1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2017 ARM Ltd.
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 */
6
7 #include <linux/kvm_host.h>
8 #include <linux/random.h>
9 #include <linux/memblock.h>
10 #include <asm/alternative.h>
11 #include <asm/debug-monitors.h>
12 #include <asm/insn.h>
13 #include <asm/kvm_mmu.h>
14 #include <asm/memory.h>
15
16 /*
17 * The LSB of the HYP VA tag
18 */
19 static u8 tag_lsb;
20 /*
21 * The HYP VA tag value with the region bit
22 */
23 static u64 tag_val;
24 static u64 va_mask;
25
26 /*
27 * Compute HYP VA by using the same computation as kern_hyp_va().
28 */
__early_kern_hyp_va(u64 addr)29 static u64 __early_kern_hyp_va(u64 addr)
30 {
31 addr &= va_mask;
32 addr |= tag_val << tag_lsb;
33 return addr;
34 }
35
36 /*
37 * Store a hyp VA <-> PA offset into a EL2-owned variable.
38 */
init_hyp_physvirt_offset(void)39 static void init_hyp_physvirt_offset(void)
40 {
41 u64 kern_va, hyp_va;
42
43 /* Compute the offset from the hyp VA and PA of a random symbol. */
44 kern_va = (u64)lm_alias(__hyp_text_start);
45 hyp_va = __early_kern_hyp_va(kern_va);
46 hyp_physvirt_offset = (s64)__pa(kern_va) - (s64)hyp_va;
47 }
48
49 /*
50 * We want to generate a hyp VA with the following format (with V ==
51 * vabits_actual):
52 *
53 * 63 ... V | V-1 | V-2 .. tag_lsb | tag_lsb - 1 .. 0
54 * ---------------------------------------------------------
55 * | 0000000 | hyp_va_msb | random tag | kern linear VA |
56 * |--------- tag_val -----------|----- va_mask ---|
57 *
58 * which does not conflict with the idmap regions.
59 */
kvm_compute_layout(void)60 __init void kvm_compute_layout(void)
61 {
62 phys_addr_t idmap_addr = __pa_symbol(__hyp_idmap_text_start);
63 u64 hyp_va_msb;
64
65 /* Where is my RAM region? */
66 hyp_va_msb = idmap_addr & BIT(vabits_actual - 1);
67 hyp_va_msb ^= BIT(vabits_actual - 1);
68
69 tag_lsb = fls64((u64)phys_to_virt(memblock_start_of_DRAM()) ^
70 (u64)(high_memory - 1));
71
72 va_mask = GENMASK_ULL(tag_lsb - 1, 0);
73 tag_val = hyp_va_msb;
74
75 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && tag_lsb != (vabits_actual - 1)) {
76 /* We have some free bits to insert a random tag. */
77 tag_val |= get_random_long() & GENMASK_ULL(vabits_actual - 2, tag_lsb);
78 }
79 tag_val >>= tag_lsb;
80
81 init_hyp_physvirt_offset();
82 }
83
84 /*
85 * The .hyp.reloc ELF section contains a list of kimg positions that
86 * contains kimg VAs but will be accessed only in hyp execution context.
87 * Convert them to hyp VAs. See gen-hyprel.c for more details.
88 */
kvm_apply_hyp_relocations(void)89 __init void kvm_apply_hyp_relocations(void)
90 {
91 int32_t *rel;
92 int32_t *begin = (int32_t *)__hyp_reloc_begin;
93 int32_t *end = (int32_t *)__hyp_reloc_end;
94
95 for (rel = begin; rel < end; ++rel) {
96 uintptr_t *ptr, kimg_va;
97
98 /*
99 * Each entry contains a 32-bit relative offset from itself
100 * to a kimg VA position.
101 */
102 ptr = (uintptr_t *)lm_alias((char *)rel + *rel);
103
104 /* Read the kimg VA value at the relocation address. */
105 kimg_va = *ptr;
106
107 /* Convert to hyp VA and store back to the relocation address. */
108 *ptr = __early_kern_hyp_va((uintptr_t)lm_alias(kimg_va));
109 }
110 }
111
compute_instruction(int n,u32 rd,u32 rn)112 static u32 compute_instruction(int n, u32 rd, u32 rn)
113 {
114 u32 insn = AARCH64_BREAK_FAULT;
115
116 switch (n) {
117 case 0:
118 insn = aarch64_insn_gen_logical_immediate(AARCH64_INSN_LOGIC_AND,
119 AARCH64_INSN_VARIANT_64BIT,
120 rn, rd, va_mask);
121 break;
122
123 case 1:
124 /* ROR is a variant of EXTR with Rm = Rn */
125 insn = aarch64_insn_gen_extr(AARCH64_INSN_VARIANT_64BIT,
126 rn, rn, rd,
127 tag_lsb);
128 break;
129
130 case 2:
131 insn = aarch64_insn_gen_add_sub_imm(rd, rn,
132 tag_val & GENMASK(11, 0),
133 AARCH64_INSN_VARIANT_64BIT,
134 AARCH64_INSN_ADSB_ADD);
135 break;
136
137 case 3:
138 insn = aarch64_insn_gen_add_sub_imm(rd, rn,
139 tag_val & GENMASK(23, 12),
140 AARCH64_INSN_VARIANT_64BIT,
141 AARCH64_INSN_ADSB_ADD);
142 break;
143
144 case 4:
145 /* ROR is a variant of EXTR with Rm = Rn */
146 insn = aarch64_insn_gen_extr(AARCH64_INSN_VARIANT_64BIT,
147 rn, rn, rd, 64 - tag_lsb);
148 break;
149 }
150
151 return insn;
152 }
153
kvm_update_va_mask(struct alt_instr * alt,__le32 * origptr,__le32 * updptr,int nr_inst)154 void __init kvm_update_va_mask(struct alt_instr *alt,
155 __le32 *origptr, __le32 *updptr, int nr_inst)
156 {
157 int i;
158
159 BUG_ON(nr_inst != 5);
160
161 for (i = 0; i < nr_inst; i++) {
162 u32 rd, rn, insn, oinsn;
163
164 /*
165 * VHE doesn't need any address translation, let's NOP
166 * everything.
167 *
168 * Alternatively, if the tag is zero (because the layout
169 * dictates it and we don't have any spare bits in the
170 * address), NOP everything after masking the kernel VA.
171 */
172 if (has_vhe() || (!tag_val && i > 0)) {
173 updptr[i] = cpu_to_le32(aarch64_insn_gen_nop());
174 continue;
175 }
176
177 oinsn = le32_to_cpu(origptr[i]);
178 rd = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RD, oinsn);
179 rn = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RN, oinsn);
180
181 insn = compute_instruction(i, rd, rn);
182 BUG_ON(insn == AARCH64_BREAK_FAULT);
183
184 updptr[i] = cpu_to_le32(insn);
185 }
186 }
187
kvm_patch_vector_branch(struct alt_instr * alt,__le32 * origptr,__le32 * updptr,int nr_inst)188 void kvm_patch_vector_branch(struct alt_instr *alt,
189 __le32 *origptr, __le32 *updptr, int nr_inst)
190 {
191 u64 addr;
192 u32 insn;
193
194 BUG_ON(nr_inst != 4);
195
196 if (!cpus_have_const_cap(ARM64_SPECTRE_V3A) || WARN_ON_ONCE(has_vhe()))
197 return;
198
199 /*
200 * Compute HYP VA by using the same computation as kern_hyp_va()
201 */
202 addr = __early_kern_hyp_va((u64)kvm_ksym_ref(__kvm_hyp_vector));
203
204 /* Use PC[10:7] to branch to the same vector in KVM */
205 addr |= ((u64)origptr & GENMASK_ULL(10, 7));
206
207 /*
208 * Branch over the preamble in order to avoid the initial store on
209 * the stack (which we already perform in the hardening vectors).
210 */
211 addr += KVM_VECTOR_PREAMBLE;
212
213 /* movz x0, #(addr & 0xffff) */
214 insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0,
215 (u16)addr,
216 0,
217 AARCH64_INSN_VARIANT_64BIT,
218 AARCH64_INSN_MOVEWIDE_ZERO);
219 *updptr++ = cpu_to_le32(insn);
220
221 /* movk x0, #((addr >> 16) & 0xffff), lsl #16 */
222 insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0,
223 (u16)(addr >> 16),
224 16,
225 AARCH64_INSN_VARIANT_64BIT,
226 AARCH64_INSN_MOVEWIDE_KEEP);
227 *updptr++ = cpu_to_le32(insn);
228
229 /* movk x0, #((addr >> 32) & 0xffff), lsl #32 */
230 insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0,
231 (u16)(addr >> 32),
232 32,
233 AARCH64_INSN_VARIANT_64BIT,
234 AARCH64_INSN_MOVEWIDE_KEEP);
235 *updptr++ = cpu_to_le32(insn);
236
237 /* br x0 */
238 insn = aarch64_insn_gen_branch_reg(AARCH64_INSN_REG_0,
239 AARCH64_INSN_BRANCH_NOLINK);
240 *updptr++ = cpu_to_le32(insn);
241 }
242
generate_mov_q(u64 val,__le32 * origptr,__le32 * updptr,int nr_inst)243 static void generate_mov_q(u64 val, __le32 *origptr, __le32 *updptr, int nr_inst)
244 {
245 u32 insn, oinsn, rd;
246
247 BUG_ON(nr_inst != 4);
248
249 /* Compute target register */
250 oinsn = le32_to_cpu(*origptr);
251 rd = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RD, oinsn);
252
253 /* movz rd, #(val & 0xffff) */
254 insn = aarch64_insn_gen_movewide(rd,
255 (u16)val,
256 0,
257 AARCH64_INSN_VARIANT_64BIT,
258 AARCH64_INSN_MOVEWIDE_ZERO);
259 *updptr++ = cpu_to_le32(insn);
260
261 /* movk rd, #((val >> 16) & 0xffff), lsl #16 */
262 insn = aarch64_insn_gen_movewide(rd,
263 (u16)(val >> 16),
264 16,
265 AARCH64_INSN_VARIANT_64BIT,
266 AARCH64_INSN_MOVEWIDE_KEEP);
267 *updptr++ = cpu_to_le32(insn);
268
269 /* movk rd, #((val >> 32) & 0xffff), lsl #32 */
270 insn = aarch64_insn_gen_movewide(rd,
271 (u16)(val >> 32),
272 32,
273 AARCH64_INSN_VARIANT_64BIT,
274 AARCH64_INSN_MOVEWIDE_KEEP);
275 *updptr++ = cpu_to_le32(insn);
276
277 /* movk rd, #((val >> 48) & 0xffff), lsl #48 */
278 insn = aarch64_insn_gen_movewide(rd,
279 (u16)(val >> 48),
280 48,
281 AARCH64_INSN_VARIANT_64BIT,
282 AARCH64_INSN_MOVEWIDE_KEEP);
283 *updptr++ = cpu_to_le32(insn);
284 }
285
kvm_get_kimage_voffset(struct alt_instr * alt,__le32 * origptr,__le32 * updptr,int nr_inst)286 void kvm_get_kimage_voffset(struct alt_instr *alt,
287 __le32 *origptr, __le32 *updptr, int nr_inst)
288 {
289 generate_mov_q(kimage_voffset, origptr, updptr, nr_inst);
290 }
291
kvm_compute_final_ctr_el0(struct alt_instr * alt,__le32 * origptr,__le32 * updptr,int nr_inst)292 void kvm_compute_final_ctr_el0(struct alt_instr *alt,
293 __le32 *origptr, __le32 *updptr, int nr_inst)
294 {
295 generate_mov_q(read_sanitised_ftr_reg(SYS_CTR_EL0),
296 origptr, updptr, nr_inst);
297 }
298