcpu, union asce *asce, u8 ar,
381 enum gacc_mode mode)
382 {
383 union alet alet;
384 struct ale ale;
385 struct aste aste;
386 unsigned long ald_addr, authority_table_addr;
387 union ald ald;
388 int eax, rc;
389 u8 authority_table;
390
391 if (ar >= NUM_ACRS)
392 return -EINVAL;
393
394 save_access_regs(vcpu->run->s.regs.acrs);
395 alet.val = vcpu->run->s.regs.acrs[ar];
396
397 if (ar == 0 || alet.val == 0) {
398 asce->val = vcpu->arch.sie_block->gcr[1];
399 return 0;
400 } else if (alet.val == 1) {
401 asce->val = vcpu->arch.sie_block->gcr[7];
402 return 0;
403 }
404
405 if (alet.reserved)
406 return PGM_ALET_SPECIFICATION;
407
408 if (alet.p)
409 ald_addr = vcpu->arch.sie_block->gcr[5];
410 else
411 ald_addr = vcpu->arch.sie_block->gcr[2];
412 ald_addr &= 0x7fffffc0;
413
414 rc = read_guest_real(vcpu, ald_addr + 16, &ald.val, sizeof(union ald));
415 if (rc)
416 return rc;
417
418 if (alet.alen / 8 > ald.all)
419 return PGM_ALEN_TRANSLATION;
420
421 if (0x7fffffff - ald.alo * 128 < alet.alen * 16)
422 return PGM_ADDRESSING;
423
424 rc = read_guest_real(vcpu, ald.alo * 128 + alet.alen * 16, &ale,
425 sizeof(struct ale));
426 if (rc)
427 return rc;
428
429 if (ale.i == 1)
430 return PGM_ALEN_TRANSLATION;
431 if (ale.alesn != alet.alesn)
432 return PGM_ALE_SEQUENCE;
433
434 rc = read_guest_real(vcpu, ale.asteo * 64, &aste, sizeof(struct aste));
435 if (rc)
436 return rc;
437
438 if (aste.i)
439 return PGM_ASTE_VALIDITY;
440 if (aste.astesn != ale.astesn)
441 return PGM_ASTE_SEQUENCE;
442
443 if (ale.p == 1) {
444 eax = (vcpu->arch.sie_block->gcr[8] >> 16) & 0xffff;
445 if (ale.aleax != eax) {
446 if (eax / 16 > aste.atl)
447 return PGM_EXTENDED_AUTHORITY;
448
449 authority_table_addr = aste.ato * 4 + eax / 4;
450
451 rc = read_guest_real(vcpu, authority_table_addr,
452 &authority_table,
453 sizeof(u8));
454 if (rc)
455 return rc;
456
457 if ((authority_table & (0x40 >> ((eax & 3) * 2))) == 0)
458 return PGM_EXTENDED_AUTHORITY;
459 }
460 }
461
462 if (ale.fo == 1 && mode == GACC_STORE)
463 return PGM_PROTECTION;
464
465 asce->val = aste.asce;
466 return 0;
467 }
468
469 struct trans_exc_code_bits {
470 unsigned long addr : 52; /* Translation-exception Address */
471 unsigned long fsi : 2; /* Access Exception Fetch/Store Indication */
472 unsigned long : 2;
473 unsigned long b56 : 1;
474 unsigned long : 3;
475 unsigned long b60 : 1;
476 unsigned long b61 : 1;
477 unsigned long as : 2; /* ASCE Identifier */
478 };
479
480 enum {
481 FSI_UNKNOWN = 0, /* Unknown wether fetch or store */
482 FSI_STORE = 1, /* Exception was due to store operation */
483 FSI_FETCH = 2 /* Exception was due to fetch operation */
484 };
485
486 enum prot_type {
487 PROT_TYPE_LA = 0,
488 PROT_TYPE_KEYC = 1,
489 PROT_TYPE_ALC = 2,
490 PROT_TYPE_DAT = 3,
491 PROT_TYPE_IEP = 4,
492 };
493
trans_exc_ending(struct kvm_vcpu * vcpu,int code,unsigned long gva,u8 ar,enum gacc_mode mode,enum prot_type prot,bool terminate)494 static int trans_exc_ending(struct kvm_vcpu *vcpu, int code, unsigned long gva, u8 ar,
495 enum gacc_mode mode, enum prot_type prot, bool terminate)
496 {
497 struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm;
498 struct trans_exc_code_bits *tec;
499
500 memset(pgm, 0, sizeof(*pgm));
501 pgm->code = code;
502 tec = (struct trans_exc_code_bits *)&pgm->trans_exc_code;
503
504 switch (code) {
505 case PGM_PROTECTION:
506 switch (prot) {
507 case PROT_TYPE_IEP:
508 tec->b61 = 1;
509 fallthrough;
510 case PROT_TYPE_LA:
511 tec->b56 = 1;
512 break;
513 case PROT_TYPE_KEYC:
514 tec->b60 = 1;
515 break;
516 case PROT_TYPE_ALC:
517 tec->b60 = 1;
518 fallthrough;
519 case PROT_TYPE_DAT:
520 tec->b61 = 1;
521 break;
522 }
523 if (terminate) {
524 tec->b56 = 0;
525 tec->b60 = 0;
526 tec->b61 = 0;
527 }
528 fallthrough;
529 case PGM_ASCE_TYPE:
530 case PGM_PAGE_TRANSLATION:
531 case PGM_REGION_FIRST_TRANS:
532 case PGM_REGION_SECOND_TRANS:
533 case PGM_REGION_THIRD_TRANS:
534 case PGM_SEGMENT_TRANSLATION:
535 /*
536 * op_access_id only applies to MOVE_PAGE -> set bit 61
537 * exc_access_id has to be set to 0 for some instructions. Both
538 * cases have to be handled by the caller.
539 */
540 tec->addr = gva >> PAGE_SHIFT;
541 tec->fsi = mode == GACC_STORE ? FSI_STORE : FSI_FETCH;
542 tec->as = psw_bits(vcpu->arch.sie_block->gpsw).as;
543 fallthrough;
544 case PGM_ALEN_TRANSLATION:
545 case PGM_ALE_SEQUENCE:
546 case PGM_ASTE_VALIDITY:
547 case PGM_ASTE_SEQUENCE:
548 case PGM_EXTENDED_AUTHORITY:
549 /*
550 * We can always store exc_access_id, as it is
551 * undefined for non-ar cases. It is undefined for
552 * most DAT protection exceptions.
553 */
554 pgm->exc_access_id = ar;
555 break;
556 }
557 return code;
558 }
559
trans_exc(struct kvm_vcpu * vcpu,int code,unsigned long gva,u8 ar,enum gacc_mode mode,enum prot_type prot)560 static int trans_exc(struct kvm_vcpu *vcpu, int code, unsigned long gva, u8 ar,
561 enum gacc_mode mode, enum prot_type prot)
562 {
563 return trans_exc_ending(vcpu, code, gva, ar, mode, prot, false);
564 }
565
get_vcpu_asce(struct kvm_vcpu * vcpu,union asce * asce,unsigned long ga,u8 ar,enum gacc_mode mode)566 static int get_vcpu_asce(struct kvm_vcpu *vcpu, union asce *asce,
567 unsigned long ga, u8 ar, enum gacc_mode mode)
568 {
569 int rc;
570 struct psw_bits psw = psw_bits(vcpu->arch.sie_block->gpsw);
571
572 if (!psw.dat) {
573 asce->val = 0;
574 asce->r = 1;
575 return 0;
576 }
577
578 if ((mode == GACC_IFETCH) && (psw.as != PSW_BITS_AS_HOME))
579 psw.as = PSW_BITS_AS_PRIMARY;
580
581 switch (psw.as) {
582 case PSW_BITS_AS_PRIMARY:
583 asce->val = vcpu->arch.sie_block->gcr[1];
584 return 0;
585 case PSW_BITS_AS_SECONDARY:
586 asce->val = vcpu->arch.sie_block->gcr[7];
587 return 0;
588 case PSW_BITS_AS_HOME:
589 asce->val = vcpu->arch.sie_block->gcr[13];
590 return 0;
591 case PSW_BITS_AS_ACCREG:
592 rc = ar_translation(vcpu, asce, ar, mode);
593 if (rc > 0)
594 return trans_exc(vcpu, rc, ga, ar, mode, PROT_TYPE_ALC);
595 return rc;
596 }
597 return 0;
598 }
599
deref_table(struct kvm * kvm,unsigned long gpa,unsigned long * val)600 static int deref_table(struct kvm *kvm, unsigned long gpa, unsigned long *val)
601 {
602 return kvm_read_guest(kvm, gpa, val, sizeof(*val));
603 }
604
605 /**
606 * guest_translate - translate a guest virtual into a guest absolute address
607 * @vcpu: virtual cpu
608 * @gva: guest virtual address
609 * @gpa: points to where guest physical (absolute) address should be stored
610 * @asce: effective asce
611 * @mode: indicates the access mode to be used
612 * @prot: returns the type for protection exceptions
613 *
614 * Translate a guest virtual address into a guest absolute address by means
615 * of dynamic address translation as specified by the architecture.
616 * If the resulting absolute address is not available in the configuration
617 * an addressing exception is indicated and @gpa will not be changed.
618 *
619 * Returns: - zero on success; @gpa contains the resulting absolute address
620 * - a negative value if guest access failed due to e.g. broken
621 * guest mapping
622 * - a positve value if an access exception happened. In this case
623 * the returned value is the program interruption code as defined
624 * by the architecture
625 */
guest_translate(struct kvm_vcpu * vcpu,unsigned long gva,unsigned long * gpa,const union asce asce,enum gacc_mode mode,enum prot_type * prot)626 static unsigned long guest_translate(struct kvm_vcpu *vcpu, unsigned long gva,
627 unsigned long *gpa, const union asce asce,
628 enum gacc_mode mode, enum prot_type *prot)
629 {
630 union vaddress vaddr = {.addr = gva};
631 union raddress raddr = {.addr = gva};
632 union page_table_entry pte;
633 int dat_protection = 0;
634 int iep_protection = 0;
635 union ctlreg0 ctlreg0;
636 unsigned long ptr;
637 int edat1, edat2, iep;
638
639 ctlreg0.val = vcpu->arch.sie_block->gcr[0];
640 edat1 = ctlreg0.edat && test_kvm_facility(vcpu->kvm, 8);
641 edat2 = edat1 && test_kvm_facility(vcpu->kvm, 78);
642 iep = ctlreg0.iep && test_kvm_facility(vcpu->kvm, 130);
643 if (asce.r)
644 goto real_address;
645 ptr = asce.origin * PAGE_SIZE;
646 switch (asce.dt) {
647 case ASCE_TYPE_REGION1:
648 if (vaddr.rfx01 > asce.tl)
649 return PGM_REGION_FIRST_TRANS;
650 ptr += vaddr.rfx * 8;
651 break;
652 case ASCE_TYPE_REGION2:
653 if (vaddr.rfx)
654 return PGM_ASCE_TYPE;
655 if (vaddr.rsx01 > asce.tl)
656 return PGM_REGION_SECOND_TRANS;
657 ptr += vaddr.rsx * 8;
658 break;
659 case ASCE_TYPE_REGION3:
660 if (vaddr.rfx || vaddr.rsx)
661 return PGM_ASCE_TYPE;
662 if (vaddr.rtx01 > asce.tl)
663 return PGM_REGION_THIRD_TRANS;
664 ptr += vaddr.rtx * 8;
665 break;
666 case ASCE_TYPE_SEGMENT:
667 if (vaddr.rfx || vaddr.rsx || vaddr.rtx)
668 return PGM_ASCE_TYPE;
669 if (vaddr.sx01 > asce.tl)
670 return PGM_SEGMENT_TRANSLATION;
671 ptr += vaddr.sx * 8;
672 break;
673 }
674 switch (asce.dt) {
675 case ASCE_TYPE_REGION1: {
676 union region1_table_entry rfte;
677
678 if (kvm_is_error_gpa(vcpu->kvm, ptr))
679 return PGM_ADDRESSING;
680 if (deref_table(vcpu->kvm, ptr, &rfte.val))
681 return -EFAULT;
682 if (rfte.i)
683 return PGM_REGION_FIRST_TRANS;
684 if (rfte.tt != TABLE_TYPE_REGION1)
685 return PGM_TRANSLATION_SPEC;
686 if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl)
687 return PGM_REGION_SECOND_TRANS;
688 if (edat1)
689 dat_protection |= rfte.p;
690 ptr = rfte.rto * PAGE_SIZE + vaddr.rsx * 8;
691 }
692 fallthrough;
693 case ASCE_TYPE_REGION2: {
694 union region2_table_entry rste;
695
696 if (kvm_is_error_gpa(vcpu->kvm, ptr))
697 return PGM_ADDRESSING;
698 if (deref_table(vcpu->kvm, ptr, &rste.val))
699 return -EFAULT;
700 if (rste.i)
701 return PGM_REGION_SECOND_TRANS;
702 if (rste.tt != TABLE_TYPE_REGION2)
703 return PGM_TRANSLATION_SPEC;
704 if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl)
705 return PGM_REGION_THIRD_TRANS;
706 if (edat1)
707 dat_protection |= rste.p;
708 ptr = rste.rto * PAGE_SIZE + vaddr.rtx * 8;
709 }
710 fallthrough;
711 case ASCE_TYPE_REGION3: {
712 union region3_table_entry rtte;
713
714 if (kvm_is_error_gpa(vcpu->kvm, ptr))
715 return PGM_ADDRESSING;
716 if (deref_table(vcpu->kvm, ptr, &rtte.val))
717 return -EFAULT;
718 if (rtte.i)
719 return PGM_REGION_THIRD_TRANS;
720 if (rtte.tt != TABLE_TYPE_REGION3)
721 return PGM_TRANSLATION_SPEC;
722 if (rtte.cr && asce.p && edat2)
723 return PGM_TRANSLATION_SPEC;
724 if (rtte.fc && edat2) {
725 dat_protection |= rtte.fc1.p;
726 iep_protection = rtte.fc1.iep;
727 raddr.rfaa = rtte.fc1.rfaa;
728 goto absolute_address;
729 }
730 if (vaddr.sx01 < rtte.fc0.tf)
731 return PGM_SEGMENT_TRANSLATION;
732 if (vaddr.sx01 > rtte.fc0.tl)
733 return PGM_SEGMENT_TRANSLATION;
734 if (edat1)
735 dat_protection |= rtte.fc0.p;
736 ptr = rtte.fc0.sto * PAGE_SIZE + vaddr.sx * 8;
737 }
738 fallthrough;
739 case ASCE_TYPE_SEGMENT: {
740 union segment_table_entry ste;
741
742 if (kvm_is_error_gpa(vcpu->kvm, ptr))
743 return PGM_ADDRESSING;
744 if (deref_table(vcpu->kvm, ptr, &ste.val))
745 return -EFAULT;
746 if (ste.i)
747 return PGM_SEGMENT_TRANSLATION;
748 if (ste.tt != TABLE_TYPE_SEGMENT)
749 return PGM_TRANSLATION_SPEC;
750 if (ste.cs && asce.p)
751 return PGM_TRANSLATION_SPEC;
752 if (ste.fc && edat1) {
753 dat_protection |= ste.fc1.p;
754 iep_protection = ste.fc1.iep;
755 raddr.sfaa = ste.fc1.sfaa;
756 goto absolute_address;
757 }
758 dat_protection |= ste.fc0.p;
759 ptr = ste.fc0.pto * (PAGE_SIZE / 2) + vaddr.px * 8;
760 }
761 }
762 if (kvm_is_error_gpa(vcpu->kvm, ptr))
763 return PGM_ADDRESSING;
764 if (deref_table(vcpu->kvm, ptr, &pte.val))
765 return -EFAULT;
766 if (pte.i)
767 return PGM_PAGE_TRANSLATION;
768 if (pte.z)
769 return PGM_TRANSLATION_SPEC;
770 dat_protection |= pte.p;
771 iep_protection = pte.iep;
772 raddr.pfra = pte.pfra;
773 real_address:
774 raddr.addr = kvm_s390_real_to_abs(vcpu, raddr.addr);
775 absolute_address:
776 if (mode == GACC_STORE && dat_protection) {
777 *prot = PROT_TYPE_DAT;
778 return PGM_PROTECTION;
779 }
780 if (mode == GACC_IFETCH && iep_protection && iep) {
781 *prot = PROT_TYPE_IEP;
782 return PGM_PROTECTION;
783 }
784 if (kvm_is_error_gpa(vcpu->kvm, raddr.addr))
785 return PGM_ADDRESSING;
786 *gpa = raddr.addr;
787 return 0;
788 }
789
is_low_address(unsigned long ga)790 static inline int is_low_address(unsigned long ga)
791 {
792 /* Check for address ranges 0..511 and 4096..4607 */
793 return (ga & ~0x11fful) == 0;
794 }
795
low_address_protection_enabled(struct kvm_vcpu * vcpu,const union asce asce)796 static int low_address_protection_enabled(struct kvm_vcpu *vcpu,
797 const union asce asce)
798 {
799 union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]};
800 psw_t *psw = &vcpu->arch.sie_block->gpsw;
801
802 if (!ctlreg0.lap)
803 return 0;
804 if (psw_bits(*psw).dat && asce.p)
805 return 0;
806 return 1;
807 }
808
vm_check_access_key(struct kvm * kvm,u8 access_key,enum gacc_mode mode,gpa_t gpa)809 static int vm_check_access_key(struct kvm *kvm, u8 access_key,
810 enum gacc_mode mode, gpa_t gpa)
811 {
812 u8 storage_key, access_control;
813 bool fetch_protected;
814 unsigned long hva;
815 int r;
816
817 if (access_key == 0)
818 return 0;
819
820 hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
821 if (kvm_is_error_hva(hva))
822 return PGM_ADDRESSING;
823
824 mmap_read_lock(current->mm);
825 r = get_guest_storage_key(current->mm, hva, &storage_key);
826 mmap_read_unlock(current->mm);
827 if (r)
828 return r;
829 access_control = FIELD_GET(_PAGE_ACC_BITS, storage_key);
830 if (access_control == access_key)
831 return 0;
832 fetch_protected = storage_key & _PAGE_FP_BIT;
833 if ((mode == GACC_FETCH || mode == GACC_IFETCH) && !fetch_protected)
834 return 0;
835 return PGM_PROTECTION;
836 }
837
fetch_prot_override_applicable(struct kvm_vcpu * vcpu,enum gacc_mode mode,union asce asce)838 static bool fetch_prot_override_applicable(struct kvm_vcpu *vcpu, enum gacc_mode mode,
839 union asce asce)
840 {
841 psw_t *psw = &vcpu->arch.sie_block->gpsw;
842 unsigned long override;
843
844 if (mode == GACC_FETCH || mode == GACC_IFETCH) {
845 /* check if fetch protection override enabled */
846 override = vcpu->arch.sie_block->gcr[0];
847 override &= CR0_FETCH_PROTECTION_OVERRIDE;
848 /* not applicable if subject to DAT && private space */
849 override = override && !(psw_bits(*psw).dat && asce.p);
850 return override;
851 }
852 return false;
853 }
854
fetch_prot_override_applies(unsigned long ga,unsigned int len)855 static bool fetch_prot_override_applies(unsigned long ga, unsigned int len)
856 {
857 return ga < 2048 && ga + len <= 2048;
858 }
859
storage_prot_override_applicable(struct kvm_vcpu * vcpu)860 static bool storage_prot_override_applicable(struct kvm_vcpu *vcpu)
861 {
862 /* check if storage protection override enabled */
863 return vcpu->arch.sie_block->gcr[0] & CR0_STORAGE_PROTECTION_OVERRIDE;
864 }
865
storage_prot_override_applies(u8 access_control)866 static bool storage_prot_override_applies(u8 access_control)
867 {
868 /* matches special storage protection override key (9) -> allow */
869 return access_control == PAGE_SPO_ACC;
870 }
871
vcpu_check_access_key(struct kvm_vcpu * vcpu,u8 access_key,enum gacc_mode mode,union asce asce,gpa_t gpa,unsigned long ga,unsigned int len)872 static int vcpu_check_access_key(struct kvm_vcpu *vcpu, u8 access_key,
873 enum gacc_mode mode, union asce asce, gpa_t gpa,
874 unsigned long ga, unsigned int len)
875 {
876 u8 storage_key, access_control;
877 unsigned long hva;
878 int r;
879
880 /* access key 0 matches any storage key -> allow */
881 if (access_key == 0)
882 return 0;
883 /*
884 * caller needs to ensure that gfn is accessible, so we can
885 * assume that this cannot fail
886 */
887 hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(gpa));
888 mmap_read_lock(current->mm);
889 r = get_guest_storage_key(current->mm, hva, &storage_key);
890 mmap_read_unlock(current->mm);
891 if (r)
892 return r;
893 access_control = FIELD_GET(_PAGE_ACC_BITS, storage_key);
894 /* access key matches storage key -> allow */
895 if (access_control == access_key)
896 return 0;
897 if (mode == GACC_FETCH || mode == GACC_IFETCH) {
898 /* it is a fetch and fetch protection is off -> allow */
899 if (!(storage_key & _PAGE_FP_BIT))
900 return 0;
901 if (fetch_prot_override_applicable(vcpu, mode, asce) &&
902 fetch_prot_override_applies(ga, len))
903 return 0;
904 }
905 if (storage_prot_override_applicable(vcpu) &&
906 storage_prot_override_applies(access_control))
907 return 0;
908 return PGM_PROTECTION;
909 }
910
911 /**
912 * guest_range_to_gpas() - Calculate guest physical addresses of page fragments
913 * covering a logical range
914 * @vcpu: virtual cpu
915 * @ga: guest address, start of range
916 * @ar: access register
917 * @gpas: output argument, may be NULL
918 * @len: length of range in bytes
919 * @asce: address-space-control element to use for translation
920 * @mode: access mode
921 * @access_key: access key to mach the range's storage keys against
922 *
923 * Translate a logical range to a series of guest absolute addresses,
924 * such that the concatenation of page fragments starting at each gpa make up
925 * the whole range.
926 * The translation is performed as if done by the cpu for the given @asce, @ar,
927 * @mode and state of the @vcpu.
928 * If the translation causes an exception, its program interruption code is
929 * returned and the &struct kvm_s390_pgm_info pgm member of @vcpu is modified
930 * such that a subsequent call to kvm_s390_inject_prog_vcpu() will inject
931 * a correct exception into the guest.
932 * The resulting gpas are stored into @gpas, unless it is NULL.
933 *
934 * Note: All fragments except the first one start at the beginning of a page.
935 * When deriving the boundaries of a fragment from a gpa, all but the last
936 * fragment end at the end of the page.
937 *
938 * Return:
939 * * 0 - success
940 * * <0 - translation could not be performed, for example if guest
941 * memory could not be accessed
942 * * >0 - an access exception occurred. In this case the returned value
943 * is the program interruption code and the contents of pgm may
944 * be used to inject an exception into the guest.
945 */
guest_range_to_gpas(struct kvm_vcpu * vcpu,unsigned long ga,u8 ar,unsigned long * gpas,unsigned long len,const union asce asce,enum gacc_mode mode,u8 access_key)946 static int guest_range_to_gpas(struct kvm_vcpu *vcpu, unsigned long ga, u8 ar,
947 unsigned long *gpas, unsigned long len,
948 const union asce asce, enum gacc_mode mode,
949 u8 access_key)
950 {
951 psw_t *psw = &vcpu->arch.sie_block->gpsw;
952 unsigned int offset = offset_in_page(ga);
953 unsigned int fragment_len;
954 int lap_enabled, rc = 0;
955 enum prot_type prot;
956 unsigned long gpa;
957
958 lap_enabled = low_address_protection_enabled(vcpu, asce);
959 while (min(PAGE_SIZE - offset, len) > 0) {
960 fragment_len = min(PAGE_SIZE - offset, len);
961 ga = kvm_s390_logical_to_effective(vcpu, ga);
962 if (mode == GACC_STORE && lap_enabled && is_low_address(ga))
963 return trans_exc(vcpu, PGM_PROTECTION, ga, ar, mode,
964 PROT_TYPE_LA);
965 if (psw_bits(*psw).dat) {
966 rc = guest_translate(vcpu, ga, &gpa, asce, mode, &prot);
967 if (rc < 0)
968 return rc;
969 } else {
970 gpa = kvm_s390_real_to_abs(vcpu, ga);
971 if (kvm_is_error_gpa(vcpu->kvm, gpa))
972 rc = PGM_ADDRESSING;
973 }
974 if (rc)
975 return trans_exc(vcpu, rc, ga, ar, mode, prot);
976 rc = vcpu_check_access_key(vcpu, access_key, mode, asce, gpa, ga,
977 fragment_len);
978 if (rc)
979 return trans_exc(vcpu, rc, ga, ar, mode, PROT_TYPE_KEYC);
980 if (gpas)
981 *gpas++ = gpa;
982 offset = 0;
983 ga += fragment_len;
984 len -= fragment_len;
985 }
986 return 0;
987 }
988
access_guest_page(struct kvm * kvm,enum gacc_mode mode,gpa_t gpa,void * data,unsigned int len)989 static int access_guest_page(struct kvm *kvm, enum gacc_mode mode, gpa_t gpa,
990 void *data, unsigned int len)
991 {
992 const unsigned int offset = offset_in_page(gpa);
993 const gfn_t gfn = gpa_to_gfn(gpa);
994 int rc;
995
996 if (mode == GACC_STORE)
997 rc = kvm_write_guest_page(kvm, gfn, data, offset, len);
998 else
999 rc = kvm_read_guest_page(kvm, gfn, data, offset, len);
1000 return rc;
1001 }
1002
1003 static int
access_guest_page_with_key(struct kvm * kvm,enum gacc_mode mode,gpa_t gpa,void * data,unsigned int len,u8 access_key)1004 access_guest_page_with_key(struct kvm *kvm, enum gacc_mode mode, gpa_t gpa,
1005 void *data, unsigned int len, u8 access_key)
1006 {
1007 struct kvm_memory_slot *slot;
1008 bool writable;
1009 gfn_t gfn;
1010 hva_t hva;
1011 int rc;
1012
1013 gfn = gpa >> PAGE_SHIFT;
1014 slot = gfn_to_memslot(kvm, gfn);
1015 hva = gfn_to_hva_memslot_prot(slot, gfn, &writable);
1016
1017 if (kvm_is_error_hva(hva))
1018 return PGM_ADDRESSING;
1019 /*
1020 * Check if it's a ro memslot, even tho that can't occur (they're unsupported).
1021 * Don't try to actually handle that case.
1022 */
1023 if (!writable && mode == GACC_STORE)
1024 return -EOPNOTSUPP;
1025 hva += offset_in_page(gpa);
1026 if (mode == GACC_STORE)
1027 rc = copy_to_user_key((void __user *)hva, data, len, access_key);
1028 else
1029 rc = copy_from_user_key(data, (void __user *)hva, len, access_key);
1030 if (rc)
1031 return PGM_PROTECTION;
1032 if (mode == GACC_STORE)
1033 mark_page_dirty_in_slot(kvm, slot, gfn);
1034 return 0;
1035 }
1036
access_guest_abs_with_key(struct kvm * kvm,gpa_t gpa,void * data,unsigned long len,enum gacc_mode mode,u8 access_key)1037 int access_guest_abs_with_key(struct kvm *kvm, gpa_t gpa, void *data,
1038 unsigned long len, enum gacc_mode mode, u8 access_key)
1039 {
1040 int offset = offset_in_page(gpa);
1041 int fragment_len;
1042 int rc;
1043
1044 while (min(PAGE_SIZE - offset, len) > 0) {
1045 fragment_len = min(PAGE_SIZE - offset, len);
1046 rc = access_guest_page_with_key(kvm, mode, gpa, data, fragment_len, access_key);
1047 if (rc)
1048 return rc;
1049 offset = 0;
1050 len -= fragment_len;
1051 data += fragment_len;
1052 gpa += fragment_len;
1053 }
1054 return 0;
1055 }
1056
access_guest_with_key(struct kvm_vcpu * vcpu,unsigned long ga,u8 ar,void * data,unsigned long len,enum gacc_mode mode,u8 access_key)1057 int access_guest_with_key(struct kvm_vcpu *vcpu, unsigned long ga, u8 ar,
1058 void *data, unsigned long len, enum gacc_mode mode,
1059 u8 access_key)
1060 {
1061 psw_t *psw = &vcpu->arch.sie_block->gpsw;
1062 unsigned long nr_pages, idx;
1063 unsigned long gpa_array[2];
1064 unsigned int fragment_len;
1065 unsigned long *gpas;
1066 enum prot_type prot;
1067 int need_ipte_lock;
1068 union asce asce;
1069 bool try_storage_prot_override;
1070 bool try_fetch_prot_override;
1071 int rc;
1072
1073 if (!len)
1074 return 0;
1075 ga = kvm_s390_logical_to_effective(vcpu, ga);
1076 rc = get_vcpu_asce(vcpu, &asce, ga, ar, mode);
1077 if (rc)
1078 return rc;
1079 nr_pages = (((ga & ~PAGE_MASK) + len - 1) >> PAGE_SHIFT) + 1;
1080 gpas = gpa_array;
1081 if (nr_pages > ARRAY_SIZE(gpa_array))
1082 gpas = vmalloc(array_size(nr_pages, sizeof(unsigned long)));
1083 if (!gpas)
1084 return -ENOMEM;
1085 try_fetch_prot_override = fetch_prot_override_applicable(vcpu, mode, asce);
1086 try_storage_prot_override = storage_prot_override_applicable(vcpu);
1087 need_ipte_lock = psw_bits(*psw).dat && !asce.r;
1088 if (need_ipte_lock)
1089 ipte_lock(vcpu);
1090 /*
1091 * Since we do the access further down ultimately via a move instruction
1092 * that does key checking and returns an error in case of a protection
1093 * violation, we don't need to do the check during address translation.
1094 * Skip it by passing access key 0, which matches any storage key,
1095 * obviating the need for any further checks. As a result the check is
1096 * handled entirely in hardware on access, we only need to take care to
1097 * forego key protection checking if fetch protection override applies or
1098 * retry with the special key 9 in case of storage protection override.
1099 */
1100 rc = guest_range_to_gpas(vcpu, ga, ar, gpas, len, asce, mode, 0);
1101 if (rc)
1102 goto out_unlock;
1103 for (idx = 0; idx < nr_pages; idx++) {
1104 fragment_len = min(PAGE_SIZE - offset_in_page(gpas[idx]), len);
1105 if (try_fetch_prot_override && fetch_prot_override_applies(ga, fragment_len)) {
1106 rc = access_guest_page(vcpu->kvm, mode, gpas[idx],
1107 data, fragment_len);
1108 } else {
1109 rc = access_guest_page_with_key(vcpu->kvm, mode, gpas[idx],
1110 data, fragment_len, access_key);
1111 }
1112 if (rc == PGM_PROTECTION && try_storage_prot_override)
1113 rc = access_guest_page_with_key(vcpu->kvm, mode, gpas[idx],
1114 data, fragment_len, PAGE_SPO_ACC);
1115 if (rc == PGM_PROTECTION)
1116 prot = PROT_TYPE_KEYC;
1117 if (rc)
1118 break;
1119 len -= fragment_len;
1120 data += fragment_len;
1121 ga = kvm_s390_logical_to_effective(vcpu, ga + fragment_len);
1122 }
1123 if (rc > 0) {
1124 bool terminate = (mode == GACC_STORE) && (idx > 0);
1125
1126 rc = trans_exc_ending(vcpu, rc, ga, ar, mode, prot, terminate);
1127 }
1128 out_unlock:
1129 if (need_ipte_lock)
1130 ipte_unlock(vcpu);
1131 if (nr_pages > ARRAY_SIZE(gpa_array))
1132 vfree(gpas);
1133 return rc;
1134 }
1135
access_guest_real(struct kvm_vcpu * vcpu,unsigned long gra,void * data,unsigned long len,enum gacc_mode mode)1136 int access_guest_real(struct kvm_vcpu *vcpu, unsigned long gra,
1137 void *data, unsigned long len, enum gacc_mode mode)
1138 {
1139 unsigned int fragment_len;
1140 unsigned long gpa;
1141 int rc = 0;
1142
1143 while (len && !rc) {
1144 gpa = kvm_s390_real_to_abs(vcpu, gra);
1145 fragment_len = min(PAGE_SIZE - offset_in_page(gpa), len);
1146 rc = access_guest_page(vcpu->kvm, mode, gpa, data, fragment_len);
1147 len -= fragment_len;
1148 gra += fragment_len;
1149 data += fragment_len;
1150 }
1151 return rc;
1152 }
1153
1154 /**
1155 * guest_translate_address_with_key - translate guest logical into guest absolute address
1156 * @vcpu: virtual cpu
1157 * @gva: Guest virtual address
1158 * @ar: Access register
1159 * @gpa: Guest physical address
1160 * @mode: Translation access mode
1161 * @access_key: access key to mach the storage key with
1162 *
1163 * Parameter semantics are the same as the ones from guest_translate.
1164 * The memory contents at the guest address are not changed.
1165 *
1166 * Note: The IPTE lock is not taken during this function, so the caller
1167 * has to take care of this.
1168 */
guest_translate_address_with_key(struct kvm_vcpu * vcpu,unsigned long gva,u8 ar,unsigned long * gpa,enum gacc_mode mode,u8 access_key)1169 int guest_translate_address_with_key(struct kvm_vcpu *vcpu, unsigned long gva, u8 ar,
1170 unsigned long *gpa, enum gacc_mode mode,
1171 u8 access_key)
1172 {
1173 union asce asce;
1174 int rc;
1175
1176 gva = kvm_s390_logical_to_effective(vcpu, gva);
1177 rc = get_vcpu_asce(vcpu, &asce, gva, ar, mode);
1178 if (rc)
1179 return rc;
1180 return guest_range_to_gpas(vcpu, gva, ar, gpa, 1, asce, mode,
1181 access_key);
1182 }
1183
1184 /**
1185 * check_gva_range - test a range of guest virtual addresses for accessibility
1186 * @vcpu: virtual cpu
1187 * @gva: Guest virtual address
1188 * @ar: Access register
1189 * @length: Length of test range
1190 * @mode: Translation access mode
1191 * @access_key: access key to mach the storage keys with
1192 */
check_gva_range(struct kvm_vcpu * vcpu,unsigned long gva,u8 ar,unsigned long length,enum gacc_mode mode,u8 access_key)1193 int check_gva_range(struct kvm_vcpu *vcpu, unsigned long gva, u8 ar,
1194 unsigned long length, enum gacc_mode mode, u8 access_key)
1195 {
1196 union asce asce;
1197 int rc = 0;
1198
1199 rc = get_vcpu_asce(vcpu, &asce, gva, ar, mode);
1200 if (rc)
1201 return rc;
1202 ipte_lock(vcpu);
1203 rc = guest_range_to_gpas(vcpu, gva, ar, NULL, length, asce, mode,
1204 access_key);
1205 ipte_unlock(vcpu);
1206
1207 return rc;
1208 }
1209
1210 /**
1211 * check_gpa_range - test a range of guest physical addresses for accessibility
1212 * @kvm: virtual machine instance
1213 * @gpa: guest physical address
1214 * @length: length of test range
1215 * @mode: access mode to test, relevant for storage keys
1216 * @access_key: access key to mach the storage keys with
1217 */
check_gpa_range(struct kvm * kvm,unsigned long gpa,unsigned long length,enum gacc_mode mode,u8 access_key)1218 int check_gpa_range(struct kvm *kvm, unsigned long gpa, unsigned long length,
1219 enum gacc_mode mode, u8 access_key)
1220 {
1221 unsigned int fragment_len;
1222 int rc = 0;
1223
1224 while (length && !rc) {
1225 fragment_len = min(PAGE_SIZE - offset_in_page(gpa), length);
1226 rc = vm_check_access_key(kvm, access_key, mode, gpa);
1227 length -= fragment_len;
1228 gpa += fragment_len;
1229 }
1230 return rc;
1231 }
1232
1233 /**
1234 * kvm_s390_check_low_addr_prot_real - check for low-address protection
1235 * @vcpu: virtual cpu
1236 * @gra: Guest real address
1237 *
1238 * Checks whether an address is subject to low-address protection and set
1239 * up vcpu->arch.pgm accordingly if necessary.
1240 *
1241 * Return: 0 if no protection exception, or PGM_PROTECTION if protected.
1242 */
kvm_s390_check_low_addr_prot_real(struct kvm_vcpu * vcpu,unsigned long gra)1243 int kvm_s390_check_low_addr_prot_real(struct kvm_vcpu *vcpu, unsigned long gra)
1244 {
1245 union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]};
1246
1247 if (!ctlreg0.lap || !is_low_address(gra))
1248 return 0;
1249 return trans_exc(vcpu, PGM_PROTECTION, gra, 0, GACC_STORE, PROT_TYPE_LA);
1250 }
1251
1252 /**
1253 * kvm_s390_shadow_tables - walk the guest page table and create shadow tables
1254 * @sg: pointer to the shadow guest address space structure
1255 * @saddr: faulting address in the shadow gmap
1256 * @pgt: pointer to the beginning of the page table for the given address if
1257 * successful (return value 0), or to the first invalid DAT entry in
1258 * case of exceptions (return value > 0)
1259 * @dat_protection: referenced memory is write protected
1260 * @fake: pgt references contiguous guest memory block, not a pgtable
1261 */
kvm_s390_shadow_tables(struct gmap * sg,unsigned long saddr,unsigned long * pgt,int * dat_protection,int * fake)1262 static int kvm_s390_shadow_tables(struct gmap *sg, unsigned long saddr,
1263 unsigned long *pgt, int *dat_protection,
1264 int *fake)
1265 {
1266 struct gmap *parent;
1267 union asce asce;
1268 union vaddress vaddr;
1269 unsigned long ptr;
1270 int rc;
1271
1272 *fake = 0;
1273 *dat_protection = 0;
1274 parent = sg->parent;
1275 vaddr.addr = saddr;
1276 asce.val = sg->orig_asce;
1277 ptr = asce.origin * PAGE_SIZE;
1278 if (asce.r) {
1279 *fake = 1;
1280 ptr = 0;
1281 asce.dt = ASCE_TYPE_REGION1;
1282 }
1283 switch (asce.dt) {
1284 case ASCE_TYPE_REGION1:
1285 if (vaddr.rfx01 > asce.tl && !*fake)
1286 return PGM_REGION_FIRST_TRANS;
1287 break;
1288 case ASCE_TYPE_REGION2:
1289 if (vaddr.rfx)
1290 return PGM_ASCE_TYPE;
1291 if (vaddr.rsx01 > asce.tl)
1292 return PGM_REGION_SECOND_TRANS;
1293 break;
1294 case ASCE_TYPE_REGION3:
1295 if (vaddr.rfx || vaddr.rsx)
1296 return PGM_ASCE_TYPE;
1297 if (vaddr.rtx01 > asce.tl)
1298 return PGM_REGION_THIRD_TRANS;
1299 break;
1300 case ASCE_TYPE_SEGMENT:
1301 if (vaddr.rfx || vaddr.rsx || vaddr.rtx)
1302 return PGM_ASCE_TYPE;
1303 if (vaddr.sx01 > asce.tl)
1304 return PGM_SEGMENT_TRANSLATION;
1305 break;
1306 }
1307
1308 switch (asce.dt) {
1309 case ASCE_TYPE_REGION1: {
1310 union region1_table_entry rfte;
1311
1312 if (*fake) {
1313 ptr += vaddr.rfx * _REGION1_SIZE;
1314 rfte.val = ptr;
1315 goto shadow_r2t;
1316 }
1317 *pgt = ptr + vaddr.rfx * 8;
1318 rc = gmap_read_table(parent, ptr + vaddr.rfx * 8, &rfte.val);
1319 if (rc)
1320 return rc;
1321 if (rfte.i)
1322 return PGM_REGION_FIRST_TRANS;
1323 if (rfte.tt != TABLE_TYPE_REGION1)
1324 return PGM_TRANSLATION_SPEC;
1325 if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl)
1326 return PGM_REGION_SECOND_TRANS;
1327 if (sg->edat_level >= 1)
1328 *dat_protection |= rfte.p;
1329 ptr = rfte.rto * PAGE_SIZE;
1330 shadow_r2t:
1331 rc = gmap_shadow_r2t(sg, saddr, rfte.val, *fake);
1332 if (rc)
1333 return rc;
1334 }
1335 fallthrough;
1336 case ASCE_TYPE_REGION2: {
1337 union region2_table_entry rste;
1338
1339 if (*fake) {
1340 ptr += vaddr.rsx * _REGION2_SIZE;
1341 rste.val = ptr;
1342 goto shadow_r3t;
1343 }
1344 *pgt = ptr + vaddr.rsx * 8;
1345 rc = gmap_read_table(parent, ptr + vaddr.rsx * 8, &rste.val);
1346 if (rc)
1347 return rc;
1348 if (rste.i)
1349 return PGM_REGION_SECOND_TRANS;
1350 if (rste.tt != TABLE_TYPE_REGION2)
1351 return PGM_TRANSLATION_SPEC;
1352 if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl)
1353 return PGM_REGION_THIRD_TRANS;
1354 if (sg->edat_level >= 1)
1355 *dat_protection |= rste.p;
1356 ptr = rste.rto * PAGE_SIZE;
1357 shadow_r3t:
1358 rste.p |= *dat_protection;
1359 rc = gmap_shadow_r3t(sg, saddr, rste.val, *fake);
1360 if (rc)
1361 return rc;
1362 }
1363 fallthrough;
1364 case ASCE_TYPE_REGION3: {
1365 union region3_table_entry rtte;
1366
1367 if (*fake) {
1368 ptr += vaddr.rtx * _REGION3_SIZE;
1369 rtte.val = ptr;
1370 goto shadow_sgt;
1371 }
1372 *pgt = ptr + vaddr.rtx * 8;
1373 rc = gmap_read_table(parent, ptr + vaddr.rtx * 8, &rtte.val);
1374 if (rc)
1375 return rc;
1376 if (rtte.i)
1377 return PGM_REGION_THIRD_TRANS;
1378 if (rtte.tt != TABLE_TYPE_REGION3)
1379 return PGM_TRANSLATION_SPEC;
1380 if (rtte.cr && asce.p && sg->edat_level >= 2)
1381 return PGM_TRANSLATION_SPEC;
1382 if (rtte.fc && sg->edat_level >= 2) {
1383 *dat_protection |= rtte.fc0.p;
1384 *fake = 1;
1385 ptr = rtte.fc1.rfaa * _REGION3_SIZE;
1386 rtte.val = ptr;
1387 goto shadow_sgt;
1388 }
1389 if (vaddr.sx01 < rtte.fc0.tf || vaddr.sx01 > rtte.fc0.tl)
1390 return PGM_SEGMENT_TRANSLATION;
1391 if (sg->edat_level >= 1)
1392 *dat_protection |= rtte.fc0.p;
1393 ptr = rtte.fc0.sto * PAGE_SIZE;
1394 shadow_sgt:
1395 rtte.fc0.p |= *dat_protection;
1396 rc = gmap_shadow_sgt(sg, saddr, rtte.val, *fake);
1397 if (rc)
1398 return rc;
1399 }
1400 fallthrough;
1401 case ASCE_TYPE_SEGMENT: {
1402 union segment_table_entry ste;
1403
1404 if (*fake) {
1405 ptr += vaddr.sx * _SEGMENT_SIZE;
1406 ste.val = ptr;
1407 goto shadow_pgt;
1408 }
1409 *pgt = ptr + vaddr.sx * 8;
1410 rc = gmap_read_table(parent, ptr + vaddr.sx * 8, &ste.val);
1411 if (rc)
1412 return rc;
1413 if (ste.i)
1414 return PGM_SEGMENT_TRANSLATION;
1415 if (ste.tt != TABLE_TYPE_SEGMENT)
1416 return PGM_TRANSLATION_SPEC;
1417 if (ste.cs && asce.p)
1418 return PGM_TRANSLATION_SPEC;
1419 *dat_protection |= ste.fc0.p;
1420 if (ste.fc && sg->edat_level >= 1) {
1421 *fake = 1;
1422 ptr = ste.fc1.sfaa * _SEGMENT_SIZE;
1423 ste.val = ptr;
1424 goto shadow_pgt;
1425 }
1426 ptr = ste.fc0.pto * (PAGE_SIZE / 2);
1427 shadow_pgt:
1428 ste.fc0.p |= *dat_protection;
1429 rc = gmap_shadow_pgt(sg, saddr, ste.val, *fake);
1430 if (rc)
1431 return rc;
1432 }
1433 }
1434 /* Return the parent address of the page table */
1435 *pgt = ptr;
1436 return 0;
1437 }
1438
1439 /**
1440 * kvm_s390_shadow_fault - handle fault on a shadow page table
1441 * @vcpu: virtual cpu
1442 * @sg: pointer to the shadow guest address space structure
1443 * @saddr: faulting address in the shadow gmap
1444 * @datptr: will contain the address of the faulting DAT table entry, or of
1445 * the valid leaf, plus some flags
1446 *
1447 * Returns: - 0 if the shadow fault was successfully resolved
1448 * - > 0 (pgm exception code) on exceptions while faulting
1449 * - -EAGAIN if the caller can retry immediately
1450 * - -EFAULT when accessing invalid guest addresses
1451 * - -ENOMEM if out of memory
1452 */
kvm_s390_shadow_fault(struct kvm_vcpu * vcpu,struct gmap * sg,unsigned long saddr,unsigned long * datptr)1453 int kvm_s390_shadow_fault(struct kvm_vcpu *vcpu, struct gmap *sg,
1454 unsigned long saddr, unsigned long *datptr)
1455 {
1456 union vaddress vaddr;
1457 union page_table_entry pte;
1458 unsigned long pgt = 0;
1459 int dat_protection, fake;
1460 int rc;
1461
1462 mmap_read_lock(sg->mm);
1463 /*
1464 * We don't want any guest-2 tables to change - so the parent
1465 * tables/pointers we read stay valid - unshadowing is however
1466 * always possible - only guest_table_lock protects us.
1467 */
1468 ipte_lock(vcpu);
1469
1470 rc = gmap_shadow_pgt_lookup(sg, saddr, &pgt, &dat_protection, &fake);
1471 if (rc)
1472 rc = kvm_s390_shadow_tables(sg, saddr, &pgt, &dat_protection,
1473 &fake);
1474
1475 vaddr.addr = saddr;
1476 if (fake) {
1477 pte.val = pgt + vaddr.px * PAGE_SIZE;
1478 goto shadow_page;
1479 }
1480
1481 switch (rc) {
1482 case PGM_SEGMENT_TRANSLATION:
1483 case PGM_REGION_THIRD_TRANS:
1484 case PGM_REGION_SECOND_TRANS:
1485 case PGM_REGION_FIRST_TRANS:
1486 pgt |= PEI_NOT_PTE;
1487 break;
1488 case 0:
1489 pgt += vaddr.px * 8;
1490 rc = gmap_read_table(sg->parent, pgt, &pte.val);
1491 }
1492 if (datptr)
1493 *datptr = pgt | dat_protection * PEI_DAT_PROT;
1494 if (!rc && pte.i)
1495 rc = PGM_PAGE_TRANSLATION;
1496 if (!rc && pte.z)
1497 rc = PGM_TRANSLATION_SPEC;
1498 shadow_page:
1499 pte.p |= dat_protection;
1500 if (!rc)
1501 rc = gmap_shadow_page(sg, saddr, __pte(pte.val));
1502 ipte_unlock(vcpu);
1503 mmap_read_unlock(sg->mm);
1504 return rc;
1505 }
1506