1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Based on arch/arm/kernel/traps.c
4 *
5 * Copyright (C) 1995-2009 Russell King
6 * Copyright (C) 2012 ARM Ltd.
7 */
8
9 #include <linux/bug.h>
10 #include <linux/context_tracking.h>
11 #include <linux/signal.h>
12 #include <linux/kallsyms.h>
13 #include <linux/kprobes.h>
14 #include <linux/spinlock.h>
15 #include <linux/uaccess.h>
16 #include <linux/hardirq.h>
17 #include <linux/kdebug.h>
18 #include <linux/module.h>
19 #include <linux/kexec.h>
20 #include <linux/delay.h>
21 #include <linux/init.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/debug.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sizes.h>
26 #include <linux/syscalls.h>
27 #include <linux/mm_types.h>
28 #include <linux/kasan.h>
29
30 #include <asm/atomic.h>
31 #include <asm/bug.h>
32 #include <asm/cpufeature.h>
33 #include <asm/daifflags.h>
34 #include <asm/debug-monitors.h>
35 #include <asm/esr.h>
36 #include <asm/exception.h>
37 #include <asm/extable.h>
38 #include <asm/insn.h>
39 #include <asm/kprobes.h>
40 #include <asm/patching.h>
41 #include <asm/traps.h>
42 #include <asm/smp.h>
43 #include <asm/stack_pointer.h>
44 #include <asm/stacktrace.h>
45 #include <asm/system_misc.h>
46 #include <asm/sysreg.h>
47
__check_eq(unsigned long pstate)48 static bool __kprobes __check_eq(unsigned long pstate)
49 {
50 return (pstate & PSR_Z_BIT) != 0;
51 }
52
__check_ne(unsigned long pstate)53 static bool __kprobes __check_ne(unsigned long pstate)
54 {
55 return (pstate & PSR_Z_BIT) == 0;
56 }
57
__check_cs(unsigned long pstate)58 static bool __kprobes __check_cs(unsigned long pstate)
59 {
60 return (pstate & PSR_C_BIT) != 0;
61 }
62
__check_cc(unsigned long pstate)63 static bool __kprobes __check_cc(unsigned long pstate)
64 {
65 return (pstate & PSR_C_BIT) == 0;
66 }
67
__check_mi(unsigned long pstate)68 static bool __kprobes __check_mi(unsigned long pstate)
69 {
70 return (pstate & PSR_N_BIT) != 0;
71 }
72
__check_pl(unsigned long pstate)73 static bool __kprobes __check_pl(unsigned long pstate)
74 {
75 return (pstate & PSR_N_BIT) == 0;
76 }
77
__check_vs(unsigned long pstate)78 static bool __kprobes __check_vs(unsigned long pstate)
79 {
80 return (pstate & PSR_V_BIT) != 0;
81 }
82
__check_vc(unsigned long pstate)83 static bool __kprobes __check_vc(unsigned long pstate)
84 {
85 return (pstate & PSR_V_BIT) == 0;
86 }
87
__check_hi(unsigned long pstate)88 static bool __kprobes __check_hi(unsigned long pstate)
89 {
90 pstate &= ~(pstate >> 1); /* PSR_C_BIT &= ~PSR_Z_BIT */
91 return (pstate & PSR_C_BIT) != 0;
92 }
93
__check_ls(unsigned long pstate)94 static bool __kprobes __check_ls(unsigned long pstate)
95 {
96 pstate &= ~(pstate >> 1); /* PSR_C_BIT &= ~PSR_Z_BIT */
97 return (pstate & PSR_C_BIT) == 0;
98 }
99
__check_ge(unsigned long pstate)100 static bool __kprobes __check_ge(unsigned long pstate)
101 {
102 pstate ^= (pstate << 3); /* PSR_N_BIT ^= PSR_V_BIT */
103 return (pstate & PSR_N_BIT) == 0;
104 }
105
__check_lt(unsigned long pstate)106 static bool __kprobes __check_lt(unsigned long pstate)
107 {
108 pstate ^= (pstate << 3); /* PSR_N_BIT ^= PSR_V_BIT */
109 return (pstate & PSR_N_BIT) != 0;
110 }
111
__check_gt(unsigned long pstate)112 static bool __kprobes __check_gt(unsigned long pstate)
113 {
114 /*PSR_N_BIT ^= PSR_V_BIT */
115 unsigned long temp = pstate ^ (pstate << 3);
116
117 temp |= (pstate << 1); /*PSR_N_BIT |= PSR_Z_BIT */
118 return (temp & PSR_N_BIT) == 0;
119 }
120
__check_le(unsigned long pstate)121 static bool __kprobes __check_le(unsigned long pstate)
122 {
123 /*PSR_N_BIT ^= PSR_V_BIT */
124 unsigned long temp = pstate ^ (pstate << 3);
125
126 temp |= (pstate << 1); /*PSR_N_BIT |= PSR_Z_BIT */
127 return (temp & PSR_N_BIT) != 0;
128 }
129
__check_al(unsigned long pstate)130 static bool __kprobes __check_al(unsigned long pstate)
131 {
132 return true;
133 }
134
135 /*
136 * Note that the ARMv8 ARM calls condition code 0b1111 "nv", but states that
137 * it behaves identically to 0b1110 ("al").
138 */
139 pstate_check_t * const aarch32_opcode_cond_checks[16] = {
140 __check_eq, __check_ne, __check_cs, __check_cc,
141 __check_mi, __check_pl, __check_vs, __check_vc,
142 __check_hi, __check_ls, __check_ge, __check_lt,
143 __check_gt, __check_le, __check_al, __check_al
144 };
145
146 int show_unhandled_signals = 0;
147
dump_kernel_instr(const char * lvl,struct pt_regs * regs)148 static void dump_kernel_instr(const char *lvl, struct pt_regs *regs)
149 {
150 unsigned long addr = instruction_pointer(regs);
151 char str[sizeof("00000000 ") * 5 + 2 + 1], *p = str;
152 int i;
153
154 if (user_mode(regs))
155 return;
156
157 for (i = -4; i < 1; i++) {
158 unsigned int val, bad;
159
160 bad = aarch64_insn_read(&((u32 *)addr)[i], &val);
161
162 if (!bad)
163 p += sprintf(p, i == 0 ? "(%08x) " : "%08x ", val);
164 else {
165 p += sprintf(p, "bad PC value");
166 break;
167 }
168 }
169
170 printk("%sCode: %s\n", lvl, str);
171 }
172
173 #ifdef CONFIG_PREEMPT
174 #define S_PREEMPT " PREEMPT"
175 #elif defined(CONFIG_PREEMPT_RT)
176 #define S_PREEMPT " PREEMPT_RT"
177 #else
178 #define S_PREEMPT ""
179 #endif
180
181 #define S_SMP " SMP"
182
__die(const char * str,int err,struct pt_regs * regs)183 static int __die(const char *str, int err, struct pt_regs *regs)
184 {
185 static int die_counter;
186 int ret;
187
188 pr_emerg("Internal error: %s: %x [#%d]" S_PREEMPT S_SMP "\n",
189 str, err, ++die_counter);
190
191 /* trap and error numbers are mostly meaningless on ARM */
192 ret = notify_die(DIE_OOPS, str, regs, err, 0, SIGSEGV);
193 if (ret == NOTIFY_STOP)
194 return ret;
195
196 print_modules();
197 show_regs(regs);
198
199 dump_kernel_instr(KERN_EMERG, regs);
200
201 return ret;
202 }
203
204 static DEFINE_RAW_SPINLOCK(die_lock);
205
206 /*
207 * This function is protected against re-entrancy.
208 */
die(const char * str,struct pt_regs * regs,int err)209 void die(const char *str, struct pt_regs *regs, int err)
210 {
211 int ret;
212 unsigned long flags;
213
214 raw_spin_lock_irqsave(&die_lock, flags);
215
216 oops_enter();
217
218 console_verbose();
219 bust_spinlocks(1);
220 ret = __die(str, err, regs);
221
222 if (regs && kexec_should_crash(current))
223 crash_kexec(regs);
224
225 bust_spinlocks(0);
226 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
227 oops_exit();
228
229 if (in_interrupt())
230 panic("%s: Fatal exception in interrupt", str);
231 if (panic_on_oops)
232 panic("%s: Fatal exception", str);
233
234 raw_spin_unlock_irqrestore(&die_lock, flags);
235
236 if (ret != NOTIFY_STOP)
237 make_task_dead(SIGSEGV);
238 }
239
arm64_show_signal(int signo,const char * str)240 static void arm64_show_signal(int signo, const char *str)
241 {
242 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
243 DEFAULT_RATELIMIT_BURST);
244 struct task_struct *tsk = current;
245 unsigned long esr = tsk->thread.fault_code;
246 struct pt_regs *regs = task_pt_regs(tsk);
247
248 /* Leave if the signal won't be shown */
249 if (!show_unhandled_signals ||
250 !unhandled_signal(tsk, signo) ||
251 !__ratelimit(&rs))
252 return;
253
254 pr_info("%s[%d]: unhandled exception: ", tsk->comm, task_pid_nr(tsk));
255 if (esr)
256 pr_cont("%s, ESR 0x%016lx, ", esr_get_class_string(esr), esr);
257
258 pr_cont("%s", str);
259 print_vma_addr(KERN_CONT " in ", regs->pc);
260 pr_cont("\n");
261 __show_regs(regs);
262 }
263
arm64_force_sig_fault(int signo,int code,unsigned long far,const char * str)264 void arm64_force_sig_fault(int signo, int code, unsigned long far,
265 const char *str)
266 {
267 arm64_show_signal(signo, str);
268 if (signo == SIGKILL)
269 force_sig(SIGKILL);
270 else
271 force_sig_fault(signo, code, (void __user *)far);
272 }
273
arm64_force_sig_mceerr(int code,unsigned long far,short lsb,const char * str)274 void arm64_force_sig_mceerr(int code, unsigned long far, short lsb,
275 const char *str)
276 {
277 arm64_show_signal(SIGBUS, str);
278 force_sig_mceerr(code, (void __user *)far, lsb);
279 }
280
arm64_force_sig_ptrace_errno_trap(int errno,unsigned long far,const char * str)281 void arm64_force_sig_ptrace_errno_trap(int errno, unsigned long far,
282 const char *str)
283 {
284 arm64_show_signal(SIGTRAP, str);
285 force_sig_ptrace_errno_trap(errno, (void __user *)far);
286 }
287
arm64_notify_die(const char * str,struct pt_regs * regs,int signo,int sicode,unsigned long far,unsigned long err)288 void arm64_notify_die(const char *str, struct pt_regs *regs,
289 int signo, int sicode, unsigned long far,
290 unsigned long err)
291 {
292 if (user_mode(regs)) {
293 WARN_ON(regs != current_pt_regs());
294 current->thread.fault_address = 0;
295 current->thread.fault_code = err;
296
297 arm64_force_sig_fault(signo, sicode, far, str);
298 } else {
299 die(str, regs, err);
300 }
301 }
302
303 #ifdef CONFIG_COMPAT
304 #define PSTATE_IT_1_0_SHIFT 25
305 #define PSTATE_IT_1_0_MASK (0x3 << PSTATE_IT_1_0_SHIFT)
306 #define PSTATE_IT_7_2_SHIFT 10
307 #define PSTATE_IT_7_2_MASK (0x3f << PSTATE_IT_7_2_SHIFT)
308
compat_get_it_state(struct pt_regs * regs)309 static u32 compat_get_it_state(struct pt_regs *regs)
310 {
311 u32 it, pstate = regs->pstate;
312
313 it = (pstate & PSTATE_IT_1_0_MASK) >> PSTATE_IT_1_0_SHIFT;
314 it |= ((pstate & PSTATE_IT_7_2_MASK) >> PSTATE_IT_7_2_SHIFT) << 2;
315
316 return it;
317 }
318
compat_set_it_state(struct pt_regs * regs,u32 it)319 static void compat_set_it_state(struct pt_regs *regs, u32 it)
320 {
321 u32 pstate_it;
322
323 pstate_it = (it << PSTATE_IT_1_0_SHIFT) & PSTATE_IT_1_0_MASK;
324 pstate_it |= ((it >> 2) << PSTATE_IT_7_2_SHIFT) & PSTATE_IT_7_2_MASK;
325
326 regs->pstate &= ~PSR_AA32_IT_MASK;
327 regs->pstate |= pstate_it;
328 }
329
advance_itstate(struct pt_regs * regs)330 static void advance_itstate(struct pt_regs *regs)
331 {
332 u32 it;
333
334 /* ARM mode */
335 if (!(regs->pstate & PSR_AA32_T_BIT) ||
336 !(regs->pstate & PSR_AA32_IT_MASK))
337 return;
338
339 it = compat_get_it_state(regs);
340
341 /*
342 * If this is the last instruction of the block, wipe the IT
343 * state. Otherwise advance it.
344 */
345 if (!(it & 7))
346 it = 0;
347 else
348 it = (it & 0xe0) | ((it << 1) & 0x1f);
349
350 compat_set_it_state(regs, it);
351 }
352 #else
advance_itstate(struct pt_regs * regs)353 static void advance_itstate(struct pt_regs *regs)
354 {
355 }
356 #endif
357
arm64_skip_faulting_instruction(struct pt_regs * regs,unsigned long size)358 void arm64_skip_faulting_instruction(struct pt_regs *regs, unsigned long size)
359 {
360 regs->pc += size;
361
362 /*
363 * If we were single stepping, we want to get the step exception after
364 * we return from the trap.
365 */
366 if (user_mode(regs))
367 user_fastforward_single_step(current);
368
369 if (compat_user_mode(regs))
370 advance_itstate(regs);
371 else
372 regs->pstate &= ~PSR_BTYPE_MASK;
373 }
374
375 static LIST_HEAD(undef_hook);
376 static DEFINE_RAW_SPINLOCK(undef_lock);
377
register_undef_hook(struct undef_hook * hook)378 void register_undef_hook(struct undef_hook *hook)
379 {
380 unsigned long flags;
381
382 raw_spin_lock_irqsave(&undef_lock, flags);
383 list_add(&hook->node, &undef_hook);
384 raw_spin_unlock_irqrestore(&undef_lock, flags);
385 }
386
unregister_undef_hook(struct undef_hook * hook)387 void unregister_undef_hook(struct undef_hook *hook)
388 {
389 unsigned long flags;
390
391 raw_spin_lock_irqsave(&undef_lock, flags);
392 list_del(&hook->node);
393 raw_spin_unlock_irqrestore(&undef_lock, flags);
394 }
395
call_undef_hook(struct pt_regs * regs)396 static int call_undef_hook(struct pt_regs *regs)
397 {
398 struct undef_hook *hook;
399 unsigned long flags;
400 u32 instr;
401 int (*fn)(struct pt_regs *regs, u32 instr) = NULL;
402 unsigned long pc = instruction_pointer(regs);
403
404 if (!user_mode(regs)) {
405 __le32 instr_le;
406 if (get_kernel_nofault(instr_le, (__le32 *)pc))
407 goto exit;
408 instr = le32_to_cpu(instr_le);
409 } else if (compat_thumb_mode(regs)) {
410 /* 16-bit Thumb instruction */
411 __le16 instr_le;
412 if (get_user(instr_le, (__le16 __user *)pc))
413 goto exit;
414 instr = le16_to_cpu(instr_le);
415 if (aarch32_insn_is_wide(instr)) {
416 u32 instr2;
417
418 if (get_user(instr_le, (__le16 __user *)(pc + 2)))
419 goto exit;
420 instr2 = le16_to_cpu(instr_le);
421 instr = (instr << 16) | instr2;
422 }
423 } else {
424 /* 32-bit ARM instruction */
425 __le32 instr_le;
426 if (get_user(instr_le, (__le32 __user *)pc))
427 goto exit;
428 instr = le32_to_cpu(instr_le);
429 }
430
431 raw_spin_lock_irqsave(&undef_lock, flags);
432 list_for_each_entry(hook, &undef_hook, node)
433 if ((instr & hook->instr_mask) == hook->instr_val &&
434 (regs->pstate & hook->pstate_mask) == hook->pstate_val)
435 fn = hook->fn;
436
437 raw_spin_unlock_irqrestore(&undef_lock, flags);
438 exit:
439 return fn ? fn(regs, instr) : 1;
440 }
441
force_signal_inject(int signal,int code,unsigned long address,unsigned long err)442 void force_signal_inject(int signal, int code, unsigned long address, unsigned long err)
443 {
444 const char *desc;
445 struct pt_regs *regs = current_pt_regs();
446
447 if (WARN_ON(!user_mode(regs)))
448 return;
449
450 switch (signal) {
451 case SIGILL:
452 desc = "undefined instruction";
453 break;
454 case SIGSEGV:
455 desc = "illegal memory access";
456 break;
457 default:
458 desc = "unknown or unrecoverable error";
459 break;
460 }
461
462 /* Force signals we don't understand to SIGKILL */
463 if (WARN_ON(signal != SIGKILL &&
464 siginfo_layout(signal, code) != SIL_FAULT)) {
465 signal = SIGKILL;
466 }
467
468 arm64_notify_die(desc, regs, signal, code, address, err);
469 }
470
471 /*
472 * Set up process info to signal segmentation fault - called on access error.
473 */
arm64_notify_segfault(unsigned long addr)474 void arm64_notify_segfault(unsigned long addr)
475 {
476 int code;
477
478 mmap_read_lock(current->mm);
479 if (find_vma(current->mm, untagged_addr(addr)) == NULL)
480 code = SEGV_MAPERR;
481 else
482 code = SEGV_ACCERR;
483 mmap_read_unlock(current->mm);
484
485 force_signal_inject(SIGSEGV, code, addr, 0);
486 }
487
do_undefinstr(struct pt_regs * regs)488 void do_undefinstr(struct pt_regs *regs)
489 {
490 /* check for AArch32 breakpoint instructions */
491 if (!aarch32_break_handler(regs))
492 return;
493
494 if (call_undef_hook(regs) == 0)
495 return;
496
497 BUG_ON(!user_mode(regs));
498 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
499 }
500 NOKPROBE_SYMBOL(do_undefinstr);
501
do_bti(struct pt_regs * regs)502 void do_bti(struct pt_regs *regs)
503 {
504 BUG_ON(!user_mode(regs));
505 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
506 }
507 NOKPROBE_SYMBOL(do_bti);
508
do_ptrauth_fault(struct pt_regs * regs,unsigned long esr)509 void do_ptrauth_fault(struct pt_regs *regs, unsigned long esr)
510 {
511 /*
512 * Unexpected FPAC exception or pointer authentication failure in
513 * the kernel: kill the task before it does any more harm.
514 */
515 BUG_ON(!user_mode(regs));
516 force_signal_inject(SIGILL, ILL_ILLOPN, regs->pc, esr);
517 }
518 NOKPROBE_SYMBOL(do_ptrauth_fault);
519
520 #define __user_cache_maint(insn, address, res) \
521 if (address >= TASK_SIZE_MAX) { \
522 res = -EFAULT; \
523 } else { \
524 uaccess_ttbr0_enable(); \
525 asm volatile ( \
526 "1: " insn ", %1\n" \
527 " mov %w0, #0\n" \
528 "2:\n" \
529 _ASM_EXTABLE_UACCESS_ERR(1b, 2b, %w0) \
530 : "=r" (res) \
531 : "r" (address)); \
532 uaccess_ttbr0_disable(); \
533 }
534
user_cache_maint_handler(unsigned long esr,struct pt_regs * regs)535 static void user_cache_maint_handler(unsigned long esr, struct pt_regs *regs)
536 {
537 unsigned long tagged_address, address;
538 int rt = ESR_ELx_SYS64_ISS_RT(esr);
539 int crm = (esr & ESR_ELx_SYS64_ISS_CRM_MASK) >> ESR_ELx_SYS64_ISS_CRM_SHIFT;
540 int ret = 0;
541
542 tagged_address = pt_regs_read_reg(regs, rt);
543 address = untagged_addr(tagged_address);
544
545 switch (crm) {
546 case ESR_ELx_SYS64_ISS_CRM_DC_CVAU: /* DC CVAU, gets promoted */
547 __user_cache_maint("dc civac", address, ret);
548 break;
549 case ESR_ELx_SYS64_ISS_CRM_DC_CVAC: /* DC CVAC, gets promoted */
550 __user_cache_maint("dc civac", address, ret);
551 break;
552 case ESR_ELx_SYS64_ISS_CRM_DC_CVADP: /* DC CVADP */
553 __user_cache_maint("sys 3, c7, c13, 1", address, ret);
554 break;
555 case ESR_ELx_SYS64_ISS_CRM_DC_CVAP: /* DC CVAP */
556 __user_cache_maint("sys 3, c7, c12, 1", address, ret);
557 break;
558 case ESR_ELx_SYS64_ISS_CRM_DC_CIVAC: /* DC CIVAC */
559 __user_cache_maint("dc civac", address, ret);
560 break;
561 case ESR_ELx_SYS64_ISS_CRM_IC_IVAU: /* IC IVAU */
562 __user_cache_maint("ic ivau", address, ret);
563 break;
564 default:
565 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
566 return;
567 }
568
569 if (ret)
570 arm64_notify_segfault(tagged_address);
571 else
572 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
573 }
574
ctr_read_handler(unsigned long esr,struct pt_regs * regs)575 static void ctr_read_handler(unsigned long esr, struct pt_regs *regs)
576 {
577 int rt = ESR_ELx_SYS64_ISS_RT(esr);
578 unsigned long val = arm64_ftr_reg_user_value(&arm64_ftr_reg_ctrel0);
579
580 if (cpus_have_const_cap(ARM64_WORKAROUND_1542419)) {
581 /* Hide DIC so that we can trap the unnecessary maintenance...*/
582 val &= ~BIT(CTR_DIC_SHIFT);
583
584 /* ... and fake IminLine to reduce the number of traps. */
585 val &= ~CTR_IMINLINE_MASK;
586 val |= (PAGE_SHIFT - 2) & CTR_IMINLINE_MASK;
587 }
588
589 pt_regs_write_reg(regs, rt, val);
590
591 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
592 }
593
cntvct_read_handler(unsigned long esr,struct pt_regs * regs)594 static void cntvct_read_handler(unsigned long esr, struct pt_regs *regs)
595 {
596 int rt = ESR_ELx_SYS64_ISS_RT(esr);
597
598 pt_regs_write_reg(regs, rt, arch_timer_read_counter());
599 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
600 }
601
cntfrq_read_handler(unsigned long esr,struct pt_regs * regs)602 static void cntfrq_read_handler(unsigned long esr, struct pt_regs *regs)
603 {
604 int rt = ESR_ELx_SYS64_ISS_RT(esr);
605
606 pt_regs_write_reg(regs, rt, arch_timer_get_rate());
607 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
608 }
609
mrs_handler(unsigned long esr,struct pt_regs * regs)610 static void mrs_handler(unsigned long esr, struct pt_regs *regs)
611 {
612 u32 sysreg, rt;
613
614 rt = ESR_ELx_SYS64_ISS_RT(esr);
615 sysreg = esr_sys64_to_sysreg(esr);
616
617 if (do_emulate_mrs(regs, sysreg, rt) != 0)
618 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
619 }
620
wfi_handler(unsigned long esr,struct pt_regs * regs)621 static void wfi_handler(unsigned long esr, struct pt_regs *regs)
622 {
623 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
624 }
625
626 struct sys64_hook {
627 unsigned long esr_mask;
628 unsigned long esr_val;
629 void (*handler)(unsigned long esr, struct pt_regs *regs);
630 };
631
632 static const struct sys64_hook sys64_hooks[] = {
633 {
634 .esr_mask = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_MASK,
635 .esr_val = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_VAL,
636 .handler = user_cache_maint_handler,
637 },
638 {
639 /* Trap read access to CTR_EL0 */
640 .esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
641 .esr_val = ESR_ELx_SYS64_ISS_SYS_CTR_READ,
642 .handler = ctr_read_handler,
643 },
644 {
645 /* Trap read access to CNTVCT_EL0 */
646 .esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
647 .esr_val = ESR_ELx_SYS64_ISS_SYS_CNTVCT,
648 .handler = cntvct_read_handler,
649 },
650 {
651 /* Trap read access to CNTVCTSS_EL0 */
652 .esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
653 .esr_val = ESR_ELx_SYS64_ISS_SYS_CNTVCTSS,
654 .handler = cntvct_read_handler,
655 },
656 {
657 /* Trap read access to CNTFRQ_EL0 */
658 .esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
659 .esr_val = ESR_ELx_SYS64_ISS_SYS_CNTFRQ,
660 .handler = cntfrq_read_handler,
661 },
662 {
663 /* Trap read access to CPUID registers */
664 .esr_mask = ESR_ELx_SYS64_ISS_SYS_MRS_OP_MASK,
665 .esr_val = ESR_ELx_SYS64_ISS_SYS_MRS_OP_VAL,
666 .handler = mrs_handler,
667 },
668 {
669 /* Trap WFI instructions executed in userspace */
670 .esr_mask = ESR_ELx_WFx_MASK,
671 .esr_val = ESR_ELx_WFx_WFI_VAL,
672 .handler = wfi_handler,
673 },
674 {},
675 };
676
677 #ifdef CONFIG_COMPAT
cp15_cond_valid(unsigned long esr,struct pt_regs * regs)678 static bool cp15_cond_valid(unsigned long esr, struct pt_regs *regs)
679 {
680 int cond;
681
682 /* Only a T32 instruction can trap without CV being set */
683 if (!(esr & ESR_ELx_CV)) {
684 u32 it;
685
686 it = compat_get_it_state(regs);
687 if (!it)
688 return true;
689
690 cond = it >> 4;
691 } else {
692 cond = (esr & ESR_ELx_COND_MASK) >> ESR_ELx_COND_SHIFT;
693 }
694
695 return aarch32_opcode_cond_checks[cond](regs->pstate);
696 }
697
compat_cntfrq_read_handler(unsigned long esr,struct pt_regs * regs)698 static void compat_cntfrq_read_handler(unsigned long esr, struct pt_regs *regs)
699 {
700 int reg = (esr & ESR_ELx_CP15_32_ISS_RT_MASK) >> ESR_ELx_CP15_32_ISS_RT_SHIFT;
701
702 pt_regs_write_reg(regs, reg, arch_timer_get_rate());
703 arm64_skip_faulting_instruction(regs, 4);
704 }
705
706 static const struct sys64_hook cp15_32_hooks[] = {
707 {
708 .esr_mask = ESR_ELx_CP15_32_ISS_SYS_MASK,
709 .esr_val = ESR_ELx_CP15_32_ISS_SYS_CNTFRQ,
710 .handler = compat_cntfrq_read_handler,
711 },
712 {},
713 };
714
compat_cntvct_read_handler(unsigned long esr,struct pt_regs * regs)715 static void compat_cntvct_read_handler(unsigned long esr, struct pt_regs *regs)
716 {
717 int rt = (esr & ESR_ELx_CP15_64_ISS_RT_MASK) >> ESR_ELx_CP15_64_ISS_RT_SHIFT;
718 int rt2 = (esr & ESR_ELx_CP15_64_ISS_RT2_MASK) >> ESR_ELx_CP15_64_ISS_RT2_SHIFT;
719 u64 val = arch_timer_read_counter();
720
721 pt_regs_write_reg(regs, rt, lower_32_bits(val));
722 pt_regs_write_reg(regs, rt2, upper_32_bits(val));
723 arm64_skip_faulting_instruction(regs, 4);
724 }
725
726 static const struct sys64_hook cp15_64_hooks[] = {
727 {
728 .esr_mask = ESR_ELx_CP15_64_ISS_SYS_MASK,
729 .esr_val = ESR_ELx_CP15_64_ISS_SYS_CNTVCT,
730 .handler = compat_cntvct_read_handler,
731 },
732 {
733 .esr_mask = ESR_ELx_CP15_64_ISS_SYS_MASK,
734 .esr_val = ESR_ELx_CP15_64_ISS_SYS_CNTVCTSS,
735 .handler = compat_cntvct_read_handler,
736 },
737 {},
738 };
739
do_cp15instr(unsigned long esr,struct pt_regs * regs)740 void do_cp15instr(unsigned long esr, struct pt_regs *regs)
741 {
742 const struct sys64_hook *hook, *hook_base;
743
744 if (!cp15_cond_valid(esr, regs)) {
745 /*
746 * There is no T16 variant of a CP access, so we
747 * always advance PC by 4 bytes.
748 */
749 arm64_skip_faulting_instruction(regs, 4);
750 return;
751 }
752
753 switch (ESR_ELx_EC(esr)) {
754 case ESR_ELx_EC_CP15_32:
755 hook_base = cp15_32_hooks;
756 break;
757 case ESR_ELx_EC_CP15_64:
758 hook_base = cp15_64_hooks;
759 break;
760 default:
761 do_undefinstr(regs);
762 return;
763 }
764
765 for (hook = hook_base; hook->handler; hook++)
766 if ((hook->esr_mask & esr) == hook->esr_val) {
767 hook->handler(esr, regs);
768 return;
769 }
770
771 /*
772 * New cp15 instructions may previously have been undefined at
773 * EL0. Fall back to our usual undefined instruction handler
774 * so that we handle these consistently.
775 */
776 do_undefinstr(regs);
777 }
778 NOKPROBE_SYMBOL(do_cp15instr);
779 #endif
780
do_sysinstr(unsigned long esr,struct pt_regs * regs)781 void do_sysinstr(unsigned long esr, struct pt_regs *regs)
782 {
783 const struct sys64_hook *hook;
784
785 for (hook = sys64_hooks; hook->handler; hook++)
786 if ((hook->esr_mask & esr) == hook->esr_val) {
787 hook->handler(esr, regs);
788 return;
789 }
790
791 /*
792 * New SYS instructions may previously have been undefined at EL0. Fall
793 * back to our usual undefined instruction handler so that we handle
794 * these consistently.
795 */
796 do_undefinstr(regs);
797 }
798 NOKPROBE_SYMBOL(do_sysinstr);
799
800 static const char *esr_class_str[] = {
801 [0 ... ESR_ELx_EC_MAX] = "UNRECOGNIZED EC",
802 [ESR_ELx_EC_UNKNOWN] = "Unknown/Uncategorized",
803 [ESR_ELx_EC_WFx] = "WFI/WFE",
804 [ESR_ELx_EC_CP15_32] = "CP15 MCR/MRC",
805 [ESR_ELx_EC_CP15_64] = "CP15 MCRR/MRRC",
806 [ESR_ELx_EC_CP14_MR] = "CP14 MCR/MRC",
807 [ESR_ELx_EC_CP14_LS] = "CP14 LDC/STC",
808 [ESR_ELx_EC_FP_ASIMD] = "ASIMD",
809 [ESR_ELx_EC_CP10_ID] = "CP10 MRC/VMRS",
810 [ESR_ELx_EC_PAC] = "PAC",
811 [ESR_ELx_EC_CP14_64] = "CP14 MCRR/MRRC",
812 [ESR_ELx_EC_BTI] = "BTI",
813 [ESR_ELx_EC_ILL] = "PSTATE.IL",
814 [ESR_ELx_EC_SVC32] = "SVC (AArch32)",
815 [ESR_ELx_EC_HVC32] = "HVC (AArch32)",
816 [ESR_ELx_EC_SMC32] = "SMC (AArch32)",
817 [ESR_ELx_EC_SVC64] = "SVC (AArch64)",
818 [ESR_ELx_EC_HVC64] = "HVC (AArch64)",
819 [ESR_ELx_EC_SMC64] = "SMC (AArch64)",
820 [ESR_ELx_EC_SYS64] = "MSR/MRS (AArch64)",
821 [ESR_ELx_EC_SVE] = "SVE",
822 [ESR_ELx_EC_ERET] = "ERET/ERETAA/ERETAB",
823 [ESR_ELx_EC_FPAC] = "FPAC",
824 [ESR_ELx_EC_SME] = "SME",
825 [ESR_ELx_EC_IMP_DEF] = "EL3 IMP DEF",
826 [ESR_ELx_EC_IABT_LOW] = "IABT (lower EL)",
827 [ESR_ELx_EC_IABT_CUR] = "IABT (current EL)",
828 [ESR_ELx_EC_PC_ALIGN] = "PC Alignment",
829 [ESR_ELx_EC_DABT_LOW] = "DABT (lower EL)",
830 [ESR_ELx_EC_DABT_CUR] = "DABT (current EL)",
831 [ESR_ELx_EC_SP_ALIGN] = "SP Alignment",
832 [ESR_ELx_EC_FP_EXC32] = "FP (AArch32)",
833 [ESR_ELx_EC_FP_EXC64] = "FP (AArch64)",
834 [ESR_ELx_EC_SERROR] = "SError",
835 [ESR_ELx_EC_BREAKPT_LOW] = "Breakpoint (lower EL)",
836 [ESR_ELx_EC_BREAKPT_CUR] = "Breakpoint (current EL)",
837 [ESR_ELx_EC_SOFTSTP_LOW] = "Software Step (lower EL)",
838 [ESR_ELx_EC_SOFTSTP_CUR] = "Software Step (current EL)",
839 [ESR_ELx_EC_WATCHPT_LOW] = "Watchpoint (lower EL)",
840 [ESR_ELx_EC_WATCHPT_CUR] = "Watchpoint (current EL)",
841 [ESR_ELx_EC_BKPT32] = "BKPT (AArch32)",
842 [ESR_ELx_EC_VECTOR32] = "Vector catch (AArch32)",
843 [ESR_ELx_EC_BRK64] = "BRK (AArch64)",
844 };
845
esr_get_class_string(unsigned long esr)846 const char *esr_get_class_string(unsigned long esr)
847 {
848 return esr_class_str[ESR_ELx_EC(esr)];
849 }
850
851 /*
852 * bad_el0_sync handles unexpected, but potentially recoverable synchronous
853 * exceptions taken from EL0.
854 */
bad_el0_sync(struct pt_regs * regs,int reason,unsigned long esr)855 void bad_el0_sync(struct pt_regs *regs, int reason, unsigned long esr)
856 {
857 unsigned long pc = instruction_pointer(regs);
858
859 current->thread.fault_address = 0;
860 current->thread.fault_code = esr;
861
862 arm64_force_sig_fault(SIGILL, ILL_ILLOPC, pc,
863 "Bad EL0 synchronous exception");
864 }
865
866 #ifdef CONFIG_VMAP_STACK
867
868 DEFINE_PER_CPU(unsigned long [OVERFLOW_STACK_SIZE/sizeof(long)], overflow_stack)
869 __aligned(16);
870
panic_bad_stack(struct pt_regs * regs,unsigned long esr,unsigned long far)871 void panic_bad_stack(struct pt_regs *regs, unsigned long esr, unsigned long far)
872 {
873 unsigned long tsk_stk = (unsigned long)current->stack;
874 unsigned long irq_stk = (unsigned long)this_cpu_read(irq_stack_ptr);
875 unsigned long ovf_stk = (unsigned long)this_cpu_ptr(overflow_stack);
876
877 console_verbose();
878 pr_emerg("Insufficient stack space to handle exception!");
879
880 pr_emerg("ESR: 0x%016lx -- %s\n", esr, esr_get_class_string(esr));
881 pr_emerg("FAR: 0x%016lx\n", far);
882
883 pr_emerg("Task stack: [0x%016lx..0x%016lx]\n",
884 tsk_stk, tsk_stk + THREAD_SIZE);
885 pr_emerg("IRQ stack: [0x%016lx..0x%016lx]\n",
886 irq_stk, irq_stk + IRQ_STACK_SIZE);
887 pr_emerg("Overflow stack: [0x%016lx..0x%016lx]\n",
888 ovf_stk, ovf_stk + OVERFLOW_STACK_SIZE);
889
890 __show_regs(regs);
891
892 /*
893 * We use nmi_panic to limit the potential for recusive overflows, and
894 * to get a better stack trace.
895 */
896 nmi_panic(NULL, "kernel stack overflow");
897 cpu_park_loop();
898 }
899 #endif
900
arm64_serror_panic(struct pt_regs * regs,unsigned long esr)901 void __noreturn arm64_serror_panic(struct pt_regs *regs, unsigned long esr)
902 {
903 console_verbose();
904
905 pr_crit("SError Interrupt on CPU%d, code 0x%016lx -- %s\n",
906 smp_processor_id(), esr, esr_get_class_string(esr));
907 if (regs)
908 __show_regs(regs);
909
910 nmi_panic(regs, "Asynchronous SError Interrupt");
911
912 cpu_park_loop();
913 unreachable();
914 }
915
arm64_is_fatal_ras_serror(struct pt_regs * regs,unsigned long esr)916 bool arm64_is_fatal_ras_serror(struct pt_regs *regs, unsigned long esr)
917 {
918 unsigned long aet = arm64_ras_serror_get_severity(esr);
919
920 switch (aet) {
921 case ESR_ELx_AET_CE: /* corrected error */
922 case ESR_ELx_AET_UEO: /* restartable, not yet consumed */
923 /*
924 * The CPU can make progress. We may take UEO again as
925 * a more severe error.
926 */
927 return false;
928
929 case ESR_ELx_AET_UEU: /* Uncorrected Unrecoverable */
930 case ESR_ELx_AET_UER: /* Uncorrected Recoverable */
931 /*
932 * The CPU can't make progress. The exception may have
933 * been imprecise.
934 *
935 * Neoverse-N1 #1349291 means a non-KVM SError reported as
936 * Unrecoverable should be treated as Uncontainable. We
937 * call arm64_serror_panic() in both cases.
938 */
939 return true;
940
941 case ESR_ELx_AET_UC: /* Uncontainable or Uncategorized error */
942 default:
943 /* Error has been silently propagated */
944 arm64_serror_panic(regs, esr);
945 }
946 }
947
do_serror(struct pt_regs * regs,unsigned long esr)948 void do_serror(struct pt_regs *regs, unsigned long esr)
949 {
950 /* non-RAS errors are not containable */
951 if (!arm64_is_ras_serror(esr) || arm64_is_fatal_ras_serror(regs, esr))
952 arm64_serror_panic(regs, esr);
953 }
954
955 /* GENERIC_BUG traps */
956
is_valid_bugaddr(unsigned long addr)957 int is_valid_bugaddr(unsigned long addr)
958 {
959 /*
960 * bug_handler() only called for BRK #BUG_BRK_IMM.
961 * So the answer is trivial -- any spurious instances with no
962 * bug table entry will be rejected by report_bug() and passed
963 * back to the debug-monitors code and handled as a fatal
964 * unexpected debug exception.
965 */
966 return 1;
967 }
968
bug_handler(struct pt_regs * regs,unsigned long esr)969 static int bug_handler(struct pt_regs *regs, unsigned long esr)
970 {
971 switch (report_bug(regs->pc, regs)) {
972 case BUG_TRAP_TYPE_BUG:
973 die("Oops - BUG", regs, 0);
974 break;
975
976 case BUG_TRAP_TYPE_WARN:
977 break;
978
979 default:
980 /* unknown/unrecognised bug trap type */
981 return DBG_HOOK_ERROR;
982 }
983
984 /* If thread survives, skip over the BUG instruction and continue: */
985 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
986 return DBG_HOOK_HANDLED;
987 }
988
989 static struct break_hook bug_break_hook = {
990 .fn = bug_handler,
991 .imm = BUG_BRK_IMM,
992 };
993
reserved_fault_handler(struct pt_regs * regs,unsigned long esr)994 static int reserved_fault_handler(struct pt_regs *regs, unsigned long esr)
995 {
996 pr_err("%s generated an invalid instruction at %pS!\n",
997 "Kernel text patching",
998 (void *)instruction_pointer(regs));
999
1000 /* We cannot handle this */
1001 return DBG_HOOK_ERROR;
1002 }
1003
1004 static struct break_hook fault_break_hook = {
1005 .fn = reserved_fault_handler,
1006 .imm = FAULT_BRK_IMM,
1007 };
1008
1009 #ifdef CONFIG_KASAN_SW_TAGS
1010
1011 #define KASAN_ESR_RECOVER 0x20
1012 #define KASAN_ESR_WRITE 0x10
1013 #define KASAN_ESR_SIZE_MASK 0x0f
1014 #define KASAN_ESR_SIZE(esr) (1 << ((esr) & KASAN_ESR_SIZE_MASK))
1015
kasan_handler(struct pt_regs * regs,unsigned long esr)1016 static int kasan_handler(struct pt_regs *regs, unsigned long esr)
1017 {
1018 bool recover = esr & KASAN_ESR_RECOVER;
1019 bool write = esr & KASAN_ESR_WRITE;
1020 size_t size = KASAN_ESR_SIZE(esr);
1021 u64 addr = regs->regs[0];
1022 u64 pc = regs->pc;
1023
1024 kasan_report(addr, size, write, pc);
1025
1026 /*
1027 * The instrumentation allows to control whether we can proceed after
1028 * a crash was detected. This is done by passing the -recover flag to
1029 * the compiler. Disabling recovery allows to generate more compact
1030 * code.
1031 *
1032 * Unfortunately disabling recovery doesn't work for the kernel right
1033 * now. KASAN reporting is disabled in some contexts (for example when
1034 * the allocator accesses slab object metadata; this is controlled by
1035 * current->kasan_depth). All these accesses are detected by the tool,
1036 * even though the reports for them are not printed.
1037 *
1038 * This is something that might be fixed at some point in the future.
1039 */
1040 if (!recover)
1041 die("Oops - KASAN", regs, 0);
1042
1043 /* If thread survives, skip over the brk instruction and continue: */
1044 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
1045 return DBG_HOOK_HANDLED;
1046 }
1047
1048 static struct break_hook kasan_break_hook = {
1049 .fn = kasan_handler,
1050 .imm = KASAN_BRK_IMM,
1051 .mask = KASAN_BRK_MASK,
1052 };
1053 #endif
1054
1055 /*
1056 * Initial handler for AArch64 BRK exceptions
1057 * This handler only used until debug_traps_init().
1058 */
early_brk64(unsigned long addr,unsigned long esr,struct pt_regs * regs)1059 int __init early_brk64(unsigned long addr, unsigned long esr,
1060 struct pt_regs *regs)
1061 {
1062 #ifdef CONFIG_KASAN_SW_TAGS
1063 unsigned long comment = esr & ESR_ELx_BRK64_ISS_COMMENT_MASK;
1064
1065 if ((comment & ~KASAN_BRK_MASK) == KASAN_BRK_IMM)
1066 return kasan_handler(regs, esr) != DBG_HOOK_HANDLED;
1067 #endif
1068 return bug_handler(regs, esr) != DBG_HOOK_HANDLED;
1069 }
1070
trap_init(void)1071 void __init trap_init(void)
1072 {
1073 register_kernel_break_hook(&bug_break_hook);
1074 register_kernel_break_hook(&fault_break_hook);
1075 #ifdef CONFIG_KASAN_SW_TAGS
1076 register_kernel_break_hook(&kasan_break_hook);
1077 #endif
1078 debug_traps_init();
1079 }
1080