1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Performance event support for the System z CPU-measurement Sampling Facility
4 *
5 * Copyright IBM Corp. 2013, 2018
6 * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
7 */
8 #define KMSG_COMPONENT "cpum_sf"
9 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/perf_event.h>
14 #include <linux/percpu.h>
15 #include <linux/pid.h>
16 #include <linux/notifier.h>
17 #include <linux/export.h>
18 #include <linux/slab.h>
19 #include <linux/mm.h>
20 #include <linux/moduleparam.h>
21 #include <asm/cpu_mf.h>
22 #include <asm/irq.h>
23 #include <asm/debug.h>
24 #include <asm/timex.h>
25
26 /* Minimum number of sample-data-block-tables:
27 * At least one table is required for the sampling buffer structure.
28 * A single table contains up to 511 pointers to sample-data-blocks.
29 */
30 #define CPUM_SF_MIN_SDBT 1
31
32 /* Number of sample-data-blocks per sample-data-block-table (SDBT):
33 * A table contains SDB pointers (8 bytes) and one table-link entry
34 * that points to the origin of the next SDBT.
35 */
36 #define CPUM_SF_SDB_PER_TABLE ((PAGE_SIZE - 8) / 8)
37
38 /* Maximum page offset for an SDBT table-link entry:
39 * If this page offset is reached, a table-link entry to the next SDBT
40 * must be added.
41 */
42 #define CPUM_SF_SDBT_TL_OFFSET (CPUM_SF_SDB_PER_TABLE * 8)
require_table_link(const void * sdbt)43 static inline int require_table_link(const void *sdbt)
44 {
45 return ((unsigned long) sdbt & ~PAGE_MASK) == CPUM_SF_SDBT_TL_OFFSET;
46 }
47
48 /* Minimum and maximum sampling buffer sizes:
49 *
50 * This number represents the maximum size of the sampling buffer taking
51 * the number of sample-data-block-tables into account. Note that these
52 * numbers apply to the basic-sampling function only.
53 * The maximum number of SDBs is increased by CPUM_SF_SDB_DIAG_FACTOR if
54 * the diagnostic-sampling function is active.
55 *
56 * Sampling buffer size Buffer characteristics
57 * ---------------------------------------------------
58 * 64KB == 16 pages (4KB per page)
59 * 1 page for SDB-tables
60 * 15 pages for SDBs
61 *
62 * 32MB == 8192 pages (4KB per page)
63 * 16 pages for SDB-tables
64 * 8176 pages for SDBs
65 */
66 static unsigned long __read_mostly CPUM_SF_MIN_SDB = 15;
67 static unsigned long __read_mostly CPUM_SF_MAX_SDB = 8176;
68 static unsigned long __read_mostly CPUM_SF_SDB_DIAG_FACTOR = 1;
69
70 struct sf_buffer {
71 unsigned long *sdbt; /* Sample-data-block-table origin */
72 /* buffer characteristics (required for buffer increments) */
73 unsigned long num_sdb; /* Number of sample-data-blocks */
74 unsigned long num_sdbt; /* Number of sample-data-block-tables */
75 unsigned long *tail; /* last sample-data-block-table */
76 };
77
78 struct aux_buffer {
79 struct sf_buffer sfb;
80 unsigned long head; /* index of SDB of buffer head */
81 unsigned long alert_mark; /* index of SDB of alert request position */
82 unsigned long empty_mark; /* mark of SDB not marked full */
83 unsigned long *sdb_index; /* SDB address for fast lookup */
84 unsigned long *sdbt_index; /* SDBT address for fast lookup */
85 };
86
87 struct cpu_hw_sf {
88 /* CPU-measurement sampling information block */
89 struct hws_qsi_info_block qsi;
90 /* CPU-measurement sampling control block */
91 struct hws_lsctl_request_block lsctl;
92 struct sf_buffer sfb; /* Sampling buffer */
93 unsigned int flags; /* Status flags */
94 struct perf_event *event; /* Scheduled perf event */
95 struct perf_output_handle handle; /* AUX buffer output handle */
96 };
97 static DEFINE_PER_CPU(struct cpu_hw_sf, cpu_hw_sf);
98
99 /* Debug feature */
100 static debug_info_t *sfdbg;
101
102 /*
103 * sf_disable() - Switch off sampling facility
104 */
sf_disable(void)105 static int sf_disable(void)
106 {
107 struct hws_lsctl_request_block sreq;
108
109 memset(&sreq, 0, sizeof(sreq));
110 return lsctl(&sreq);
111 }
112
113 /*
114 * sf_buffer_available() - Check for an allocated sampling buffer
115 */
sf_buffer_available(struct cpu_hw_sf * cpuhw)116 static int sf_buffer_available(struct cpu_hw_sf *cpuhw)
117 {
118 return !!cpuhw->sfb.sdbt;
119 }
120
121 /*
122 * deallocate sampling facility buffer
123 */
free_sampling_buffer(struct sf_buffer * sfb)124 static void free_sampling_buffer(struct sf_buffer *sfb)
125 {
126 unsigned long *sdbt, *curr;
127
128 if (!sfb->sdbt)
129 return;
130
131 sdbt = sfb->sdbt;
132 curr = sdbt;
133
134 /* Free the SDBT after all SDBs are processed... */
135 while (1) {
136 if (!*curr || !sdbt)
137 break;
138
139 /* Process table-link entries */
140 if (is_link_entry(curr)) {
141 curr = get_next_sdbt(curr);
142 if (sdbt)
143 free_page((unsigned long) sdbt);
144
145 /* If the origin is reached, sampling buffer is freed */
146 if (curr == sfb->sdbt)
147 break;
148 else
149 sdbt = curr;
150 } else {
151 /* Process SDB pointer */
152 if (*curr) {
153 free_page(*curr);
154 curr++;
155 }
156 }
157 }
158
159 debug_sprintf_event(sfdbg, 5, "%s: freed sdbt %#lx\n", __func__,
160 (unsigned long)sfb->sdbt);
161 memset(sfb, 0, sizeof(*sfb));
162 }
163
alloc_sample_data_block(unsigned long * sdbt,gfp_t gfp_flags)164 static int alloc_sample_data_block(unsigned long *sdbt, gfp_t gfp_flags)
165 {
166 unsigned long sdb, *trailer;
167
168 /* Allocate and initialize sample-data-block */
169 sdb = get_zeroed_page(gfp_flags);
170 if (!sdb)
171 return -ENOMEM;
172 trailer = trailer_entry_ptr(sdb);
173 *trailer = SDB_TE_ALERT_REQ_MASK;
174
175 /* Link SDB into the sample-data-block-table */
176 *sdbt = sdb;
177
178 return 0;
179 }
180
181 /*
182 * realloc_sampling_buffer() - extend sampler memory
183 *
184 * Allocates new sample-data-blocks and adds them to the specified sampling
185 * buffer memory.
186 *
187 * Important: This modifies the sampling buffer and must be called when the
188 * sampling facility is disabled.
189 *
190 * Returns zero on success, non-zero otherwise.
191 */
realloc_sampling_buffer(struct sf_buffer * sfb,unsigned long num_sdb,gfp_t gfp_flags)192 static int realloc_sampling_buffer(struct sf_buffer *sfb,
193 unsigned long num_sdb, gfp_t gfp_flags)
194 {
195 int i, rc;
196 unsigned long *new, *tail, *tail_prev = NULL;
197
198 if (!sfb->sdbt || !sfb->tail)
199 return -EINVAL;
200
201 if (!is_link_entry(sfb->tail))
202 return -EINVAL;
203
204 /* Append to the existing sampling buffer, overwriting the table-link
205 * register.
206 * The tail variables always points to the "tail" (last and table-link)
207 * entry in an SDB-table.
208 */
209 tail = sfb->tail;
210
211 /* Do a sanity check whether the table-link entry points to
212 * the sampling buffer origin.
213 */
214 if (sfb->sdbt != get_next_sdbt(tail)) {
215 debug_sprintf_event(sfdbg, 3, "%s: "
216 "sampling buffer is not linked: origin %#lx"
217 " tail %#lx\n", __func__,
218 (unsigned long)sfb->sdbt,
219 (unsigned long)tail);
220 return -EINVAL;
221 }
222
223 /* Allocate remaining SDBs */
224 rc = 0;
225 for (i = 0; i < num_sdb; i++) {
226 /* Allocate a new SDB-table if it is full. */
227 if (require_table_link(tail)) {
228 new = (unsigned long *) get_zeroed_page(gfp_flags);
229 if (!new) {
230 rc = -ENOMEM;
231 break;
232 }
233 sfb->num_sdbt++;
234 /* Link current page to tail of chain */
235 *tail = (unsigned long)(void *) new + 1;
236 tail_prev = tail;
237 tail = new;
238 }
239
240 /* Allocate a new sample-data-block.
241 * If there is not enough memory, stop the realloc process
242 * and simply use what was allocated. If this is a temporary
243 * issue, a new realloc call (if required) might succeed.
244 */
245 rc = alloc_sample_data_block(tail, gfp_flags);
246 if (rc) {
247 /* Undo last SDBT. An SDBT with no SDB at its first
248 * entry but with an SDBT entry instead can not be
249 * handled by the interrupt handler code.
250 * Avoid this situation.
251 */
252 if (tail_prev) {
253 sfb->num_sdbt--;
254 free_page((unsigned long) new);
255 tail = tail_prev;
256 }
257 break;
258 }
259 sfb->num_sdb++;
260 tail++;
261 tail_prev = new = NULL; /* Allocated at least one SBD */
262 }
263
264 /* Link sampling buffer to its origin */
265 *tail = (unsigned long) sfb->sdbt + 1;
266 sfb->tail = tail;
267
268 debug_sprintf_event(sfdbg, 4, "%s: new buffer"
269 " settings: sdbt %lu sdb %lu\n", __func__,
270 sfb->num_sdbt, sfb->num_sdb);
271 return rc;
272 }
273
274 /*
275 * allocate_sampling_buffer() - allocate sampler memory
276 *
277 * Allocates and initializes a sampling buffer structure using the
278 * specified number of sample-data-blocks (SDB). For each allocation,
279 * a 4K page is used. The number of sample-data-block-tables (SDBT)
280 * are calculated from SDBs.
281 * Also set the ALERT_REQ mask in each SDBs trailer.
282 *
283 * Returns zero on success, non-zero otherwise.
284 */
alloc_sampling_buffer(struct sf_buffer * sfb,unsigned long num_sdb)285 static int alloc_sampling_buffer(struct sf_buffer *sfb, unsigned long num_sdb)
286 {
287 int rc;
288
289 if (sfb->sdbt)
290 return -EINVAL;
291
292 /* Allocate the sample-data-block-table origin */
293 sfb->sdbt = (unsigned long *) get_zeroed_page(GFP_KERNEL);
294 if (!sfb->sdbt)
295 return -ENOMEM;
296 sfb->num_sdb = 0;
297 sfb->num_sdbt = 1;
298
299 /* Link the table origin to point to itself to prepare for
300 * realloc_sampling_buffer() invocation.
301 */
302 sfb->tail = sfb->sdbt;
303 *sfb->tail = (unsigned long)(void *) sfb->sdbt + 1;
304
305 /* Allocate requested number of sample-data-blocks */
306 rc = realloc_sampling_buffer(sfb, num_sdb, GFP_KERNEL);
307 if (rc) {
308 free_sampling_buffer(sfb);
309 debug_sprintf_event(sfdbg, 4, "%s: "
310 "realloc_sampling_buffer failed with rc %i\n",
311 __func__, rc);
312 } else
313 debug_sprintf_event(sfdbg, 4,
314 "%s: tear %#lx dear %#lx\n", __func__,
315 (unsigned long)sfb->sdbt, (unsigned long)*sfb->sdbt);
316 return rc;
317 }
318
sfb_set_limits(unsigned long min,unsigned long max)319 static void sfb_set_limits(unsigned long min, unsigned long max)
320 {
321 struct hws_qsi_info_block si;
322
323 CPUM_SF_MIN_SDB = min;
324 CPUM_SF_MAX_SDB = max;
325
326 memset(&si, 0, sizeof(si));
327 if (!qsi(&si))
328 CPUM_SF_SDB_DIAG_FACTOR = DIV_ROUND_UP(si.dsdes, si.bsdes);
329 }
330
sfb_max_limit(struct hw_perf_event * hwc)331 static unsigned long sfb_max_limit(struct hw_perf_event *hwc)
332 {
333 return SAMPL_DIAG_MODE(hwc) ? CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR
334 : CPUM_SF_MAX_SDB;
335 }
336
sfb_pending_allocs(struct sf_buffer * sfb,struct hw_perf_event * hwc)337 static unsigned long sfb_pending_allocs(struct sf_buffer *sfb,
338 struct hw_perf_event *hwc)
339 {
340 if (!sfb->sdbt)
341 return SFB_ALLOC_REG(hwc);
342 if (SFB_ALLOC_REG(hwc) > sfb->num_sdb)
343 return SFB_ALLOC_REG(hwc) - sfb->num_sdb;
344 return 0;
345 }
346
sfb_has_pending_allocs(struct sf_buffer * sfb,struct hw_perf_event * hwc)347 static int sfb_has_pending_allocs(struct sf_buffer *sfb,
348 struct hw_perf_event *hwc)
349 {
350 return sfb_pending_allocs(sfb, hwc) > 0;
351 }
352
sfb_account_allocs(unsigned long num,struct hw_perf_event * hwc)353 static void sfb_account_allocs(unsigned long num, struct hw_perf_event *hwc)
354 {
355 /* Limit the number of SDBs to not exceed the maximum */
356 num = min_t(unsigned long, num, sfb_max_limit(hwc) - SFB_ALLOC_REG(hwc));
357 if (num)
358 SFB_ALLOC_REG(hwc) += num;
359 }
360
sfb_init_allocs(unsigned long num,struct hw_perf_event * hwc)361 static void sfb_init_allocs(unsigned long num, struct hw_perf_event *hwc)
362 {
363 SFB_ALLOC_REG(hwc) = 0;
364 sfb_account_allocs(num, hwc);
365 }
366
deallocate_buffers(struct cpu_hw_sf * cpuhw)367 static void deallocate_buffers(struct cpu_hw_sf *cpuhw)
368 {
369 if (cpuhw->sfb.sdbt)
370 free_sampling_buffer(&cpuhw->sfb);
371 }
372
allocate_buffers(struct cpu_hw_sf * cpuhw,struct hw_perf_event * hwc)373 static int allocate_buffers(struct cpu_hw_sf *cpuhw, struct hw_perf_event *hwc)
374 {
375 unsigned long n_sdb, freq;
376 size_t sample_size;
377
378 /* Calculate sampling buffers using 4K pages
379 *
380 * 1. The sampling size is 32 bytes for basic sampling. This size
381 * is the same for all machine types. Diagnostic
382 * sampling uses auxlilary data buffer setup which provides the
383 * memory for SDBs using linux common code auxiliary trace
384 * setup.
385 *
386 * 2. Function alloc_sampling_buffer() sets the Alert Request
387 * Control indicator to trigger a measurement-alert to harvest
388 * sample-data-blocks (SDB). This is done per SDB. This
389 * measurement alert interrupt fires quick enough to handle
390 * one SDB, on very high frequency and work loads there might
391 * be 2 to 3 SBDs available for sample processing.
392 * Currently there is no need for setup alert request on every
393 * n-th page. This is counterproductive as one IRQ triggers
394 * a very high number of samples to be processed at one IRQ.
395 *
396 * 3. Use the sampling frequency as input.
397 * Compute the number of SDBs and ensure a minimum
398 * of CPUM_SF_MIN_SDB. Depending on frequency add some more
399 * SDBs to handle a higher sampling rate.
400 * Use a minimum of CPUM_SF_MIN_SDB and allow for 100 samples
401 * (one SDB) for every 10000 HZ frequency increment.
402 *
403 * 4. Compute the number of sample-data-block-tables (SDBT) and
404 * ensure a minimum of CPUM_SF_MIN_SDBT (one table can manage up
405 * to 511 SDBs).
406 */
407 sample_size = sizeof(struct hws_basic_entry);
408 freq = sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc));
409 n_sdb = CPUM_SF_MIN_SDB + DIV_ROUND_UP(freq, 10000);
410
411 /* If there is already a sampling buffer allocated, it is very likely
412 * that the sampling facility is enabled too. If the event to be
413 * initialized requires a greater sampling buffer, the allocation must
414 * be postponed. Changing the sampling buffer requires the sampling
415 * facility to be in the disabled state. So, account the number of
416 * required SDBs and let cpumsf_pmu_enable() resize the buffer just
417 * before the event is started.
418 */
419 sfb_init_allocs(n_sdb, hwc);
420 if (sf_buffer_available(cpuhw))
421 return 0;
422
423 debug_sprintf_event(sfdbg, 3,
424 "%s: rate %lu f %lu sdb %lu/%lu"
425 " sample_size %lu cpuhw %p\n", __func__,
426 SAMPL_RATE(hwc), freq, n_sdb, sfb_max_limit(hwc),
427 sample_size, cpuhw);
428
429 return alloc_sampling_buffer(&cpuhw->sfb,
430 sfb_pending_allocs(&cpuhw->sfb, hwc));
431 }
432
min_percent(unsigned int percent,unsigned long base,unsigned long min)433 static unsigned long min_percent(unsigned int percent, unsigned long base,
434 unsigned long min)
435 {
436 return min_t(unsigned long, min, DIV_ROUND_UP(percent * base, 100));
437 }
438
compute_sfb_extent(unsigned long ratio,unsigned long base)439 static unsigned long compute_sfb_extent(unsigned long ratio, unsigned long base)
440 {
441 /* Use a percentage-based approach to extend the sampling facility
442 * buffer. Accept up to 5% sample data loss.
443 * Vary the extents between 1% to 5% of the current number of
444 * sample-data-blocks.
445 */
446 if (ratio <= 5)
447 return 0;
448 if (ratio <= 25)
449 return min_percent(1, base, 1);
450 if (ratio <= 50)
451 return min_percent(1, base, 1);
452 if (ratio <= 75)
453 return min_percent(2, base, 2);
454 if (ratio <= 100)
455 return min_percent(3, base, 3);
456 if (ratio <= 250)
457 return min_percent(4, base, 4);
458
459 return min_percent(5, base, 8);
460 }
461
sfb_account_overflows(struct cpu_hw_sf * cpuhw,struct hw_perf_event * hwc)462 static void sfb_account_overflows(struct cpu_hw_sf *cpuhw,
463 struct hw_perf_event *hwc)
464 {
465 unsigned long ratio, num;
466
467 if (!OVERFLOW_REG(hwc))
468 return;
469
470 /* The sample_overflow contains the average number of sample data
471 * that has been lost because sample-data-blocks were full.
472 *
473 * Calculate the total number of sample data entries that has been
474 * discarded. Then calculate the ratio of lost samples to total samples
475 * per second in percent.
476 */
477 ratio = DIV_ROUND_UP(100 * OVERFLOW_REG(hwc) * cpuhw->sfb.num_sdb,
478 sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc)));
479
480 /* Compute number of sample-data-blocks */
481 num = compute_sfb_extent(ratio, cpuhw->sfb.num_sdb);
482 if (num)
483 sfb_account_allocs(num, hwc);
484
485 debug_sprintf_event(sfdbg, 5, "%s: overflow %llu ratio %lu num %lu\n",
486 __func__, OVERFLOW_REG(hwc), ratio, num);
487 OVERFLOW_REG(hwc) = 0;
488 }
489
490 /* extend_sampling_buffer() - Extend sampling buffer
491 * @sfb: Sampling buffer structure (for local CPU)
492 * @hwc: Perf event hardware structure
493 *
494 * Use this function to extend the sampling buffer based on the overflow counter
495 * and postponed allocation extents stored in the specified Perf event hardware.
496 *
497 * Important: This function disables the sampling facility in order to safely
498 * change the sampling buffer structure. Do not call this function
499 * when the PMU is active.
500 */
extend_sampling_buffer(struct sf_buffer * sfb,struct hw_perf_event * hwc)501 static void extend_sampling_buffer(struct sf_buffer *sfb,
502 struct hw_perf_event *hwc)
503 {
504 unsigned long num, num_old;
505 int rc;
506
507 num = sfb_pending_allocs(sfb, hwc);
508 if (!num)
509 return;
510 num_old = sfb->num_sdb;
511
512 /* Disable the sampling facility to reset any states and also
513 * clear pending measurement alerts.
514 */
515 sf_disable();
516
517 /* Extend the sampling buffer.
518 * This memory allocation typically happens in an atomic context when
519 * called by perf. Because this is a reallocation, it is fine if the
520 * new SDB-request cannot be satisfied immediately.
521 */
522 rc = realloc_sampling_buffer(sfb, num, GFP_ATOMIC);
523 if (rc)
524 debug_sprintf_event(sfdbg, 5, "%s: realloc failed with rc %i\n",
525 __func__, rc);
526
527 if (sfb_has_pending_allocs(sfb, hwc))
528 debug_sprintf_event(sfdbg, 5, "%s: "
529 "req %lu alloc %lu remaining %lu\n",
530 __func__, num, sfb->num_sdb - num_old,
531 sfb_pending_allocs(sfb, hwc));
532 }
533
534 /* Number of perf events counting hardware events */
535 static atomic_t num_events;
536 /* Used to avoid races in calling reserve/release_cpumf_hardware */
537 static DEFINE_MUTEX(pmc_reserve_mutex);
538
539 #define PMC_INIT 0
540 #define PMC_RELEASE 1
541 #define PMC_FAILURE 2
setup_pmc_cpu(void * flags)542 static void setup_pmc_cpu(void *flags)
543 {
544 int err;
545 struct cpu_hw_sf *cpusf = this_cpu_ptr(&cpu_hw_sf);
546
547 err = 0;
548 switch (*((int *) flags)) {
549 case PMC_INIT:
550 memset(cpusf, 0, sizeof(*cpusf));
551 err = qsi(&cpusf->qsi);
552 if (err)
553 break;
554 cpusf->flags |= PMU_F_RESERVED;
555 err = sf_disable();
556 if (err)
557 pr_err("Switching off the sampling facility failed "
558 "with rc %i\n", err);
559 debug_sprintf_event(sfdbg, 5,
560 "%s: initialized: cpuhw %p\n", __func__,
561 cpusf);
562 break;
563 case PMC_RELEASE:
564 cpusf->flags &= ~PMU_F_RESERVED;
565 err = sf_disable();
566 if (err) {
567 pr_err("Switching off the sampling facility failed "
568 "with rc %i\n", err);
569 } else
570 deallocate_buffers(cpusf);
571 debug_sprintf_event(sfdbg, 5,
572 "%s: released: cpuhw %p\n", __func__,
573 cpusf);
574 break;
575 }
576 if (err)
577 *((int *) flags) |= PMC_FAILURE;
578 }
579
release_pmc_hardware(void)580 static void release_pmc_hardware(void)
581 {
582 int flags = PMC_RELEASE;
583
584 irq_subclass_unregister(IRQ_SUBCLASS_MEASUREMENT_ALERT);
585 on_each_cpu(setup_pmc_cpu, &flags, 1);
586 }
587
reserve_pmc_hardware(void)588 static int reserve_pmc_hardware(void)
589 {
590 int flags = PMC_INIT;
591
592 on_each_cpu(setup_pmc_cpu, &flags, 1);
593 if (flags & PMC_FAILURE) {
594 release_pmc_hardware();
595 return -ENODEV;
596 }
597 irq_subclass_register(IRQ_SUBCLASS_MEASUREMENT_ALERT);
598
599 return 0;
600 }
601
hw_perf_event_destroy(struct perf_event * event)602 static void hw_perf_event_destroy(struct perf_event *event)
603 {
604 /* Release PMC if this is the last perf event */
605 if (!atomic_add_unless(&num_events, -1, 1)) {
606 mutex_lock(&pmc_reserve_mutex);
607 if (atomic_dec_return(&num_events) == 0)
608 release_pmc_hardware();
609 mutex_unlock(&pmc_reserve_mutex);
610 }
611 }
612
hw_init_period(struct hw_perf_event * hwc,u64 period)613 static void hw_init_period(struct hw_perf_event *hwc, u64 period)
614 {
615 hwc->sample_period = period;
616 hwc->last_period = hwc->sample_period;
617 local64_set(&hwc->period_left, hwc->sample_period);
618 }
619
hw_limit_rate(const struct hws_qsi_info_block * si,unsigned long rate)620 static unsigned long hw_limit_rate(const struct hws_qsi_info_block *si,
621 unsigned long rate)
622 {
623 return clamp_t(unsigned long, rate,
624 si->min_sampl_rate, si->max_sampl_rate);
625 }
626
cpumsf_pid_type(struct perf_event * event,u32 pid,enum pid_type type)627 static u32 cpumsf_pid_type(struct perf_event *event,
628 u32 pid, enum pid_type type)
629 {
630 struct task_struct *tsk;
631
632 /* Idle process */
633 if (!pid)
634 goto out;
635
636 tsk = find_task_by_pid_ns(pid, &init_pid_ns);
637 pid = -1;
638 if (tsk) {
639 /*
640 * Only top level events contain the pid namespace in which
641 * they are created.
642 */
643 if (event->parent)
644 event = event->parent;
645 pid = __task_pid_nr_ns(tsk, type, event->ns);
646 /*
647 * See also 1d953111b648
648 * "perf/core: Don't report zero PIDs for exiting tasks".
649 */
650 if (!pid && !pid_alive(tsk))
651 pid = -1;
652 }
653 out:
654 return pid;
655 }
656
cpumsf_output_event_pid(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)657 static void cpumsf_output_event_pid(struct perf_event *event,
658 struct perf_sample_data *data,
659 struct pt_regs *regs)
660 {
661 u32 pid;
662 struct perf_event_header header;
663 struct perf_output_handle handle;
664
665 /*
666 * Obtain the PID from the basic-sampling data entry and
667 * correct the data->tid_entry.pid value.
668 */
669 pid = data->tid_entry.pid;
670
671 /* Protect callchain buffers, tasks */
672 rcu_read_lock();
673
674 perf_prepare_sample(&header, data, event, regs);
675 if (perf_output_begin(&handle, data, event, header.size))
676 goto out;
677
678 /* Update the process ID (see also kernel/events/core.c) */
679 data->tid_entry.pid = cpumsf_pid_type(event, pid, PIDTYPE_TGID);
680 data->tid_entry.tid = cpumsf_pid_type(event, pid, PIDTYPE_PID);
681
682 perf_output_sample(&handle, &header, data, event);
683 perf_output_end(&handle);
684 out:
685 rcu_read_unlock();
686 }
687
getrate(bool freq,unsigned long sample,struct hws_qsi_info_block * si)688 static unsigned long getrate(bool freq, unsigned long sample,
689 struct hws_qsi_info_block *si)
690 {
691 unsigned long rate;
692
693 if (freq) {
694 rate = freq_to_sample_rate(si, sample);
695 rate = hw_limit_rate(si, rate);
696 } else {
697 /* The min/max sampling rates specifies the valid range
698 * of sample periods. If the specified sample period is
699 * out of range, limit the period to the range boundary.
700 */
701 rate = hw_limit_rate(si, sample);
702
703 /* The perf core maintains a maximum sample rate that is
704 * configurable through the sysctl interface. Ensure the
705 * sampling rate does not exceed this value. This also helps
706 * to avoid throttling when pushing samples with
707 * perf_event_overflow().
708 */
709 if (sample_rate_to_freq(si, rate) >
710 sysctl_perf_event_sample_rate) {
711 debug_sprintf_event(sfdbg, 1, "%s: "
712 "Sampling rate exceeds maximum "
713 "perf sample rate\n", __func__);
714 rate = 0;
715 }
716 }
717 return rate;
718 }
719
720 /* The sampling information (si) contains information about the
721 * min/max sampling intervals and the CPU speed. So calculate the
722 * correct sampling interval and avoid the whole period adjust
723 * feedback loop.
724 *
725 * Since the CPU Measurement sampling facility can not handle frequency
726 * calculate the sampling interval when frequency is specified using
727 * this formula:
728 * interval := cpu_speed * 1000000 / sample_freq
729 *
730 * Returns errno on bad input and zero on success with parameter interval
731 * set to the correct sampling rate.
732 *
733 * Note: This function turns off freq bit to avoid calling function
734 * perf_adjust_period(). This causes frequency adjustment in the common
735 * code part which causes tremendous variations in the counter values.
736 */
__hw_perf_event_init_rate(struct perf_event * event,struct hws_qsi_info_block * si)737 static int __hw_perf_event_init_rate(struct perf_event *event,
738 struct hws_qsi_info_block *si)
739 {
740 struct perf_event_attr *attr = &event->attr;
741 struct hw_perf_event *hwc = &event->hw;
742 unsigned long rate;
743
744 if (attr->freq) {
745 if (!attr->sample_freq)
746 return -EINVAL;
747 rate = getrate(attr->freq, attr->sample_freq, si);
748 attr->freq = 0; /* Don't call perf_adjust_period() */
749 SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_FREQ_MODE;
750 } else {
751 rate = getrate(attr->freq, attr->sample_period, si);
752 if (!rate)
753 return -EINVAL;
754 }
755 attr->sample_period = rate;
756 SAMPL_RATE(hwc) = rate;
757 hw_init_period(hwc, SAMPL_RATE(hwc));
758 debug_sprintf_event(sfdbg, 4, "%s: cpu %d period %#llx freq %d,%#lx\n",
759 __func__, event->cpu, event->attr.sample_period,
760 event->attr.freq, SAMPLE_FREQ_MODE(hwc));
761 return 0;
762 }
763
__hw_perf_event_init(struct perf_event * event)764 static int __hw_perf_event_init(struct perf_event *event)
765 {
766 struct cpu_hw_sf *cpuhw;
767 struct hws_qsi_info_block si;
768 struct perf_event_attr *attr = &event->attr;
769 struct hw_perf_event *hwc = &event->hw;
770 int cpu, err;
771
772 /* Reserve CPU-measurement sampling facility */
773 err = 0;
774 if (!atomic_inc_not_zero(&num_events)) {
775 mutex_lock(&pmc_reserve_mutex);
776 if (atomic_read(&num_events) == 0 && reserve_pmc_hardware())
777 err = -EBUSY;
778 else
779 atomic_inc(&num_events);
780 mutex_unlock(&pmc_reserve_mutex);
781 }
782 event->destroy = hw_perf_event_destroy;
783
784 if (err)
785 goto out;
786
787 /* Access per-CPU sampling information (query sampling info) */
788 /*
789 * The event->cpu value can be -1 to count on every CPU, for example,
790 * when attaching to a task. If this is specified, use the query
791 * sampling info from the current CPU, otherwise use event->cpu to
792 * retrieve the per-CPU information.
793 * Later, cpuhw indicates whether to allocate sampling buffers for a
794 * particular CPU (cpuhw!=NULL) or each online CPU (cpuw==NULL).
795 */
796 memset(&si, 0, sizeof(si));
797 cpuhw = NULL;
798 if (event->cpu == -1)
799 qsi(&si);
800 else {
801 /* Event is pinned to a particular CPU, retrieve the per-CPU
802 * sampling structure for accessing the CPU-specific QSI.
803 */
804 cpuhw = &per_cpu(cpu_hw_sf, event->cpu);
805 si = cpuhw->qsi;
806 }
807
808 /* Check sampling facility authorization and, if not authorized,
809 * fall back to other PMUs. It is safe to check any CPU because
810 * the authorization is identical for all configured CPUs.
811 */
812 if (!si.as) {
813 err = -ENOENT;
814 goto out;
815 }
816
817 if (si.ribm & CPU_MF_SF_RIBM_NOTAV) {
818 pr_warn("CPU Measurement Facility sampling is temporarily not available\n");
819 err = -EBUSY;
820 goto out;
821 }
822
823 /* Always enable basic sampling */
824 SAMPL_FLAGS(hwc) = PERF_CPUM_SF_BASIC_MODE;
825
826 /* Check if diagnostic sampling is requested. Deny if the required
827 * sampling authorization is missing.
828 */
829 if (attr->config == PERF_EVENT_CPUM_SF_DIAG) {
830 if (!si.ad) {
831 err = -EPERM;
832 goto out;
833 }
834 SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_DIAG_MODE;
835 }
836
837 /* Check and set other sampling flags */
838 if (attr->config1 & PERF_CPUM_SF_FULL_BLOCKS)
839 SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_FULL_BLOCKS;
840
841 err = __hw_perf_event_init_rate(event, &si);
842 if (err)
843 goto out;
844
845 /* Initialize sample data overflow accounting */
846 hwc->extra_reg.reg = REG_OVERFLOW;
847 OVERFLOW_REG(hwc) = 0;
848
849 /* Use AUX buffer. No need to allocate it by ourself */
850 if (attr->config == PERF_EVENT_CPUM_SF_DIAG)
851 return 0;
852
853 /* Allocate the per-CPU sampling buffer using the CPU information
854 * from the event. If the event is not pinned to a particular
855 * CPU (event->cpu == -1; or cpuhw == NULL), allocate sampling
856 * buffers for each online CPU.
857 */
858 if (cpuhw)
859 /* Event is pinned to a particular CPU */
860 err = allocate_buffers(cpuhw, hwc);
861 else {
862 /* Event is not pinned, allocate sampling buffer on
863 * each online CPU
864 */
865 for_each_online_cpu(cpu) {
866 cpuhw = &per_cpu(cpu_hw_sf, cpu);
867 err = allocate_buffers(cpuhw, hwc);
868 if (err)
869 break;
870 }
871 }
872
873 /* If PID/TID sampling is active, replace the default overflow
874 * handler to extract and resolve the PIDs from the basic-sampling
875 * data entries.
876 */
877 if (event->attr.sample_type & PERF_SAMPLE_TID)
878 if (is_default_overflow_handler(event))
879 event->overflow_handler = cpumsf_output_event_pid;
880 out:
881 return err;
882 }
883
is_callchain_event(struct perf_event * event)884 static bool is_callchain_event(struct perf_event *event)
885 {
886 u64 sample_type = event->attr.sample_type;
887
888 return sample_type & (PERF_SAMPLE_CALLCHAIN | PERF_SAMPLE_REGS_USER |
889 PERF_SAMPLE_STACK_USER);
890 }
891
cpumsf_pmu_event_init(struct perf_event * event)892 static int cpumsf_pmu_event_init(struct perf_event *event)
893 {
894 int err;
895
896 /* No support for taken branch sampling */
897 /* No support for callchain, stacks and registers */
898 if (has_branch_stack(event) || is_callchain_event(event))
899 return -EOPNOTSUPP;
900
901 switch (event->attr.type) {
902 case PERF_TYPE_RAW:
903 if ((event->attr.config != PERF_EVENT_CPUM_SF) &&
904 (event->attr.config != PERF_EVENT_CPUM_SF_DIAG))
905 return -ENOENT;
906 break;
907 case PERF_TYPE_HARDWARE:
908 /* Support sampling of CPU cycles in addition to the
909 * counter facility. However, the counter facility
910 * is more precise and, hence, restrict this PMU to
911 * sampling events only.
912 */
913 if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES)
914 return -ENOENT;
915 if (!is_sampling_event(event))
916 return -ENOENT;
917 break;
918 default:
919 return -ENOENT;
920 }
921
922 /* Check online status of the CPU to which the event is pinned */
923 if (event->cpu >= 0 && !cpu_online(event->cpu))
924 return -ENODEV;
925
926 /* Force reset of idle/hv excludes regardless of what the
927 * user requested.
928 */
929 if (event->attr.exclude_hv)
930 event->attr.exclude_hv = 0;
931 if (event->attr.exclude_idle)
932 event->attr.exclude_idle = 0;
933
934 err = __hw_perf_event_init(event);
935 if (unlikely(err))
936 if (event->destroy)
937 event->destroy(event);
938 return err;
939 }
940
cpumsf_pmu_enable(struct pmu * pmu)941 static void cpumsf_pmu_enable(struct pmu *pmu)
942 {
943 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
944 struct hw_perf_event *hwc;
945 int err;
946
947 if (cpuhw->flags & PMU_F_ENABLED)
948 return;
949
950 if (cpuhw->flags & PMU_F_ERR_MASK)
951 return;
952
953 /* Check whether to extent the sampling buffer.
954 *
955 * Two conditions trigger an increase of the sampling buffer for a
956 * perf event:
957 * 1. Postponed buffer allocations from the event initialization.
958 * 2. Sampling overflows that contribute to pending allocations.
959 *
960 * Note that the extend_sampling_buffer() function disables the sampling
961 * facility, but it can be fully re-enabled using sampling controls that
962 * have been saved in cpumsf_pmu_disable().
963 */
964 if (cpuhw->event) {
965 hwc = &cpuhw->event->hw;
966 if (!(SAMPL_DIAG_MODE(hwc))) {
967 /*
968 * Account number of overflow-designated
969 * buffer extents
970 */
971 sfb_account_overflows(cpuhw, hwc);
972 extend_sampling_buffer(&cpuhw->sfb, hwc);
973 }
974 /* Rate may be adjusted with ioctl() */
975 cpuhw->lsctl.interval = SAMPL_RATE(&cpuhw->event->hw);
976 }
977
978 /* (Re)enable the PMU and sampling facility */
979 cpuhw->flags |= PMU_F_ENABLED;
980 barrier();
981
982 err = lsctl(&cpuhw->lsctl);
983 if (err) {
984 cpuhw->flags &= ~PMU_F_ENABLED;
985 pr_err("Loading sampling controls failed: op %i err %i\n",
986 1, err);
987 return;
988 }
989
990 /* Load current program parameter */
991 lpp(&S390_lowcore.lpp);
992
993 debug_sprintf_event(sfdbg, 6, "%s: es %i cs %i ed %i cd %i "
994 "interval %#lx tear %#lx dear %#lx\n", __func__,
995 cpuhw->lsctl.es, cpuhw->lsctl.cs, cpuhw->lsctl.ed,
996 cpuhw->lsctl.cd, cpuhw->lsctl.interval,
997 cpuhw->lsctl.tear, cpuhw->lsctl.dear);
998 }
999
cpumsf_pmu_disable(struct pmu * pmu)1000 static void cpumsf_pmu_disable(struct pmu *pmu)
1001 {
1002 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1003 struct hws_lsctl_request_block inactive;
1004 struct hws_qsi_info_block si;
1005 int err;
1006
1007 if (!(cpuhw->flags & PMU_F_ENABLED))
1008 return;
1009
1010 if (cpuhw->flags & PMU_F_ERR_MASK)
1011 return;
1012
1013 /* Switch off sampling activation control */
1014 inactive = cpuhw->lsctl;
1015 inactive.cs = 0;
1016 inactive.cd = 0;
1017
1018 err = lsctl(&inactive);
1019 if (err) {
1020 pr_err("Loading sampling controls failed: op %i err %i\n",
1021 2, err);
1022 return;
1023 }
1024
1025 /* Save state of TEAR and DEAR register contents */
1026 err = qsi(&si);
1027 if (!err) {
1028 /* TEAR/DEAR values are valid only if the sampling facility is
1029 * enabled. Note that cpumsf_pmu_disable() might be called even
1030 * for a disabled sampling facility because cpumsf_pmu_enable()
1031 * controls the enable/disable state.
1032 */
1033 if (si.es) {
1034 cpuhw->lsctl.tear = si.tear;
1035 cpuhw->lsctl.dear = si.dear;
1036 }
1037 } else
1038 debug_sprintf_event(sfdbg, 3, "%s: qsi() failed with err %i\n",
1039 __func__, err);
1040
1041 cpuhw->flags &= ~PMU_F_ENABLED;
1042 }
1043
1044 /* perf_exclude_event() - Filter event
1045 * @event: The perf event
1046 * @regs: pt_regs structure
1047 * @sde_regs: Sample-data-entry (sde) regs structure
1048 *
1049 * Filter perf events according to their exclude specification.
1050 *
1051 * Return non-zero if the event shall be excluded.
1052 */
perf_exclude_event(struct perf_event * event,struct pt_regs * regs,struct perf_sf_sde_regs * sde_regs)1053 static int perf_exclude_event(struct perf_event *event, struct pt_regs *regs,
1054 struct perf_sf_sde_regs *sde_regs)
1055 {
1056 if (event->attr.exclude_user && user_mode(regs))
1057 return 1;
1058 if (event->attr.exclude_kernel && !user_mode(regs))
1059 return 1;
1060 if (event->attr.exclude_guest && sde_regs->in_guest)
1061 return 1;
1062 if (event->attr.exclude_host && !sde_regs->in_guest)
1063 return 1;
1064 return 0;
1065 }
1066
1067 /* perf_push_sample() - Push samples to perf
1068 * @event: The perf event
1069 * @sample: Hardware sample data
1070 *
1071 * Use the hardware sample data to create perf event sample. The sample
1072 * is the pushed to the event subsystem and the function checks for
1073 * possible event overflows. If an event overflow occurs, the PMU is
1074 * stopped.
1075 *
1076 * Return non-zero if an event overflow occurred.
1077 */
perf_push_sample(struct perf_event * event,struct hws_basic_entry * basic)1078 static int perf_push_sample(struct perf_event *event,
1079 struct hws_basic_entry *basic)
1080 {
1081 int overflow;
1082 struct pt_regs regs;
1083 struct perf_sf_sde_regs *sde_regs;
1084 struct perf_sample_data data;
1085
1086 /* Setup perf sample */
1087 perf_sample_data_init(&data, 0, event->hw.last_period);
1088
1089 /* Setup pt_regs to look like an CPU-measurement external interrupt
1090 * using the Program Request Alert code. The regs.int_parm_long
1091 * field which is unused contains additional sample-data-entry related
1092 * indicators.
1093 */
1094 memset(®s, 0, sizeof(regs));
1095 regs.int_code = 0x1407;
1096 regs.int_parm = CPU_MF_INT_SF_PRA;
1097 sde_regs = (struct perf_sf_sde_regs *) ®s.int_parm_long;
1098
1099 psw_bits(regs.psw).ia = basic->ia;
1100 psw_bits(regs.psw).dat = basic->T;
1101 psw_bits(regs.psw).wait = basic->W;
1102 psw_bits(regs.psw).pstate = basic->P;
1103 psw_bits(regs.psw).as = basic->AS;
1104
1105 /*
1106 * Use the hardware provided configuration level to decide if the
1107 * sample belongs to a guest or host. If that is not available,
1108 * fall back to the following heuristics:
1109 * A non-zero guest program parameter always indicates a guest
1110 * sample. Some early samples or samples from guests without
1111 * lpp usage would be misaccounted to the host. We use the asn
1112 * value as an addon heuristic to detect most of these guest samples.
1113 * If the value differs from 0xffff (the host value), we assume to
1114 * be a KVM guest.
1115 */
1116 switch (basic->CL) {
1117 case 1: /* logical partition */
1118 sde_regs->in_guest = 0;
1119 break;
1120 case 2: /* virtual machine */
1121 sde_regs->in_guest = 1;
1122 break;
1123 default: /* old machine, use heuristics */
1124 if (basic->gpp || basic->prim_asn != 0xffff)
1125 sde_regs->in_guest = 1;
1126 break;
1127 }
1128
1129 /*
1130 * Store the PID value from the sample-data-entry to be
1131 * processed and resolved by cpumsf_output_event_pid().
1132 */
1133 data.tid_entry.pid = basic->hpp & LPP_PID_MASK;
1134
1135 overflow = 0;
1136 if (perf_exclude_event(event, ®s, sde_regs))
1137 goto out;
1138 if (perf_event_overflow(event, &data, ®s)) {
1139 overflow = 1;
1140 event->pmu->stop(event, 0);
1141 }
1142 perf_event_update_userpage(event);
1143 out:
1144 return overflow;
1145 }
1146
perf_event_count_update(struct perf_event * event,u64 count)1147 static void perf_event_count_update(struct perf_event *event, u64 count)
1148 {
1149 local64_add(count, &event->count);
1150 }
1151
1152 /* hw_collect_samples() - Walk through a sample-data-block and collect samples
1153 * @event: The perf event
1154 * @sdbt: Sample-data-block table
1155 * @overflow: Event overflow counter
1156 *
1157 * Walks through a sample-data-block and collects sampling data entries that are
1158 * then pushed to the perf event subsystem. Depending on the sampling function,
1159 * there can be either basic-sampling or combined-sampling data entries. A
1160 * combined-sampling data entry consists of a basic- and a diagnostic-sampling
1161 * data entry. The sampling function is determined by the flags in the perf
1162 * event hardware structure. The function always works with a combined-sampling
1163 * data entry but ignores the the diagnostic portion if it is not available.
1164 *
1165 * Note that the implementation focuses on basic-sampling data entries and, if
1166 * such an entry is not valid, the entire combined-sampling data entry is
1167 * ignored.
1168 *
1169 * The overflow variables counts the number of samples that has been discarded
1170 * due to a perf event overflow.
1171 */
hw_collect_samples(struct perf_event * event,unsigned long * sdbt,unsigned long long * overflow)1172 static void hw_collect_samples(struct perf_event *event, unsigned long *sdbt,
1173 unsigned long long *overflow)
1174 {
1175 struct hws_trailer_entry *te;
1176 struct hws_basic_entry *sample;
1177
1178 te = (struct hws_trailer_entry *) trailer_entry_ptr(*sdbt);
1179 sample = (struct hws_basic_entry *) *sdbt;
1180 while ((unsigned long *) sample < (unsigned long *) te) {
1181 /* Check for an empty sample */
1182 if (!sample->def || sample->LS)
1183 break;
1184
1185 /* Update perf event period */
1186 perf_event_count_update(event, SAMPL_RATE(&event->hw));
1187
1188 /* Check whether sample is valid */
1189 if (sample->def == 0x0001) {
1190 /* If an event overflow occurred, the PMU is stopped to
1191 * throttle event delivery. Remaining sample data is
1192 * discarded.
1193 */
1194 if (!*overflow) {
1195 /* Check whether sample is consistent */
1196 if (sample->I == 0 && sample->W == 0) {
1197 /* Deliver sample data to perf */
1198 *overflow = perf_push_sample(event,
1199 sample);
1200 }
1201 } else
1202 /* Count discarded samples */
1203 *overflow += 1;
1204 } else {
1205 debug_sprintf_event(sfdbg, 4,
1206 "%s: Found unknown"
1207 " sampling data entry: te->f %i"
1208 " basic.def %#4x (%p)\n", __func__,
1209 te->f, sample->def, sample);
1210 /* Sample slot is not yet written or other record.
1211 *
1212 * This condition can occur if the buffer was reused
1213 * from a combined basic- and diagnostic-sampling.
1214 * If only basic-sampling is then active, entries are
1215 * written into the larger diagnostic entries.
1216 * This is typically the case for sample-data-blocks
1217 * that are not full. Stop processing if the first
1218 * invalid format was detected.
1219 */
1220 if (!te->f)
1221 break;
1222 }
1223
1224 /* Reset sample slot and advance to next sample */
1225 sample->def = 0;
1226 sample++;
1227 }
1228 }
1229
1230 /* hw_perf_event_update() - Process sampling buffer
1231 * @event: The perf event
1232 * @flush_all: Flag to also flush partially filled sample-data-blocks
1233 *
1234 * Processes the sampling buffer and create perf event samples.
1235 * The sampling buffer position are retrieved and saved in the TEAR_REG
1236 * register of the specified perf event.
1237 *
1238 * Only full sample-data-blocks are processed. Specify the flash_all flag
1239 * to also walk through partially filled sample-data-blocks. It is ignored
1240 * if PERF_CPUM_SF_FULL_BLOCKS is set. The PERF_CPUM_SF_FULL_BLOCKS flag
1241 * enforces the processing of full sample-data-blocks only (trailer entries
1242 * with the block-full-indicator bit set).
1243 */
hw_perf_event_update(struct perf_event * event,int flush_all)1244 static void hw_perf_event_update(struct perf_event *event, int flush_all)
1245 {
1246 struct hw_perf_event *hwc = &event->hw;
1247 struct hws_trailer_entry *te;
1248 unsigned long *sdbt;
1249 unsigned long long event_overflow, sampl_overflow, num_sdb, te_flags;
1250 int done;
1251
1252 /*
1253 * AUX buffer is used when in diagnostic sampling mode.
1254 * No perf events/samples are created.
1255 */
1256 if (SAMPL_DIAG_MODE(&event->hw))
1257 return;
1258
1259 if (flush_all && SDB_FULL_BLOCKS(hwc))
1260 flush_all = 0;
1261
1262 sdbt = (unsigned long *) TEAR_REG(hwc);
1263 done = event_overflow = sampl_overflow = num_sdb = 0;
1264 while (!done) {
1265 /* Get the trailer entry of the sample-data-block */
1266 te = (struct hws_trailer_entry *) trailer_entry_ptr(*sdbt);
1267
1268 /* Leave loop if no more work to do (block full indicator) */
1269 if (!te->f) {
1270 done = 1;
1271 if (!flush_all)
1272 break;
1273 }
1274
1275 /* Check the sample overflow count */
1276 if (te->overflow)
1277 /* Account sample overflows and, if a particular limit
1278 * is reached, extend the sampling buffer.
1279 * For details, see sfb_account_overflows().
1280 */
1281 sampl_overflow += te->overflow;
1282
1283 /* Timestamps are valid for full sample-data-blocks only */
1284 debug_sprintf_event(sfdbg, 6, "%s: sdbt %#lx "
1285 "overflow %llu timestamp %#llx\n",
1286 __func__, (unsigned long)sdbt, te->overflow,
1287 (te->f) ? trailer_timestamp(te) : 0ULL);
1288
1289 /* Collect all samples from a single sample-data-block and
1290 * flag if an (perf) event overflow happened. If so, the PMU
1291 * is stopped and remaining samples will be discarded.
1292 */
1293 hw_collect_samples(event, sdbt, &event_overflow);
1294 num_sdb++;
1295
1296 /* Reset trailer (using compare-double-and-swap) */
1297 do {
1298 te_flags = te->flags & ~SDB_TE_BUFFER_FULL_MASK;
1299 te_flags |= SDB_TE_ALERT_REQ_MASK;
1300 } while (!cmpxchg_double(&te->flags, &te->overflow,
1301 te->flags, te->overflow,
1302 te_flags, 0ULL));
1303
1304 /* Advance to next sample-data-block */
1305 sdbt++;
1306 if (is_link_entry(sdbt))
1307 sdbt = get_next_sdbt(sdbt);
1308
1309 /* Update event hardware registers */
1310 TEAR_REG(hwc) = (unsigned long) sdbt;
1311
1312 /* Stop processing sample-data if all samples of the current
1313 * sample-data-block were flushed even if it was not full.
1314 */
1315 if (flush_all && done)
1316 break;
1317 }
1318
1319 /* Account sample overflows in the event hardware structure */
1320 if (sampl_overflow)
1321 OVERFLOW_REG(hwc) = DIV_ROUND_UP(OVERFLOW_REG(hwc) +
1322 sampl_overflow, 1 + num_sdb);
1323
1324 /* Perf_event_overflow() and perf_event_account_interrupt() limit
1325 * the interrupt rate to an upper limit. Roughly 1000 samples per
1326 * task tick.
1327 * Hitting this limit results in a large number
1328 * of throttled REF_REPORT_THROTTLE entries and the samples
1329 * are dropped.
1330 * Slightly increase the interval to avoid hitting this limit.
1331 */
1332 if (event_overflow) {
1333 SAMPL_RATE(hwc) += DIV_ROUND_UP(SAMPL_RATE(hwc), 10);
1334 debug_sprintf_event(sfdbg, 1, "%s: rate adjustment %ld\n",
1335 __func__,
1336 DIV_ROUND_UP(SAMPL_RATE(hwc), 10));
1337 }
1338
1339 if (sampl_overflow || event_overflow)
1340 debug_sprintf_event(sfdbg, 4, "%s: "
1341 "overflows: sample %llu event %llu"
1342 " total %llu num_sdb %llu\n",
1343 __func__, sampl_overflow, event_overflow,
1344 OVERFLOW_REG(hwc), num_sdb);
1345 }
1346
1347 #define AUX_SDB_INDEX(aux, i) ((i) % aux->sfb.num_sdb)
1348 #define AUX_SDB_NUM(aux, start, end) (end >= start ? end - start + 1 : 0)
1349 #define AUX_SDB_NUM_ALERT(aux) AUX_SDB_NUM(aux, aux->head, aux->alert_mark)
1350 #define AUX_SDB_NUM_EMPTY(aux) AUX_SDB_NUM(aux, aux->head, aux->empty_mark)
1351
1352 /*
1353 * Get trailer entry by index of SDB.
1354 */
aux_sdb_trailer(struct aux_buffer * aux,unsigned long index)1355 static struct hws_trailer_entry *aux_sdb_trailer(struct aux_buffer *aux,
1356 unsigned long index)
1357 {
1358 unsigned long sdb;
1359
1360 index = AUX_SDB_INDEX(aux, index);
1361 sdb = aux->sdb_index[index];
1362 return (struct hws_trailer_entry *)trailer_entry_ptr(sdb);
1363 }
1364
1365 /*
1366 * Finish sampling on the cpu. Called by cpumsf_pmu_del() with pmu
1367 * disabled. Collect the full SDBs in AUX buffer which have not reached
1368 * the point of alert indicator. And ignore the SDBs which are not
1369 * full.
1370 *
1371 * 1. Scan SDBs to see how much data is there and consume them.
1372 * 2. Remove alert indicator in the buffer.
1373 */
aux_output_end(struct perf_output_handle * handle)1374 static void aux_output_end(struct perf_output_handle *handle)
1375 {
1376 unsigned long i, range_scan, idx;
1377 struct aux_buffer *aux;
1378 struct hws_trailer_entry *te;
1379
1380 aux = perf_get_aux(handle);
1381 if (!aux)
1382 return;
1383
1384 range_scan = AUX_SDB_NUM_ALERT(aux);
1385 for (i = 0, idx = aux->head; i < range_scan; i++, idx++) {
1386 te = aux_sdb_trailer(aux, idx);
1387 if (!(te->flags & SDB_TE_BUFFER_FULL_MASK))
1388 break;
1389 }
1390 /* i is num of SDBs which are full */
1391 perf_aux_output_end(handle, i << PAGE_SHIFT);
1392
1393 /* Remove alert indicators in the buffer */
1394 te = aux_sdb_trailer(aux, aux->alert_mark);
1395 te->flags &= ~SDB_TE_ALERT_REQ_MASK;
1396
1397 debug_sprintf_event(sfdbg, 6, "%s: SDBs %ld range %ld head %ld\n",
1398 __func__, i, range_scan, aux->head);
1399 }
1400
1401 /*
1402 * Start sampling on the CPU. Called by cpumsf_pmu_add() when an event
1403 * is first added to the CPU or rescheduled again to the CPU. It is called
1404 * with pmu disabled.
1405 *
1406 * 1. Reset the trailer of SDBs to get ready for new data.
1407 * 2. Tell the hardware where to put the data by reset the SDBs buffer
1408 * head(tear/dear).
1409 */
aux_output_begin(struct perf_output_handle * handle,struct aux_buffer * aux,struct cpu_hw_sf * cpuhw)1410 static int aux_output_begin(struct perf_output_handle *handle,
1411 struct aux_buffer *aux,
1412 struct cpu_hw_sf *cpuhw)
1413 {
1414 unsigned long range;
1415 unsigned long i, range_scan, idx;
1416 unsigned long head, base, offset;
1417 struct hws_trailer_entry *te;
1418
1419 if (WARN_ON_ONCE(handle->head & ~PAGE_MASK))
1420 return -EINVAL;
1421
1422 aux->head = handle->head >> PAGE_SHIFT;
1423 range = (handle->size + 1) >> PAGE_SHIFT;
1424 if (range <= 1)
1425 return -ENOMEM;
1426
1427 /*
1428 * SDBs between aux->head and aux->empty_mark are already ready
1429 * for new data. range_scan is num of SDBs not within them.
1430 */
1431 debug_sprintf_event(sfdbg, 6,
1432 "%s: range %ld head %ld alert %ld empty %ld\n",
1433 __func__, range, aux->head, aux->alert_mark,
1434 aux->empty_mark);
1435 if (range > AUX_SDB_NUM_EMPTY(aux)) {
1436 range_scan = range - AUX_SDB_NUM_EMPTY(aux);
1437 idx = aux->empty_mark + 1;
1438 for (i = 0; i < range_scan; i++, idx++) {
1439 te = aux_sdb_trailer(aux, idx);
1440 te->flags &= ~(SDB_TE_BUFFER_FULL_MASK |
1441 SDB_TE_ALERT_REQ_MASK);
1442 te->overflow = 0;
1443 }
1444 /* Save the position of empty SDBs */
1445 aux->empty_mark = aux->head + range - 1;
1446 }
1447
1448 /* Set alert indicator */
1449 aux->alert_mark = aux->head + range/2 - 1;
1450 te = aux_sdb_trailer(aux, aux->alert_mark);
1451 te->flags = te->flags | SDB_TE_ALERT_REQ_MASK;
1452
1453 /* Reset hardware buffer head */
1454 head = AUX_SDB_INDEX(aux, aux->head);
1455 base = aux->sdbt_index[head / CPUM_SF_SDB_PER_TABLE];
1456 offset = head % CPUM_SF_SDB_PER_TABLE;
1457 cpuhw->lsctl.tear = base + offset * sizeof(unsigned long);
1458 cpuhw->lsctl.dear = aux->sdb_index[head];
1459
1460 debug_sprintf_event(sfdbg, 6, "%s: head %ld alert %ld empty %ld "
1461 "index %ld tear %#lx dear %#lx\n", __func__,
1462 aux->head, aux->alert_mark, aux->empty_mark,
1463 head / CPUM_SF_SDB_PER_TABLE,
1464 cpuhw->lsctl.tear, cpuhw->lsctl.dear);
1465
1466 return 0;
1467 }
1468
1469 /*
1470 * Set alert indicator on SDB at index @alert_index while sampler is running.
1471 *
1472 * Return true if successfully.
1473 * Return false if full indicator is already set by hardware sampler.
1474 */
aux_set_alert(struct aux_buffer * aux,unsigned long alert_index,unsigned long long * overflow)1475 static bool aux_set_alert(struct aux_buffer *aux, unsigned long alert_index,
1476 unsigned long long *overflow)
1477 {
1478 unsigned long long orig_overflow, orig_flags, new_flags;
1479 struct hws_trailer_entry *te;
1480
1481 te = aux_sdb_trailer(aux, alert_index);
1482 do {
1483 orig_flags = te->flags;
1484 *overflow = orig_overflow = te->overflow;
1485 if (orig_flags & SDB_TE_BUFFER_FULL_MASK) {
1486 /*
1487 * SDB is already set by hardware.
1488 * Abort and try to set somewhere
1489 * behind.
1490 */
1491 return false;
1492 }
1493 new_flags = orig_flags | SDB_TE_ALERT_REQ_MASK;
1494 } while (!cmpxchg_double(&te->flags, &te->overflow,
1495 orig_flags, orig_overflow,
1496 new_flags, 0ULL));
1497 return true;
1498 }
1499
1500 /*
1501 * aux_reset_buffer() - Scan and setup SDBs for new samples
1502 * @aux: The AUX buffer to set
1503 * @range: The range of SDBs to scan started from aux->head
1504 * @overflow: Set to overflow count
1505 *
1506 * Set alert indicator on the SDB at index of aux->alert_mark. If this SDB is
1507 * marked as empty, check if it is already set full by the hardware sampler.
1508 * If yes, that means new data is already there before we can set an alert
1509 * indicator. Caller should try to set alert indicator to some position behind.
1510 *
1511 * Scan the SDBs in AUX buffer from behind aux->empty_mark. They are used
1512 * previously and have already been consumed by user space. Reset these SDBs
1513 * (clear full indicator and alert indicator) for new data.
1514 * If aux->alert_mark fall in this area, just set it. Overflow count is
1515 * recorded while scanning.
1516 *
1517 * SDBs between aux->head and aux->empty_mark are already reset at last time.
1518 * and ready for new samples. So scanning on this area could be skipped.
1519 *
1520 * Return true if alert indicator is set successfully and false if not.
1521 */
aux_reset_buffer(struct aux_buffer * aux,unsigned long range,unsigned long long * overflow)1522 static bool aux_reset_buffer(struct aux_buffer *aux, unsigned long range,
1523 unsigned long long *overflow)
1524 {
1525 unsigned long long orig_overflow, orig_flags, new_flags;
1526 unsigned long i, range_scan, idx, idx_old;
1527 struct hws_trailer_entry *te;
1528
1529 debug_sprintf_event(sfdbg, 6, "%s: range %ld head %ld alert %ld "
1530 "empty %ld\n", __func__, range, aux->head,
1531 aux->alert_mark, aux->empty_mark);
1532 if (range <= AUX_SDB_NUM_EMPTY(aux))
1533 /*
1534 * No need to scan. All SDBs in range are marked as empty.
1535 * Just set alert indicator. Should check race with hardware
1536 * sampler.
1537 */
1538 return aux_set_alert(aux, aux->alert_mark, overflow);
1539
1540 if (aux->alert_mark <= aux->empty_mark)
1541 /*
1542 * Set alert indicator on empty SDB. Should check race
1543 * with hardware sampler.
1544 */
1545 if (!aux_set_alert(aux, aux->alert_mark, overflow))
1546 return false;
1547
1548 /*
1549 * Scan the SDBs to clear full and alert indicator used previously.
1550 * Start scanning from one SDB behind empty_mark. If the new alert
1551 * indicator fall into this range, set it.
1552 */
1553 range_scan = range - AUX_SDB_NUM_EMPTY(aux);
1554 idx_old = idx = aux->empty_mark + 1;
1555 for (i = 0; i < range_scan; i++, idx++) {
1556 te = aux_sdb_trailer(aux, idx);
1557 do {
1558 orig_flags = te->flags;
1559 orig_overflow = te->overflow;
1560 new_flags = orig_flags & ~SDB_TE_BUFFER_FULL_MASK;
1561 if (idx == aux->alert_mark)
1562 new_flags |= SDB_TE_ALERT_REQ_MASK;
1563 else
1564 new_flags &= ~SDB_TE_ALERT_REQ_MASK;
1565 } while (!cmpxchg_double(&te->flags, &te->overflow,
1566 orig_flags, orig_overflow,
1567 new_flags, 0ULL));
1568 *overflow += orig_overflow;
1569 }
1570
1571 /* Update empty_mark to new position */
1572 aux->empty_mark = aux->head + range - 1;
1573
1574 debug_sprintf_event(sfdbg, 6, "%s: range_scan %ld idx %ld..%ld "
1575 "empty %ld\n", __func__, range_scan, idx_old,
1576 idx - 1, aux->empty_mark);
1577 return true;
1578 }
1579
1580 /*
1581 * Measurement alert handler for diagnostic mode sampling.
1582 */
hw_collect_aux(struct cpu_hw_sf * cpuhw)1583 static void hw_collect_aux(struct cpu_hw_sf *cpuhw)
1584 {
1585 struct aux_buffer *aux;
1586 int done = 0;
1587 unsigned long range = 0, size;
1588 unsigned long long overflow = 0;
1589 struct perf_output_handle *handle = &cpuhw->handle;
1590 unsigned long num_sdb;
1591
1592 aux = perf_get_aux(handle);
1593 if (WARN_ON_ONCE(!aux))
1594 return;
1595
1596 /* Inform user space new data arrived */
1597 size = AUX_SDB_NUM_ALERT(aux) << PAGE_SHIFT;
1598 debug_sprintf_event(sfdbg, 6, "%s: #alert %ld\n", __func__,
1599 size >> PAGE_SHIFT);
1600 perf_aux_output_end(handle, size);
1601
1602 num_sdb = aux->sfb.num_sdb;
1603 while (!done) {
1604 /* Get an output handle */
1605 aux = perf_aux_output_begin(handle, cpuhw->event);
1606 if (handle->size == 0) {
1607 pr_err("The AUX buffer with %lu pages for the "
1608 "diagnostic-sampling mode is full\n",
1609 num_sdb);
1610 debug_sprintf_event(sfdbg, 1,
1611 "%s: AUX buffer used up\n",
1612 __func__);
1613 break;
1614 }
1615 if (WARN_ON_ONCE(!aux))
1616 return;
1617
1618 /* Update head and alert_mark to new position */
1619 aux->head = handle->head >> PAGE_SHIFT;
1620 range = (handle->size + 1) >> PAGE_SHIFT;
1621 if (range == 1)
1622 aux->alert_mark = aux->head;
1623 else
1624 aux->alert_mark = aux->head + range/2 - 1;
1625
1626 if (aux_reset_buffer(aux, range, &overflow)) {
1627 if (!overflow) {
1628 done = 1;
1629 break;
1630 }
1631 size = range << PAGE_SHIFT;
1632 perf_aux_output_end(&cpuhw->handle, size);
1633 pr_err("Sample data caused the AUX buffer with %lu "
1634 "pages to overflow\n", aux->sfb.num_sdb);
1635 debug_sprintf_event(sfdbg, 1, "%s: head %ld range %ld "
1636 "overflow %lld\n", __func__,
1637 aux->head, range, overflow);
1638 } else {
1639 size = AUX_SDB_NUM_ALERT(aux) << PAGE_SHIFT;
1640 perf_aux_output_end(&cpuhw->handle, size);
1641 debug_sprintf_event(sfdbg, 6, "%s: head %ld alert %ld "
1642 "already full, try another\n",
1643 __func__,
1644 aux->head, aux->alert_mark);
1645 }
1646 }
1647
1648 if (done)
1649 debug_sprintf_event(sfdbg, 6, "%s: head %ld alert %ld "
1650 "empty %ld\n", __func__, aux->head,
1651 aux->alert_mark, aux->empty_mark);
1652 }
1653
1654 /*
1655 * Callback when freeing AUX buffers.
1656 */
aux_buffer_free(void * data)1657 static void aux_buffer_free(void *data)
1658 {
1659 struct aux_buffer *aux = data;
1660 unsigned long i, num_sdbt;
1661
1662 if (!aux)
1663 return;
1664
1665 /* Free SDBT. SDB is freed by the caller */
1666 num_sdbt = aux->sfb.num_sdbt;
1667 for (i = 0; i < num_sdbt; i++)
1668 free_page(aux->sdbt_index[i]);
1669
1670 kfree(aux->sdbt_index);
1671 kfree(aux->sdb_index);
1672 kfree(aux);
1673
1674 debug_sprintf_event(sfdbg, 4, "%s: SDBTs %lu\n", __func__, num_sdbt);
1675 }
1676
aux_sdb_init(unsigned long sdb)1677 static void aux_sdb_init(unsigned long sdb)
1678 {
1679 struct hws_trailer_entry *te;
1680
1681 te = (struct hws_trailer_entry *)trailer_entry_ptr(sdb);
1682
1683 /* Save clock base */
1684 te->clock_base = 1;
1685 te->progusage2 = tod_clock_base.tod;
1686 }
1687
1688 /*
1689 * aux_buffer_setup() - Setup AUX buffer for diagnostic mode sampling
1690 * @event: Event the buffer is setup for, event->cpu == -1 means current
1691 * @pages: Array of pointers to buffer pages passed from perf core
1692 * @nr_pages: Total pages
1693 * @snapshot: Flag for snapshot mode
1694 *
1695 * This is the callback when setup an event using AUX buffer. Perf tool can
1696 * trigger this by an additional mmap() call on the event. Unlike the buffer
1697 * for basic samples, AUX buffer belongs to the event. It is scheduled with
1698 * the task among online cpus when it is a per-thread event.
1699 *
1700 * Return the private AUX buffer structure if success or NULL if fails.
1701 */
aux_buffer_setup(struct perf_event * event,void ** pages,int nr_pages,bool snapshot)1702 static void *aux_buffer_setup(struct perf_event *event, void **pages,
1703 int nr_pages, bool snapshot)
1704 {
1705 struct sf_buffer *sfb;
1706 struct aux_buffer *aux;
1707 unsigned long *new, *tail;
1708 int i, n_sdbt;
1709
1710 if (!nr_pages || !pages)
1711 return NULL;
1712
1713 if (nr_pages > CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR) {
1714 pr_err("AUX buffer size (%i pages) is larger than the "
1715 "maximum sampling buffer limit\n",
1716 nr_pages);
1717 return NULL;
1718 } else if (nr_pages < CPUM_SF_MIN_SDB * CPUM_SF_SDB_DIAG_FACTOR) {
1719 pr_err("AUX buffer size (%i pages) is less than the "
1720 "minimum sampling buffer limit\n",
1721 nr_pages);
1722 return NULL;
1723 }
1724
1725 /* Allocate aux_buffer struct for the event */
1726 aux = kzalloc(sizeof(struct aux_buffer), GFP_KERNEL);
1727 if (!aux)
1728 goto no_aux;
1729 sfb = &aux->sfb;
1730
1731 /* Allocate sdbt_index for fast reference */
1732 n_sdbt = DIV_ROUND_UP(nr_pages, CPUM_SF_SDB_PER_TABLE);
1733 aux->sdbt_index = kmalloc_array(n_sdbt, sizeof(void *), GFP_KERNEL);
1734 if (!aux->sdbt_index)
1735 goto no_sdbt_index;
1736
1737 /* Allocate sdb_index for fast reference */
1738 aux->sdb_index = kmalloc_array(nr_pages, sizeof(void *), GFP_KERNEL);
1739 if (!aux->sdb_index)
1740 goto no_sdb_index;
1741
1742 /* Allocate the first SDBT */
1743 sfb->num_sdbt = 0;
1744 sfb->sdbt = (unsigned long *) get_zeroed_page(GFP_KERNEL);
1745 if (!sfb->sdbt)
1746 goto no_sdbt;
1747 aux->sdbt_index[sfb->num_sdbt++] = (unsigned long)sfb->sdbt;
1748 tail = sfb->tail = sfb->sdbt;
1749
1750 /*
1751 * Link the provided pages of AUX buffer to SDBT.
1752 * Allocate SDBT if needed.
1753 */
1754 for (i = 0; i < nr_pages; i++, tail++) {
1755 if (require_table_link(tail)) {
1756 new = (unsigned long *) get_zeroed_page(GFP_KERNEL);
1757 if (!new)
1758 goto no_sdbt;
1759 aux->sdbt_index[sfb->num_sdbt++] = (unsigned long)new;
1760 /* Link current page to tail of chain */
1761 *tail = (unsigned long)(void *) new + 1;
1762 tail = new;
1763 }
1764 /* Tail is the entry in a SDBT */
1765 *tail = (unsigned long)pages[i];
1766 aux->sdb_index[i] = (unsigned long)pages[i];
1767 aux_sdb_init((unsigned long)pages[i]);
1768 }
1769 sfb->num_sdb = nr_pages;
1770
1771 /* Link the last entry in the SDBT to the first SDBT */
1772 *tail = (unsigned long) sfb->sdbt + 1;
1773 sfb->tail = tail;
1774
1775 /*
1776 * Initial all SDBs are zeroed. Mark it as empty.
1777 * So there is no need to clear the full indicator
1778 * when this event is first added.
1779 */
1780 aux->empty_mark = sfb->num_sdb - 1;
1781
1782 debug_sprintf_event(sfdbg, 4, "%s: SDBTs %lu SDBs %lu\n", __func__,
1783 sfb->num_sdbt, sfb->num_sdb);
1784
1785 return aux;
1786
1787 no_sdbt:
1788 /* SDBs (AUX buffer pages) are freed by caller */
1789 for (i = 0; i < sfb->num_sdbt; i++)
1790 free_page(aux->sdbt_index[i]);
1791 kfree(aux->sdb_index);
1792 no_sdb_index:
1793 kfree(aux->sdbt_index);
1794 no_sdbt_index:
1795 kfree(aux);
1796 no_aux:
1797 return NULL;
1798 }
1799
cpumsf_pmu_read(struct perf_event * event)1800 static void cpumsf_pmu_read(struct perf_event *event)
1801 {
1802 /* Nothing to do ... updates are interrupt-driven */
1803 }
1804
1805 /* Check if the new sampling period/freqeuncy is appropriate.
1806 *
1807 * Return non-zero on error and zero on passed checks.
1808 */
cpumsf_pmu_check_period(struct perf_event * event,u64 value)1809 static int cpumsf_pmu_check_period(struct perf_event *event, u64 value)
1810 {
1811 struct hws_qsi_info_block si;
1812 unsigned long rate;
1813 bool do_freq;
1814
1815 memset(&si, 0, sizeof(si));
1816 if (event->cpu == -1) {
1817 if (qsi(&si))
1818 return -ENODEV;
1819 } else {
1820 /* Event is pinned to a particular CPU, retrieve the per-CPU
1821 * sampling structure for accessing the CPU-specific QSI.
1822 */
1823 struct cpu_hw_sf *cpuhw = &per_cpu(cpu_hw_sf, event->cpu);
1824
1825 si = cpuhw->qsi;
1826 }
1827
1828 do_freq = !!SAMPLE_FREQ_MODE(&event->hw);
1829 rate = getrate(do_freq, value, &si);
1830 if (!rate)
1831 return -EINVAL;
1832
1833 event->attr.sample_period = rate;
1834 SAMPL_RATE(&event->hw) = rate;
1835 hw_init_period(&event->hw, SAMPL_RATE(&event->hw));
1836 debug_sprintf_event(sfdbg, 4, "%s:"
1837 " cpu %d value %#llx period %#llx freq %d\n",
1838 __func__, event->cpu, value,
1839 event->attr.sample_period, do_freq);
1840 return 0;
1841 }
1842
1843 /* Activate sampling control.
1844 * Next call of pmu_enable() starts sampling.
1845 */
cpumsf_pmu_start(struct perf_event * event,int flags)1846 static void cpumsf_pmu_start(struct perf_event *event, int flags)
1847 {
1848 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1849
1850 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1851 return;
1852
1853 if (flags & PERF_EF_RELOAD)
1854 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1855
1856 perf_pmu_disable(event->pmu);
1857 event->hw.state = 0;
1858 cpuhw->lsctl.cs = 1;
1859 if (SAMPL_DIAG_MODE(&event->hw))
1860 cpuhw->lsctl.cd = 1;
1861 perf_pmu_enable(event->pmu);
1862 }
1863
1864 /* Deactivate sampling control.
1865 * Next call of pmu_enable() stops sampling.
1866 */
cpumsf_pmu_stop(struct perf_event * event,int flags)1867 static void cpumsf_pmu_stop(struct perf_event *event, int flags)
1868 {
1869 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1870
1871 if (event->hw.state & PERF_HES_STOPPED)
1872 return;
1873
1874 perf_pmu_disable(event->pmu);
1875 cpuhw->lsctl.cs = 0;
1876 cpuhw->lsctl.cd = 0;
1877 event->hw.state |= PERF_HES_STOPPED;
1878
1879 if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) {
1880 hw_perf_event_update(event, 1);
1881 event->hw.state |= PERF_HES_UPTODATE;
1882 }
1883 perf_pmu_enable(event->pmu);
1884 }
1885
cpumsf_pmu_add(struct perf_event * event,int flags)1886 static int cpumsf_pmu_add(struct perf_event *event, int flags)
1887 {
1888 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1889 struct aux_buffer *aux;
1890 int err;
1891
1892 if (cpuhw->flags & PMU_F_IN_USE)
1893 return -EAGAIN;
1894
1895 if (!SAMPL_DIAG_MODE(&event->hw) && !cpuhw->sfb.sdbt)
1896 return -EINVAL;
1897
1898 err = 0;
1899 perf_pmu_disable(event->pmu);
1900
1901 event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1902
1903 /* Set up sampling controls. Always program the sampling register
1904 * using the SDB-table start. Reset TEAR_REG event hardware register
1905 * that is used by hw_perf_event_update() to store the sampling buffer
1906 * position after samples have been flushed.
1907 */
1908 cpuhw->lsctl.s = 0;
1909 cpuhw->lsctl.h = 1;
1910 cpuhw->lsctl.interval = SAMPL_RATE(&event->hw);
1911 if (!SAMPL_DIAG_MODE(&event->hw)) {
1912 cpuhw->lsctl.tear = (unsigned long) cpuhw->sfb.sdbt;
1913 cpuhw->lsctl.dear = *(unsigned long *) cpuhw->sfb.sdbt;
1914 TEAR_REG(&event->hw) = (unsigned long) cpuhw->sfb.sdbt;
1915 }
1916
1917 /* Ensure sampling functions are in the disabled state. If disabled,
1918 * switch on sampling enable control. */
1919 if (WARN_ON_ONCE(cpuhw->lsctl.es == 1 || cpuhw->lsctl.ed == 1)) {
1920 err = -EAGAIN;
1921 goto out;
1922 }
1923 if (SAMPL_DIAG_MODE(&event->hw)) {
1924 aux = perf_aux_output_begin(&cpuhw->handle, event);
1925 if (!aux) {
1926 err = -EINVAL;
1927 goto out;
1928 }
1929 err = aux_output_begin(&cpuhw->handle, aux, cpuhw);
1930 if (err)
1931 goto out;
1932 cpuhw->lsctl.ed = 1;
1933 }
1934 cpuhw->lsctl.es = 1;
1935
1936 /* Set in_use flag and store event */
1937 cpuhw->event = event;
1938 cpuhw->flags |= PMU_F_IN_USE;
1939
1940 if (flags & PERF_EF_START)
1941 cpumsf_pmu_start(event, PERF_EF_RELOAD);
1942 out:
1943 perf_event_update_userpage(event);
1944 perf_pmu_enable(event->pmu);
1945 return err;
1946 }
1947
cpumsf_pmu_del(struct perf_event * event,int flags)1948 static void cpumsf_pmu_del(struct perf_event *event, int flags)
1949 {
1950 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1951
1952 perf_pmu_disable(event->pmu);
1953 cpumsf_pmu_stop(event, PERF_EF_UPDATE);
1954
1955 cpuhw->lsctl.es = 0;
1956 cpuhw->lsctl.ed = 0;
1957 cpuhw->flags &= ~PMU_F_IN_USE;
1958 cpuhw->event = NULL;
1959
1960 if (SAMPL_DIAG_MODE(&event->hw))
1961 aux_output_end(&cpuhw->handle);
1962 perf_event_update_userpage(event);
1963 perf_pmu_enable(event->pmu);
1964 }
1965
1966 CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC, PERF_EVENT_CPUM_SF);
1967 CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC_DIAG, PERF_EVENT_CPUM_SF_DIAG);
1968
1969 /* Attribute list for CPU_SF.
1970 *
1971 * The availablitiy depends on the CPU_MF sampling facility authorization
1972 * for basic + diagnositic samples. This is determined at initialization
1973 * time by the sampling facility device driver.
1974 * If the authorization for basic samples is turned off, it should be
1975 * also turned off for diagnostic sampling.
1976 *
1977 * During initialization of the device driver, check the authorization
1978 * level for diagnostic sampling and installs the attribute
1979 * file for diagnostic sampling if necessary.
1980 *
1981 * For now install a placeholder to reference all possible attributes:
1982 * SF_CYCLES_BASIC and SF_CYCLES_BASIC_DIAG.
1983 * Add another entry for the final NULL pointer.
1984 */
1985 enum {
1986 SF_CYCLES_BASIC_ATTR_IDX = 0,
1987 SF_CYCLES_BASIC_DIAG_ATTR_IDX,
1988 SF_CYCLES_ATTR_MAX
1989 };
1990
1991 static struct attribute *cpumsf_pmu_events_attr[SF_CYCLES_ATTR_MAX + 1] = {
1992 [SF_CYCLES_BASIC_ATTR_IDX] = CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC)
1993 };
1994
1995 PMU_FORMAT_ATTR(event, "config:0-63");
1996
1997 static struct attribute *cpumsf_pmu_format_attr[] = {
1998 &format_attr_event.attr,
1999 NULL,
2000 };
2001
2002 static struct attribute_group cpumsf_pmu_events_group = {
2003 .name = "events",
2004 .attrs = cpumsf_pmu_events_attr,
2005 };
2006
2007 static struct attribute_group cpumsf_pmu_format_group = {
2008 .name = "format",
2009 .attrs = cpumsf_pmu_format_attr,
2010 };
2011
2012 static const struct attribute_group *cpumsf_pmu_attr_groups[] = {
2013 &cpumsf_pmu_events_group,
2014 &cpumsf_pmu_format_group,
2015 NULL,
2016 };
2017
2018 static struct pmu cpumf_sampling = {
2019 .pmu_enable = cpumsf_pmu_enable,
2020 .pmu_disable = cpumsf_pmu_disable,
2021
2022 .event_init = cpumsf_pmu_event_init,
2023 .add = cpumsf_pmu_add,
2024 .del = cpumsf_pmu_del,
2025
2026 .start = cpumsf_pmu_start,
2027 .stop = cpumsf_pmu_stop,
2028 .read = cpumsf_pmu_read,
2029
2030 .attr_groups = cpumsf_pmu_attr_groups,
2031
2032 .setup_aux = aux_buffer_setup,
2033 .free_aux = aux_buffer_free,
2034
2035 .check_period = cpumsf_pmu_check_period,
2036 };
2037
cpumf_measurement_alert(struct ext_code ext_code,unsigned int alert,unsigned long unused)2038 static void cpumf_measurement_alert(struct ext_code ext_code,
2039 unsigned int alert, unsigned long unused)
2040 {
2041 struct cpu_hw_sf *cpuhw;
2042
2043 if (!(alert & CPU_MF_INT_SF_MASK))
2044 return;
2045 inc_irq_stat(IRQEXT_CMS);
2046 cpuhw = this_cpu_ptr(&cpu_hw_sf);
2047
2048 /* Measurement alerts are shared and might happen when the PMU
2049 * is not reserved. Ignore these alerts in this case. */
2050 if (!(cpuhw->flags & PMU_F_RESERVED))
2051 return;
2052
2053 /* The processing below must take care of multiple alert events that
2054 * might be indicated concurrently. */
2055
2056 /* Program alert request */
2057 if (alert & CPU_MF_INT_SF_PRA) {
2058 if (cpuhw->flags & PMU_F_IN_USE)
2059 if (SAMPL_DIAG_MODE(&cpuhw->event->hw))
2060 hw_collect_aux(cpuhw);
2061 else
2062 hw_perf_event_update(cpuhw->event, 0);
2063 else
2064 WARN_ON_ONCE(!(cpuhw->flags & PMU_F_IN_USE));
2065 }
2066
2067 /* Report measurement alerts only for non-PRA codes */
2068 if (alert != CPU_MF_INT_SF_PRA)
2069 debug_sprintf_event(sfdbg, 6, "%s: alert %#x\n", __func__,
2070 alert);
2071
2072 /* Sampling authorization change request */
2073 if (alert & CPU_MF_INT_SF_SACA)
2074 qsi(&cpuhw->qsi);
2075
2076 /* Loss of sample data due to high-priority machine activities */
2077 if (alert & CPU_MF_INT_SF_LSDA) {
2078 pr_err("Sample data was lost\n");
2079 cpuhw->flags |= PMU_F_ERR_LSDA;
2080 sf_disable();
2081 }
2082
2083 /* Invalid sampling buffer entry */
2084 if (alert & (CPU_MF_INT_SF_IAE|CPU_MF_INT_SF_ISE)) {
2085 pr_err("A sampling buffer entry is incorrect (alert=0x%x)\n",
2086 alert);
2087 cpuhw->flags |= PMU_F_ERR_IBE;
2088 sf_disable();
2089 }
2090 }
2091
cpusf_pmu_setup(unsigned int cpu,int flags)2092 static int cpusf_pmu_setup(unsigned int cpu, int flags)
2093 {
2094 /* Ignore the notification if no events are scheduled on the PMU.
2095 * This might be racy...
2096 */
2097 if (!atomic_read(&num_events))
2098 return 0;
2099
2100 local_irq_disable();
2101 setup_pmc_cpu(&flags);
2102 local_irq_enable();
2103 return 0;
2104 }
2105
s390_pmu_sf_online_cpu(unsigned int cpu)2106 static int s390_pmu_sf_online_cpu(unsigned int cpu)
2107 {
2108 return cpusf_pmu_setup(cpu, PMC_INIT);
2109 }
2110
s390_pmu_sf_offline_cpu(unsigned int cpu)2111 static int s390_pmu_sf_offline_cpu(unsigned int cpu)
2112 {
2113 return cpusf_pmu_setup(cpu, PMC_RELEASE);
2114 }
2115
param_get_sfb_size(char * buffer,const struct kernel_param * kp)2116 static int param_get_sfb_size(char *buffer, const struct kernel_param *kp)
2117 {
2118 if (!cpum_sf_avail())
2119 return -ENODEV;
2120 return sprintf(buffer, "%lu,%lu", CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB);
2121 }
2122
param_set_sfb_size(const char * val,const struct kernel_param * kp)2123 static int param_set_sfb_size(const char *val, const struct kernel_param *kp)
2124 {
2125 int rc;
2126 unsigned long min, max;
2127
2128 if (!cpum_sf_avail())
2129 return -ENODEV;
2130 if (!val || !strlen(val))
2131 return -EINVAL;
2132
2133 /* Valid parameter values: "min,max" or "max" */
2134 min = CPUM_SF_MIN_SDB;
2135 max = CPUM_SF_MAX_SDB;
2136 if (strchr(val, ','))
2137 rc = (sscanf(val, "%lu,%lu", &min, &max) == 2) ? 0 : -EINVAL;
2138 else
2139 rc = kstrtoul(val, 10, &max);
2140
2141 if (min < 2 || min >= max || max > get_num_physpages())
2142 rc = -EINVAL;
2143 if (rc)
2144 return rc;
2145
2146 sfb_set_limits(min, max);
2147 pr_info("The sampling buffer limits have changed to: "
2148 "min %lu max %lu (diag %lu)\n",
2149 CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB, CPUM_SF_SDB_DIAG_FACTOR);
2150 return 0;
2151 }
2152
2153 #define param_check_sfb_size(name, p) __param_check(name, p, void)
2154 static const struct kernel_param_ops param_ops_sfb_size = {
2155 .set = param_set_sfb_size,
2156 .get = param_get_sfb_size,
2157 };
2158
2159 #define RS_INIT_FAILURE_QSI 0x0001
2160 #define RS_INIT_FAILURE_BSDES 0x0002
2161 #define RS_INIT_FAILURE_ALRT 0x0003
2162 #define RS_INIT_FAILURE_PERF 0x0004
pr_cpumsf_err(unsigned int reason)2163 static void __init pr_cpumsf_err(unsigned int reason)
2164 {
2165 pr_err("Sampling facility support for perf is not available: "
2166 "reason %#x\n", reason);
2167 }
2168
init_cpum_sampling_pmu(void)2169 static int __init init_cpum_sampling_pmu(void)
2170 {
2171 struct hws_qsi_info_block si;
2172 int err;
2173
2174 if (!cpum_sf_avail())
2175 return -ENODEV;
2176
2177 memset(&si, 0, sizeof(si));
2178 if (qsi(&si)) {
2179 pr_cpumsf_err(RS_INIT_FAILURE_QSI);
2180 return -ENODEV;
2181 }
2182
2183 if (!si.as && !si.ad)
2184 return -ENODEV;
2185
2186 if (si.bsdes != sizeof(struct hws_basic_entry)) {
2187 pr_cpumsf_err(RS_INIT_FAILURE_BSDES);
2188 return -EINVAL;
2189 }
2190
2191 if (si.ad) {
2192 sfb_set_limits(CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB);
2193 /* Sampling of diagnostic data authorized,
2194 * install event into attribute list of PMU device.
2195 */
2196 cpumsf_pmu_events_attr[SF_CYCLES_BASIC_DIAG_ATTR_IDX] =
2197 CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC_DIAG);
2198 }
2199
2200 sfdbg = debug_register(KMSG_COMPONENT, 2, 1, 80);
2201 if (!sfdbg) {
2202 pr_err("Registering for s390dbf failed\n");
2203 return -ENOMEM;
2204 }
2205 debug_register_view(sfdbg, &debug_sprintf_view);
2206
2207 err = register_external_irq(EXT_IRQ_MEASURE_ALERT,
2208 cpumf_measurement_alert);
2209 if (err) {
2210 pr_cpumsf_err(RS_INIT_FAILURE_ALRT);
2211 debug_unregister(sfdbg);
2212 goto out;
2213 }
2214
2215 err = perf_pmu_register(&cpumf_sampling, "cpum_sf", PERF_TYPE_RAW);
2216 if (err) {
2217 pr_cpumsf_err(RS_INIT_FAILURE_PERF);
2218 unregister_external_irq(EXT_IRQ_MEASURE_ALERT,
2219 cpumf_measurement_alert);
2220 debug_unregister(sfdbg);
2221 goto out;
2222 }
2223
2224 cpuhp_setup_state(CPUHP_AP_PERF_S390_SF_ONLINE, "perf/s390/sf:online",
2225 s390_pmu_sf_online_cpu, s390_pmu_sf_offline_cpu);
2226 out:
2227 return err;
2228 }
2229
2230 arch_initcall(init_cpum_sampling_pmu);
2231 core_param(cpum_sfb_size, CPUM_SF_MAX_SDB, sfb_size, 0644);
2232