1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 */
6
7 #include <linux/mman.h>
8 #include <linux/kvm_host.h>
9 #include <linux/io.h>
10 #include <linux/hugetlb.h>
11 #include <linux/sched/signal.h>
12 #include <trace/events/kvm.h>
13 #include <asm/pgalloc.h>
14 #include <asm/cacheflush.h>
15 #include <asm/kvm_arm.h>
16 #include <asm/kvm_mmu.h>
17 #include <asm/kvm_pgtable.h>
18 #include <asm/kvm_ras.h>
19 #include <asm/kvm_asm.h>
20 #include <asm/kvm_emulate.h>
21 #include <asm/virt.h>
22
23 #include "trace.h"
24
25 static struct kvm_pgtable *hyp_pgtable;
26 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
27
28 static unsigned long hyp_idmap_start;
29 static unsigned long hyp_idmap_end;
30 static phys_addr_t hyp_idmap_vector;
31
32 static unsigned long io_map_base;
33
34
35 /*
36 * Release kvm_mmu_lock periodically if the memory region is large. Otherwise,
37 * we may see kernel panics with CONFIG_DETECT_HUNG_TASK,
38 * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too
39 * long will also starve other vCPUs. We have to also make sure that the page
40 * tables are not freed while we released the lock.
41 */
stage2_apply_range(struct kvm * kvm,phys_addr_t addr,phys_addr_t end,int (* fn)(struct kvm_pgtable *,u64,u64),bool resched)42 static int stage2_apply_range(struct kvm *kvm, phys_addr_t addr,
43 phys_addr_t end,
44 int (*fn)(struct kvm_pgtable *, u64, u64),
45 bool resched)
46 {
47 int ret;
48 u64 next;
49
50 do {
51 struct kvm_pgtable *pgt = kvm->arch.mmu.pgt;
52 if (!pgt)
53 return -EINVAL;
54
55 next = stage2_pgd_addr_end(kvm, addr, end);
56 ret = fn(pgt, addr, next - addr);
57 if (ret)
58 break;
59
60 if (resched && next != end)
61 cond_resched_rwlock_write(&kvm->mmu_lock);
62 } while (addr = next, addr != end);
63
64 return ret;
65 }
66
67 #define stage2_apply_range_resched(kvm, addr, end, fn) \
68 stage2_apply_range(kvm, addr, end, fn, true)
69
memslot_is_logging(struct kvm_memory_slot * memslot)70 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
71 {
72 return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
73 }
74
75 /**
76 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
77 * @kvm: pointer to kvm structure.
78 *
79 * Interface to HYP function to flush all VM TLB entries
80 */
kvm_flush_remote_tlbs(struct kvm * kvm)81 void kvm_flush_remote_tlbs(struct kvm *kvm)
82 {
83 ++kvm->stat.generic.remote_tlb_flush_requests;
84 kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu);
85 }
86
kvm_is_device_pfn(unsigned long pfn)87 static bool kvm_is_device_pfn(unsigned long pfn)
88 {
89 return !pfn_is_map_memory(pfn);
90 }
91
stage2_memcache_zalloc_page(void * arg)92 static void *stage2_memcache_zalloc_page(void *arg)
93 {
94 struct kvm_mmu_memory_cache *mc = arg;
95
96 /* Allocated with __GFP_ZERO, so no need to zero */
97 return kvm_mmu_memory_cache_alloc(mc);
98 }
99
kvm_host_zalloc_pages_exact(size_t size)100 static void *kvm_host_zalloc_pages_exact(size_t size)
101 {
102 return alloc_pages_exact(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
103 }
104
kvm_host_get_page(void * addr)105 static void kvm_host_get_page(void *addr)
106 {
107 get_page(virt_to_page(addr));
108 }
109
kvm_host_put_page(void * addr)110 static void kvm_host_put_page(void *addr)
111 {
112 put_page(virt_to_page(addr));
113 }
114
kvm_host_page_count(void * addr)115 static int kvm_host_page_count(void *addr)
116 {
117 return page_count(virt_to_page(addr));
118 }
119
kvm_host_pa(void * addr)120 static phys_addr_t kvm_host_pa(void *addr)
121 {
122 return __pa(addr);
123 }
124
kvm_host_va(phys_addr_t phys)125 static void *kvm_host_va(phys_addr_t phys)
126 {
127 return __va(phys);
128 }
129
clean_dcache_guest_page(void * va,size_t size)130 static void clean_dcache_guest_page(void *va, size_t size)
131 {
132 __clean_dcache_guest_page(va, size);
133 }
134
invalidate_icache_guest_page(void * va,size_t size)135 static void invalidate_icache_guest_page(void *va, size_t size)
136 {
137 __invalidate_icache_guest_page(va, size);
138 }
139
140 /*
141 * Unmapping vs dcache management:
142 *
143 * If a guest maps certain memory pages as uncached, all writes will
144 * bypass the data cache and go directly to RAM. However, the CPUs
145 * can still speculate reads (not writes) and fill cache lines with
146 * data.
147 *
148 * Those cache lines will be *clean* cache lines though, so a
149 * clean+invalidate operation is equivalent to an invalidate
150 * operation, because no cache lines are marked dirty.
151 *
152 * Those clean cache lines could be filled prior to an uncached write
153 * by the guest, and the cache coherent IO subsystem would therefore
154 * end up writing old data to disk.
155 *
156 * This is why right after unmapping a page/section and invalidating
157 * the corresponding TLBs, we flush to make sure the IO subsystem will
158 * never hit in the cache.
159 *
160 * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
161 * we then fully enforce cacheability of RAM, no matter what the guest
162 * does.
163 */
164 /**
165 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
166 * @mmu: The KVM stage-2 MMU pointer
167 * @start: The intermediate physical base address of the range to unmap
168 * @size: The size of the area to unmap
169 * @may_block: Whether or not we are permitted to block
170 *
171 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
172 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
173 * destroying the VM), otherwise another faulting VCPU may come in and mess
174 * with things behind our backs.
175 */
__unmap_stage2_range(struct kvm_s2_mmu * mmu,phys_addr_t start,u64 size,bool may_block)176 static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size,
177 bool may_block)
178 {
179 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
180 phys_addr_t end = start + size;
181
182 lockdep_assert_held_write(&kvm->mmu_lock);
183 WARN_ON(size & ~PAGE_MASK);
184 WARN_ON(stage2_apply_range(kvm, start, end, kvm_pgtable_stage2_unmap,
185 may_block));
186 }
187
unmap_stage2_range(struct kvm_s2_mmu * mmu,phys_addr_t start,u64 size)188 static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size)
189 {
190 __unmap_stage2_range(mmu, start, size, true);
191 }
192
stage2_flush_memslot(struct kvm * kvm,struct kvm_memory_slot * memslot)193 static void stage2_flush_memslot(struct kvm *kvm,
194 struct kvm_memory_slot *memslot)
195 {
196 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
197 phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
198
199 stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_flush);
200 }
201
202 /**
203 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
204 * @kvm: The struct kvm pointer
205 *
206 * Go through the stage 2 page tables and invalidate any cache lines
207 * backing memory already mapped to the VM.
208 */
stage2_flush_vm(struct kvm * kvm)209 static void stage2_flush_vm(struct kvm *kvm)
210 {
211 struct kvm_memslots *slots;
212 struct kvm_memory_slot *memslot;
213 int idx, bkt;
214
215 idx = srcu_read_lock(&kvm->srcu);
216 write_lock(&kvm->mmu_lock);
217
218 slots = kvm_memslots(kvm);
219 kvm_for_each_memslot(memslot, bkt, slots)
220 stage2_flush_memslot(kvm, memslot);
221
222 write_unlock(&kvm->mmu_lock);
223 srcu_read_unlock(&kvm->srcu, idx);
224 }
225
226 /**
227 * free_hyp_pgds - free Hyp-mode page tables
228 */
free_hyp_pgds(void)229 void free_hyp_pgds(void)
230 {
231 mutex_lock(&kvm_hyp_pgd_mutex);
232 if (hyp_pgtable) {
233 kvm_pgtable_hyp_destroy(hyp_pgtable);
234 kfree(hyp_pgtable);
235 hyp_pgtable = NULL;
236 }
237 mutex_unlock(&kvm_hyp_pgd_mutex);
238 }
239
kvm_host_owns_hyp_mappings(void)240 static bool kvm_host_owns_hyp_mappings(void)
241 {
242 if (is_kernel_in_hyp_mode())
243 return false;
244
245 if (static_branch_likely(&kvm_protected_mode_initialized))
246 return false;
247
248 /*
249 * This can happen at boot time when __create_hyp_mappings() is called
250 * after the hyp protection has been enabled, but the static key has
251 * not been flipped yet.
252 */
253 if (!hyp_pgtable && is_protected_kvm_enabled())
254 return false;
255
256 WARN_ON(!hyp_pgtable);
257
258 return true;
259 }
260
__create_hyp_mappings(unsigned long start,unsigned long size,unsigned long phys,enum kvm_pgtable_prot prot)261 int __create_hyp_mappings(unsigned long start, unsigned long size,
262 unsigned long phys, enum kvm_pgtable_prot prot)
263 {
264 int err;
265
266 if (WARN_ON(!kvm_host_owns_hyp_mappings()))
267 return -EINVAL;
268
269 mutex_lock(&kvm_hyp_pgd_mutex);
270 err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot);
271 mutex_unlock(&kvm_hyp_pgd_mutex);
272
273 return err;
274 }
275
kvm_kaddr_to_phys(void * kaddr)276 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
277 {
278 if (!is_vmalloc_addr(kaddr)) {
279 BUG_ON(!virt_addr_valid(kaddr));
280 return __pa(kaddr);
281 } else {
282 return page_to_phys(vmalloc_to_page(kaddr)) +
283 offset_in_page(kaddr);
284 }
285 }
286
287 struct hyp_shared_pfn {
288 u64 pfn;
289 int count;
290 struct rb_node node;
291 };
292
293 static DEFINE_MUTEX(hyp_shared_pfns_lock);
294 static struct rb_root hyp_shared_pfns = RB_ROOT;
295
find_shared_pfn(u64 pfn,struct rb_node *** node,struct rb_node ** parent)296 static struct hyp_shared_pfn *find_shared_pfn(u64 pfn, struct rb_node ***node,
297 struct rb_node **parent)
298 {
299 struct hyp_shared_pfn *this;
300
301 *node = &hyp_shared_pfns.rb_node;
302 *parent = NULL;
303 while (**node) {
304 this = container_of(**node, struct hyp_shared_pfn, node);
305 *parent = **node;
306 if (this->pfn < pfn)
307 *node = &((**node)->rb_left);
308 else if (this->pfn > pfn)
309 *node = &((**node)->rb_right);
310 else
311 return this;
312 }
313
314 return NULL;
315 }
316
share_pfn_hyp(u64 pfn)317 static int share_pfn_hyp(u64 pfn)
318 {
319 struct rb_node **node, *parent;
320 struct hyp_shared_pfn *this;
321 int ret = 0;
322
323 mutex_lock(&hyp_shared_pfns_lock);
324 this = find_shared_pfn(pfn, &node, &parent);
325 if (this) {
326 this->count++;
327 goto unlock;
328 }
329
330 this = kzalloc(sizeof(*this), GFP_KERNEL);
331 if (!this) {
332 ret = -ENOMEM;
333 goto unlock;
334 }
335
336 this->pfn = pfn;
337 this->count = 1;
338 rb_link_node(&this->node, parent, node);
339 rb_insert_color(&this->node, &hyp_shared_pfns);
340 ret = kvm_call_hyp_nvhe(__pkvm_host_share_hyp, pfn, 1);
341 unlock:
342 mutex_unlock(&hyp_shared_pfns_lock);
343
344 return ret;
345 }
346
unshare_pfn_hyp(u64 pfn)347 static int unshare_pfn_hyp(u64 pfn)
348 {
349 struct rb_node **node, *parent;
350 struct hyp_shared_pfn *this;
351 int ret = 0;
352
353 mutex_lock(&hyp_shared_pfns_lock);
354 this = find_shared_pfn(pfn, &node, &parent);
355 if (WARN_ON(!this)) {
356 ret = -ENOENT;
357 goto unlock;
358 }
359
360 this->count--;
361 if (this->count)
362 goto unlock;
363
364 rb_erase(&this->node, &hyp_shared_pfns);
365 kfree(this);
366 ret = kvm_call_hyp_nvhe(__pkvm_host_unshare_hyp, pfn, 1);
367 unlock:
368 mutex_unlock(&hyp_shared_pfns_lock);
369
370 return ret;
371 }
372
kvm_share_hyp(void * from,void * to)373 int kvm_share_hyp(void *from, void *to)
374 {
375 phys_addr_t start, end, cur;
376 u64 pfn;
377 int ret;
378
379 if (is_kernel_in_hyp_mode())
380 return 0;
381
382 /*
383 * The share hcall maps things in the 'fixed-offset' region of the hyp
384 * VA space, so we can only share physically contiguous data-structures
385 * for now.
386 */
387 if (is_vmalloc_or_module_addr(from) || is_vmalloc_or_module_addr(to))
388 return -EINVAL;
389
390 if (kvm_host_owns_hyp_mappings())
391 return create_hyp_mappings(from, to, PAGE_HYP);
392
393 start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
394 end = PAGE_ALIGN(__pa(to));
395 for (cur = start; cur < end; cur += PAGE_SIZE) {
396 pfn = __phys_to_pfn(cur);
397 ret = share_pfn_hyp(pfn);
398 if (ret)
399 return ret;
400 }
401
402 return 0;
403 }
404
kvm_unshare_hyp(void * from,void * to)405 void kvm_unshare_hyp(void *from, void *to)
406 {
407 phys_addr_t start, end, cur;
408 u64 pfn;
409
410 if (is_kernel_in_hyp_mode() || kvm_host_owns_hyp_mappings() || !from)
411 return;
412
413 start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
414 end = PAGE_ALIGN(__pa(to));
415 for (cur = start; cur < end; cur += PAGE_SIZE) {
416 pfn = __phys_to_pfn(cur);
417 WARN_ON(unshare_pfn_hyp(pfn));
418 }
419 }
420
421 /**
422 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
423 * @from: The virtual kernel start address of the range
424 * @to: The virtual kernel end address of the range (exclusive)
425 * @prot: The protection to be applied to this range
426 *
427 * The same virtual address as the kernel virtual address is also used
428 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
429 * physical pages.
430 */
create_hyp_mappings(void * from,void * to,enum kvm_pgtable_prot prot)431 int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
432 {
433 phys_addr_t phys_addr;
434 unsigned long virt_addr;
435 unsigned long start = kern_hyp_va((unsigned long)from);
436 unsigned long end = kern_hyp_va((unsigned long)to);
437
438 if (is_kernel_in_hyp_mode())
439 return 0;
440
441 if (!kvm_host_owns_hyp_mappings())
442 return -EPERM;
443
444 start = start & PAGE_MASK;
445 end = PAGE_ALIGN(end);
446
447 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
448 int err;
449
450 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
451 err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr,
452 prot);
453 if (err)
454 return err;
455 }
456
457 return 0;
458 }
459
460
461 /**
462 * hyp_alloc_private_va_range - Allocates a private VA range.
463 * @size: The size of the VA range to reserve.
464 * @haddr: The hypervisor virtual start address of the allocation.
465 *
466 * The private virtual address (VA) range is allocated below io_map_base
467 * and aligned based on the order of @size.
468 *
469 * Return: 0 on success or negative error code on failure.
470 */
hyp_alloc_private_va_range(size_t size,unsigned long * haddr)471 int hyp_alloc_private_va_range(size_t size, unsigned long *haddr)
472 {
473 unsigned long base;
474 int ret = 0;
475
476 mutex_lock(&kvm_hyp_pgd_mutex);
477
478 /*
479 * This assumes that we have enough space below the idmap
480 * page to allocate our VAs. If not, the check below will
481 * kick. A potential alternative would be to detect that
482 * overflow and switch to an allocation above the idmap.
483 *
484 * The allocated size is always a multiple of PAGE_SIZE.
485 */
486 base = io_map_base - PAGE_ALIGN(size);
487
488 /* Align the allocation based on the order of its size */
489 base = ALIGN_DOWN(base, PAGE_SIZE << get_order(size));
490
491 /*
492 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
493 * allocating the new area, as it would indicate we've
494 * overflowed the idmap/IO address range.
495 */
496 if ((base ^ io_map_base) & BIT(VA_BITS - 1))
497 ret = -ENOMEM;
498 else
499 *haddr = io_map_base = base;
500
501 mutex_unlock(&kvm_hyp_pgd_mutex);
502
503 return ret;
504 }
505
__create_hyp_private_mapping(phys_addr_t phys_addr,size_t size,unsigned long * haddr,enum kvm_pgtable_prot prot)506 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
507 unsigned long *haddr,
508 enum kvm_pgtable_prot prot)
509 {
510 unsigned long addr;
511 int ret = 0;
512
513 if (!kvm_host_owns_hyp_mappings()) {
514 addr = kvm_call_hyp_nvhe(__pkvm_create_private_mapping,
515 phys_addr, size, prot);
516 if (IS_ERR_VALUE(addr))
517 return addr;
518 *haddr = addr;
519
520 return 0;
521 }
522
523 size = PAGE_ALIGN(size + offset_in_page(phys_addr));
524 ret = hyp_alloc_private_va_range(size, &addr);
525 if (ret)
526 return ret;
527
528 ret = __create_hyp_mappings(addr, size, phys_addr, prot);
529 if (ret)
530 return ret;
531
532 *haddr = addr + offset_in_page(phys_addr);
533 return ret;
534 }
535
536 /**
537 * create_hyp_io_mappings - Map IO into both kernel and HYP
538 * @phys_addr: The physical start address which gets mapped
539 * @size: Size of the region being mapped
540 * @kaddr: Kernel VA for this mapping
541 * @haddr: HYP VA for this mapping
542 */
create_hyp_io_mappings(phys_addr_t phys_addr,size_t size,void __iomem ** kaddr,void __iomem ** haddr)543 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
544 void __iomem **kaddr,
545 void __iomem **haddr)
546 {
547 unsigned long addr;
548 int ret;
549
550 if (is_protected_kvm_enabled())
551 return -EPERM;
552
553 *kaddr = ioremap(phys_addr, size);
554 if (!*kaddr)
555 return -ENOMEM;
556
557 if (is_kernel_in_hyp_mode()) {
558 *haddr = *kaddr;
559 return 0;
560 }
561
562 ret = __create_hyp_private_mapping(phys_addr, size,
563 &addr, PAGE_HYP_DEVICE);
564 if (ret) {
565 iounmap(*kaddr);
566 *kaddr = NULL;
567 *haddr = NULL;
568 return ret;
569 }
570
571 *haddr = (void __iomem *)addr;
572 return 0;
573 }
574
575 /**
576 * create_hyp_exec_mappings - Map an executable range into HYP
577 * @phys_addr: The physical start address which gets mapped
578 * @size: Size of the region being mapped
579 * @haddr: HYP VA for this mapping
580 */
create_hyp_exec_mappings(phys_addr_t phys_addr,size_t size,void ** haddr)581 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
582 void **haddr)
583 {
584 unsigned long addr;
585 int ret;
586
587 BUG_ON(is_kernel_in_hyp_mode());
588
589 ret = __create_hyp_private_mapping(phys_addr, size,
590 &addr, PAGE_HYP_EXEC);
591 if (ret) {
592 *haddr = NULL;
593 return ret;
594 }
595
596 *haddr = (void *)addr;
597 return 0;
598 }
599
600 static struct kvm_pgtable_mm_ops kvm_user_mm_ops = {
601 /* We shouldn't need any other callback to walk the PT */
602 .phys_to_virt = kvm_host_va,
603 };
604
get_user_mapping_size(struct kvm * kvm,u64 addr)605 static int get_user_mapping_size(struct kvm *kvm, u64 addr)
606 {
607 struct kvm_pgtable pgt = {
608 .pgd = (kvm_pte_t *)kvm->mm->pgd,
609 .ia_bits = VA_BITS,
610 .start_level = (KVM_PGTABLE_MAX_LEVELS -
611 CONFIG_PGTABLE_LEVELS),
612 .mm_ops = &kvm_user_mm_ops,
613 };
614 kvm_pte_t pte = 0; /* Keep GCC quiet... */
615 u32 level = ~0;
616 int ret;
617
618 ret = kvm_pgtable_get_leaf(&pgt, addr, &pte, &level);
619 VM_BUG_ON(ret);
620 VM_BUG_ON(level >= KVM_PGTABLE_MAX_LEVELS);
621 VM_BUG_ON(!(pte & PTE_VALID));
622
623 return BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(level));
624 }
625
626 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops = {
627 .zalloc_page = stage2_memcache_zalloc_page,
628 .zalloc_pages_exact = kvm_host_zalloc_pages_exact,
629 .free_pages_exact = free_pages_exact,
630 .get_page = kvm_host_get_page,
631 .put_page = kvm_host_put_page,
632 .page_count = kvm_host_page_count,
633 .phys_to_virt = kvm_host_va,
634 .virt_to_phys = kvm_host_pa,
635 .dcache_clean_inval_poc = clean_dcache_guest_page,
636 .icache_inval_pou = invalidate_icache_guest_page,
637 };
638
639 /**
640 * kvm_init_stage2_mmu - Initialise a S2 MMU structure
641 * @kvm: The pointer to the KVM structure
642 * @mmu: The pointer to the s2 MMU structure
643 *
644 * Allocates only the stage-2 HW PGD level table(s).
645 * Note we don't need locking here as this is only called when the VM is
646 * created, which can only be done once.
647 */
kvm_init_stage2_mmu(struct kvm * kvm,struct kvm_s2_mmu * mmu)648 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu)
649 {
650 int cpu, err;
651 struct kvm_pgtable *pgt;
652
653 if (mmu->pgt != NULL) {
654 kvm_err("kvm_arch already initialized?\n");
655 return -EINVAL;
656 }
657
658 pgt = kzalloc(sizeof(*pgt), GFP_KERNEL_ACCOUNT);
659 if (!pgt)
660 return -ENOMEM;
661
662 mmu->arch = &kvm->arch;
663 err = kvm_pgtable_stage2_init(pgt, mmu, &kvm_s2_mm_ops);
664 if (err)
665 goto out_free_pgtable;
666
667 mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran));
668 if (!mmu->last_vcpu_ran) {
669 err = -ENOMEM;
670 goto out_destroy_pgtable;
671 }
672
673 for_each_possible_cpu(cpu)
674 *per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1;
675
676 mmu->pgt = pgt;
677 mmu->pgd_phys = __pa(pgt->pgd);
678 return 0;
679
680 out_destroy_pgtable:
681 kvm_pgtable_stage2_destroy(pgt);
682 out_free_pgtable:
683 kfree(pgt);
684 return err;
685 }
686
stage2_unmap_memslot(struct kvm * kvm,struct kvm_memory_slot * memslot)687 static void stage2_unmap_memslot(struct kvm *kvm,
688 struct kvm_memory_slot *memslot)
689 {
690 hva_t hva = memslot->userspace_addr;
691 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
692 phys_addr_t size = PAGE_SIZE * memslot->npages;
693 hva_t reg_end = hva + size;
694
695 /*
696 * A memory region could potentially cover multiple VMAs, and any holes
697 * between them, so iterate over all of them to find out if we should
698 * unmap any of them.
699 *
700 * +--------------------------------------------+
701 * +---------------+----------------+ +----------------+
702 * | : VMA 1 | VMA 2 | | VMA 3 : |
703 * +---------------+----------------+ +----------------+
704 * | memory region |
705 * +--------------------------------------------+
706 */
707 do {
708 struct vm_area_struct *vma;
709 hva_t vm_start, vm_end;
710
711 vma = find_vma_intersection(current->mm, hva, reg_end);
712 if (!vma)
713 break;
714
715 /*
716 * Take the intersection of this VMA with the memory region
717 */
718 vm_start = max(hva, vma->vm_start);
719 vm_end = min(reg_end, vma->vm_end);
720
721 if (!(vma->vm_flags & VM_PFNMAP)) {
722 gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
723 unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start);
724 }
725 hva = vm_end;
726 } while (hva < reg_end);
727 }
728
729 /**
730 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
731 * @kvm: The struct kvm pointer
732 *
733 * Go through the memregions and unmap any regular RAM
734 * backing memory already mapped to the VM.
735 */
stage2_unmap_vm(struct kvm * kvm)736 void stage2_unmap_vm(struct kvm *kvm)
737 {
738 struct kvm_memslots *slots;
739 struct kvm_memory_slot *memslot;
740 int idx, bkt;
741
742 idx = srcu_read_lock(&kvm->srcu);
743 mmap_read_lock(current->mm);
744 write_lock(&kvm->mmu_lock);
745
746 slots = kvm_memslots(kvm);
747 kvm_for_each_memslot(memslot, bkt, slots)
748 stage2_unmap_memslot(kvm, memslot);
749
750 write_unlock(&kvm->mmu_lock);
751 mmap_read_unlock(current->mm);
752 srcu_read_unlock(&kvm->srcu, idx);
753 }
754
kvm_free_stage2_pgd(struct kvm_s2_mmu * mmu)755 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu)
756 {
757 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
758 struct kvm_pgtable *pgt = NULL;
759
760 write_lock(&kvm->mmu_lock);
761 pgt = mmu->pgt;
762 if (pgt) {
763 mmu->pgd_phys = 0;
764 mmu->pgt = NULL;
765 free_percpu(mmu->last_vcpu_ran);
766 }
767 write_unlock(&kvm->mmu_lock);
768
769 if (pgt) {
770 kvm_pgtable_stage2_destroy(pgt);
771 kfree(pgt);
772 }
773 }
774
775 /**
776 * kvm_phys_addr_ioremap - map a device range to guest IPA
777 *
778 * @kvm: The KVM pointer
779 * @guest_ipa: The IPA at which to insert the mapping
780 * @pa: The physical address of the device
781 * @size: The size of the mapping
782 * @writable: Whether or not to create a writable mapping
783 */
kvm_phys_addr_ioremap(struct kvm * kvm,phys_addr_t guest_ipa,phys_addr_t pa,unsigned long size,bool writable)784 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
785 phys_addr_t pa, unsigned long size, bool writable)
786 {
787 phys_addr_t addr;
788 int ret = 0;
789 struct kvm_mmu_memory_cache cache = { 0, __GFP_ZERO, NULL, };
790 struct kvm_pgtable *pgt = kvm->arch.mmu.pgt;
791 enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE |
792 KVM_PGTABLE_PROT_R |
793 (writable ? KVM_PGTABLE_PROT_W : 0);
794
795 if (is_protected_kvm_enabled())
796 return -EPERM;
797
798 size += offset_in_page(guest_ipa);
799 guest_ipa &= PAGE_MASK;
800
801 for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) {
802 ret = kvm_mmu_topup_memory_cache(&cache,
803 kvm_mmu_cache_min_pages(kvm));
804 if (ret)
805 break;
806
807 write_lock(&kvm->mmu_lock);
808 ret = kvm_pgtable_stage2_map(pgt, addr, PAGE_SIZE, pa, prot,
809 &cache);
810 write_unlock(&kvm->mmu_lock);
811 if (ret)
812 break;
813
814 pa += PAGE_SIZE;
815 }
816
817 kvm_mmu_free_memory_cache(&cache);
818 return ret;
819 }
820
821 /**
822 * stage2_wp_range() - write protect stage2 memory region range
823 * @mmu: The KVM stage-2 MMU pointer
824 * @addr: Start address of range
825 * @end: End address of range
826 */
stage2_wp_range(struct kvm_s2_mmu * mmu,phys_addr_t addr,phys_addr_t end)827 static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
828 {
829 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
830 stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_wrprotect);
831 }
832
833 /**
834 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
835 * @kvm: The KVM pointer
836 * @slot: The memory slot to write protect
837 *
838 * Called to start logging dirty pages after memory region
839 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
840 * all present PUD, PMD and PTEs are write protected in the memory region.
841 * Afterwards read of dirty page log can be called.
842 *
843 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
844 * serializing operations for VM memory regions.
845 */
kvm_mmu_wp_memory_region(struct kvm * kvm,int slot)846 static void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
847 {
848 struct kvm_memslots *slots = kvm_memslots(kvm);
849 struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
850 phys_addr_t start, end;
851
852 if (WARN_ON_ONCE(!memslot))
853 return;
854
855 start = memslot->base_gfn << PAGE_SHIFT;
856 end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
857
858 write_lock(&kvm->mmu_lock);
859 stage2_wp_range(&kvm->arch.mmu, start, end);
860 write_unlock(&kvm->mmu_lock);
861 kvm_flush_remote_tlbs(kvm);
862 }
863
864 /**
865 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
866 * @kvm: The KVM pointer
867 * @slot: The memory slot associated with mask
868 * @gfn_offset: The gfn offset in memory slot
869 * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory
870 * slot to be write protected
871 *
872 * Walks bits set in mask write protects the associated pte's. Caller must
873 * acquire kvm_mmu_lock.
874 */
kvm_mmu_write_protect_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)875 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
876 struct kvm_memory_slot *slot,
877 gfn_t gfn_offset, unsigned long mask)
878 {
879 phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
880 phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
881 phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
882
883 stage2_wp_range(&kvm->arch.mmu, start, end);
884 }
885
886 /*
887 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
888 * dirty pages.
889 *
890 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
891 * enable dirty logging for them.
892 */
kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)893 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
894 struct kvm_memory_slot *slot,
895 gfn_t gfn_offset, unsigned long mask)
896 {
897 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
898 }
899
kvm_send_hwpoison_signal(unsigned long address,short lsb)900 static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
901 {
902 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
903 }
904
fault_supports_stage2_huge_mapping(struct kvm_memory_slot * memslot,unsigned long hva,unsigned long map_size)905 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
906 unsigned long hva,
907 unsigned long map_size)
908 {
909 gpa_t gpa_start;
910 hva_t uaddr_start, uaddr_end;
911 size_t size;
912
913 /* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
914 if (map_size == PAGE_SIZE)
915 return true;
916
917 size = memslot->npages * PAGE_SIZE;
918
919 gpa_start = memslot->base_gfn << PAGE_SHIFT;
920
921 uaddr_start = memslot->userspace_addr;
922 uaddr_end = uaddr_start + size;
923
924 /*
925 * Pages belonging to memslots that don't have the same alignment
926 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
927 * PMD/PUD entries, because we'll end up mapping the wrong pages.
928 *
929 * Consider a layout like the following:
930 *
931 * memslot->userspace_addr:
932 * +-----+--------------------+--------------------+---+
933 * |abcde|fgh Stage-1 block | Stage-1 block tv|xyz|
934 * +-----+--------------------+--------------------+---+
935 *
936 * memslot->base_gfn << PAGE_SHIFT:
937 * +---+--------------------+--------------------+-----+
938 * |abc|def Stage-2 block | Stage-2 block |tvxyz|
939 * +---+--------------------+--------------------+-----+
940 *
941 * If we create those stage-2 blocks, we'll end up with this incorrect
942 * mapping:
943 * d -> f
944 * e -> g
945 * f -> h
946 */
947 if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
948 return false;
949
950 /*
951 * Next, let's make sure we're not trying to map anything not covered
952 * by the memslot. This means we have to prohibit block size mappings
953 * for the beginning and end of a non-block aligned and non-block sized
954 * memory slot (illustrated by the head and tail parts of the
955 * userspace view above containing pages 'abcde' and 'xyz',
956 * respectively).
957 *
958 * Note that it doesn't matter if we do the check using the
959 * userspace_addr or the base_gfn, as both are equally aligned (per
960 * the check above) and equally sized.
961 */
962 return (hva & ~(map_size - 1)) >= uaddr_start &&
963 (hva & ~(map_size - 1)) + map_size <= uaddr_end;
964 }
965
966 /*
967 * Check if the given hva is backed by a transparent huge page (THP) and
968 * whether it can be mapped using block mapping in stage2. If so, adjust
969 * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
970 * supported. This will need to be updated to support other THP sizes.
971 *
972 * Returns the size of the mapping.
973 */
974 static unsigned long
transparent_hugepage_adjust(struct kvm * kvm,struct kvm_memory_slot * memslot,unsigned long hva,kvm_pfn_t * pfnp,phys_addr_t * ipap)975 transparent_hugepage_adjust(struct kvm *kvm, struct kvm_memory_slot *memslot,
976 unsigned long hva, kvm_pfn_t *pfnp,
977 phys_addr_t *ipap)
978 {
979 kvm_pfn_t pfn = *pfnp;
980
981 /*
982 * Make sure the adjustment is done only for THP pages. Also make
983 * sure that the HVA and IPA are sufficiently aligned and that the
984 * block map is contained within the memslot.
985 */
986 if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE) &&
987 get_user_mapping_size(kvm, hva) >= PMD_SIZE) {
988 /*
989 * The address we faulted on is backed by a transparent huge
990 * page. However, because we map the compound huge page and
991 * not the individual tail page, we need to transfer the
992 * refcount to the head page. We have to be careful that the
993 * THP doesn't start to split while we are adjusting the
994 * refcounts.
995 *
996 * We are sure this doesn't happen, because mmu_notifier_retry
997 * was successful and we are holding the mmu_lock, so if this
998 * THP is trying to split, it will be blocked in the mmu
999 * notifier before touching any of the pages, specifically
1000 * before being able to call __split_huge_page_refcount().
1001 *
1002 * We can therefore safely transfer the refcount from PG_tail
1003 * to PG_head and switch the pfn from a tail page to the head
1004 * page accordingly.
1005 */
1006 *ipap &= PMD_MASK;
1007 kvm_release_pfn_clean(pfn);
1008 pfn &= ~(PTRS_PER_PMD - 1);
1009 get_page(pfn_to_page(pfn));
1010 *pfnp = pfn;
1011
1012 return PMD_SIZE;
1013 }
1014
1015 /* Use page mapping if we cannot use block mapping. */
1016 return PAGE_SIZE;
1017 }
1018
get_vma_page_shift(struct vm_area_struct * vma,unsigned long hva)1019 static int get_vma_page_shift(struct vm_area_struct *vma, unsigned long hva)
1020 {
1021 unsigned long pa;
1022
1023 if (is_vm_hugetlb_page(vma) && !(vma->vm_flags & VM_PFNMAP))
1024 return huge_page_shift(hstate_vma(vma));
1025
1026 if (!(vma->vm_flags & VM_PFNMAP))
1027 return PAGE_SHIFT;
1028
1029 VM_BUG_ON(is_vm_hugetlb_page(vma));
1030
1031 pa = (vma->vm_pgoff << PAGE_SHIFT) + (hva - vma->vm_start);
1032
1033 #ifndef __PAGETABLE_PMD_FOLDED
1034 if ((hva & (PUD_SIZE - 1)) == (pa & (PUD_SIZE - 1)) &&
1035 ALIGN_DOWN(hva, PUD_SIZE) >= vma->vm_start &&
1036 ALIGN(hva, PUD_SIZE) <= vma->vm_end)
1037 return PUD_SHIFT;
1038 #endif
1039
1040 if ((hva & (PMD_SIZE - 1)) == (pa & (PMD_SIZE - 1)) &&
1041 ALIGN_DOWN(hva, PMD_SIZE) >= vma->vm_start &&
1042 ALIGN(hva, PMD_SIZE) <= vma->vm_end)
1043 return PMD_SHIFT;
1044
1045 return PAGE_SHIFT;
1046 }
1047
1048 /*
1049 * The page will be mapped in stage 2 as Normal Cacheable, so the VM will be
1050 * able to see the page's tags and therefore they must be initialised first. If
1051 * PG_mte_tagged is set, tags have already been initialised.
1052 *
1053 * The race in the test/set of the PG_mte_tagged flag is handled by:
1054 * - preventing VM_SHARED mappings in a memslot with MTE preventing two VMs
1055 * racing to santise the same page
1056 * - mmap_lock protects between a VM faulting a page in and the VMM performing
1057 * an mprotect() to add VM_MTE
1058 */
sanitise_mte_tags(struct kvm * kvm,kvm_pfn_t pfn,unsigned long size)1059 static int sanitise_mte_tags(struct kvm *kvm, kvm_pfn_t pfn,
1060 unsigned long size)
1061 {
1062 unsigned long i, nr_pages = size >> PAGE_SHIFT;
1063 struct page *page;
1064
1065 if (!kvm_has_mte(kvm))
1066 return 0;
1067
1068 /*
1069 * pfn_to_online_page() is used to reject ZONE_DEVICE pages
1070 * that may not support tags.
1071 */
1072 page = pfn_to_online_page(pfn);
1073
1074 if (!page)
1075 return -EFAULT;
1076
1077 for (i = 0; i < nr_pages; i++, page++) {
1078 if (!test_bit(PG_mte_tagged, &page->flags)) {
1079 mte_clear_page_tags(page_address(page));
1080 set_bit(PG_mte_tagged, &page->flags);
1081 }
1082 }
1083
1084 return 0;
1085 }
1086
user_mem_abort(struct kvm_vcpu * vcpu,phys_addr_t fault_ipa,struct kvm_memory_slot * memslot,unsigned long hva,unsigned long fault_status)1087 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1088 struct kvm_memory_slot *memslot, unsigned long hva,
1089 unsigned long fault_status)
1090 {
1091 int ret = 0;
1092 bool write_fault, writable, force_pte = false;
1093 bool exec_fault;
1094 bool device = false;
1095 bool shared;
1096 unsigned long mmu_seq;
1097 struct kvm *kvm = vcpu->kvm;
1098 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1099 struct vm_area_struct *vma;
1100 short vma_shift;
1101 gfn_t gfn;
1102 kvm_pfn_t pfn;
1103 bool logging_active = memslot_is_logging(memslot);
1104 bool use_read_lock = false;
1105 unsigned long fault_level = kvm_vcpu_trap_get_fault_level(vcpu);
1106 unsigned long vma_pagesize, fault_granule;
1107 enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R;
1108 struct kvm_pgtable *pgt;
1109
1110 fault_granule = 1UL << ARM64_HW_PGTABLE_LEVEL_SHIFT(fault_level);
1111 write_fault = kvm_is_write_fault(vcpu);
1112 exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu);
1113 VM_BUG_ON(write_fault && exec_fault);
1114
1115 if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
1116 kvm_err("Unexpected L2 read permission error\n");
1117 return -EFAULT;
1118 }
1119
1120 /*
1121 * Let's check if we will get back a huge page backed by hugetlbfs, or
1122 * get block mapping for device MMIO region.
1123 */
1124 mmap_read_lock(current->mm);
1125 vma = vma_lookup(current->mm, hva);
1126 if (unlikely(!vma)) {
1127 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1128 mmap_read_unlock(current->mm);
1129 return -EFAULT;
1130 }
1131
1132 /*
1133 * logging_active is guaranteed to never be true for VM_PFNMAP
1134 * memslots.
1135 */
1136 if (logging_active) {
1137 force_pte = true;
1138 vma_shift = PAGE_SHIFT;
1139 use_read_lock = (fault_status == FSC_PERM && write_fault &&
1140 fault_granule == PAGE_SIZE);
1141 } else {
1142 vma_shift = get_vma_page_shift(vma, hva);
1143 }
1144
1145 shared = (vma->vm_flags & VM_SHARED);
1146
1147 switch (vma_shift) {
1148 #ifndef __PAGETABLE_PMD_FOLDED
1149 case PUD_SHIFT:
1150 if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE))
1151 break;
1152 fallthrough;
1153 #endif
1154 case CONT_PMD_SHIFT:
1155 vma_shift = PMD_SHIFT;
1156 fallthrough;
1157 case PMD_SHIFT:
1158 if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE))
1159 break;
1160 fallthrough;
1161 case CONT_PTE_SHIFT:
1162 vma_shift = PAGE_SHIFT;
1163 force_pte = true;
1164 fallthrough;
1165 case PAGE_SHIFT:
1166 break;
1167 default:
1168 WARN_ONCE(1, "Unknown vma_shift %d", vma_shift);
1169 }
1170
1171 vma_pagesize = 1UL << vma_shift;
1172 if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE)
1173 fault_ipa &= ~(vma_pagesize - 1);
1174
1175 gfn = fault_ipa >> PAGE_SHIFT;
1176 mmap_read_unlock(current->mm);
1177
1178 /*
1179 * Permission faults just need to update the existing leaf entry,
1180 * and so normally don't require allocations from the memcache. The
1181 * only exception to this is when dirty logging is enabled at runtime
1182 * and a write fault needs to collapse a block entry into a table.
1183 */
1184 if (fault_status != FSC_PERM || (logging_active && write_fault)) {
1185 ret = kvm_mmu_topup_memory_cache(memcache,
1186 kvm_mmu_cache_min_pages(kvm));
1187 if (ret)
1188 return ret;
1189 }
1190
1191 mmu_seq = vcpu->kvm->mmu_notifier_seq;
1192 /*
1193 * Ensure the read of mmu_notifier_seq happens before we call
1194 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1195 * the page we just got a reference to gets unmapped before we have a
1196 * chance to grab the mmu_lock, which ensure that if the page gets
1197 * unmapped afterwards, the call to kvm_unmap_gfn will take it away
1198 * from us again properly. This smp_rmb() interacts with the smp_wmb()
1199 * in kvm_mmu_notifier_invalidate_<page|range_end>.
1200 *
1201 * Besides, __gfn_to_pfn_memslot() instead of gfn_to_pfn_prot() is
1202 * used to avoid unnecessary overhead introduced to locate the memory
1203 * slot because it's always fixed even @gfn is adjusted for huge pages.
1204 */
1205 smp_rmb();
1206
1207 pfn = __gfn_to_pfn_memslot(memslot, gfn, false, NULL,
1208 write_fault, &writable, NULL);
1209 if (pfn == KVM_PFN_ERR_HWPOISON) {
1210 kvm_send_hwpoison_signal(hva, vma_shift);
1211 return 0;
1212 }
1213 if (is_error_noslot_pfn(pfn))
1214 return -EFAULT;
1215
1216 if (kvm_is_device_pfn(pfn)) {
1217 /*
1218 * If the page was identified as device early by looking at
1219 * the VMA flags, vma_pagesize is already representing the
1220 * largest quantity we can map. If instead it was mapped
1221 * via gfn_to_pfn_prot(), vma_pagesize is set to PAGE_SIZE
1222 * and must not be upgraded.
1223 *
1224 * In both cases, we don't let transparent_hugepage_adjust()
1225 * change things at the last minute.
1226 */
1227 device = true;
1228 } else if (logging_active && !write_fault) {
1229 /*
1230 * Only actually map the page as writable if this was a write
1231 * fault.
1232 */
1233 writable = false;
1234 }
1235
1236 if (exec_fault && device)
1237 return -ENOEXEC;
1238
1239 /*
1240 * To reduce MMU contentions and enhance concurrency during dirty
1241 * logging dirty logging, only acquire read lock for permission
1242 * relaxation.
1243 */
1244 if (use_read_lock)
1245 read_lock(&kvm->mmu_lock);
1246 else
1247 write_lock(&kvm->mmu_lock);
1248 pgt = vcpu->arch.hw_mmu->pgt;
1249 if (mmu_notifier_retry(kvm, mmu_seq))
1250 goto out_unlock;
1251
1252 /*
1253 * If we are not forced to use page mapping, check if we are
1254 * backed by a THP and thus use block mapping if possible.
1255 */
1256 if (vma_pagesize == PAGE_SIZE && !(force_pte || device)) {
1257 if (fault_status == FSC_PERM && fault_granule > PAGE_SIZE)
1258 vma_pagesize = fault_granule;
1259 else
1260 vma_pagesize = transparent_hugepage_adjust(kvm, memslot,
1261 hva, &pfn,
1262 &fault_ipa);
1263 }
1264
1265 if (fault_status != FSC_PERM && !device && kvm_has_mte(kvm)) {
1266 /* Check the VMM hasn't introduced a new VM_SHARED VMA */
1267 if (!shared)
1268 ret = sanitise_mte_tags(kvm, pfn, vma_pagesize);
1269 else
1270 ret = -EFAULT;
1271 if (ret)
1272 goto out_unlock;
1273 }
1274
1275 if (writable)
1276 prot |= KVM_PGTABLE_PROT_W;
1277
1278 if (exec_fault)
1279 prot |= KVM_PGTABLE_PROT_X;
1280
1281 if (device)
1282 prot |= KVM_PGTABLE_PROT_DEVICE;
1283 else if (cpus_have_const_cap(ARM64_HAS_CACHE_DIC))
1284 prot |= KVM_PGTABLE_PROT_X;
1285
1286 /*
1287 * Under the premise of getting a FSC_PERM fault, we just need to relax
1288 * permissions only if vma_pagesize equals fault_granule. Otherwise,
1289 * kvm_pgtable_stage2_map() should be called to change block size.
1290 */
1291 if (fault_status == FSC_PERM && vma_pagesize == fault_granule) {
1292 ret = kvm_pgtable_stage2_relax_perms(pgt, fault_ipa, prot);
1293 } else {
1294 WARN_ONCE(use_read_lock, "Attempted stage-2 map outside of write lock\n");
1295
1296 ret = kvm_pgtable_stage2_map(pgt, fault_ipa, vma_pagesize,
1297 __pfn_to_phys(pfn), prot,
1298 memcache);
1299 }
1300
1301 /* Mark the page dirty only if the fault is handled successfully */
1302 if (writable && !ret) {
1303 kvm_set_pfn_dirty(pfn);
1304 mark_page_dirty_in_slot(kvm, memslot, gfn);
1305 }
1306
1307 out_unlock:
1308 if (use_read_lock)
1309 read_unlock(&kvm->mmu_lock);
1310 else
1311 write_unlock(&kvm->mmu_lock);
1312 kvm_set_pfn_accessed(pfn);
1313 kvm_release_pfn_clean(pfn);
1314 return ret != -EAGAIN ? ret : 0;
1315 }
1316
1317 /* Resolve the access fault by making the page young again. */
handle_access_fault(struct kvm_vcpu * vcpu,phys_addr_t fault_ipa)1318 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1319 {
1320 pte_t pte;
1321 kvm_pte_t kpte;
1322 struct kvm_s2_mmu *mmu;
1323
1324 trace_kvm_access_fault(fault_ipa);
1325
1326 write_lock(&vcpu->kvm->mmu_lock);
1327 mmu = vcpu->arch.hw_mmu;
1328 kpte = kvm_pgtable_stage2_mkyoung(mmu->pgt, fault_ipa);
1329 write_unlock(&vcpu->kvm->mmu_lock);
1330
1331 pte = __pte(kpte);
1332 if (pte_valid(pte))
1333 kvm_set_pfn_accessed(pte_pfn(pte));
1334 }
1335
1336 /**
1337 * kvm_handle_guest_abort - handles all 2nd stage aborts
1338 * @vcpu: the VCPU pointer
1339 *
1340 * Any abort that gets to the host is almost guaranteed to be caused by a
1341 * missing second stage translation table entry, which can mean that either the
1342 * guest simply needs more memory and we must allocate an appropriate page or it
1343 * can mean that the guest tried to access I/O memory, which is emulated by user
1344 * space. The distinction is based on the IPA causing the fault and whether this
1345 * memory region has been registered as standard RAM by user space.
1346 */
kvm_handle_guest_abort(struct kvm_vcpu * vcpu)1347 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
1348 {
1349 unsigned long fault_status;
1350 phys_addr_t fault_ipa;
1351 struct kvm_memory_slot *memslot;
1352 unsigned long hva;
1353 bool is_iabt, write_fault, writable;
1354 gfn_t gfn;
1355 int ret, idx;
1356
1357 fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1358
1359 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1360 is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1361
1362 if (fault_status == FSC_FAULT) {
1363 /* Beyond sanitised PARange (which is the IPA limit) */
1364 if (fault_ipa >= BIT_ULL(get_kvm_ipa_limit())) {
1365 kvm_inject_size_fault(vcpu);
1366 return 1;
1367 }
1368
1369 /* Falls between the IPA range and the PARange? */
1370 if (fault_ipa >= BIT_ULL(vcpu->arch.hw_mmu->pgt->ia_bits)) {
1371 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0);
1372
1373 if (is_iabt)
1374 kvm_inject_pabt(vcpu, fault_ipa);
1375 else
1376 kvm_inject_dabt(vcpu, fault_ipa);
1377 return 1;
1378 }
1379 }
1380
1381 /* Synchronous External Abort? */
1382 if (kvm_vcpu_abt_issea(vcpu)) {
1383 /*
1384 * For RAS the host kernel may handle this abort.
1385 * There is no need to pass the error into the guest.
1386 */
1387 if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu)))
1388 kvm_inject_vabt(vcpu);
1389
1390 return 1;
1391 }
1392
1393 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu),
1394 kvm_vcpu_get_hfar(vcpu), fault_ipa);
1395
1396 /* Check the stage-2 fault is trans. fault or write fault */
1397 if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1398 fault_status != FSC_ACCESS) {
1399 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1400 kvm_vcpu_trap_get_class(vcpu),
1401 (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1402 (unsigned long)kvm_vcpu_get_esr(vcpu));
1403 return -EFAULT;
1404 }
1405
1406 idx = srcu_read_lock(&vcpu->kvm->srcu);
1407
1408 gfn = fault_ipa >> PAGE_SHIFT;
1409 memslot = gfn_to_memslot(vcpu->kvm, gfn);
1410 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1411 write_fault = kvm_is_write_fault(vcpu);
1412 if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1413 /*
1414 * The guest has put either its instructions or its page-tables
1415 * somewhere it shouldn't have. Userspace won't be able to do
1416 * anything about this (there's no syndrome for a start), so
1417 * re-inject the abort back into the guest.
1418 */
1419 if (is_iabt) {
1420 ret = -ENOEXEC;
1421 goto out;
1422 }
1423
1424 if (kvm_vcpu_abt_iss1tw(vcpu)) {
1425 kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1426 ret = 1;
1427 goto out_unlock;
1428 }
1429
1430 /*
1431 * Check for a cache maintenance operation. Since we
1432 * ended-up here, we know it is outside of any memory
1433 * slot. But we can't find out if that is for a device,
1434 * or if the guest is just being stupid. The only thing
1435 * we know for sure is that this range cannot be cached.
1436 *
1437 * So let's assume that the guest is just being
1438 * cautious, and skip the instruction.
1439 */
1440 if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) {
1441 kvm_incr_pc(vcpu);
1442 ret = 1;
1443 goto out_unlock;
1444 }
1445
1446 /*
1447 * The IPA is reported as [MAX:12], so we need to
1448 * complement it with the bottom 12 bits from the
1449 * faulting VA. This is always 12 bits, irrespective
1450 * of the page size.
1451 */
1452 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1453 ret = io_mem_abort(vcpu, fault_ipa);
1454 goto out_unlock;
1455 }
1456
1457 /* Userspace should not be able to register out-of-bounds IPAs */
1458 VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm));
1459
1460 if (fault_status == FSC_ACCESS) {
1461 handle_access_fault(vcpu, fault_ipa);
1462 ret = 1;
1463 goto out_unlock;
1464 }
1465
1466 ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1467 if (ret == 0)
1468 ret = 1;
1469 out:
1470 if (ret == -ENOEXEC) {
1471 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1472 ret = 1;
1473 }
1474 out_unlock:
1475 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1476 return ret;
1477 }
1478
kvm_unmap_gfn_range(struct kvm * kvm,struct kvm_gfn_range * range)1479 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1480 {
1481 if (!kvm->arch.mmu.pgt)
1482 return false;
1483
1484 __unmap_stage2_range(&kvm->arch.mmu, range->start << PAGE_SHIFT,
1485 (range->end - range->start) << PAGE_SHIFT,
1486 range->may_block);
1487
1488 return false;
1489 }
1490
kvm_set_spte_gfn(struct kvm * kvm,struct kvm_gfn_range * range)1491 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1492 {
1493 kvm_pfn_t pfn = pte_pfn(range->pte);
1494 int ret;
1495
1496 if (!kvm->arch.mmu.pgt)
1497 return false;
1498
1499 WARN_ON(range->end - range->start != 1);
1500
1501 ret = sanitise_mte_tags(kvm, pfn, PAGE_SIZE);
1502 if (ret)
1503 return false;
1504
1505 /*
1506 * We've moved a page around, probably through CoW, so let's treat
1507 * it just like a translation fault and the map handler will clean
1508 * the cache to the PoC.
1509 *
1510 * The MMU notifiers will have unmapped a huge PMD before calling
1511 * ->change_pte() (which in turn calls kvm_set_spte_gfn()) and
1512 * therefore we never need to clear out a huge PMD through this
1513 * calling path and a memcache is not required.
1514 */
1515 kvm_pgtable_stage2_map(kvm->arch.mmu.pgt, range->start << PAGE_SHIFT,
1516 PAGE_SIZE, __pfn_to_phys(pfn),
1517 KVM_PGTABLE_PROT_R, NULL);
1518
1519 return false;
1520 }
1521
kvm_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)1522 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1523 {
1524 u64 size = (range->end - range->start) << PAGE_SHIFT;
1525 kvm_pte_t kpte;
1526 pte_t pte;
1527
1528 if (!kvm->arch.mmu.pgt)
1529 return false;
1530
1531 WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
1532
1533 kpte = kvm_pgtable_stage2_mkold(kvm->arch.mmu.pgt,
1534 range->start << PAGE_SHIFT);
1535 pte = __pte(kpte);
1536 return pte_valid(pte) && pte_young(pte);
1537 }
1538
kvm_test_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)1539 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1540 {
1541 if (!kvm->arch.mmu.pgt)
1542 return false;
1543
1544 return kvm_pgtable_stage2_is_young(kvm->arch.mmu.pgt,
1545 range->start << PAGE_SHIFT);
1546 }
1547
kvm_mmu_get_httbr(void)1548 phys_addr_t kvm_mmu_get_httbr(void)
1549 {
1550 return __pa(hyp_pgtable->pgd);
1551 }
1552
kvm_get_idmap_vector(void)1553 phys_addr_t kvm_get_idmap_vector(void)
1554 {
1555 return hyp_idmap_vector;
1556 }
1557
kvm_map_idmap_text(void)1558 static int kvm_map_idmap_text(void)
1559 {
1560 unsigned long size = hyp_idmap_end - hyp_idmap_start;
1561 int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start,
1562 PAGE_HYP_EXEC);
1563 if (err)
1564 kvm_err("Failed to idmap %lx-%lx\n",
1565 hyp_idmap_start, hyp_idmap_end);
1566
1567 return err;
1568 }
1569
kvm_hyp_zalloc_page(void * arg)1570 static void *kvm_hyp_zalloc_page(void *arg)
1571 {
1572 return (void *)get_zeroed_page(GFP_KERNEL);
1573 }
1574
1575 static struct kvm_pgtable_mm_ops kvm_hyp_mm_ops = {
1576 .zalloc_page = kvm_hyp_zalloc_page,
1577 .get_page = kvm_host_get_page,
1578 .put_page = kvm_host_put_page,
1579 .phys_to_virt = kvm_host_va,
1580 .virt_to_phys = kvm_host_pa,
1581 };
1582
kvm_mmu_init(u32 * hyp_va_bits)1583 int kvm_mmu_init(u32 *hyp_va_bits)
1584 {
1585 int err;
1586
1587 hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start);
1588 hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
1589 hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end);
1590 hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
1591 hyp_idmap_vector = __pa_symbol(__kvm_hyp_init);
1592
1593 /*
1594 * We rely on the linker script to ensure at build time that the HYP
1595 * init code does not cross a page boundary.
1596 */
1597 BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1598
1599 *hyp_va_bits = 64 - ((idmap_t0sz & TCR_T0SZ_MASK) >> TCR_T0SZ_OFFSET);
1600 kvm_debug("Using %u-bit virtual addresses at EL2\n", *hyp_va_bits);
1601 kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
1602 kvm_debug("HYP VA range: %lx:%lx\n",
1603 kern_hyp_va(PAGE_OFFSET),
1604 kern_hyp_va((unsigned long)high_memory - 1));
1605
1606 if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1607 hyp_idmap_start < kern_hyp_va((unsigned long)high_memory - 1) &&
1608 hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1609 /*
1610 * The idmap page is intersecting with the VA space,
1611 * it is not safe to continue further.
1612 */
1613 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
1614 err = -EINVAL;
1615 goto out;
1616 }
1617
1618 hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL);
1619 if (!hyp_pgtable) {
1620 kvm_err("Hyp mode page-table not allocated\n");
1621 err = -ENOMEM;
1622 goto out;
1623 }
1624
1625 err = kvm_pgtable_hyp_init(hyp_pgtable, *hyp_va_bits, &kvm_hyp_mm_ops);
1626 if (err)
1627 goto out_free_pgtable;
1628
1629 err = kvm_map_idmap_text();
1630 if (err)
1631 goto out_destroy_pgtable;
1632
1633 io_map_base = hyp_idmap_start;
1634 return 0;
1635
1636 out_destroy_pgtable:
1637 kvm_pgtable_hyp_destroy(hyp_pgtable);
1638 out_free_pgtable:
1639 kfree(hyp_pgtable);
1640 hyp_pgtable = NULL;
1641 out:
1642 return err;
1643 }
1644
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)1645 void kvm_arch_commit_memory_region(struct kvm *kvm,
1646 struct kvm_memory_slot *old,
1647 const struct kvm_memory_slot *new,
1648 enum kvm_mr_change change)
1649 {
1650 /*
1651 * At this point memslot has been committed and there is an
1652 * allocated dirty_bitmap[], dirty pages will be tracked while the
1653 * memory slot is write protected.
1654 */
1655 if (change != KVM_MR_DELETE && new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1656 /*
1657 * If we're with initial-all-set, we don't need to write
1658 * protect any pages because they're all reported as dirty.
1659 * Huge pages and normal pages will be write protect gradually.
1660 */
1661 if (!kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1662 kvm_mmu_wp_memory_region(kvm, new->id);
1663 }
1664 }
1665 }
1666
kvm_arch_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)1667 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1668 const struct kvm_memory_slot *old,
1669 struct kvm_memory_slot *new,
1670 enum kvm_mr_change change)
1671 {
1672 hva_t hva, reg_end;
1673 int ret = 0;
1674
1675 if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1676 change != KVM_MR_FLAGS_ONLY)
1677 return 0;
1678
1679 /*
1680 * Prevent userspace from creating a memory region outside of the IPA
1681 * space addressable by the KVM guest IPA space.
1682 */
1683 if ((new->base_gfn + new->npages) > (kvm_phys_size(kvm) >> PAGE_SHIFT))
1684 return -EFAULT;
1685
1686 hva = new->userspace_addr;
1687 reg_end = hva + (new->npages << PAGE_SHIFT);
1688
1689 mmap_read_lock(current->mm);
1690 /*
1691 * A memory region could potentially cover multiple VMAs, and any holes
1692 * between them, so iterate over all of them.
1693 *
1694 * +--------------------------------------------+
1695 * +---------------+----------------+ +----------------+
1696 * | : VMA 1 | VMA 2 | | VMA 3 : |
1697 * +---------------+----------------+ +----------------+
1698 * | memory region |
1699 * +--------------------------------------------+
1700 */
1701 do {
1702 struct vm_area_struct *vma;
1703
1704 vma = find_vma_intersection(current->mm, hva, reg_end);
1705 if (!vma)
1706 break;
1707
1708 /*
1709 * VM_SHARED mappings are not allowed with MTE to avoid races
1710 * when updating the PG_mte_tagged page flag, see
1711 * sanitise_mte_tags for more details.
1712 */
1713 if (kvm_has_mte(kvm) && vma->vm_flags & VM_SHARED) {
1714 ret = -EINVAL;
1715 break;
1716 }
1717
1718 if (vma->vm_flags & VM_PFNMAP) {
1719 /* IO region dirty page logging not allowed */
1720 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1721 ret = -EINVAL;
1722 break;
1723 }
1724 }
1725 hva = min(reg_end, vma->vm_end);
1726 } while (hva < reg_end);
1727
1728 mmap_read_unlock(current->mm);
1729 return ret;
1730 }
1731
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)1732 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
1733 {
1734 }
1735
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)1736 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
1737 {
1738 }
1739
kvm_arch_flush_shadow_all(struct kvm * kvm)1740 void kvm_arch_flush_shadow_all(struct kvm *kvm)
1741 {
1742 kvm_free_stage2_pgd(&kvm->arch.mmu);
1743 }
1744
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)1745 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1746 struct kvm_memory_slot *slot)
1747 {
1748 gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
1749 phys_addr_t size = slot->npages << PAGE_SHIFT;
1750
1751 write_lock(&kvm->mmu_lock);
1752 unmap_stage2_range(&kvm->arch.mmu, gpa, size);
1753 write_unlock(&kvm->mmu_lock);
1754 }
1755
1756 /*
1757 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
1758 *
1759 * Main problems:
1760 * - S/W ops are local to a CPU (not broadcast)
1761 * - We have line migration behind our back (speculation)
1762 * - System caches don't support S/W at all (damn!)
1763 *
1764 * In the face of the above, the best we can do is to try and convert
1765 * S/W ops to VA ops. Because the guest is not allowed to infer the
1766 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
1767 * which is a rather good thing for us.
1768 *
1769 * Also, it is only used when turning caches on/off ("The expected
1770 * usage of the cache maintenance instructions that operate by set/way
1771 * is associated with the cache maintenance instructions associated
1772 * with the powerdown and powerup of caches, if this is required by
1773 * the implementation.").
1774 *
1775 * We use the following policy:
1776 *
1777 * - If we trap a S/W operation, we enable VM trapping to detect
1778 * caches being turned on/off, and do a full clean.
1779 *
1780 * - We flush the caches on both caches being turned on and off.
1781 *
1782 * - Once the caches are enabled, we stop trapping VM ops.
1783 */
kvm_set_way_flush(struct kvm_vcpu * vcpu)1784 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
1785 {
1786 unsigned long hcr = *vcpu_hcr(vcpu);
1787
1788 /*
1789 * If this is the first time we do a S/W operation
1790 * (i.e. HCR_TVM not set) flush the whole memory, and set the
1791 * VM trapping.
1792 *
1793 * Otherwise, rely on the VM trapping to wait for the MMU +
1794 * Caches to be turned off. At that point, we'll be able to
1795 * clean the caches again.
1796 */
1797 if (!(hcr & HCR_TVM)) {
1798 trace_kvm_set_way_flush(*vcpu_pc(vcpu),
1799 vcpu_has_cache_enabled(vcpu));
1800 stage2_flush_vm(vcpu->kvm);
1801 *vcpu_hcr(vcpu) = hcr | HCR_TVM;
1802 }
1803 }
1804
kvm_toggle_cache(struct kvm_vcpu * vcpu,bool was_enabled)1805 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
1806 {
1807 bool now_enabled = vcpu_has_cache_enabled(vcpu);
1808
1809 /*
1810 * If switching the MMU+caches on, need to invalidate the caches.
1811 * If switching it off, need to clean the caches.
1812 * Clean + invalidate does the trick always.
1813 */
1814 if (now_enabled != was_enabled)
1815 stage2_flush_vm(vcpu->kvm);
1816
1817 /* Caches are now on, stop trapping VM ops (until a S/W op) */
1818 if (now_enabled)
1819 *vcpu_hcr(vcpu) &= ~HCR_TVM;
1820
1821 trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
1822 }
1823