1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Derived from "arch/i386/kernel/process.c"
4 * Copyright (C) 1995 Linus Torvalds
5 *
6 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
7 * Paul Mackerras (paulus@cs.anu.edu.au)
8 *
9 * PowerPC version
10 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11 */
12
13 #include <linux/errno.h>
14 #include <linux/sched.h>
15 #include <linux/sched/debug.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/task_stack.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/unistd.h>
23 #include <linux/ptrace.h>
24 #include <linux/slab.h>
25 #include <linux/user.h>
26 #include <linux/elf.h>
27 #include <linux/prctl.h>
28 #include <linux/init_task.h>
29 #include <linux/export.h>
30 #include <linux/kallsyms.h>
31 #include <linux/mqueue.h>
32 #include <linux/hardirq.h>
33 #include <linux/utsname.h>
34 #include <linux/ftrace.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/personality.h>
37 #include <linux/hw_breakpoint.h>
38 #include <linux/uaccess.h>
39 #include <linux/pkeys.h>
40 #include <linux/seq_buf.h>
41
42 #include <asm/interrupt.h>
43 #include <asm/io.h>
44 #include <asm/processor.h>
45 #include <asm/mmu.h>
46 #include <asm/machdep.h>
47 #include <asm/time.h>
48 #include <asm/runlatch.h>
49 #include <asm/syscalls.h>
50 #include <asm/switch_to.h>
51 #include <asm/tm.h>
52 #include <asm/debug.h>
53 #ifdef CONFIG_PPC64
54 #include <asm/firmware.h>
55 #include <asm/hw_irq.h>
56 #endif
57 #include <asm/code-patching.h>
58 #include <asm/exec.h>
59 #include <asm/livepatch.h>
60 #include <asm/cpu_has_feature.h>
61 #include <asm/asm-prototypes.h>
62 #include <asm/stacktrace.h>
63 #include <asm/hw_breakpoint.h>
64
65 #include <linux/kprobes.h>
66 #include <linux/kdebug.h>
67
68 /* Transactional Memory debug */
69 #ifdef TM_DEBUG_SW
70 #define TM_DEBUG(x...) printk(KERN_INFO x)
71 #else
72 #define TM_DEBUG(x...) do { } while(0)
73 #endif
74
75 extern unsigned long _get_SP(void);
76
77 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
78 /*
79 * Are we running in "Suspend disabled" mode? If so we have to block any
80 * sigreturn that would get us into suspended state, and we also warn in some
81 * other paths that we should never reach with suspend disabled.
82 */
83 bool tm_suspend_disabled __ro_after_init = false;
84
check_if_tm_restore_required(struct task_struct * tsk)85 static void check_if_tm_restore_required(struct task_struct *tsk)
86 {
87 /*
88 * If we are saving the current thread's registers, and the
89 * thread is in a transactional state, set the TIF_RESTORE_TM
90 * bit so that we know to restore the registers before
91 * returning to userspace.
92 */
93 if (tsk == current && tsk->thread.regs &&
94 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
95 !test_thread_flag(TIF_RESTORE_TM)) {
96 regs_set_return_msr(&tsk->thread.ckpt_regs,
97 tsk->thread.regs->msr);
98 set_thread_flag(TIF_RESTORE_TM);
99 }
100 }
101
102 #else
check_if_tm_restore_required(struct task_struct * tsk)103 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
104 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
105
106 bool strict_msr_control;
107 EXPORT_SYMBOL(strict_msr_control);
108
enable_strict_msr_control(char * str)109 static int __init enable_strict_msr_control(char *str)
110 {
111 strict_msr_control = true;
112 pr_info("Enabling strict facility control\n");
113
114 return 0;
115 }
116 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
117
118 /* notrace because it's called by restore_math */
msr_check_and_set(unsigned long bits)119 unsigned long notrace msr_check_and_set(unsigned long bits)
120 {
121 unsigned long oldmsr = mfmsr();
122 unsigned long newmsr;
123
124 newmsr = oldmsr | bits;
125
126 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
127 newmsr |= MSR_VSX;
128
129 if (oldmsr != newmsr)
130 mtmsr_isync(newmsr);
131
132 return newmsr;
133 }
134 EXPORT_SYMBOL_GPL(msr_check_and_set);
135
136 /* notrace because it's called by restore_math */
__msr_check_and_clear(unsigned long bits)137 void notrace __msr_check_and_clear(unsigned long bits)
138 {
139 unsigned long oldmsr = mfmsr();
140 unsigned long newmsr;
141
142 newmsr = oldmsr & ~bits;
143
144 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
145 newmsr &= ~MSR_VSX;
146
147 if (oldmsr != newmsr)
148 mtmsr_isync(newmsr);
149 }
150 EXPORT_SYMBOL(__msr_check_and_clear);
151
152 #ifdef CONFIG_PPC_FPU
__giveup_fpu(struct task_struct * tsk)153 static void __giveup_fpu(struct task_struct *tsk)
154 {
155 unsigned long msr;
156
157 save_fpu(tsk);
158 msr = tsk->thread.regs->msr;
159 msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
160 if (cpu_has_feature(CPU_FTR_VSX))
161 msr &= ~MSR_VSX;
162 regs_set_return_msr(tsk->thread.regs, msr);
163 }
164
giveup_fpu(struct task_struct * tsk)165 void giveup_fpu(struct task_struct *tsk)
166 {
167 check_if_tm_restore_required(tsk);
168
169 msr_check_and_set(MSR_FP);
170 __giveup_fpu(tsk);
171 msr_check_and_clear(MSR_FP);
172 }
173 EXPORT_SYMBOL(giveup_fpu);
174
175 /*
176 * Make sure the floating-point register state in the
177 * the thread_struct is up to date for task tsk.
178 */
flush_fp_to_thread(struct task_struct * tsk)179 void flush_fp_to_thread(struct task_struct *tsk)
180 {
181 if (tsk->thread.regs) {
182 /*
183 * We need to disable preemption here because if we didn't,
184 * another process could get scheduled after the regs->msr
185 * test but before we have finished saving the FP registers
186 * to the thread_struct. That process could take over the
187 * FPU, and then when we get scheduled again we would store
188 * bogus values for the remaining FP registers.
189 */
190 preempt_disable();
191 if (tsk->thread.regs->msr & MSR_FP) {
192 /*
193 * This should only ever be called for current or
194 * for a stopped child process. Since we save away
195 * the FP register state on context switch,
196 * there is something wrong if a stopped child appears
197 * to still have its FP state in the CPU registers.
198 */
199 BUG_ON(tsk != current);
200 giveup_fpu(tsk);
201 }
202 preempt_enable();
203 }
204 }
205 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
206
enable_kernel_fp(void)207 void enable_kernel_fp(void)
208 {
209 unsigned long cpumsr;
210
211 WARN_ON(preemptible());
212
213 cpumsr = msr_check_and_set(MSR_FP);
214
215 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
216 check_if_tm_restore_required(current);
217 /*
218 * If a thread has already been reclaimed then the
219 * checkpointed registers are on the CPU but have definitely
220 * been saved by the reclaim code. Don't need to and *cannot*
221 * giveup as this would save to the 'live' structure not the
222 * checkpointed structure.
223 */
224 if (!MSR_TM_ACTIVE(cpumsr) &&
225 MSR_TM_ACTIVE(current->thread.regs->msr))
226 return;
227 __giveup_fpu(current);
228 }
229 }
230 EXPORT_SYMBOL(enable_kernel_fp);
231 #else
__giveup_fpu(struct task_struct * tsk)232 static inline void __giveup_fpu(struct task_struct *tsk) { }
233 #endif /* CONFIG_PPC_FPU */
234
235 #ifdef CONFIG_ALTIVEC
__giveup_altivec(struct task_struct * tsk)236 static void __giveup_altivec(struct task_struct *tsk)
237 {
238 unsigned long msr;
239
240 save_altivec(tsk);
241 msr = tsk->thread.regs->msr;
242 msr &= ~MSR_VEC;
243 if (cpu_has_feature(CPU_FTR_VSX))
244 msr &= ~MSR_VSX;
245 regs_set_return_msr(tsk->thread.regs, msr);
246 }
247
giveup_altivec(struct task_struct * tsk)248 void giveup_altivec(struct task_struct *tsk)
249 {
250 check_if_tm_restore_required(tsk);
251
252 msr_check_and_set(MSR_VEC);
253 __giveup_altivec(tsk);
254 msr_check_and_clear(MSR_VEC);
255 }
256 EXPORT_SYMBOL(giveup_altivec);
257
enable_kernel_altivec(void)258 void enable_kernel_altivec(void)
259 {
260 unsigned long cpumsr;
261
262 WARN_ON(preemptible());
263
264 cpumsr = msr_check_and_set(MSR_VEC);
265
266 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
267 check_if_tm_restore_required(current);
268 /*
269 * If a thread has already been reclaimed then the
270 * checkpointed registers are on the CPU but have definitely
271 * been saved by the reclaim code. Don't need to and *cannot*
272 * giveup as this would save to the 'live' structure not the
273 * checkpointed structure.
274 */
275 if (!MSR_TM_ACTIVE(cpumsr) &&
276 MSR_TM_ACTIVE(current->thread.regs->msr))
277 return;
278 __giveup_altivec(current);
279 }
280 }
281 EXPORT_SYMBOL(enable_kernel_altivec);
282
283 /*
284 * Make sure the VMX/Altivec register state in the
285 * the thread_struct is up to date for task tsk.
286 */
flush_altivec_to_thread(struct task_struct * tsk)287 void flush_altivec_to_thread(struct task_struct *tsk)
288 {
289 if (tsk->thread.regs) {
290 preempt_disable();
291 if (tsk->thread.regs->msr & MSR_VEC) {
292 BUG_ON(tsk != current);
293 giveup_altivec(tsk);
294 }
295 preempt_enable();
296 }
297 }
298 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
299 #endif /* CONFIG_ALTIVEC */
300
301 #ifdef CONFIG_VSX
__giveup_vsx(struct task_struct * tsk)302 static void __giveup_vsx(struct task_struct *tsk)
303 {
304 unsigned long msr = tsk->thread.regs->msr;
305
306 /*
307 * We should never be setting MSR_VSX without also setting
308 * MSR_FP and MSR_VEC
309 */
310 WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
311
312 /* __giveup_fpu will clear MSR_VSX */
313 if (msr & MSR_FP)
314 __giveup_fpu(tsk);
315 if (msr & MSR_VEC)
316 __giveup_altivec(tsk);
317 }
318
giveup_vsx(struct task_struct * tsk)319 static void giveup_vsx(struct task_struct *tsk)
320 {
321 check_if_tm_restore_required(tsk);
322
323 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
324 __giveup_vsx(tsk);
325 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
326 }
327
enable_kernel_vsx(void)328 void enable_kernel_vsx(void)
329 {
330 unsigned long cpumsr;
331
332 WARN_ON(preemptible());
333
334 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
335
336 if (current->thread.regs &&
337 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
338 check_if_tm_restore_required(current);
339 /*
340 * If a thread has already been reclaimed then the
341 * checkpointed registers are on the CPU but have definitely
342 * been saved by the reclaim code. Don't need to and *cannot*
343 * giveup as this would save to the 'live' structure not the
344 * checkpointed structure.
345 */
346 if (!MSR_TM_ACTIVE(cpumsr) &&
347 MSR_TM_ACTIVE(current->thread.regs->msr))
348 return;
349 __giveup_vsx(current);
350 }
351 }
352 EXPORT_SYMBOL(enable_kernel_vsx);
353
flush_vsx_to_thread(struct task_struct * tsk)354 void flush_vsx_to_thread(struct task_struct *tsk)
355 {
356 if (tsk->thread.regs) {
357 preempt_disable();
358 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
359 BUG_ON(tsk != current);
360 giveup_vsx(tsk);
361 }
362 preempt_enable();
363 }
364 }
365 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
366 #endif /* CONFIG_VSX */
367
368 #ifdef CONFIG_SPE
giveup_spe(struct task_struct * tsk)369 void giveup_spe(struct task_struct *tsk)
370 {
371 check_if_tm_restore_required(tsk);
372
373 msr_check_and_set(MSR_SPE);
374 __giveup_spe(tsk);
375 msr_check_and_clear(MSR_SPE);
376 }
377 EXPORT_SYMBOL(giveup_spe);
378
enable_kernel_spe(void)379 void enable_kernel_spe(void)
380 {
381 WARN_ON(preemptible());
382
383 msr_check_and_set(MSR_SPE);
384
385 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
386 check_if_tm_restore_required(current);
387 __giveup_spe(current);
388 }
389 }
390 EXPORT_SYMBOL(enable_kernel_spe);
391
flush_spe_to_thread(struct task_struct * tsk)392 void flush_spe_to_thread(struct task_struct *tsk)
393 {
394 if (tsk->thread.regs) {
395 preempt_disable();
396 if (tsk->thread.regs->msr & MSR_SPE) {
397 BUG_ON(tsk != current);
398 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
399 giveup_spe(tsk);
400 }
401 preempt_enable();
402 }
403 }
404 #endif /* CONFIG_SPE */
405
406 static unsigned long msr_all_available;
407
init_msr_all_available(void)408 static int __init init_msr_all_available(void)
409 {
410 if (IS_ENABLED(CONFIG_PPC_FPU))
411 msr_all_available |= MSR_FP;
412 if (cpu_has_feature(CPU_FTR_ALTIVEC))
413 msr_all_available |= MSR_VEC;
414 if (cpu_has_feature(CPU_FTR_VSX))
415 msr_all_available |= MSR_VSX;
416 if (cpu_has_feature(CPU_FTR_SPE))
417 msr_all_available |= MSR_SPE;
418
419 return 0;
420 }
421 early_initcall(init_msr_all_available);
422
giveup_all(struct task_struct * tsk)423 void giveup_all(struct task_struct *tsk)
424 {
425 unsigned long usermsr;
426
427 if (!tsk->thread.regs)
428 return;
429
430 check_if_tm_restore_required(tsk);
431
432 usermsr = tsk->thread.regs->msr;
433
434 if ((usermsr & msr_all_available) == 0)
435 return;
436
437 msr_check_and_set(msr_all_available);
438
439 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
440
441 if (usermsr & MSR_FP)
442 __giveup_fpu(tsk);
443 if (usermsr & MSR_VEC)
444 __giveup_altivec(tsk);
445 if (usermsr & MSR_SPE)
446 __giveup_spe(tsk);
447
448 msr_check_and_clear(msr_all_available);
449 }
450 EXPORT_SYMBOL(giveup_all);
451
452 #ifdef CONFIG_PPC_BOOK3S_64
453 #ifdef CONFIG_PPC_FPU
should_restore_fp(void)454 static bool should_restore_fp(void)
455 {
456 if (current->thread.load_fp) {
457 current->thread.load_fp++;
458 return true;
459 }
460 return false;
461 }
462
do_restore_fp(void)463 static void do_restore_fp(void)
464 {
465 load_fp_state(¤t->thread.fp_state);
466 }
467 #else
should_restore_fp(void)468 static bool should_restore_fp(void) { return false; }
do_restore_fp(void)469 static void do_restore_fp(void) { }
470 #endif /* CONFIG_PPC_FPU */
471
472 #ifdef CONFIG_ALTIVEC
should_restore_altivec(void)473 static bool should_restore_altivec(void)
474 {
475 if (cpu_has_feature(CPU_FTR_ALTIVEC) && (current->thread.load_vec)) {
476 current->thread.load_vec++;
477 return true;
478 }
479 return false;
480 }
481
do_restore_altivec(void)482 static void do_restore_altivec(void)
483 {
484 load_vr_state(¤t->thread.vr_state);
485 current->thread.used_vr = 1;
486 }
487 #else
should_restore_altivec(void)488 static bool should_restore_altivec(void) { return false; }
do_restore_altivec(void)489 static void do_restore_altivec(void) { }
490 #endif /* CONFIG_ALTIVEC */
491
should_restore_vsx(void)492 static bool should_restore_vsx(void)
493 {
494 if (cpu_has_feature(CPU_FTR_VSX))
495 return true;
496 return false;
497 }
498 #ifdef CONFIG_VSX
do_restore_vsx(void)499 static void do_restore_vsx(void)
500 {
501 current->thread.used_vsr = 1;
502 }
503 #else
do_restore_vsx(void)504 static void do_restore_vsx(void) { }
505 #endif /* CONFIG_VSX */
506
507 /*
508 * The exception exit path calls restore_math() with interrupts hard disabled
509 * but the soft irq state not "reconciled". ftrace code that calls
510 * local_irq_save/restore causes warnings.
511 *
512 * Rather than complicate the exit path, just don't trace restore_math. This
513 * could be done by having ftrace entry code check for this un-reconciled
514 * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and
515 * temporarily fix it up for the duration of the ftrace call.
516 */
restore_math(struct pt_regs * regs)517 void notrace restore_math(struct pt_regs *regs)
518 {
519 unsigned long msr;
520 unsigned long new_msr = 0;
521
522 msr = regs->msr;
523
524 /*
525 * new_msr tracks the facilities that are to be restored. Only reload
526 * if the bit is not set in the user MSR (if it is set, the registers
527 * are live for the user thread).
528 */
529 if ((!(msr & MSR_FP)) && should_restore_fp())
530 new_msr |= MSR_FP;
531
532 if ((!(msr & MSR_VEC)) && should_restore_altivec())
533 new_msr |= MSR_VEC;
534
535 if ((!(msr & MSR_VSX)) && should_restore_vsx()) {
536 if (((msr | new_msr) & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC))
537 new_msr |= MSR_VSX;
538 }
539
540 if (new_msr) {
541 unsigned long fpexc_mode = 0;
542
543 msr_check_and_set(new_msr);
544
545 if (new_msr & MSR_FP) {
546 do_restore_fp();
547
548 // This also covers VSX, because VSX implies FP
549 fpexc_mode = current->thread.fpexc_mode;
550 }
551
552 if (new_msr & MSR_VEC)
553 do_restore_altivec();
554
555 if (new_msr & MSR_VSX)
556 do_restore_vsx();
557
558 msr_check_and_clear(new_msr);
559
560 regs_set_return_msr(regs, regs->msr | new_msr | fpexc_mode);
561 }
562 }
563 #endif /* CONFIG_PPC_BOOK3S_64 */
564
save_all(struct task_struct * tsk)565 static void save_all(struct task_struct *tsk)
566 {
567 unsigned long usermsr;
568
569 if (!tsk->thread.regs)
570 return;
571
572 usermsr = tsk->thread.regs->msr;
573
574 if ((usermsr & msr_all_available) == 0)
575 return;
576
577 msr_check_and_set(msr_all_available);
578
579 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
580
581 if (usermsr & MSR_FP)
582 save_fpu(tsk);
583
584 if (usermsr & MSR_VEC)
585 save_altivec(tsk);
586
587 if (usermsr & MSR_SPE)
588 __giveup_spe(tsk);
589
590 msr_check_and_clear(msr_all_available);
591 }
592
flush_all_to_thread(struct task_struct * tsk)593 void flush_all_to_thread(struct task_struct *tsk)
594 {
595 if (tsk->thread.regs) {
596 preempt_disable();
597 BUG_ON(tsk != current);
598 #ifdef CONFIG_SPE
599 if (tsk->thread.regs->msr & MSR_SPE)
600 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
601 #endif
602 save_all(tsk);
603
604 preempt_enable();
605 }
606 }
607 EXPORT_SYMBOL(flush_all_to_thread);
608
609 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
do_send_trap(struct pt_regs * regs,unsigned long address,unsigned long error_code,int breakpt)610 void do_send_trap(struct pt_regs *regs, unsigned long address,
611 unsigned long error_code, int breakpt)
612 {
613 current->thread.trap_nr = TRAP_HWBKPT;
614 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
615 11, SIGSEGV) == NOTIFY_STOP)
616 return;
617
618 /* Deliver the signal to userspace */
619 force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
620 (void __user *)address);
621 }
622 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
623
do_break_handler(struct pt_regs * regs)624 static void do_break_handler(struct pt_regs *regs)
625 {
626 struct arch_hw_breakpoint null_brk = {0};
627 struct arch_hw_breakpoint *info;
628 ppc_inst_t instr = ppc_inst(0);
629 int type = 0;
630 int size = 0;
631 unsigned long ea;
632 int i;
633
634 /*
635 * If underneath hw supports only one watchpoint, we know it
636 * caused exception. 8xx also falls into this category.
637 */
638 if (nr_wp_slots() == 1) {
639 __set_breakpoint(0, &null_brk);
640 current->thread.hw_brk[0] = null_brk;
641 current->thread.hw_brk[0].flags |= HW_BRK_FLAG_DISABLED;
642 return;
643 }
644
645 /* Otherwise find out which DAWR caused exception and disable it. */
646 wp_get_instr_detail(regs, &instr, &type, &size, &ea);
647
648 for (i = 0; i < nr_wp_slots(); i++) {
649 info = ¤t->thread.hw_brk[i];
650 if (!info->address)
651 continue;
652
653 if (wp_check_constraints(regs, instr, ea, type, size, info)) {
654 __set_breakpoint(i, &null_brk);
655 current->thread.hw_brk[i] = null_brk;
656 current->thread.hw_brk[i].flags |= HW_BRK_FLAG_DISABLED;
657 }
658 }
659 }
660
DEFINE_INTERRUPT_HANDLER(do_break)661 DEFINE_INTERRUPT_HANDLER(do_break)
662 {
663 current->thread.trap_nr = TRAP_HWBKPT;
664 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, regs->dsisr,
665 11, SIGSEGV) == NOTIFY_STOP)
666 return;
667
668 if (debugger_break_match(regs))
669 return;
670
671 /*
672 * We reach here only when watchpoint exception is generated by ptrace
673 * event (or hw is buggy!). Now if CONFIG_HAVE_HW_BREAKPOINT is set,
674 * watchpoint is already handled by hw_breakpoint_handler() so we don't
675 * have to do anything. But when CONFIG_HAVE_HW_BREAKPOINT is not set,
676 * we need to manually handle the watchpoint here.
677 */
678 if (!IS_ENABLED(CONFIG_HAVE_HW_BREAKPOINT))
679 do_break_handler(regs);
680
681 /* Deliver the signal to userspace */
682 force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)regs->dar);
683 }
684 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
685
686 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk[HBP_NUM_MAX]);
687
688 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
689 /*
690 * Set the debug registers back to their default "safe" values.
691 */
set_debug_reg_defaults(struct thread_struct * thread)692 static void set_debug_reg_defaults(struct thread_struct *thread)
693 {
694 thread->debug.iac1 = thread->debug.iac2 = 0;
695 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
696 thread->debug.iac3 = thread->debug.iac4 = 0;
697 #endif
698 thread->debug.dac1 = thread->debug.dac2 = 0;
699 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
700 thread->debug.dvc1 = thread->debug.dvc2 = 0;
701 #endif
702 thread->debug.dbcr0 = 0;
703 #ifdef CONFIG_BOOKE
704 /*
705 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
706 */
707 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
708 DBCR1_IAC3US | DBCR1_IAC4US;
709 /*
710 * Force Data Address Compare User/Supervisor bits to be User-only
711 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
712 */
713 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
714 #else
715 thread->debug.dbcr1 = 0;
716 #endif
717 }
718
prime_debug_regs(struct debug_reg * debug)719 static void prime_debug_regs(struct debug_reg *debug)
720 {
721 /*
722 * We could have inherited MSR_DE from userspace, since
723 * it doesn't get cleared on exception entry. Make sure
724 * MSR_DE is clear before we enable any debug events.
725 */
726 mtmsr(mfmsr() & ~MSR_DE);
727
728 mtspr(SPRN_IAC1, debug->iac1);
729 mtspr(SPRN_IAC2, debug->iac2);
730 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
731 mtspr(SPRN_IAC3, debug->iac3);
732 mtspr(SPRN_IAC4, debug->iac4);
733 #endif
734 mtspr(SPRN_DAC1, debug->dac1);
735 mtspr(SPRN_DAC2, debug->dac2);
736 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
737 mtspr(SPRN_DVC1, debug->dvc1);
738 mtspr(SPRN_DVC2, debug->dvc2);
739 #endif
740 mtspr(SPRN_DBCR0, debug->dbcr0);
741 mtspr(SPRN_DBCR1, debug->dbcr1);
742 #ifdef CONFIG_BOOKE
743 mtspr(SPRN_DBCR2, debug->dbcr2);
744 #endif
745 }
746 /*
747 * Unless neither the old or new thread are making use of the
748 * debug registers, set the debug registers from the values
749 * stored in the new thread.
750 */
switch_booke_debug_regs(struct debug_reg * new_debug)751 void switch_booke_debug_regs(struct debug_reg *new_debug)
752 {
753 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
754 || (new_debug->dbcr0 & DBCR0_IDM))
755 prime_debug_regs(new_debug);
756 }
757 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
758 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
759 #ifndef CONFIG_HAVE_HW_BREAKPOINT
set_breakpoint(int i,struct arch_hw_breakpoint * brk)760 static void set_breakpoint(int i, struct arch_hw_breakpoint *brk)
761 {
762 preempt_disable();
763 __set_breakpoint(i, brk);
764 preempt_enable();
765 }
766
set_debug_reg_defaults(struct thread_struct * thread)767 static void set_debug_reg_defaults(struct thread_struct *thread)
768 {
769 int i;
770 struct arch_hw_breakpoint null_brk = {0};
771
772 for (i = 0; i < nr_wp_slots(); i++) {
773 thread->hw_brk[i] = null_brk;
774 if (ppc_breakpoint_available())
775 set_breakpoint(i, &thread->hw_brk[i]);
776 }
777 }
778
hw_brk_match(struct arch_hw_breakpoint * a,struct arch_hw_breakpoint * b)779 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
780 struct arch_hw_breakpoint *b)
781 {
782 if (a->address != b->address)
783 return false;
784 if (a->type != b->type)
785 return false;
786 if (a->len != b->len)
787 return false;
788 /* no need to check hw_len. it's calculated from address and len */
789 return true;
790 }
791
switch_hw_breakpoint(struct task_struct * new)792 static void switch_hw_breakpoint(struct task_struct *new)
793 {
794 int i;
795
796 for (i = 0; i < nr_wp_slots(); i++) {
797 if (likely(hw_brk_match(this_cpu_ptr(¤t_brk[i]),
798 &new->thread.hw_brk[i])))
799 continue;
800
801 __set_breakpoint(i, &new->thread.hw_brk[i]);
802 }
803 }
804 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
805 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
806
set_dabr(struct arch_hw_breakpoint * brk)807 static inline int set_dabr(struct arch_hw_breakpoint *brk)
808 {
809 unsigned long dabr, dabrx;
810
811 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
812 dabrx = ((brk->type >> 3) & 0x7);
813
814 if (ppc_md.set_dabr)
815 return ppc_md.set_dabr(dabr, dabrx);
816
817 if (IS_ENABLED(CONFIG_PPC_ADV_DEBUG_REGS)) {
818 mtspr(SPRN_DAC1, dabr);
819 if (IS_ENABLED(CONFIG_PPC_47x))
820 isync();
821 return 0;
822 } else if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
823 mtspr(SPRN_DABR, dabr);
824 if (cpu_has_feature(CPU_FTR_DABRX))
825 mtspr(SPRN_DABRX, dabrx);
826 return 0;
827 } else {
828 return -EINVAL;
829 }
830 }
831
set_breakpoint_8xx(struct arch_hw_breakpoint * brk)832 static inline int set_breakpoint_8xx(struct arch_hw_breakpoint *brk)
833 {
834 unsigned long lctrl1 = LCTRL1_CTE_GT | LCTRL1_CTF_LT | LCTRL1_CRWE_RW |
835 LCTRL1_CRWF_RW;
836 unsigned long lctrl2 = LCTRL2_LW0EN | LCTRL2_LW0LADC | LCTRL2_SLW0EN;
837 unsigned long start_addr = ALIGN_DOWN(brk->address, HW_BREAKPOINT_SIZE);
838 unsigned long end_addr = ALIGN(brk->address + brk->len, HW_BREAKPOINT_SIZE);
839
840 if (start_addr == 0)
841 lctrl2 |= LCTRL2_LW0LA_F;
842 else if (end_addr == 0)
843 lctrl2 |= LCTRL2_LW0LA_E;
844 else
845 lctrl2 |= LCTRL2_LW0LA_EandF;
846
847 mtspr(SPRN_LCTRL2, 0);
848
849 if ((brk->type & HW_BRK_TYPE_RDWR) == 0)
850 return 0;
851
852 if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
853 lctrl1 |= LCTRL1_CRWE_RO | LCTRL1_CRWF_RO;
854 if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
855 lctrl1 |= LCTRL1_CRWE_WO | LCTRL1_CRWF_WO;
856
857 mtspr(SPRN_CMPE, start_addr - 1);
858 mtspr(SPRN_CMPF, end_addr);
859 mtspr(SPRN_LCTRL1, lctrl1);
860 mtspr(SPRN_LCTRL2, lctrl2);
861
862 return 0;
863 }
864
__set_breakpoint(int nr,struct arch_hw_breakpoint * brk)865 void __set_breakpoint(int nr, struct arch_hw_breakpoint *brk)
866 {
867 memcpy(this_cpu_ptr(¤t_brk[nr]), brk, sizeof(*brk));
868
869 if (dawr_enabled())
870 // Power8 or later
871 set_dawr(nr, brk);
872 else if (IS_ENABLED(CONFIG_PPC_8xx))
873 set_breakpoint_8xx(brk);
874 else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
875 // Power7 or earlier
876 set_dabr(brk);
877 else
878 // Shouldn't happen due to higher level checks
879 WARN_ON_ONCE(1);
880 }
881
882 /* Check if we have DAWR or DABR hardware */
ppc_breakpoint_available(void)883 bool ppc_breakpoint_available(void)
884 {
885 if (dawr_enabled())
886 return true; /* POWER8 DAWR or POWER9 forced DAWR */
887 if (cpu_has_feature(CPU_FTR_ARCH_207S))
888 return false; /* POWER9 with DAWR disabled */
889 /* DABR: Everything but POWER8 and POWER9 */
890 return true;
891 }
892 EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
893
894 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
895
tm_enabled(struct task_struct * tsk)896 static inline bool tm_enabled(struct task_struct *tsk)
897 {
898 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
899 }
900
tm_reclaim_thread(struct thread_struct * thr,uint8_t cause)901 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
902 {
903 /*
904 * Use the current MSR TM suspended bit to track if we have
905 * checkpointed state outstanding.
906 * On signal delivery, we'd normally reclaim the checkpointed
907 * state to obtain stack pointer (see:get_tm_stackpointer()).
908 * This will then directly return to userspace without going
909 * through __switch_to(). However, if the stack frame is bad,
910 * we need to exit this thread which calls __switch_to() which
911 * will again attempt to reclaim the already saved tm state.
912 * Hence we need to check that we've not already reclaimed
913 * this state.
914 * We do this using the current MSR, rather tracking it in
915 * some specific thread_struct bit, as it has the additional
916 * benefit of checking for a potential TM bad thing exception.
917 */
918 if (!MSR_TM_SUSPENDED(mfmsr()))
919 return;
920
921 giveup_all(container_of(thr, struct task_struct, thread));
922
923 tm_reclaim(thr, cause);
924
925 /*
926 * If we are in a transaction and FP is off then we can't have
927 * used FP inside that transaction. Hence the checkpointed
928 * state is the same as the live state. We need to copy the
929 * live state to the checkpointed state so that when the
930 * transaction is restored, the checkpointed state is correct
931 * and the aborted transaction sees the correct state. We use
932 * ckpt_regs.msr here as that's what tm_reclaim will use to
933 * determine if it's going to write the checkpointed state or
934 * not. So either this will write the checkpointed registers,
935 * or reclaim will. Similarly for VMX.
936 */
937 if ((thr->ckpt_regs.msr & MSR_FP) == 0)
938 memcpy(&thr->ckfp_state, &thr->fp_state,
939 sizeof(struct thread_fp_state));
940 if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
941 memcpy(&thr->ckvr_state, &thr->vr_state,
942 sizeof(struct thread_vr_state));
943 }
944
tm_reclaim_current(uint8_t cause)945 void tm_reclaim_current(uint8_t cause)
946 {
947 tm_enable();
948 tm_reclaim_thread(¤t->thread, cause);
949 }
950
tm_reclaim_task(struct task_struct * tsk)951 static inline void tm_reclaim_task(struct task_struct *tsk)
952 {
953 /* We have to work out if we're switching from/to a task that's in the
954 * middle of a transaction.
955 *
956 * In switching we need to maintain a 2nd register state as
957 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
958 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
959 * ckvr_state
960 *
961 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
962 */
963 struct thread_struct *thr = &tsk->thread;
964
965 if (!thr->regs)
966 return;
967
968 if (!MSR_TM_ACTIVE(thr->regs->msr))
969 goto out_and_saveregs;
970
971 WARN_ON(tm_suspend_disabled);
972
973 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
974 "ccr=%lx, msr=%lx, trap=%lx)\n",
975 tsk->pid, thr->regs->nip,
976 thr->regs->ccr, thr->regs->msr,
977 thr->regs->trap);
978
979 tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
980
981 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
982 tsk->pid);
983
984 out_and_saveregs:
985 /* Always save the regs here, even if a transaction's not active.
986 * This context-switches a thread's TM info SPRs. We do it here to
987 * be consistent with the restore path (in recheckpoint) which
988 * cannot happen later in _switch().
989 */
990 tm_save_sprs(thr);
991 }
992
993 extern void __tm_recheckpoint(struct thread_struct *thread);
994
tm_recheckpoint(struct thread_struct * thread)995 void tm_recheckpoint(struct thread_struct *thread)
996 {
997 unsigned long flags;
998
999 if (!(thread->regs->msr & MSR_TM))
1000 return;
1001
1002 /* We really can't be interrupted here as the TEXASR registers can't
1003 * change and later in the trecheckpoint code, we have a userspace R1.
1004 * So let's hard disable over this region.
1005 */
1006 local_irq_save(flags);
1007 hard_irq_disable();
1008
1009 /* The TM SPRs are restored here, so that TEXASR.FS can be set
1010 * before the trecheckpoint and no explosion occurs.
1011 */
1012 tm_restore_sprs(thread);
1013
1014 __tm_recheckpoint(thread);
1015
1016 local_irq_restore(flags);
1017 }
1018
tm_recheckpoint_new_task(struct task_struct * new)1019 static inline void tm_recheckpoint_new_task(struct task_struct *new)
1020 {
1021 if (!cpu_has_feature(CPU_FTR_TM))
1022 return;
1023
1024 /* Recheckpoint the registers of the thread we're about to switch to.
1025 *
1026 * If the task was using FP, we non-lazily reload both the original and
1027 * the speculative FP register states. This is because the kernel
1028 * doesn't see if/when a TM rollback occurs, so if we take an FP
1029 * unavailable later, we are unable to determine which set of FP regs
1030 * need to be restored.
1031 */
1032 if (!tm_enabled(new))
1033 return;
1034
1035 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
1036 tm_restore_sprs(&new->thread);
1037 return;
1038 }
1039 /* Recheckpoint to restore original checkpointed register state. */
1040 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
1041 new->pid, new->thread.regs->msr);
1042
1043 tm_recheckpoint(&new->thread);
1044
1045 /*
1046 * The checkpointed state has been restored but the live state has
1047 * not, ensure all the math functionality is turned off to trigger
1048 * restore_math() to reload.
1049 */
1050 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1051
1052 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1053 "(kernel msr 0x%lx)\n",
1054 new->pid, mfmsr());
1055 }
1056
__switch_to_tm(struct task_struct * prev,struct task_struct * new)1057 static inline void __switch_to_tm(struct task_struct *prev,
1058 struct task_struct *new)
1059 {
1060 if (cpu_has_feature(CPU_FTR_TM)) {
1061 if (tm_enabled(prev) || tm_enabled(new))
1062 tm_enable();
1063
1064 if (tm_enabled(prev)) {
1065 prev->thread.load_tm++;
1066 tm_reclaim_task(prev);
1067 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1068 prev->thread.regs->msr &= ~MSR_TM;
1069 }
1070
1071 tm_recheckpoint_new_task(new);
1072 }
1073 }
1074
1075 /*
1076 * This is called if we are on the way out to userspace and the
1077 * TIF_RESTORE_TM flag is set. It checks if we need to reload
1078 * FP and/or vector state and does so if necessary.
1079 * If userspace is inside a transaction (whether active or
1080 * suspended) and FP/VMX/VSX instructions have ever been enabled
1081 * inside that transaction, then we have to keep them enabled
1082 * and keep the FP/VMX/VSX state loaded while ever the transaction
1083 * continues. The reason is that if we didn't, and subsequently
1084 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1085 * we don't know whether it's the same transaction, and thus we
1086 * don't know which of the checkpointed state and the transactional
1087 * state to use.
1088 */
restore_tm_state(struct pt_regs * regs)1089 void restore_tm_state(struct pt_regs *regs)
1090 {
1091 unsigned long msr_diff;
1092
1093 /*
1094 * This is the only moment we should clear TIF_RESTORE_TM as
1095 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1096 * again, anything else could lead to an incorrect ckpt_msr being
1097 * saved and therefore incorrect signal contexts.
1098 */
1099 clear_thread_flag(TIF_RESTORE_TM);
1100 if (!MSR_TM_ACTIVE(regs->msr))
1101 return;
1102
1103 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1104 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1105
1106 /* Ensure that restore_math() will restore */
1107 if (msr_diff & MSR_FP)
1108 current->thread.load_fp = 1;
1109 #ifdef CONFIG_ALTIVEC
1110 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1111 current->thread.load_vec = 1;
1112 #endif
1113 restore_math(regs);
1114
1115 regs_set_return_msr(regs, regs->msr | msr_diff);
1116 }
1117
1118 #else /* !CONFIG_PPC_TRANSACTIONAL_MEM */
1119 #define tm_recheckpoint_new_task(new)
1120 #define __switch_to_tm(prev, new)
tm_reclaim_current(uint8_t cause)1121 void tm_reclaim_current(uint8_t cause) {}
1122 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1123
save_sprs(struct thread_struct * t)1124 static inline void save_sprs(struct thread_struct *t)
1125 {
1126 #ifdef CONFIG_ALTIVEC
1127 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1128 t->vrsave = mfspr(SPRN_VRSAVE);
1129 #endif
1130 #ifdef CONFIG_SPE
1131 if (cpu_has_feature(CPU_FTR_SPE))
1132 t->spefscr = mfspr(SPRN_SPEFSCR);
1133 #endif
1134 #ifdef CONFIG_PPC_BOOK3S_64
1135 if (cpu_has_feature(CPU_FTR_DSCR))
1136 t->dscr = mfspr(SPRN_DSCR);
1137
1138 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1139 t->bescr = mfspr(SPRN_BESCR);
1140 t->ebbhr = mfspr(SPRN_EBBHR);
1141 t->ebbrr = mfspr(SPRN_EBBRR);
1142
1143 t->fscr = mfspr(SPRN_FSCR);
1144
1145 /*
1146 * Note that the TAR is not available for use in the kernel.
1147 * (To provide this, the TAR should be backed up/restored on
1148 * exception entry/exit instead, and be in pt_regs. FIXME,
1149 * this should be in pt_regs anyway (for debug).)
1150 */
1151 t->tar = mfspr(SPRN_TAR);
1152 }
1153 #endif
1154 }
1155
1156 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
kvmppc_save_user_regs(void)1157 void kvmppc_save_user_regs(void)
1158 {
1159 unsigned long usermsr;
1160
1161 if (!current->thread.regs)
1162 return;
1163
1164 usermsr = current->thread.regs->msr;
1165
1166 if (usermsr & MSR_FP)
1167 save_fpu(current);
1168
1169 if (usermsr & MSR_VEC)
1170 save_altivec(current);
1171
1172 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1173 if (usermsr & MSR_TM) {
1174 current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
1175 current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
1176 current->thread.tm_texasr = mfspr(SPRN_TEXASR);
1177 current->thread.regs->msr &= ~MSR_TM;
1178 }
1179 #endif
1180 }
1181 EXPORT_SYMBOL_GPL(kvmppc_save_user_regs);
1182
kvmppc_save_current_sprs(void)1183 void kvmppc_save_current_sprs(void)
1184 {
1185 save_sprs(¤t->thread);
1186 }
1187 EXPORT_SYMBOL_GPL(kvmppc_save_current_sprs);
1188 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1189
restore_sprs(struct thread_struct * old_thread,struct thread_struct * new_thread)1190 static inline void restore_sprs(struct thread_struct *old_thread,
1191 struct thread_struct *new_thread)
1192 {
1193 #ifdef CONFIG_ALTIVEC
1194 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1195 old_thread->vrsave != new_thread->vrsave)
1196 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1197 #endif
1198 #ifdef CONFIG_SPE
1199 if (cpu_has_feature(CPU_FTR_SPE) &&
1200 old_thread->spefscr != new_thread->spefscr)
1201 mtspr(SPRN_SPEFSCR, new_thread->spefscr);
1202 #endif
1203 #ifdef CONFIG_PPC_BOOK3S_64
1204 if (cpu_has_feature(CPU_FTR_DSCR)) {
1205 u64 dscr = get_paca()->dscr_default;
1206 if (new_thread->dscr_inherit)
1207 dscr = new_thread->dscr;
1208
1209 if (old_thread->dscr != dscr)
1210 mtspr(SPRN_DSCR, dscr);
1211 }
1212
1213 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1214 if (old_thread->bescr != new_thread->bescr)
1215 mtspr(SPRN_BESCR, new_thread->bescr);
1216 if (old_thread->ebbhr != new_thread->ebbhr)
1217 mtspr(SPRN_EBBHR, new_thread->ebbhr);
1218 if (old_thread->ebbrr != new_thread->ebbrr)
1219 mtspr(SPRN_EBBRR, new_thread->ebbrr);
1220
1221 if (old_thread->fscr != new_thread->fscr)
1222 mtspr(SPRN_FSCR, new_thread->fscr);
1223
1224 if (old_thread->tar != new_thread->tar)
1225 mtspr(SPRN_TAR, new_thread->tar);
1226 }
1227
1228 if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1229 old_thread->tidr != new_thread->tidr)
1230 mtspr(SPRN_TIDR, new_thread->tidr);
1231 #endif
1232
1233 }
1234
__switch_to(struct task_struct * prev,struct task_struct * new)1235 struct task_struct *__switch_to(struct task_struct *prev,
1236 struct task_struct *new)
1237 {
1238 struct thread_struct *new_thread, *old_thread;
1239 struct task_struct *last;
1240 #ifdef CONFIG_PPC_64S_HASH_MMU
1241 struct ppc64_tlb_batch *batch;
1242 #endif
1243
1244 new_thread = &new->thread;
1245 old_thread = ¤t->thread;
1246
1247 WARN_ON(!irqs_disabled());
1248
1249 #ifdef CONFIG_PPC_64S_HASH_MMU
1250 batch = this_cpu_ptr(&ppc64_tlb_batch);
1251 if (batch->active) {
1252 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1253 if (batch->index)
1254 __flush_tlb_pending(batch);
1255 batch->active = 0;
1256 }
1257
1258 /*
1259 * On POWER9 the copy-paste buffer can only paste into
1260 * foreign real addresses, so unprivileged processes can not
1261 * see the data or use it in any way unless they have
1262 * foreign real mappings. If the new process has the foreign
1263 * real address mappings, we must issue a cp_abort to clear
1264 * any state and prevent snooping, corruption or a covert
1265 * channel. ISA v3.1 supports paste into local memory.
1266 */
1267 if (new->mm && (cpu_has_feature(CPU_FTR_ARCH_31) ||
1268 atomic_read(&new->mm->context.vas_windows)))
1269 asm volatile(PPC_CP_ABORT);
1270 #endif /* CONFIG_PPC_BOOK3S_64 */
1271
1272 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1273 switch_booke_debug_regs(&new->thread.debug);
1274 #else
1275 /*
1276 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1277 * schedule DABR
1278 */
1279 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1280 switch_hw_breakpoint(new);
1281 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1282 #endif
1283
1284 /*
1285 * We need to save SPRs before treclaim/trecheckpoint as these will
1286 * change a number of them.
1287 */
1288 save_sprs(&prev->thread);
1289
1290 /* Save FPU, Altivec, VSX and SPE state */
1291 giveup_all(prev);
1292
1293 __switch_to_tm(prev, new);
1294
1295 if (!radix_enabled()) {
1296 /*
1297 * We can't take a PMU exception inside _switch() since there
1298 * is a window where the kernel stack SLB and the kernel stack
1299 * are out of sync. Hard disable here.
1300 */
1301 hard_irq_disable();
1302 }
1303
1304 /*
1305 * Call restore_sprs() and set_return_regs_changed() before calling
1306 * _switch(). If we move it after _switch() then we miss out on calling
1307 * it for new tasks. The reason for this is we manually create a stack
1308 * frame for new tasks that directly returns through ret_from_fork() or
1309 * ret_from_kernel_thread(). See copy_thread() for details.
1310 */
1311 restore_sprs(old_thread, new_thread);
1312
1313 set_return_regs_changed(); /* _switch changes stack (and regs) */
1314
1315 if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64))
1316 kuap_assert_locked();
1317
1318 last = _switch(old_thread, new_thread);
1319
1320 /*
1321 * Nothing after _switch will be run for newly created tasks,
1322 * because they switch directly to ret_from_fork/ret_from_kernel_thread
1323 * etc. Code added here should have a comment explaining why that is
1324 * okay.
1325 */
1326
1327 #ifdef CONFIG_PPC_BOOK3S_64
1328 #ifdef CONFIG_PPC_64S_HASH_MMU
1329 /*
1330 * This applies to a process that was context switched while inside
1331 * arch_enter_lazy_mmu_mode(), to re-activate the batch that was
1332 * deactivated above, before _switch(). This will never be the case
1333 * for new tasks.
1334 */
1335 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1336 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1337 batch = this_cpu_ptr(&ppc64_tlb_batch);
1338 batch->active = 1;
1339 }
1340 #endif
1341
1342 /*
1343 * Math facilities are masked out of the child MSR in copy_thread.
1344 * A new task does not need to restore_math because it will
1345 * demand fault them.
1346 */
1347 if (current->thread.regs)
1348 restore_math(current->thread.regs);
1349 #endif /* CONFIG_PPC_BOOK3S_64 */
1350
1351 return last;
1352 }
1353
1354 #define NR_INSN_TO_PRINT 16
1355
show_instructions(struct pt_regs * regs)1356 static void show_instructions(struct pt_regs *regs)
1357 {
1358 int i;
1359 unsigned long nip = regs->nip;
1360 unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1361
1362 printk("Instruction dump:");
1363
1364 /*
1365 * If we were executing with the MMU off for instructions, adjust pc
1366 * rather than printing XXXXXXXX.
1367 */
1368 if (!IS_ENABLED(CONFIG_BOOKE) && !(regs->msr & MSR_IR)) {
1369 pc = (unsigned long)phys_to_virt(pc);
1370 nip = (unsigned long)phys_to_virt(regs->nip);
1371 }
1372
1373 for (i = 0; i < NR_INSN_TO_PRINT; i++) {
1374 int instr;
1375
1376 if (!(i % 8))
1377 pr_cont("\n");
1378
1379 if (!__kernel_text_address(pc) ||
1380 get_kernel_nofault(instr, (const void *)pc)) {
1381 pr_cont("XXXXXXXX ");
1382 } else {
1383 if (nip == pc)
1384 pr_cont("<%08x> ", instr);
1385 else
1386 pr_cont("%08x ", instr);
1387 }
1388
1389 pc += sizeof(int);
1390 }
1391
1392 pr_cont("\n");
1393 }
1394
show_user_instructions(struct pt_regs * regs)1395 void show_user_instructions(struct pt_regs *regs)
1396 {
1397 unsigned long pc;
1398 int n = NR_INSN_TO_PRINT;
1399 struct seq_buf s;
1400 char buf[96]; /* enough for 8 times 9 + 2 chars */
1401
1402 pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1403
1404 seq_buf_init(&s, buf, sizeof(buf));
1405
1406 while (n) {
1407 int i;
1408
1409 seq_buf_clear(&s);
1410
1411 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1412 int instr;
1413
1414 if (copy_from_user_nofault(&instr, (void __user *)pc,
1415 sizeof(instr))) {
1416 seq_buf_printf(&s, "XXXXXXXX ");
1417 continue;
1418 }
1419 seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
1420 }
1421
1422 if (!seq_buf_has_overflowed(&s))
1423 pr_info("%s[%d]: code: %s\n", current->comm,
1424 current->pid, s.buffer);
1425 }
1426 }
1427
1428 struct regbit {
1429 unsigned long bit;
1430 const char *name;
1431 };
1432
1433 static struct regbit msr_bits[] = {
1434 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1435 {MSR_SF, "SF"},
1436 {MSR_HV, "HV"},
1437 #endif
1438 {MSR_VEC, "VEC"},
1439 {MSR_VSX, "VSX"},
1440 #ifdef CONFIG_BOOKE
1441 {MSR_CE, "CE"},
1442 #endif
1443 {MSR_EE, "EE"},
1444 {MSR_PR, "PR"},
1445 {MSR_FP, "FP"},
1446 {MSR_ME, "ME"},
1447 #ifdef CONFIG_BOOKE
1448 {MSR_DE, "DE"},
1449 #else
1450 {MSR_SE, "SE"},
1451 {MSR_BE, "BE"},
1452 #endif
1453 {MSR_IR, "IR"},
1454 {MSR_DR, "DR"},
1455 {MSR_PMM, "PMM"},
1456 #ifndef CONFIG_BOOKE
1457 {MSR_RI, "RI"},
1458 {MSR_LE, "LE"},
1459 #endif
1460 {0, NULL}
1461 };
1462
print_bits(unsigned long val,struct regbit * bits,const char * sep)1463 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1464 {
1465 const char *s = "";
1466
1467 for (; bits->bit; ++bits)
1468 if (val & bits->bit) {
1469 pr_cont("%s%s", s, bits->name);
1470 s = sep;
1471 }
1472 }
1473
1474 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1475 static struct regbit msr_tm_bits[] = {
1476 {MSR_TS_T, "T"},
1477 {MSR_TS_S, "S"},
1478 {MSR_TM, "E"},
1479 {0, NULL}
1480 };
1481
print_tm_bits(unsigned long val)1482 static void print_tm_bits(unsigned long val)
1483 {
1484 /*
1485 * This only prints something if at least one of the TM bit is set.
1486 * Inside the TM[], the output means:
1487 * E: Enabled (bit 32)
1488 * S: Suspended (bit 33)
1489 * T: Transactional (bit 34)
1490 */
1491 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1492 pr_cont(",TM[");
1493 print_bits(val, msr_tm_bits, "");
1494 pr_cont("]");
1495 }
1496 }
1497 #else
print_tm_bits(unsigned long val)1498 static void print_tm_bits(unsigned long val) {}
1499 #endif
1500
print_msr_bits(unsigned long val)1501 static void print_msr_bits(unsigned long val)
1502 {
1503 pr_cont("<");
1504 print_bits(val, msr_bits, ",");
1505 print_tm_bits(val);
1506 pr_cont(">");
1507 }
1508
1509 #ifdef CONFIG_PPC64
1510 #define REG "%016lx"
1511 #define REGS_PER_LINE 4
1512 #else
1513 #define REG "%08lx"
1514 #define REGS_PER_LINE 8
1515 #endif
1516
__show_regs(struct pt_regs * regs)1517 static void __show_regs(struct pt_regs *regs)
1518 {
1519 int i, trap;
1520
1521 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1522 regs->nip, regs->link, regs->ctr);
1523 printk("REGS: %px TRAP: %04lx %s (%s)\n",
1524 regs, regs->trap, print_tainted(), init_utsname()->release);
1525 printk("MSR: "REG" ", regs->msr);
1526 print_msr_bits(regs->msr);
1527 pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
1528 trap = TRAP(regs);
1529 if (!trap_is_syscall(regs) && cpu_has_feature(CPU_FTR_CFAR))
1530 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1531 if (trap == INTERRUPT_MACHINE_CHECK ||
1532 trap == INTERRUPT_DATA_STORAGE ||
1533 trap == INTERRUPT_ALIGNMENT) {
1534 if (IS_ENABLED(CONFIG_4xx) || IS_ENABLED(CONFIG_BOOKE))
1535 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dear, regs->esr);
1536 else
1537 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1538 }
1539
1540 #ifdef CONFIG_PPC64
1541 pr_cont("IRQMASK: %lx ", regs->softe);
1542 #endif
1543 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1544 if (MSR_TM_ACTIVE(regs->msr))
1545 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1546 #endif
1547
1548 for (i = 0; i < 32; i++) {
1549 if ((i % REGS_PER_LINE) == 0)
1550 pr_cont("\nGPR%02d: ", i);
1551 pr_cont(REG " ", regs->gpr[i]);
1552 }
1553 pr_cont("\n");
1554 /*
1555 * Lookup NIP late so we have the best change of getting the
1556 * above info out without failing
1557 */
1558 if (IS_ENABLED(CONFIG_KALLSYMS)) {
1559 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1560 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1561 }
1562 }
1563
show_regs(struct pt_regs * regs)1564 void show_regs(struct pt_regs *regs)
1565 {
1566 show_regs_print_info(KERN_DEFAULT);
1567 __show_regs(regs);
1568 show_stack(current, (unsigned long *) regs->gpr[1], KERN_DEFAULT);
1569 if (!user_mode(regs))
1570 show_instructions(regs);
1571 }
1572
flush_thread(void)1573 void flush_thread(void)
1574 {
1575 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1576 flush_ptrace_hw_breakpoint(current);
1577 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1578 set_debug_reg_defaults(¤t->thread);
1579 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1580 }
1581
arch_setup_new_exec(void)1582 void arch_setup_new_exec(void)
1583 {
1584
1585 #ifdef CONFIG_PPC_BOOK3S_64
1586 if (!radix_enabled())
1587 hash__setup_new_exec();
1588 #endif
1589 /*
1590 * If we exec out of a kernel thread then thread.regs will not be
1591 * set. Do it now.
1592 */
1593 if (!current->thread.regs) {
1594 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1595 current->thread.regs = regs - 1;
1596 }
1597
1598 #ifdef CONFIG_PPC_MEM_KEYS
1599 current->thread.regs->amr = default_amr;
1600 current->thread.regs->iamr = default_iamr;
1601 #endif
1602 }
1603
1604 #ifdef CONFIG_PPC64
1605 /**
1606 * Assign a TIDR (thread ID) for task @t and set it in the thread
1607 * structure. For now, we only support setting TIDR for 'current' task.
1608 *
1609 * Since the TID value is a truncated form of it PID, it is possible
1610 * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1611 * that 2 threads share the same TID and are waiting, one of the following
1612 * cases will happen:
1613 *
1614 * 1. The correct thread is running, the wrong thread is not
1615 * In this situation, the correct thread is woken and proceeds to pass it's
1616 * condition check.
1617 *
1618 * 2. Neither threads are running
1619 * In this situation, neither thread will be woken. When scheduled, the waiting
1620 * threads will execute either a wait, which will return immediately, followed
1621 * by a condition check, which will pass for the correct thread and fail
1622 * for the wrong thread, or they will execute the condition check immediately.
1623 *
1624 * 3. The wrong thread is running, the correct thread is not
1625 * The wrong thread will be woken, but will fail it's condition check and
1626 * re-execute wait. The correct thread, when scheduled, will execute either
1627 * it's condition check (which will pass), or wait, which returns immediately
1628 * when called the first time after the thread is scheduled, followed by it's
1629 * condition check (which will pass).
1630 *
1631 * 4. Both threads are running
1632 * Both threads will be woken. The wrong thread will fail it's condition check
1633 * and execute another wait, while the correct thread will pass it's condition
1634 * check.
1635 *
1636 * @t: the task to set the thread ID for
1637 */
set_thread_tidr(struct task_struct * t)1638 int set_thread_tidr(struct task_struct *t)
1639 {
1640 if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1641 return -EINVAL;
1642
1643 if (t != current)
1644 return -EINVAL;
1645
1646 if (t->thread.tidr)
1647 return 0;
1648
1649 t->thread.tidr = (u16)task_pid_nr(t);
1650 mtspr(SPRN_TIDR, t->thread.tidr);
1651
1652 return 0;
1653 }
1654 EXPORT_SYMBOL_GPL(set_thread_tidr);
1655
1656 #endif /* CONFIG_PPC64 */
1657
1658 void
release_thread(struct task_struct * t)1659 release_thread(struct task_struct *t)
1660 {
1661 }
1662
1663 /*
1664 * this gets called so that we can store coprocessor state into memory and
1665 * copy the current task into the new thread.
1666 */
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)1667 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1668 {
1669 flush_all_to_thread(src);
1670 /*
1671 * Flush TM state out so we can copy it. __switch_to_tm() does this
1672 * flush but it removes the checkpointed state from the current CPU and
1673 * transitions the CPU out of TM mode. Hence we need to call
1674 * tm_recheckpoint_new_task() (on the same task) to restore the
1675 * checkpointed state back and the TM mode.
1676 *
1677 * Can't pass dst because it isn't ready. Doesn't matter, passing
1678 * dst is only important for __switch_to()
1679 */
1680 __switch_to_tm(src, src);
1681
1682 *dst = *src;
1683
1684 clear_task_ebb(dst);
1685
1686 return 0;
1687 }
1688
setup_ksp_vsid(struct task_struct * p,unsigned long sp)1689 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1690 {
1691 #ifdef CONFIG_PPC_64S_HASH_MMU
1692 unsigned long sp_vsid;
1693 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1694
1695 if (radix_enabled())
1696 return;
1697
1698 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1699 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1700 << SLB_VSID_SHIFT_1T;
1701 else
1702 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1703 << SLB_VSID_SHIFT;
1704 sp_vsid |= SLB_VSID_KERNEL | llp;
1705 p->thread.ksp_vsid = sp_vsid;
1706 #endif
1707 }
1708
1709 /*
1710 * Copy a thread..
1711 */
1712
1713 /*
1714 * Copy architecture-specific thread state
1715 */
copy_thread(struct task_struct * p,const struct kernel_clone_args * args)1716 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
1717 {
1718 unsigned long clone_flags = args->flags;
1719 unsigned long usp = args->stack;
1720 unsigned long tls = args->tls;
1721 struct pt_regs *childregs, *kregs;
1722 extern void ret_from_fork(void);
1723 extern void ret_from_fork_scv(void);
1724 extern void ret_from_kernel_thread(void);
1725 void (*f)(void);
1726 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1727 struct thread_info *ti = task_thread_info(p);
1728 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1729 int i;
1730 #endif
1731
1732 klp_init_thread_info(p);
1733
1734 /* Copy registers */
1735 sp -= sizeof(struct pt_regs);
1736 childregs = (struct pt_regs *) sp;
1737 if (unlikely(args->fn)) {
1738 /* kernel thread */
1739 memset(childregs, 0, sizeof(struct pt_regs));
1740 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1741 /* function */
1742 if (args->fn)
1743 childregs->gpr[14] = ppc_function_entry((void *)args->fn);
1744 #ifdef CONFIG_PPC64
1745 clear_tsk_thread_flag(p, TIF_32BIT);
1746 childregs->softe = IRQS_ENABLED;
1747 #endif
1748 childregs->gpr[15] = (unsigned long)args->fn_arg;
1749 p->thread.regs = NULL; /* no user register state */
1750 ti->flags |= _TIF_RESTOREALL;
1751 f = ret_from_kernel_thread;
1752 } else {
1753 /* user thread */
1754 struct pt_regs *regs = current_pt_regs();
1755 *childregs = *regs;
1756 if (usp)
1757 childregs->gpr[1] = usp;
1758 p->thread.regs = childregs;
1759 /* 64s sets this in ret_from_fork */
1760 if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64))
1761 childregs->gpr[3] = 0; /* Result from fork() */
1762 if (clone_flags & CLONE_SETTLS) {
1763 if (!is_32bit_task())
1764 childregs->gpr[13] = tls;
1765 else
1766 childregs->gpr[2] = tls;
1767 }
1768
1769 if (trap_is_scv(regs))
1770 f = ret_from_fork_scv;
1771 else
1772 f = ret_from_fork;
1773 }
1774 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1775 sp -= STACK_FRAME_OVERHEAD;
1776
1777 /*
1778 * The way this works is that at some point in the future
1779 * some task will call _switch to switch to the new task.
1780 * That will pop off the stack frame created below and start
1781 * the new task running at ret_from_fork. The new task will
1782 * do some house keeping and then return from the fork or clone
1783 * system call, using the stack frame created above.
1784 */
1785 ((unsigned long *)sp)[0] = 0;
1786 sp -= sizeof(struct pt_regs);
1787 kregs = (struct pt_regs *) sp;
1788 sp -= STACK_FRAME_OVERHEAD;
1789 p->thread.ksp = sp;
1790 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1791 for (i = 0; i < nr_wp_slots(); i++)
1792 p->thread.ptrace_bps[i] = NULL;
1793 #endif
1794
1795 #ifdef CONFIG_PPC_FPU_REGS
1796 p->thread.fp_save_area = NULL;
1797 #endif
1798 #ifdef CONFIG_ALTIVEC
1799 p->thread.vr_save_area = NULL;
1800 #endif
1801 #if defined(CONFIG_PPC_BOOK3S_32) && defined(CONFIG_PPC_KUAP)
1802 p->thread.kuap = KUAP_NONE;
1803 #endif
1804 #if defined(CONFIG_BOOKE_OR_40x) && defined(CONFIG_PPC_KUAP)
1805 p->thread.pid = MMU_NO_CONTEXT;
1806 #endif
1807
1808 setup_ksp_vsid(p, sp);
1809
1810 #ifdef CONFIG_PPC64
1811 if (cpu_has_feature(CPU_FTR_DSCR)) {
1812 p->thread.dscr_inherit = current->thread.dscr_inherit;
1813 p->thread.dscr = mfspr(SPRN_DSCR);
1814 }
1815 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1816 childregs->ppr = DEFAULT_PPR;
1817
1818 p->thread.tidr = 0;
1819 #endif
1820 /*
1821 * Run with the current AMR value of the kernel
1822 */
1823 #ifdef CONFIG_PPC_PKEY
1824 if (mmu_has_feature(MMU_FTR_BOOK3S_KUAP))
1825 kregs->amr = AMR_KUAP_BLOCKED;
1826
1827 if (mmu_has_feature(MMU_FTR_BOOK3S_KUEP))
1828 kregs->iamr = AMR_KUEP_BLOCKED;
1829 #endif
1830 kregs->nip = ppc_function_entry(f);
1831 return 0;
1832 }
1833
1834 void preload_new_slb_context(unsigned long start, unsigned long sp);
1835
1836 /*
1837 * Set up a thread for executing a new program
1838 */
start_thread(struct pt_regs * regs,unsigned long start,unsigned long sp)1839 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1840 {
1841 #ifdef CONFIG_PPC64
1842 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1843
1844 if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled())
1845 preload_new_slb_context(start, sp);
1846 #endif
1847
1848 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1849 /*
1850 * Clear any transactional state, we're exec()ing. The cause is
1851 * not important as there will never be a recheckpoint so it's not
1852 * user visible.
1853 */
1854 if (MSR_TM_SUSPENDED(mfmsr()))
1855 tm_reclaim_current(0);
1856 #endif
1857
1858 memset(®s->gpr[1], 0, sizeof(regs->gpr) - sizeof(regs->gpr[0]));
1859 regs->ctr = 0;
1860 regs->link = 0;
1861 regs->xer = 0;
1862 regs->ccr = 0;
1863 regs->gpr[1] = sp;
1864
1865 #ifdef CONFIG_PPC32
1866 regs->mq = 0;
1867 regs->nip = start;
1868 regs->msr = MSR_USER;
1869 #else
1870 if (!is_32bit_task()) {
1871 unsigned long entry;
1872
1873 if (is_elf2_task()) {
1874 /* Look ma, no function descriptors! */
1875 entry = start;
1876
1877 /*
1878 * Ulrich says:
1879 * The latest iteration of the ABI requires that when
1880 * calling a function (at its global entry point),
1881 * the caller must ensure r12 holds the entry point
1882 * address (so that the function can quickly
1883 * establish addressability).
1884 */
1885 regs->gpr[12] = start;
1886 /* Make sure that's restored on entry to userspace. */
1887 set_thread_flag(TIF_RESTOREALL);
1888 } else {
1889 unsigned long toc;
1890
1891 /* start is a relocated pointer to the function
1892 * descriptor for the elf _start routine. The first
1893 * entry in the function descriptor is the entry
1894 * address of _start and the second entry is the TOC
1895 * value we need to use.
1896 */
1897 __get_user(entry, (unsigned long __user *)start);
1898 __get_user(toc, (unsigned long __user *)start+1);
1899
1900 /* Check whether the e_entry function descriptor entries
1901 * need to be relocated before we can use them.
1902 */
1903 if (load_addr != 0) {
1904 entry += load_addr;
1905 toc += load_addr;
1906 }
1907 regs->gpr[2] = toc;
1908 }
1909 regs_set_return_ip(regs, entry);
1910 regs_set_return_msr(regs, MSR_USER64);
1911 } else {
1912 regs->gpr[2] = 0;
1913 regs_set_return_ip(regs, start);
1914 regs_set_return_msr(regs, MSR_USER32);
1915 }
1916
1917 #endif
1918 #ifdef CONFIG_VSX
1919 current->thread.used_vsr = 0;
1920 #endif
1921 current->thread.load_slb = 0;
1922 current->thread.load_fp = 0;
1923 #ifdef CONFIG_PPC_FPU_REGS
1924 memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state));
1925 current->thread.fp_save_area = NULL;
1926 #endif
1927 #ifdef CONFIG_ALTIVEC
1928 memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state));
1929 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1930 current->thread.vr_save_area = NULL;
1931 current->thread.vrsave = 0;
1932 current->thread.used_vr = 0;
1933 current->thread.load_vec = 0;
1934 #endif /* CONFIG_ALTIVEC */
1935 #ifdef CONFIG_SPE
1936 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1937 current->thread.acc = 0;
1938 current->thread.spefscr = 0;
1939 current->thread.used_spe = 0;
1940 #endif /* CONFIG_SPE */
1941 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1942 current->thread.tm_tfhar = 0;
1943 current->thread.tm_texasr = 0;
1944 current->thread.tm_tfiar = 0;
1945 current->thread.load_tm = 0;
1946 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1947 }
1948 EXPORT_SYMBOL(start_thread);
1949
1950 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1951 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1952
set_fpexc_mode(struct task_struct * tsk,unsigned int val)1953 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1954 {
1955 struct pt_regs *regs = tsk->thread.regs;
1956
1957 /* This is a bit hairy. If we are an SPE enabled processor
1958 * (have embedded fp) we store the IEEE exception enable flags in
1959 * fpexc_mode. fpexc_mode is also used for setting FP exception
1960 * mode (asyn, precise, disabled) for 'Classic' FP. */
1961 if (val & PR_FP_EXC_SW_ENABLE) {
1962 if (cpu_has_feature(CPU_FTR_SPE)) {
1963 /*
1964 * When the sticky exception bits are set
1965 * directly by userspace, it must call prctl
1966 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1967 * in the existing prctl settings) or
1968 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1969 * the bits being set). <fenv.h> functions
1970 * saving and restoring the whole
1971 * floating-point environment need to do so
1972 * anyway to restore the prctl settings from
1973 * the saved environment.
1974 */
1975 #ifdef CONFIG_SPE
1976 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1977 tsk->thread.fpexc_mode = val &
1978 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1979 #endif
1980 return 0;
1981 } else {
1982 return -EINVAL;
1983 }
1984 }
1985
1986 /* on a CONFIG_SPE this does not hurt us. The bits that
1987 * __pack_fe01 use do not overlap with bits used for
1988 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1989 * on CONFIG_SPE implementations are reserved so writing to
1990 * them does not change anything */
1991 if (val > PR_FP_EXC_PRECISE)
1992 return -EINVAL;
1993 tsk->thread.fpexc_mode = __pack_fe01(val);
1994 if (regs != NULL && (regs->msr & MSR_FP) != 0) {
1995 regs_set_return_msr(regs, (regs->msr & ~(MSR_FE0|MSR_FE1))
1996 | tsk->thread.fpexc_mode);
1997 }
1998 return 0;
1999 }
2000
get_fpexc_mode(struct task_struct * tsk,unsigned long adr)2001 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
2002 {
2003 unsigned int val = 0;
2004
2005 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) {
2006 if (cpu_has_feature(CPU_FTR_SPE)) {
2007 /*
2008 * When the sticky exception bits are set
2009 * directly by userspace, it must call prctl
2010 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
2011 * in the existing prctl settings) or
2012 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
2013 * the bits being set). <fenv.h> functions
2014 * saving and restoring the whole
2015 * floating-point environment need to do so
2016 * anyway to restore the prctl settings from
2017 * the saved environment.
2018 */
2019 #ifdef CONFIG_SPE
2020 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
2021 val = tsk->thread.fpexc_mode;
2022 #endif
2023 } else
2024 return -EINVAL;
2025 } else {
2026 val = __unpack_fe01(tsk->thread.fpexc_mode);
2027 }
2028 return put_user(val, (unsigned int __user *) adr);
2029 }
2030
set_endian(struct task_struct * tsk,unsigned int val)2031 int set_endian(struct task_struct *tsk, unsigned int val)
2032 {
2033 struct pt_regs *regs = tsk->thread.regs;
2034
2035 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
2036 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
2037 return -EINVAL;
2038
2039 if (regs == NULL)
2040 return -EINVAL;
2041
2042 if (val == PR_ENDIAN_BIG)
2043 regs_set_return_msr(regs, regs->msr & ~MSR_LE);
2044 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
2045 regs_set_return_msr(regs, regs->msr | MSR_LE);
2046 else
2047 return -EINVAL;
2048
2049 return 0;
2050 }
2051
get_endian(struct task_struct * tsk,unsigned long adr)2052 int get_endian(struct task_struct *tsk, unsigned long adr)
2053 {
2054 struct pt_regs *regs = tsk->thread.regs;
2055 unsigned int val;
2056
2057 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
2058 !cpu_has_feature(CPU_FTR_REAL_LE))
2059 return -EINVAL;
2060
2061 if (regs == NULL)
2062 return -EINVAL;
2063
2064 if (regs->msr & MSR_LE) {
2065 if (cpu_has_feature(CPU_FTR_REAL_LE))
2066 val = PR_ENDIAN_LITTLE;
2067 else
2068 val = PR_ENDIAN_PPC_LITTLE;
2069 } else
2070 val = PR_ENDIAN_BIG;
2071
2072 return put_user(val, (unsigned int __user *)adr);
2073 }
2074
set_unalign_ctl(struct task_struct * tsk,unsigned int val)2075 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
2076 {
2077 tsk->thread.align_ctl = val;
2078 return 0;
2079 }
2080
get_unalign_ctl(struct task_struct * tsk,unsigned long adr)2081 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
2082 {
2083 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
2084 }
2085
valid_irq_stack(unsigned long sp,struct task_struct * p,unsigned long nbytes)2086 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
2087 unsigned long nbytes)
2088 {
2089 unsigned long stack_page;
2090 unsigned long cpu = task_cpu(p);
2091
2092 stack_page = (unsigned long)hardirq_ctx[cpu];
2093 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2094 return 1;
2095
2096 stack_page = (unsigned long)softirq_ctx[cpu];
2097 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2098 return 1;
2099
2100 return 0;
2101 }
2102
valid_emergency_stack(unsigned long sp,struct task_struct * p,unsigned long nbytes)2103 static inline int valid_emergency_stack(unsigned long sp, struct task_struct *p,
2104 unsigned long nbytes)
2105 {
2106 #ifdef CONFIG_PPC64
2107 unsigned long stack_page;
2108 unsigned long cpu = task_cpu(p);
2109
2110 if (!paca_ptrs)
2111 return 0;
2112
2113 stack_page = (unsigned long)paca_ptrs[cpu]->emergency_sp - THREAD_SIZE;
2114 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2115 return 1;
2116
2117 # ifdef CONFIG_PPC_BOOK3S_64
2118 stack_page = (unsigned long)paca_ptrs[cpu]->nmi_emergency_sp - THREAD_SIZE;
2119 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2120 return 1;
2121
2122 stack_page = (unsigned long)paca_ptrs[cpu]->mc_emergency_sp - THREAD_SIZE;
2123 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2124 return 1;
2125 # endif
2126 #endif
2127
2128 return 0;
2129 }
2130
2131
validate_sp(unsigned long sp,struct task_struct * p,unsigned long nbytes)2132 int validate_sp(unsigned long sp, struct task_struct *p,
2133 unsigned long nbytes)
2134 {
2135 unsigned long stack_page = (unsigned long)task_stack_page(p);
2136
2137 if (sp < THREAD_SIZE)
2138 return 0;
2139
2140 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2141 return 1;
2142
2143 if (valid_irq_stack(sp, p, nbytes))
2144 return 1;
2145
2146 return valid_emergency_stack(sp, p, nbytes);
2147 }
2148
2149 EXPORT_SYMBOL(validate_sp);
2150
___get_wchan(struct task_struct * p)2151 static unsigned long ___get_wchan(struct task_struct *p)
2152 {
2153 unsigned long ip, sp;
2154 int count = 0;
2155
2156 sp = p->thread.ksp;
2157 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2158 return 0;
2159
2160 do {
2161 sp = READ_ONCE_NOCHECK(*(unsigned long *)sp);
2162 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2163 task_is_running(p))
2164 return 0;
2165 if (count > 0) {
2166 ip = READ_ONCE_NOCHECK(((unsigned long *)sp)[STACK_FRAME_LR_SAVE]);
2167 if (!in_sched_functions(ip))
2168 return ip;
2169 }
2170 } while (count++ < 16);
2171 return 0;
2172 }
2173
__get_wchan(struct task_struct * p)2174 unsigned long __get_wchan(struct task_struct *p)
2175 {
2176 unsigned long ret;
2177
2178 if (!try_get_task_stack(p))
2179 return 0;
2180
2181 ret = ___get_wchan(p);
2182
2183 put_task_stack(p);
2184
2185 return ret;
2186 }
2187
2188 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2189
show_stack(struct task_struct * tsk,unsigned long * stack,const char * loglvl)2190 void __no_sanitize_address show_stack(struct task_struct *tsk,
2191 unsigned long *stack,
2192 const char *loglvl)
2193 {
2194 unsigned long sp, ip, lr, newsp;
2195 int count = 0;
2196 int firstframe = 1;
2197 unsigned long ret_addr;
2198 int ftrace_idx = 0;
2199
2200 if (tsk == NULL)
2201 tsk = current;
2202
2203 if (!try_get_task_stack(tsk))
2204 return;
2205
2206 sp = (unsigned long) stack;
2207 if (sp == 0) {
2208 if (tsk == current)
2209 sp = current_stack_frame();
2210 else
2211 sp = tsk->thread.ksp;
2212 }
2213
2214 lr = 0;
2215 printk("%sCall Trace:\n", loglvl);
2216 do {
2217 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2218 break;
2219
2220 stack = (unsigned long *) sp;
2221 newsp = stack[0];
2222 ip = stack[STACK_FRAME_LR_SAVE];
2223 if (!firstframe || ip != lr) {
2224 printk("%s["REG"] ["REG"] %pS",
2225 loglvl, sp, ip, (void *)ip);
2226 ret_addr = ftrace_graph_ret_addr(current,
2227 &ftrace_idx, ip, stack);
2228 if (ret_addr != ip)
2229 pr_cont(" (%pS)", (void *)ret_addr);
2230 if (firstframe)
2231 pr_cont(" (unreliable)");
2232 pr_cont("\n");
2233 }
2234 firstframe = 0;
2235
2236 /*
2237 * See if this is an exception frame.
2238 * We look for the "regshere" marker in the current frame.
2239 */
2240 if (validate_sp(sp, tsk, STACK_FRAME_WITH_PT_REGS)
2241 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2242 struct pt_regs *regs = (struct pt_regs *)
2243 (sp + STACK_FRAME_OVERHEAD);
2244
2245 lr = regs->link;
2246 printk("%s--- interrupt: %lx at %pS\n",
2247 loglvl, regs->trap, (void *)regs->nip);
2248 __show_regs(regs);
2249 printk("%s--- interrupt: %lx\n",
2250 loglvl, regs->trap);
2251
2252 firstframe = 1;
2253 }
2254
2255 sp = newsp;
2256 } while (count++ < kstack_depth_to_print);
2257
2258 put_task_stack(tsk);
2259 }
2260
2261 #ifdef CONFIG_PPC64
2262 /* Called with hard IRQs off */
__ppc64_runlatch_on(void)2263 void notrace __ppc64_runlatch_on(void)
2264 {
2265 struct thread_info *ti = current_thread_info();
2266
2267 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2268 /*
2269 * Least significant bit (RUN) is the only writable bit of
2270 * the CTRL register, so we can avoid mfspr. 2.06 is not the
2271 * earliest ISA where this is the case, but it's convenient.
2272 */
2273 mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2274 } else {
2275 unsigned long ctrl;
2276
2277 /*
2278 * Some architectures (e.g., Cell) have writable fields other
2279 * than RUN, so do the read-modify-write.
2280 */
2281 ctrl = mfspr(SPRN_CTRLF);
2282 ctrl |= CTRL_RUNLATCH;
2283 mtspr(SPRN_CTRLT, ctrl);
2284 }
2285
2286 ti->local_flags |= _TLF_RUNLATCH;
2287 }
2288
2289 /* Called with hard IRQs off */
__ppc64_runlatch_off(void)2290 void notrace __ppc64_runlatch_off(void)
2291 {
2292 struct thread_info *ti = current_thread_info();
2293
2294 ti->local_flags &= ~_TLF_RUNLATCH;
2295
2296 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2297 mtspr(SPRN_CTRLT, 0);
2298 } else {
2299 unsigned long ctrl;
2300
2301 ctrl = mfspr(SPRN_CTRLF);
2302 ctrl &= ~CTRL_RUNLATCH;
2303 mtspr(SPRN_CTRLT, ctrl);
2304 }
2305 }
2306 #endif /* CONFIG_PPC64 */
2307
arch_align_stack(unsigned long sp)2308 unsigned long arch_align_stack(unsigned long sp)
2309 {
2310 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2311 sp -= get_random_int() & ~PAGE_MASK;
2312 return sp & ~0xf;
2313 }
2314