1 /*P:100
2  * This is the Launcher code, a simple program which lays out the "physical"
3  * memory for the new Guest by mapping the kernel image and the virtual
4  * devices, then opens /dev/lguest to tell the kernel about the Guest and
5  * control it.
6 :*/
7 #define _LARGEFILE64_SOURCE
8 #define _GNU_SOURCE
9 #include <stdio.h>
10 #include <string.h>
11 #include <unistd.h>
12 #include <err.h>
13 #include <stdint.h>
14 #include <stdlib.h>
15 #include <elf.h>
16 #include <sys/mman.h>
17 #include <sys/param.h>
18 #include <sys/types.h>
19 #include <sys/stat.h>
20 #include <sys/wait.h>
21 #include <sys/eventfd.h>
22 #include <fcntl.h>
23 #include <stdbool.h>
24 #include <errno.h>
25 #include <ctype.h>
26 #include <sys/socket.h>
27 #include <sys/ioctl.h>
28 #include <sys/time.h>
29 #include <time.h>
30 #include <netinet/in.h>
31 #include <net/if.h>
32 #include <linux/sockios.h>
33 #include <linux/if_tun.h>
34 #include <sys/uio.h>
35 #include <termios.h>
36 #include <getopt.h>
37 #include <assert.h>
38 #include <sched.h>
39 #include <limits.h>
40 #include <stddef.h>
41 #include <signal.h>
42 #include <pwd.h>
43 #include <grp.h>
44 
45 #include <linux/virtio_config.h>
46 #include <linux/virtio_net.h>
47 #include <linux/virtio_blk.h>
48 #include <linux/virtio_console.h>
49 #include <linux/virtio_rng.h>
50 #include <linux/virtio_ring.h>
51 #include <asm/bootparam.h>
52 #include "../../include/linux/lguest_launcher.h"
53 /*L:110
54  * We can ignore the 43 include files we need for this program, but I do want
55  * to draw attention to the use of kernel-style types.
56  *
57  * As Linus said, "C is a Spartan language, and so should your naming be."  I
58  * like these abbreviations, so we define them here.  Note that u64 is always
59  * unsigned long long, which works on all Linux systems: this means that we can
60  * use %llu in printf for any u64.
61  */
62 typedef unsigned long long u64;
63 typedef uint32_t u32;
64 typedef uint16_t u16;
65 typedef uint8_t u8;
66 /*:*/
67 
68 #define BRIDGE_PFX "bridge:"
69 #ifndef SIOCBRADDIF
70 #define SIOCBRADDIF	0x89a2		/* add interface to bridge      */
71 #endif
72 /* We can have up to 256 pages for devices. */
73 #define DEVICE_PAGES 256
74 /* This will occupy 3 pages: it must be a power of 2. */
75 #define VIRTQUEUE_NUM 256
76 
77 /*L:120
78  * verbose is both a global flag and a macro.  The C preprocessor allows
79  * this, and although I wouldn't recommend it, it works quite nicely here.
80  */
81 static bool verbose;
82 #define verbose(args...) \
83 	do { if (verbose) printf(args); } while(0)
84 /*:*/
85 
86 /* The pointer to the start of guest memory. */
87 static void *guest_base;
88 /* The maximum guest physical address allowed, and maximum possible. */
89 static unsigned long guest_limit, guest_max;
90 /* The /dev/lguest file descriptor. */
91 static int lguest_fd;
92 
93 /* a per-cpu variable indicating whose vcpu is currently running */
94 static unsigned int __thread cpu_id;
95 
96 /* This is our list of devices. */
97 struct device_list {
98 	/* Counter to assign interrupt numbers. */
99 	unsigned int next_irq;
100 
101 	/* Counter to print out convenient device numbers. */
102 	unsigned int device_num;
103 
104 	/* The descriptor page for the devices. */
105 	u8 *descpage;
106 
107 	/* A single linked list of devices. */
108 	struct device *dev;
109 	/* And a pointer to the last device for easy append. */
110 	struct device *lastdev;
111 };
112 
113 /* The list of Guest devices, based on command line arguments. */
114 static struct device_list devices;
115 
116 /* The device structure describes a single device. */
117 struct device {
118 	/* The linked-list pointer. */
119 	struct device *next;
120 
121 	/* The device's descriptor, as mapped into the Guest. */
122 	struct lguest_device_desc *desc;
123 
124 	/* We can't trust desc values once Guest has booted: we use these. */
125 	unsigned int feature_len;
126 	unsigned int num_vq;
127 
128 	/* The name of this device, for --verbose. */
129 	const char *name;
130 
131 	/* Any queues attached to this device */
132 	struct virtqueue *vq;
133 
134 	/* Is it operational */
135 	bool running;
136 
137 	/* Device-specific data. */
138 	void *priv;
139 };
140 
141 /* The virtqueue structure describes a queue attached to a device. */
142 struct virtqueue {
143 	struct virtqueue *next;
144 
145 	/* Which device owns me. */
146 	struct device *dev;
147 
148 	/* The configuration for this queue. */
149 	struct lguest_vqconfig config;
150 
151 	/* The actual ring of buffers. */
152 	struct vring vring;
153 
154 	/* Last available index we saw. */
155 	u16 last_avail_idx;
156 
157 	/* How many are used since we sent last irq? */
158 	unsigned int pending_used;
159 
160 	/* Eventfd where Guest notifications arrive. */
161 	int eventfd;
162 
163 	/* Function for the thread which is servicing this virtqueue. */
164 	void (*service)(struct virtqueue *vq);
165 	pid_t thread;
166 };
167 
168 /* Remember the arguments to the program so we can "reboot" */
169 static char **main_args;
170 
171 /* The original tty settings to restore on exit. */
172 static struct termios orig_term;
173 
174 /*
175  * We have to be careful with barriers: our devices are all run in separate
176  * threads and so we need to make sure that changes visible to the Guest happen
177  * in precise order.
178  */
179 #define wmb() __asm__ __volatile__("" : : : "memory")
180 #define mb() __asm__ __volatile__("" : : : "memory")
181 
182 /*
183  * Convert an iovec element to the given type.
184  *
185  * This is a fairly ugly trick: we need to know the size of the type and
186  * alignment requirement to check the pointer is kosher.  It's also nice to
187  * have the name of the type in case we report failure.
188  *
189  * Typing those three things all the time is cumbersome and error prone, so we
190  * have a macro which sets them all up and passes to the real function.
191  */
192 #define convert(iov, type) \
193 	((type *)_convert((iov), sizeof(type), __alignof__(type), #type))
194 
_convert(struct iovec * iov,size_t size,size_t align,const char * name)195 static void *_convert(struct iovec *iov, size_t size, size_t align,
196 		      const char *name)
197 {
198 	if (iov->iov_len != size)
199 		errx(1, "Bad iovec size %zu for %s", iov->iov_len, name);
200 	if ((unsigned long)iov->iov_base % align != 0)
201 		errx(1, "Bad alignment %p for %s", iov->iov_base, name);
202 	return iov->iov_base;
203 }
204 
205 /* Wrapper for the last available index.  Makes it easier to change. */
206 #define lg_last_avail(vq)	((vq)->last_avail_idx)
207 
208 /*
209  * The virtio configuration space is defined to be little-endian.  x86 is
210  * little-endian too, but it's nice to be explicit so we have these helpers.
211  */
212 #define cpu_to_le16(v16) (v16)
213 #define cpu_to_le32(v32) (v32)
214 #define cpu_to_le64(v64) (v64)
215 #define le16_to_cpu(v16) (v16)
216 #define le32_to_cpu(v32) (v32)
217 #define le64_to_cpu(v64) (v64)
218 
219 /* Is this iovec empty? */
iov_empty(const struct iovec iov[],unsigned int num_iov)220 static bool iov_empty(const struct iovec iov[], unsigned int num_iov)
221 {
222 	unsigned int i;
223 
224 	for (i = 0; i < num_iov; i++)
225 		if (iov[i].iov_len)
226 			return false;
227 	return true;
228 }
229 
230 /* Take len bytes from the front of this iovec. */
iov_consume(struct iovec iov[],unsigned num_iov,unsigned len)231 static void iov_consume(struct iovec iov[], unsigned num_iov, unsigned len)
232 {
233 	unsigned int i;
234 
235 	for (i = 0; i < num_iov; i++) {
236 		unsigned int used;
237 
238 		used = iov[i].iov_len < len ? iov[i].iov_len : len;
239 		iov[i].iov_base += used;
240 		iov[i].iov_len -= used;
241 		len -= used;
242 	}
243 	assert(len == 0);
244 }
245 
246 /* The device virtqueue descriptors are followed by feature bitmasks. */
get_feature_bits(struct device * dev)247 static u8 *get_feature_bits(struct device *dev)
248 {
249 	return (u8 *)(dev->desc + 1)
250 		+ dev->num_vq * sizeof(struct lguest_vqconfig);
251 }
252 
253 /*L:100
254  * The Launcher code itself takes us out into userspace, that scary place where
255  * pointers run wild and free!  Unfortunately, like most userspace programs,
256  * it's quite boring (which is why everyone likes to hack on the kernel!).
257  * Perhaps if you make up an Lguest Drinking Game at this point, it will get
258  * you through this section.  Or, maybe not.
259  *
260  * The Launcher sets up a big chunk of memory to be the Guest's "physical"
261  * memory and stores it in "guest_base".  In other words, Guest physical ==
262  * Launcher virtual with an offset.
263  *
264  * This can be tough to get your head around, but usually it just means that we
265  * use these trivial conversion functions when the Guest gives us its
266  * "physical" addresses:
267  */
from_guest_phys(unsigned long addr)268 static void *from_guest_phys(unsigned long addr)
269 {
270 	return guest_base + addr;
271 }
272 
to_guest_phys(const void * addr)273 static unsigned long to_guest_phys(const void *addr)
274 {
275 	return (addr - guest_base);
276 }
277 
278 /*L:130
279  * Loading the Kernel.
280  *
281  * We start with couple of simple helper routines.  open_or_die() avoids
282  * error-checking code cluttering the callers:
283  */
open_or_die(const char * name,int flags)284 static int open_or_die(const char *name, int flags)
285 {
286 	int fd = open(name, flags);
287 	if (fd < 0)
288 		err(1, "Failed to open %s", name);
289 	return fd;
290 }
291 
292 /* map_zeroed_pages() takes a number of pages. */
map_zeroed_pages(unsigned int num)293 static void *map_zeroed_pages(unsigned int num)
294 {
295 	int fd = open_or_die("/dev/zero", O_RDONLY);
296 	void *addr;
297 
298 	/*
299 	 * We use a private mapping (ie. if we write to the page, it will be
300 	 * copied). We allocate an extra two pages PROT_NONE to act as guard
301 	 * pages against read/write attempts that exceed allocated space.
302 	 */
303 	addr = mmap(NULL, getpagesize() * (num+2),
304 		    PROT_NONE, MAP_PRIVATE, fd, 0);
305 
306 	if (addr == MAP_FAILED)
307 		err(1, "Mmapping %u pages of /dev/zero", num);
308 
309 	if (mprotect(addr + getpagesize(), getpagesize() * num,
310 		     PROT_READ|PROT_WRITE) == -1)
311 		err(1, "mprotect rw %u pages failed", num);
312 
313 	/*
314 	 * One neat mmap feature is that you can close the fd, and it
315 	 * stays mapped.
316 	 */
317 	close(fd);
318 
319 	/* Return address after PROT_NONE page */
320 	return addr + getpagesize();
321 }
322 
323 /* Get some more pages for a device. */
get_pages(unsigned int num)324 static void *get_pages(unsigned int num)
325 {
326 	void *addr = from_guest_phys(guest_limit);
327 
328 	guest_limit += num * getpagesize();
329 	if (guest_limit > guest_max)
330 		errx(1, "Not enough memory for devices");
331 	return addr;
332 }
333 
334 /*
335  * This routine is used to load the kernel or initrd.  It tries mmap, but if
336  * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
337  * it falls back to reading the memory in.
338  */
map_at(int fd,void * addr,unsigned long offset,unsigned long len)339 static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
340 {
341 	ssize_t r;
342 
343 	/*
344 	 * We map writable even though for some segments are marked read-only.
345 	 * The kernel really wants to be writable: it patches its own
346 	 * instructions.
347 	 *
348 	 * MAP_PRIVATE means that the page won't be copied until a write is
349 	 * done to it.  This allows us to share untouched memory between
350 	 * Guests.
351 	 */
352 	if (mmap(addr, len, PROT_READ|PROT_WRITE,
353 		 MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
354 		return;
355 
356 	/* pread does a seek and a read in one shot: saves a few lines. */
357 	r = pread(fd, addr, len, offset);
358 	if (r != len)
359 		err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
360 }
361 
362 /*
363  * This routine takes an open vmlinux image, which is in ELF, and maps it into
364  * the Guest memory.  ELF = Embedded Linking Format, which is the format used
365  * by all modern binaries on Linux including the kernel.
366  *
367  * The ELF headers give *two* addresses: a physical address, and a virtual
368  * address.  We use the physical address; the Guest will map itself to the
369  * virtual address.
370  *
371  * We return the starting address.
372  */
map_elf(int elf_fd,const Elf32_Ehdr * ehdr)373 static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
374 {
375 	Elf32_Phdr phdr[ehdr->e_phnum];
376 	unsigned int i;
377 
378 	/*
379 	 * Sanity checks on the main ELF header: an x86 executable with a
380 	 * reasonable number of correctly-sized program headers.
381 	 */
382 	if (ehdr->e_type != ET_EXEC
383 	    || ehdr->e_machine != EM_386
384 	    || ehdr->e_phentsize != sizeof(Elf32_Phdr)
385 	    || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
386 		errx(1, "Malformed elf header");
387 
388 	/*
389 	 * An ELF executable contains an ELF header and a number of "program"
390 	 * headers which indicate which parts ("segments") of the program to
391 	 * load where.
392 	 */
393 
394 	/* We read in all the program headers at once: */
395 	if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
396 		err(1, "Seeking to program headers");
397 	if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
398 		err(1, "Reading program headers");
399 
400 	/*
401 	 * Try all the headers: there are usually only three.  A read-only one,
402 	 * a read-write one, and a "note" section which we don't load.
403 	 */
404 	for (i = 0; i < ehdr->e_phnum; i++) {
405 		/* If this isn't a loadable segment, we ignore it */
406 		if (phdr[i].p_type != PT_LOAD)
407 			continue;
408 
409 		verbose("Section %i: size %i addr %p\n",
410 			i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
411 
412 		/* We map this section of the file at its physical address. */
413 		map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
414 		       phdr[i].p_offset, phdr[i].p_filesz);
415 	}
416 
417 	/* The entry point is given in the ELF header. */
418 	return ehdr->e_entry;
419 }
420 
421 /*L:150
422  * A bzImage, unlike an ELF file, is not meant to be loaded.  You're supposed
423  * to jump into it and it will unpack itself.  We used to have to perform some
424  * hairy magic because the unpacking code scared me.
425  *
426  * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
427  * a small patch to jump over the tricky bits in the Guest, so now we just read
428  * the funky header so we know where in the file to load, and away we go!
429  */
load_bzimage(int fd)430 static unsigned long load_bzimage(int fd)
431 {
432 	struct boot_params boot;
433 	int r;
434 	/* Modern bzImages get loaded at 1M. */
435 	void *p = from_guest_phys(0x100000);
436 
437 	/*
438 	 * Go back to the start of the file and read the header.  It should be
439 	 * a Linux boot header (see Documentation/x86/boot.txt)
440 	 */
441 	lseek(fd, 0, SEEK_SET);
442 	read(fd, &boot, sizeof(boot));
443 
444 	/* Inside the setup_hdr, we expect the magic "HdrS" */
445 	if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
446 		errx(1, "This doesn't look like a bzImage to me");
447 
448 	/* Skip over the extra sectors of the header. */
449 	lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
450 
451 	/* Now read everything into memory. in nice big chunks. */
452 	while ((r = read(fd, p, 65536)) > 0)
453 		p += r;
454 
455 	/* Finally, code32_start tells us where to enter the kernel. */
456 	return boot.hdr.code32_start;
457 }
458 
459 /*L:140
460  * Loading the kernel is easy when it's a "vmlinux", but most kernels
461  * come wrapped up in the self-decompressing "bzImage" format.  With a little
462  * work, we can load those, too.
463  */
load_kernel(int fd)464 static unsigned long load_kernel(int fd)
465 {
466 	Elf32_Ehdr hdr;
467 
468 	/* Read in the first few bytes. */
469 	if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
470 		err(1, "Reading kernel");
471 
472 	/* If it's an ELF file, it starts with "\177ELF" */
473 	if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
474 		return map_elf(fd, &hdr);
475 
476 	/* Otherwise we assume it's a bzImage, and try to load it. */
477 	return load_bzimage(fd);
478 }
479 
480 /*
481  * This is a trivial little helper to align pages.  Andi Kleen hated it because
482  * it calls getpagesize() twice: "it's dumb code."
483  *
484  * Kernel guys get really het up about optimization, even when it's not
485  * necessary.  I leave this code as a reaction against that.
486  */
page_align(unsigned long addr)487 static inline unsigned long page_align(unsigned long addr)
488 {
489 	/* Add upwards and truncate downwards. */
490 	return ((addr + getpagesize()-1) & ~(getpagesize()-1));
491 }
492 
493 /*L:180
494  * An "initial ram disk" is a disk image loaded into memory along with the
495  * kernel which the kernel can use to boot from without needing any drivers.
496  * Most distributions now use this as standard: the initrd contains the code to
497  * load the appropriate driver modules for the current machine.
498  *
499  * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
500  * kernels.  He sent me this (and tells me when I break it).
501  */
load_initrd(const char * name,unsigned long mem)502 static unsigned long load_initrd(const char *name, unsigned long mem)
503 {
504 	int ifd;
505 	struct stat st;
506 	unsigned long len;
507 
508 	ifd = open_or_die(name, O_RDONLY);
509 	/* fstat() is needed to get the file size. */
510 	if (fstat(ifd, &st) < 0)
511 		err(1, "fstat() on initrd '%s'", name);
512 
513 	/*
514 	 * We map the initrd at the top of memory, but mmap wants it to be
515 	 * page-aligned, so we round the size up for that.
516 	 */
517 	len = page_align(st.st_size);
518 	map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
519 	/*
520 	 * Once a file is mapped, you can close the file descriptor.  It's a
521 	 * little odd, but quite useful.
522 	 */
523 	close(ifd);
524 	verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
525 
526 	/* We return the initrd size. */
527 	return len;
528 }
529 /*:*/
530 
531 /*
532  * Simple routine to roll all the commandline arguments together with spaces
533  * between them.
534  */
concat(char * dst,char * args[])535 static void concat(char *dst, char *args[])
536 {
537 	unsigned int i, len = 0;
538 
539 	for (i = 0; args[i]; i++) {
540 		if (i) {
541 			strcat(dst+len, " ");
542 			len++;
543 		}
544 		strcpy(dst+len, args[i]);
545 		len += strlen(args[i]);
546 	}
547 	/* In case it's empty. */
548 	dst[len] = '\0';
549 }
550 
551 /*L:185
552  * This is where we actually tell the kernel to initialize the Guest.  We
553  * saw the arguments it expects when we looked at initialize() in lguest_user.c:
554  * the base of Guest "physical" memory, the top physical page to allow and the
555  * entry point for the Guest.
556  */
tell_kernel(unsigned long start)557 static void tell_kernel(unsigned long start)
558 {
559 	unsigned long args[] = { LHREQ_INITIALIZE,
560 				 (unsigned long)guest_base,
561 				 guest_limit / getpagesize(), start };
562 	verbose("Guest: %p - %p (%#lx)\n",
563 		guest_base, guest_base + guest_limit, guest_limit);
564 	lguest_fd = open_or_die("/dev/lguest", O_RDWR);
565 	if (write(lguest_fd, args, sizeof(args)) < 0)
566 		err(1, "Writing to /dev/lguest");
567 }
568 /*:*/
569 
570 /*L:200
571  * Device Handling.
572  *
573  * When the Guest gives us a buffer, it sends an array of addresses and sizes.
574  * We need to make sure it's not trying to reach into the Launcher itself, so
575  * we have a convenient routine which checks it and exits with an error message
576  * if something funny is going on:
577  */
_check_pointer(unsigned long addr,unsigned int size,unsigned int line)578 static void *_check_pointer(unsigned long addr, unsigned int size,
579 			    unsigned int line)
580 {
581 	/*
582 	 * Check if the requested address and size exceeds the allocated memory,
583 	 * or addr + size wraps around.
584 	 */
585 	if ((addr + size) > guest_limit || (addr + size) < addr)
586 		errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
587 	/*
588 	 * We return a pointer for the caller's convenience, now we know it's
589 	 * safe to use.
590 	 */
591 	return from_guest_phys(addr);
592 }
593 /* A macro which transparently hands the line number to the real function. */
594 #define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
595 
596 /*
597  * Each buffer in the virtqueues is actually a chain of descriptors.  This
598  * function returns the next descriptor in the chain, or vq->vring.num if we're
599  * at the end.
600  */
next_desc(struct vring_desc * desc,unsigned int i,unsigned int max)601 static unsigned next_desc(struct vring_desc *desc,
602 			  unsigned int i, unsigned int max)
603 {
604 	unsigned int next;
605 
606 	/* If this descriptor says it doesn't chain, we're done. */
607 	if (!(desc[i].flags & VRING_DESC_F_NEXT))
608 		return max;
609 
610 	/* Check they're not leading us off end of descriptors. */
611 	next = desc[i].next;
612 	/* Make sure compiler knows to grab that: we don't want it changing! */
613 	wmb();
614 
615 	if (next >= max)
616 		errx(1, "Desc next is %u", next);
617 
618 	return next;
619 }
620 
621 /*
622  * This actually sends the interrupt for this virtqueue, if we've used a
623  * buffer.
624  */
trigger_irq(struct virtqueue * vq)625 static void trigger_irq(struct virtqueue *vq)
626 {
627 	unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
628 
629 	/* Don't inform them if nothing used. */
630 	if (!vq->pending_used)
631 		return;
632 	vq->pending_used = 0;
633 
634 	/* If they don't want an interrupt, don't send one... */
635 	if (vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT) {
636 		return;
637 	}
638 
639 	/* Send the Guest an interrupt tell them we used something up. */
640 	if (write(lguest_fd, buf, sizeof(buf)) != 0)
641 		err(1, "Triggering irq %i", vq->config.irq);
642 }
643 
644 /*
645  * This looks in the virtqueue for the first available buffer, and converts
646  * it to an iovec for convenient access.  Since descriptors consist of some
647  * number of output then some number of input descriptors, it's actually two
648  * iovecs, but we pack them into one and note how many of each there were.
649  *
650  * This function waits if necessary, and returns the descriptor number found.
651  */
wait_for_vq_desc(struct virtqueue * vq,struct iovec iov[],unsigned int * out_num,unsigned int * in_num)652 static unsigned wait_for_vq_desc(struct virtqueue *vq,
653 				 struct iovec iov[],
654 				 unsigned int *out_num, unsigned int *in_num)
655 {
656 	unsigned int i, head, max;
657 	struct vring_desc *desc;
658 	u16 last_avail = lg_last_avail(vq);
659 
660 	/* There's nothing available? */
661 	while (last_avail == vq->vring.avail->idx) {
662 		u64 event;
663 
664 		/*
665 		 * Since we're about to sleep, now is a good time to tell the
666 		 * Guest about what we've used up to now.
667 		 */
668 		trigger_irq(vq);
669 
670 		/* OK, now we need to know about added descriptors. */
671 		vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
672 
673 		/*
674 		 * They could have slipped one in as we were doing that: make
675 		 * sure it's written, then check again.
676 		 */
677 		mb();
678 		if (last_avail != vq->vring.avail->idx) {
679 			vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
680 			break;
681 		}
682 
683 		/* Nothing new?  Wait for eventfd to tell us they refilled. */
684 		if (read(vq->eventfd, &event, sizeof(event)) != sizeof(event))
685 			errx(1, "Event read failed?");
686 
687 		/* We don't need to be notified again. */
688 		vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
689 	}
690 
691 	/* Check it isn't doing very strange things with descriptor numbers. */
692 	if ((u16)(vq->vring.avail->idx - last_avail) > vq->vring.num)
693 		errx(1, "Guest moved used index from %u to %u",
694 		     last_avail, vq->vring.avail->idx);
695 
696 	/*
697 	 * Grab the next descriptor number they're advertising, and increment
698 	 * the index we've seen.
699 	 */
700 	head = vq->vring.avail->ring[last_avail % vq->vring.num];
701 	lg_last_avail(vq)++;
702 
703 	/* If their number is silly, that's a fatal mistake. */
704 	if (head >= vq->vring.num)
705 		errx(1, "Guest says index %u is available", head);
706 
707 	/* When we start there are none of either input nor output. */
708 	*out_num = *in_num = 0;
709 
710 	max = vq->vring.num;
711 	desc = vq->vring.desc;
712 	i = head;
713 
714 	/*
715 	 * If this is an indirect entry, then this buffer contains a descriptor
716 	 * table which we handle as if it's any normal descriptor chain.
717 	 */
718 	if (desc[i].flags & VRING_DESC_F_INDIRECT) {
719 		if (desc[i].len % sizeof(struct vring_desc))
720 			errx(1, "Invalid size for indirect buffer table");
721 
722 		max = desc[i].len / sizeof(struct vring_desc);
723 		desc = check_pointer(desc[i].addr, desc[i].len);
724 		i = 0;
725 	}
726 
727 	do {
728 		/* Grab the first descriptor, and check it's OK. */
729 		iov[*out_num + *in_num].iov_len = desc[i].len;
730 		iov[*out_num + *in_num].iov_base
731 			= check_pointer(desc[i].addr, desc[i].len);
732 		/* If this is an input descriptor, increment that count. */
733 		if (desc[i].flags & VRING_DESC_F_WRITE)
734 			(*in_num)++;
735 		else {
736 			/*
737 			 * If it's an output descriptor, they're all supposed
738 			 * to come before any input descriptors.
739 			 */
740 			if (*in_num)
741 				errx(1, "Descriptor has out after in");
742 			(*out_num)++;
743 		}
744 
745 		/* If we've got too many, that implies a descriptor loop. */
746 		if (*out_num + *in_num > max)
747 			errx(1, "Looped descriptor");
748 	} while ((i = next_desc(desc, i, max)) != max);
749 
750 	return head;
751 }
752 
753 /*
754  * After we've used one of their buffers, we tell the Guest about it.  Sometime
755  * later we'll want to send them an interrupt using trigger_irq(); note that
756  * wait_for_vq_desc() does that for us if it has to wait.
757  */
add_used(struct virtqueue * vq,unsigned int head,int len)758 static void add_used(struct virtqueue *vq, unsigned int head, int len)
759 {
760 	struct vring_used_elem *used;
761 
762 	/*
763 	 * The virtqueue contains a ring of used buffers.  Get a pointer to the
764 	 * next entry in that used ring.
765 	 */
766 	used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
767 	used->id = head;
768 	used->len = len;
769 	/* Make sure buffer is written before we update index. */
770 	wmb();
771 	vq->vring.used->idx++;
772 	vq->pending_used++;
773 }
774 
775 /* And here's the combo meal deal.  Supersize me! */
add_used_and_trigger(struct virtqueue * vq,unsigned head,int len)776 static void add_used_and_trigger(struct virtqueue *vq, unsigned head, int len)
777 {
778 	add_used(vq, head, len);
779 	trigger_irq(vq);
780 }
781 
782 /*
783  * The Console
784  *
785  * We associate some data with the console for our exit hack.
786  */
787 struct console_abort {
788 	/* How many times have they hit ^C? */
789 	int count;
790 	/* When did they start? */
791 	struct timeval start;
792 };
793 
794 /* This is the routine which handles console input (ie. stdin). */
console_input(struct virtqueue * vq)795 static void console_input(struct virtqueue *vq)
796 {
797 	int len;
798 	unsigned int head, in_num, out_num;
799 	struct console_abort *abort = vq->dev->priv;
800 	struct iovec iov[vq->vring.num];
801 
802 	/* Make sure there's a descriptor available. */
803 	head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
804 	if (out_num)
805 		errx(1, "Output buffers in console in queue?");
806 
807 	/* Read into it.  This is where we usually wait. */
808 	len = readv(STDIN_FILENO, iov, in_num);
809 	if (len <= 0) {
810 		/* Ran out of input? */
811 		warnx("Failed to get console input, ignoring console.");
812 		/*
813 		 * For simplicity, dying threads kill the whole Launcher.  So
814 		 * just nap here.
815 		 */
816 		for (;;)
817 			pause();
818 	}
819 
820 	/* Tell the Guest we used a buffer. */
821 	add_used_and_trigger(vq, head, len);
822 
823 	/*
824 	 * Three ^C within one second?  Exit.
825 	 *
826 	 * This is such a hack, but works surprisingly well.  Each ^C has to
827 	 * be in a buffer by itself, so they can't be too fast.  But we check
828 	 * that we get three within about a second, so they can't be too
829 	 * slow.
830 	 */
831 	if (len != 1 || ((char *)iov[0].iov_base)[0] != 3) {
832 		abort->count = 0;
833 		return;
834 	}
835 
836 	abort->count++;
837 	if (abort->count == 1)
838 		gettimeofday(&abort->start, NULL);
839 	else if (abort->count == 3) {
840 		struct timeval now;
841 		gettimeofday(&now, NULL);
842 		/* Kill all Launcher processes with SIGINT, like normal ^C */
843 		if (now.tv_sec <= abort->start.tv_sec+1)
844 			kill(0, SIGINT);
845 		abort->count = 0;
846 	}
847 }
848 
849 /* This is the routine which handles console output (ie. stdout). */
console_output(struct virtqueue * vq)850 static void console_output(struct virtqueue *vq)
851 {
852 	unsigned int head, out, in;
853 	struct iovec iov[vq->vring.num];
854 
855 	/* We usually wait in here, for the Guest to give us something. */
856 	head = wait_for_vq_desc(vq, iov, &out, &in);
857 	if (in)
858 		errx(1, "Input buffers in console output queue?");
859 
860 	/* writev can return a partial write, so we loop here. */
861 	while (!iov_empty(iov, out)) {
862 		int len = writev(STDOUT_FILENO, iov, out);
863 		if (len <= 0) {
864 			warn("Write to stdout gave %i (%d)", len, errno);
865 			break;
866 		}
867 		iov_consume(iov, out, len);
868 	}
869 
870 	/*
871 	 * We're finished with that buffer: if we're going to sleep,
872 	 * wait_for_vq_desc() will prod the Guest with an interrupt.
873 	 */
874 	add_used(vq, head, 0);
875 }
876 
877 /*
878  * The Network
879  *
880  * Handling output for network is also simple: we get all the output buffers
881  * and write them to /dev/net/tun.
882  */
883 struct net_info {
884 	int tunfd;
885 };
886 
net_output(struct virtqueue * vq)887 static void net_output(struct virtqueue *vq)
888 {
889 	struct net_info *net_info = vq->dev->priv;
890 	unsigned int head, out, in;
891 	struct iovec iov[vq->vring.num];
892 
893 	/* We usually wait in here for the Guest to give us a packet. */
894 	head = wait_for_vq_desc(vq, iov, &out, &in);
895 	if (in)
896 		errx(1, "Input buffers in net output queue?");
897 	/*
898 	 * Send the whole thing through to /dev/net/tun.  It expects the exact
899 	 * same format: what a coincidence!
900 	 */
901 	if (writev(net_info->tunfd, iov, out) < 0)
902 		warnx("Write to tun failed (%d)?", errno);
903 
904 	/*
905 	 * Done with that one; wait_for_vq_desc() will send the interrupt if
906 	 * all packets are processed.
907 	 */
908 	add_used(vq, head, 0);
909 }
910 
911 /*
912  * Handling network input is a bit trickier, because I've tried to optimize it.
913  *
914  * First we have a helper routine which tells is if from this file descriptor
915  * (ie. the /dev/net/tun device) will block:
916  */
will_block(int fd)917 static bool will_block(int fd)
918 {
919 	fd_set fdset;
920 	struct timeval zero = { 0, 0 };
921 	FD_ZERO(&fdset);
922 	FD_SET(fd, &fdset);
923 	return select(fd+1, &fdset, NULL, NULL, &zero) != 1;
924 }
925 
926 /*
927  * This handles packets coming in from the tun device to our Guest.  Like all
928  * service routines, it gets called again as soon as it returns, so you don't
929  * see a while(1) loop here.
930  */
net_input(struct virtqueue * vq)931 static void net_input(struct virtqueue *vq)
932 {
933 	int len;
934 	unsigned int head, out, in;
935 	struct iovec iov[vq->vring.num];
936 	struct net_info *net_info = vq->dev->priv;
937 
938 	/*
939 	 * Get a descriptor to write an incoming packet into.  This will also
940 	 * send an interrupt if they're out of descriptors.
941 	 */
942 	head = wait_for_vq_desc(vq, iov, &out, &in);
943 	if (out)
944 		errx(1, "Output buffers in net input queue?");
945 
946 	/*
947 	 * If it looks like we'll block reading from the tun device, send them
948 	 * an interrupt.
949 	 */
950 	if (vq->pending_used && will_block(net_info->tunfd))
951 		trigger_irq(vq);
952 
953 	/*
954 	 * Read in the packet.  This is where we normally wait (when there's no
955 	 * incoming network traffic).
956 	 */
957 	len = readv(net_info->tunfd, iov, in);
958 	if (len <= 0)
959 		warn("Failed to read from tun (%d).", errno);
960 
961 	/*
962 	 * Mark that packet buffer as used, but don't interrupt here.  We want
963 	 * to wait until we've done as much work as we can.
964 	 */
965 	add_used(vq, head, len);
966 }
967 /*:*/
968 
969 /* This is the helper to create threads: run the service routine in a loop. */
do_thread(void * _vq)970 static int do_thread(void *_vq)
971 {
972 	struct virtqueue *vq = _vq;
973 
974 	for (;;)
975 		vq->service(vq);
976 	return 0;
977 }
978 
979 /*
980  * When a child dies, we kill our entire process group with SIGTERM.  This
981  * also has the side effect that the shell restores the console for us!
982  */
kill_launcher(int signal)983 static void kill_launcher(int signal)
984 {
985 	kill(0, SIGTERM);
986 }
987 
reset_device(struct device * dev)988 static void reset_device(struct device *dev)
989 {
990 	struct virtqueue *vq;
991 
992 	verbose("Resetting device %s\n", dev->name);
993 
994 	/* Clear any features they've acked. */
995 	memset(get_feature_bits(dev) + dev->feature_len, 0, dev->feature_len);
996 
997 	/* We're going to be explicitly killing threads, so ignore them. */
998 	signal(SIGCHLD, SIG_IGN);
999 
1000 	/* Zero out the virtqueues, get rid of their threads */
1001 	for (vq = dev->vq; vq; vq = vq->next) {
1002 		if (vq->thread != (pid_t)-1) {
1003 			kill(vq->thread, SIGTERM);
1004 			waitpid(vq->thread, NULL, 0);
1005 			vq->thread = (pid_t)-1;
1006 		}
1007 		memset(vq->vring.desc, 0,
1008 		       vring_size(vq->config.num, LGUEST_VRING_ALIGN));
1009 		lg_last_avail(vq) = 0;
1010 	}
1011 	dev->running = false;
1012 
1013 	/* Now we care if threads die. */
1014 	signal(SIGCHLD, (void *)kill_launcher);
1015 }
1016 
1017 /*L:216
1018  * This actually creates the thread which services the virtqueue for a device.
1019  */
create_thread(struct virtqueue * vq)1020 static void create_thread(struct virtqueue *vq)
1021 {
1022 	/*
1023 	 * Create stack for thread.  Since the stack grows upwards, we point
1024 	 * the stack pointer to the end of this region.
1025 	 */
1026 	char *stack = malloc(32768);
1027 	unsigned long args[] = { LHREQ_EVENTFD,
1028 				 vq->config.pfn*getpagesize(), 0 };
1029 
1030 	/* Create a zero-initialized eventfd. */
1031 	vq->eventfd = eventfd(0, 0);
1032 	if (vq->eventfd < 0)
1033 		err(1, "Creating eventfd");
1034 	args[2] = vq->eventfd;
1035 
1036 	/*
1037 	 * Attach an eventfd to this virtqueue: it will go off when the Guest
1038 	 * does an LHCALL_NOTIFY for this vq.
1039 	 */
1040 	if (write(lguest_fd, &args, sizeof(args)) != 0)
1041 		err(1, "Attaching eventfd");
1042 
1043 	/*
1044 	 * CLONE_VM: because it has to access the Guest memory, and SIGCHLD so
1045 	 * we get a signal if it dies.
1046 	 */
1047 	vq->thread = clone(do_thread, stack + 32768, CLONE_VM | SIGCHLD, vq);
1048 	if (vq->thread == (pid_t)-1)
1049 		err(1, "Creating clone");
1050 
1051 	/* We close our local copy now the child has it. */
1052 	close(vq->eventfd);
1053 }
1054 
start_device(struct device * dev)1055 static void start_device(struct device *dev)
1056 {
1057 	unsigned int i;
1058 	struct virtqueue *vq;
1059 
1060 	verbose("Device %s OK: offered", dev->name);
1061 	for (i = 0; i < dev->feature_len; i++)
1062 		verbose(" %02x", get_feature_bits(dev)[i]);
1063 	verbose(", accepted");
1064 	for (i = 0; i < dev->feature_len; i++)
1065 		verbose(" %02x", get_feature_bits(dev)
1066 			[dev->feature_len+i]);
1067 
1068 	for (vq = dev->vq; vq; vq = vq->next) {
1069 		if (vq->service)
1070 			create_thread(vq);
1071 	}
1072 	dev->running = true;
1073 }
1074 
cleanup_devices(void)1075 static void cleanup_devices(void)
1076 {
1077 	struct device *dev;
1078 
1079 	for (dev = devices.dev; dev; dev = dev->next)
1080 		reset_device(dev);
1081 
1082 	/* If we saved off the original terminal settings, restore them now. */
1083 	if (orig_term.c_lflag & (ISIG|ICANON|ECHO))
1084 		tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
1085 }
1086 
1087 /* When the Guest tells us they updated the status field, we handle it. */
update_device_status(struct device * dev)1088 static void update_device_status(struct device *dev)
1089 {
1090 	/* A zero status is a reset, otherwise it's a set of flags. */
1091 	if (dev->desc->status == 0)
1092 		reset_device(dev);
1093 	else if (dev->desc->status & VIRTIO_CONFIG_S_FAILED) {
1094 		warnx("Device %s configuration FAILED", dev->name);
1095 		if (dev->running)
1096 			reset_device(dev);
1097 	} else {
1098 		if (dev->running)
1099 			err(1, "Device %s features finalized twice", dev->name);
1100 		start_device(dev);
1101 	}
1102 }
1103 
1104 /*L:215
1105  * This is the generic routine we call when the Guest uses LHCALL_NOTIFY.  In
1106  * particular, it's used to notify us of device status changes during boot.
1107  */
handle_output(unsigned long addr)1108 static void handle_output(unsigned long addr)
1109 {
1110 	struct device *i;
1111 
1112 	/* Check each device. */
1113 	for (i = devices.dev; i; i = i->next) {
1114 		struct virtqueue *vq;
1115 
1116 		/*
1117 		 * Notifications to device descriptors mean they updated the
1118 		 * device status.
1119 		 */
1120 		if (from_guest_phys(addr) == i->desc) {
1121 			update_device_status(i);
1122 			return;
1123 		}
1124 
1125 		/* Devices should not be used before features are finalized. */
1126 		for (vq = i->vq; vq; vq = vq->next) {
1127 			if (addr != vq->config.pfn*getpagesize())
1128 				continue;
1129 			errx(1, "Notification on %s before setup!", i->name);
1130 		}
1131 	}
1132 
1133 	/*
1134 	 * Early console write is done using notify on a nul-terminated string
1135 	 * in Guest memory.  It's also great for hacking debugging messages
1136 	 * into a Guest.
1137 	 */
1138 	if (addr >= guest_limit)
1139 		errx(1, "Bad NOTIFY %#lx", addr);
1140 
1141 	write(STDOUT_FILENO, from_guest_phys(addr),
1142 	      strnlen(from_guest_phys(addr), guest_limit - addr));
1143 }
1144 
1145 /*L:190
1146  * Device Setup
1147  *
1148  * All devices need a descriptor so the Guest knows it exists, and a "struct
1149  * device" so the Launcher can keep track of it.  We have common helper
1150  * routines to allocate and manage them.
1151  */
1152 
1153 /*
1154  * The layout of the device page is a "struct lguest_device_desc" followed by a
1155  * number of virtqueue descriptors, then two sets of feature bits, then an
1156  * array of configuration bytes.  This routine returns the configuration
1157  * pointer.
1158  */
device_config(const struct device * dev)1159 static u8 *device_config(const struct device *dev)
1160 {
1161 	return (void *)(dev->desc + 1)
1162 		+ dev->num_vq * sizeof(struct lguest_vqconfig)
1163 		+ dev->feature_len * 2;
1164 }
1165 
1166 /*
1167  * This routine allocates a new "struct lguest_device_desc" from descriptor
1168  * table page just above the Guest's normal memory.  It returns a pointer to
1169  * that descriptor.
1170  */
new_dev_desc(u16 type)1171 static struct lguest_device_desc *new_dev_desc(u16 type)
1172 {
1173 	struct lguest_device_desc d = { .type = type };
1174 	void *p;
1175 
1176 	/* Figure out where the next device config is, based on the last one. */
1177 	if (devices.lastdev)
1178 		p = device_config(devices.lastdev)
1179 			+ devices.lastdev->desc->config_len;
1180 	else
1181 		p = devices.descpage;
1182 
1183 	/* We only have one page for all the descriptors. */
1184 	if (p + sizeof(d) > (void *)devices.descpage + getpagesize())
1185 		errx(1, "Too many devices");
1186 
1187 	/* p might not be aligned, so we memcpy in. */
1188 	return memcpy(p, &d, sizeof(d));
1189 }
1190 
1191 /*
1192  * Each device descriptor is followed by the description of its virtqueues.  We
1193  * specify how many descriptors the virtqueue is to have.
1194  */
add_virtqueue(struct device * dev,unsigned int num_descs,void (* service)(struct virtqueue *))1195 static void add_virtqueue(struct device *dev, unsigned int num_descs,
1196 			  void (*service)(struct virtqueue *))
1197 {
1198 	unsigned int pages;
1199 	struct virtqueue **i, *vq = malloc(sizeof(*vq));
1200 	void *p;
1201 
1202 	/* First we need some memory for this virtqueue. */
1203 	pages = (vring_size(num_descs, LGUEST_VRING_ALIGN) + getpagesize() - 1)
1204 		/ getpagesize();
1205 	p = get_pages(pages);
1206 
1207 	/* Initialize the virtqueue */
1208 	vq->next = NULL;
1209 	vq->last_avail_idx = 0;
1210 	vq->dev = dev;
1211 
1212 	/*
1213 	 * This is the routine the service thread will run, and its Process ID
1214 	 * once it's running.
1215 	 */
1216 	vq->service = service;
1217 	vq->thread = (pid_t)-1;
1218 
1219 	/* Initialize the configuration. */
1220 	vq->config.num = num_descs;
1221 	vq->config.irq = devices.next_irq++;
1222 	vq->config.pfn = to_guest_phys(p) / getpagesize();
1223 
1224 	/* Initialize the vring. */
1225 	vring_init(&vq->vring, num_descs, p, LGUEST_VRING_ALIGN);
1226 
1227 	/*
1228 	 * Append virtqueue to this device's descriptor.  We use
1229 	 * device_config() to get the end of the device's current virtqueues;
1230 	 * we check that we haven't added any config or feature information
1231 	 * yet, otherwise we'd be overwriting them.
1232 	 */
1233 	assert(dev->desc->config_len == 0 && dev->desc->feature_len == 0);
1234 	memcpy(device_config(dev), &vq->config, sizeof(vq->config));
1235 	dev->num_vq++;
1236 	dev->desc->num_vq++;
1237 
1238 	verbose("Virtqueue page %#lx\n", to_guest_phys(p));
1239 
1240 	/*
1241 	 * Add to tail of list, so dev->vq is first vq, dev->vq->next is
1242 	 * second.
1243 	 */
1244 	for (i = &dev->vq; *i; i = &(*i)->next);
1245 	*i = vq;
1246 }
1247 
1248 /*
1249  * The first half of the feature bitmask is for us to advertise features.  The
1250  * second half is for the Guest to accept features.
1251  */
add_feature(struct device * dev,unsigned bit)1252 static void add_feature(struct device *dev, unsigned bit)
1253 {
1254 	u8 *features = get_feature_bits(dev);
1255 
1256 	/* We can't extend the feature bits once we've added config bytes */
1257 	if (dev->desc->feature_len <= bit / CHAR_BIT) {
1258 		assert(dev->desc->config_len == 0);
1259 		dev->feature_len = dev->desc->feature_len = (bit/CHAR_BIT) + 1;
1260 	}
1261 
1262 	features[bit / CHAR_BIT] |= (1 << (bit % CHAR_BIT));
1263 }
1264 
1265 /*
1266  * This routine sets the configuration fields for an existing device's
1267  * descriptor.  It only works for the last device, but that's OK because that's
1268  * how we use it.
1269  */
set_config(struct device * dev,unsigned len,const void * conf)1270 static void set_config(struct device *dev, unsigned len, const void *conf)
1271 {
1272 	/* Check we haven't overflowed our single page. */
1273 	if (device_config(dev) + len > devices.descpage + getpagesize())
1274 		errx(1, "Too many devices");
1275 
1276 	/* Copy in the config information, and store the length. */
1277 	memcpy(device_config(dev), conf, len);
1278 	dev->desc->config_len = len;
1279 
1280 	/* Size must fit in config_len field (8 bits)! */
1281 	assert(dev->desc->config_len == len);
1282 }
1283 
1284 /*
1285  * This routine does all the creation and setup of a new device, including
1286  * calling new_dev_desc() to allocate the descriptor and device memory.  We
1287  * don't actually start the service threads until later.
1288  *
1289  * See what I mean about userspace being boring?
1290  */
new_device(const char * name,u16 type)1291 static struct device *new_device(const char *name, u16 type)
1292 {
1293 	struct device *dev = malloc(sizeof(*dev));
1294 
1295 	/* Now we populate the fields one at a time. */
1296 	dev->desc = new_dev_desc(type);
1297 	dev->name = name;
1298 	dev->vq = NULL;
1299 	dev->feature_len = 0;
1300 	dev->num_vq = 0;
1301 	dev->running = false;
1302 	dev->next = NULL;
1303 
1304 	/*
1305 	 * Append to device list.  Prepending to a single-linked list is
1306 	 * easier, but the user expects the devices to be arranged on the bus
1307 	 * in command-line order.  The first network device on the command line
1308 	 * is eth0, the first block device /dev/vda, etc.
1309 	 */
1310 	if (devices.lastdev)
1311 		devices.lastdev->next = dev;
1312 	else
1313 		devices.dev = dev;
1314 	devices.lastdev = dev;
1315 
1316 	return dev;
1317 }
1318 
1319 /*
1320  * Our first setup routine is the console.  It's a fairly simple device, but
1321  * UNIX tty handling makes it uglier than it could be.
1322  */
setup_console(void)1323 static void setup_console(void)
1324 {
1325 	struct device *dev;
1326 
1327 	/* If we can save the initial standard input settings... */
1328 	if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
1329 		struct termios term = orig_term;
1330 		/*
1331 		 * Then we turn off echo, line buffering and ^C etc: We want a
1332 		 * raw input stream to the Guest.
1333 		 */
1334 		term.c_lflag &= ~(ISIG|ICANON|ECHO);
1335 		tcsetattr(STDIN_FILENO, TCSANOW, &term);
1336 	}
1337 
1338 	dev = new_device("console", VIRTIO_ID_CONSOLE);
1339 
1340 	/* We store the console state in dev->priv, and initialize it. */
1341 	dev->priv = malloc(sizeof(struct console_abort));
1342 	((struct console_abort *)dev->priv)->count = 0;
1343 
1344 	/*
1345 	 * The console needs two virtqueues: the input then the output.  When
1346 	 * they put something the input queue, we make sure we're listening to
1347 	 * stdin.  When they put something in the output queue, we write it to
1348 	 * stdout.
1349 	 */
1350 	add_virtqueue(dev, VIRTQUEUE_NUM, console_input);
1351 	add_virtqueue(dev, VIRTQUEUE_NUM, console_output);
1352 
1353 	verbose("device %u: console\n", ++devices.device_num);
1354 }
1355 /*:*/
1356 
1357 /*M:010
1358  * Inter-guest networking is an interesting area.  Simplest is to have a
1359  * --sharenet=<name> option which opens or creates a named pipe.  This can be
1360  * used to send packets to another guest in a 1:1 manner.
1361  *
1362  * More sophisticated is to use one of the tools developed for project like UML
1363  * to do networking.
1364  *
1365  * Faster is to do virtio bonding in kernel.  Doing this 1:1 would be
1366  * completely generic ("here's my vring, attach to your vring") and would work
1367  * for any traffic.  Of course, namespace and permissions issues need to be
1368  * dealt with.  A more sophisticated "multi-channel" virtio_net.c could hide
1369  * multiple inter-guest channels behind one interface, although it would
1370  * require some manner of hotplugging new virtio channels.
1371  *
1372  * Finally, we could use a virtio network switch in the kernel, ie. vhost.
1373 :*/
1374 
str2ip(const char * ipaddr)1375 static u32 str2ip(const char *ipaddr)
1376 {
1377 	unsigned int b[4];
1378 
1379 	if (sscanf(ipaddr, "%u.%u.%u.%u", &b[0], &b[1], &b[2], &b[3]) != 4)
1380 		errx(1, "Failed to parse IP address '%s'", ipaddr);
1381 	return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
1382 }
1383 
str2mac(const char * macaddr,unsigned char mac[6])1384 static void str2mac(const char *macaddr, unsigned char mac[6])
1385 {
1386 	unsigned int m[6];
1387 	if (sscanf(macaddr, "%02x:%02x:%02x:%02x:%02x:%02x",
1388 		   &m[0], &m[1], &m[2], &m[3], &m[4], &m[5]) != 6)
1389 		errx(1, "Failed to parse mac address '%s'", macaddr);
1390 	mac[0] = m[0];
1391 	mac[1] = m[1];
1392 	mac[2] = m[2];
1393 	mac[3] = m[3];
1394 	mac[4] = m[4];
1395 	mac[5] = m[5];
1396 }
1397 
1398 /*
1399  * This code is "adapted" from libbridge: it attaches the Host end of the
1400  * network device to the bridge device specified by the command line.
1401  *
1402  * This is yet another James Morris contribution (I'm an IP-level guy, so I
1403  * dislike bridging), and I just try not to break it.
1404  */
add_to_bridge(int fd,const char * if_name,const char * br_name)1405 static void add_to_bridge(int fd, const char *if_name, const char *br_name)
1406 {
1407 	int ifidx;
1408 	struct ifreq ifr;
1409 
1410 	if (!*br_name)
1411 		errx(1, "must specify bridge name");
1412 
1413 	ifidx = if_nametoindex(if_name);
1414 	if (!ifidx)
1415 		errx(1, "interface %s does not exist!", if_name);
1416 
1417 	strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
1418 	ifr.ifr_name[IFNAMSIZ-1] = '\0';
1419 	ifr.ifr_ifindex = ifidx;
1420 	if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
1421 		err(1, "can't add %s to bridge %s", if_name, br_name);
1422 }
1423 
1424 /*
1425  * This sets up the Host end of the network device with an IP address, brings
1426  * it up so packets will flow, the copies the MAC address into the hwaddr
1427  * pointer.
1428  */
configure_device(int fd,const char * tapif,u32 ipaddr)1429 static void configure_device(int fd, const char *tapif, u32 ipaddr)
1430 {
1431 	struct ifreq ifr;
1432 	struct sockaddr_in sin;
1433 
1434 	memset(&ifr, 0, sizeof(ifr));
1435 	strcpy(ifr.ifr_name, tapif);
1436 
1437 	/* Don't read these incantations.  Just cut & paste them like I did! */
1438 	sin.sin_family = AF_INET;
1439 	sin.sin_addr.s_addr = htonl(ipaddr);
1440 	memcpy(&ifr.ifr_addr, &sin, sizeof(sin));
1441 	if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
1442 		err(1, "Setting %s interface address", tapif);
1443 	ifr.ifr_flags = IFF_UP;
1444 	if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
1445 		err(1, "Bringing interface %s up", tapif);
1446 }
1447 
get_tun_device(char tapif[IFNAMSIZ])1448 static int get_tun_device(char tapif[IFNAMSIZ])
1449 {
1450 	struct ifreq ifr;
1451 	int netfd;
1452 
1453 	/* Start with this zeroed.  Messy but sure. */
1454 	memset(&ifr, 0, sizeof(ifr));
1455 
1456 	/*
1457 	 * We open the /dev/net/tun device and tell it we want a tap device.  A
1458 	 * tap device is like a tun device, only somehow different.  To tell
1459 	 * the truth, I completely blundered my way through this code, but it
1460 	 * works now!
1461 	 */
1462 	netfd = open_or_die("/dev/net/tun", O_RDWR);
1463 	ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_VNET_HDR;
1464 	strcpy(ifr.ifr_name, "tap%d");
1465 	if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
1466 		err(1, "configuring /dev/net/tun");
1467 
1468 	if (ioctl(netfd, TUNSETOFFLOAD,
1469 		  TUN_F_CSUM|TUN_F_TSO4|TUN_F_TSO6|TUN_F_TSO_ECN) != 0)
1470 		err(1, "Could not set features for tun device");
1471 
1472 	/*
1473 	 * We don't need checksums calculated for packets coming in this
1474 	 * device: trust us!
1475 	 */
1476 	ioctl(netfd, TUNSETNOCSUM, 1);
1477 
1478 	memcpy(tapif, ifr.ifr_name, IFNAMSIZ);
1479 	return netfd;
1480 }
1481 
1482 /*L:195
1483  * Our network is a Host<->Guest network.  This can either use bridging or
1484  * routing, but the principle is the same: it uses the "tun" device to inject
1485  * packets into the Host as if they came in from a normal network card.  We
1486  * just shunt packets between the Guest and the tun device.
1487  */
setup_tun_net(char * arg)1488 static void setup_tun_net(char *arg)
1489 {
1490 	struct device *dev;
1491 	struct net_info *net_info = malloc(sizeof(*net_info));
1492 	int ipfd;
1493 	u32 ip = INADDR_ANY;
1494 	bool bridging = false;
1495 	char tapif[IFNAMSIZ], *p;
1496 	struct virtio_net_config conf;
1497 
1498 	net_info->tunfd = get_tun_device(tapif);
1499 
1500 	/* First we create a new network device. */
1501 	dev = new_device("net", VIRTIO_ID_NET);
1502 	dev->priv = net_info;
1503 
1504 	/* Network devices need a recv and a send queue, just like console. */
1505 	add_virtqueue(dev, VIRTQUEUE_NUM, net_input);
1506 	add_virtqueue(dev, VIRTQUEUE_NUM, net_output);
1507 
1508 	/*
1509 	 * We need a socket to perform the magic network ioctls to bring up the
1510 	 * tap interface, connect to the bridge etc.  Any socket will do!
1511 	 */
1512 	ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
1513 	if (ipfd < 0)
1514 		err(1, "opening IP socket");
1515 
1516 	/* If the command line was --tunnet=bridge:<name> do bridging. */
1517 	if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
1518 		arg += strlen(BRIDGE_PFX);
1519 		bridging = true;
1520 	}
1521 
1522 	/* A mac address may follow the bridge name or IP address */
1523 	p = strchr(arg, ':');
1524 	if (p) {
1525 		str2mac(p+1, conf.mac);
1526 		add_feature(dev, VIRTIO_NET_F_MAC);
1527 		*p = '\0';
1528 	}
1529 
1530 	/* arg is now either an IP address or a bridge name */
1531 	if (bridging)
1532 		add_to_bridge(ipfd, tapif, arg);
1533 	else
1534 		ip = str2ip(arg);
1535 
1536 	/* Set up the tun device. */
1537 	configure_device(ipfd, tapif, ip);
1538 
1539 	/* Expect Guest to handle everything except UFO */
1540 	add_feature(dev, VIRTIO_NET_F_CSUM);
1541 	add_feature(dev, VIRTIO_NET_F_GUEST_CSUM);
1542 	add_feature(dev, VIRTIO_NET_F_GUEST_TSO4);
1543 	add_feature(dev, VIRTIO_NET_F_GUEST_TSO6);
1544 	add_feature(dev, VIRTIO_NET_F_GUEST_ECN);
1545 	add_feature(dev, VIRTIO_NET_F_HOST_TSO4);
1546 	add_feature(dev, VIRTIO_NET_F_HOST_TSO6);
1547 	add_feature(dev, VIRTIO_NET_F_HOST_ECN);
1548 	/* We handle indirect ring entries */
1549 	add_feature(dev, VIRTIO_RING_F_INDIRECT_DESC);
1550 	set_config(dev, sizeof(conf), &conf);
1551 
1552 	/* We don't need the socket any more; setup is done. */
1553 	close(ipfd);
1554 
1555 	devices.device_num++;
1556 
1557 	if (bridging)
1558 		verbose("device %u: tun %s attached to bridge: %s\n",
1559 			devices.device_num, tapif, arg);
1560 	else
1561 		verbose("device %u: tun %s: %s\n",
1562 			devices.device_num, tapif, arg);
1563 }
1564 /*:*/
1565 
1566 /* This hangs off device->priv. */
1567 struct vblk_info {
1568 	/* The size of the file. */
1569 	off64_t len;
1570 
1571 	/* The file descriptor for the file. */
1572 	int fd;
1573 
1574 };
1575 
1576 /*L:210
1577  * The Disk
1578  *
1579  * The disk only has one virtqueue, so it only has one thread.  It is really
1580  * simple: the Guest asks for a block number and we read or write that position
1581  * in the file.
1582  *
1583  * Before we serviced each virtqueue in a separate thread, that was unacceptably
1584  * slow: the Guest waits until the read is finished before running anything
1585  * else, even if it could have been doing useful work.
1586  *
1587  * We could have used async I/O, except it's reputed to suck so hard that
1588  * characters actually go missing from your code when you try to use it.
1589  */
blk_request(struct virtqueue * vq)1590 static void blk_request(struct virtqueue *vq)
1591 {
1592 	struct vblk_info *vblk = vq->dev->priv;
1593 	unsigned int head, out_num, in_num, wlen;
1594 	int ret;
1595 	u8 *in;
1596 	struct virtio_blk_outhdr *out;
1597 	struct iovec iov[vq->vring.num];
1598 	off64_t off;
1599 
1600 	/*
1601 	 * Get the next request, where we normally wait.  It triggers the
1602 	 * interrupt to acknowledge previously serviced requests (if any).
1603 	 */
1604 	head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
1605 
1606 	/*
1607 	 * Every block request should contain at least one output buffer
1608 	 * (detailing the location on disk and the type of request) and one
1609 	 * input buffer (to hold the result).
1610 	 */
1611 	if (out_num == 0 || in_num == 0)
1612 		errx(1, "Bad virtblk cmd %u out=%u in=%u",
1613 		     head, out_num, in_num);
1614 
1615 	out = convert(&iov[0], struct virtio_blk_outhdr);
1616 	in = convert(&iov[out_num+in_num-1], u8);
1617 	/*
1618 	 * For historical reasons, block operations are expressed in 512 byte
1619 	 * "sectors".
1620 	 */
1621 	off = out->sector * 512;
1622 
1623 	/*
1624 	 * In general the virtio block driver is allowed to try SCSI commands.
1625 	 * It'd be nice if we supported eject, for example, but we don't.
1626 	 */
1627 	if (out->type & VIRTIO_BLK_T_SCSI_CMD) {
1628 		fprintf(stderr, "Scsi commands unsupported\n");
1629 		*in = VIRTIO_BLK_S_UNSUPP;
1630 		wlen = sizeof(*in);
1631 	} else if (out->type & VIRTIO_BLK_T_OUT) {
1632 		/*
1633 		 * Write
1634 		 *
1635 		 * Move to the right location in the block file.  This can fail
1636 		 * if they try to write past end.
1637 		 */
1638 		if (lseek64(vblk->fd, off, SEEK_SET) != off)
1639 			err(1, "Bad seek to sector %llu", out->sector);
1640 
1641 		ret = writev(vblk->fd, iov+1, out_num-1);
1642 		verbose("WRITE to sector %llu: %i\n", out->sector, ret);
1643 
1644 		/*
1645 		 * Grr... Now we know how long the descriptor they sent was, we
1646 		 * make sure they didn't try to write over the end of the block
1647 		 * file (possibly extending it).
1648 		 */
1649 		if (ret > 0 && off + ret > vblk->len) {
1650 			/* Trim it back to the correct length */
1651 			ftruncate64(vblk->fd, vblk->len);
1652 			/* Die, bad Guest, die. */
1653 			errx(1, "Write past end %llu+%u", off, ret);
1654 		}
1655 
1656 		wlen = sizeof(*in);
1657 		*in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
1658 	} else if (out->type & VIRTIO_BLK_T_FLUSH) {
1659 		/* Flush */
1660 		ret = fdatasync(vblk->fd);
1661 		verbose("FLUSH fdatasync: %i\n", ret);
1662 		wlen = sizeof(*in);
1663 		*in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
1664 	} else {
1665 		/*
1666 		 * Read
1667 		 *
1668 		 * Move to the right location in the block file.  This can fail
1669 		 * if they try to read past end.
1670 		 */
1671 		if (lseek64(vblk->fd, off, SEEK_SET) != off)
1672 			err(1, "Bad seek to sector %llu", out->sector);
1673 
1674 		ret = readv(vblk->fd, iov+1, in_num-1);
1675 		verbose("READ from sector %llu: %i\n", out->sector, ret);
1676 		if (ret >= 0) {
1677 			wlen = sizeof(*in) + ret;
1678 			*in = VIRTIO_BLK_S_OK;
1679 		} else {
1680 			wlen = sizeof(*in);
1681 			*in = VIRTIO_BLK_S_IOERR;
1682 		}
1683 	}
1684 
1685 	/* Finished that request. */
1686 	add_used(vq, head, wlen);
1687 }
1688 
1689 /*L:198 This actually sets up a virtual block device. */
setup_block_file(const char * filename)1690 static void setup_block_file(const char *filename)
1691 {
1692 	struct device *dev;
1693 	struct vblk_info *vblk;
1694 	struct virtio_blk_config conf;
1695 
1696 	/* Creat the device. */
1697 	dev = new_device("block", VIRTIO_ID_BLOCK);
1698 
1699 	/* The device has one virtqueue, where the Guest places requests. */
1700 	add_virtqueue(dev, VIRTQUEUE_NUM, blk_request);
1701 
1702 	/* Allocate the room for our own bookkeeping */
1703 	vblk = dev->priv = malloc(sizeof(*vblk));
1704 
1705 	/* First we open the file and store the length. */
1706 	vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
1707 	vblk->len = lseek64(vblk->fd, 0, SEEK_END);
1708 
1709 	/* We support FLUSH. */
1710 	add_feature(dev, VIRTIO_BLK_F_FLUSH);
1711 
1712 	/* Tell Guest how many sectors this device has. */
1713 	conf.capacity = cpu_to_le64(vblk->len / 512);
1714 
1715 	/*
1716 	 * Tell Guest not to put in too many descriptors at once: two are used
1717 	 * for the in and out elements.
1718 	 */
1719 	add_feature(dev, VIRTIO_BLK_F_SEG_MAX);
1720 	conf.seg_max = cpu_to_le32(VIRTQUEUE_NUM - 2);
1721 
1722 	/* Don't try to put whole struct: we have 8 bit limit. */
1723 	set_config(dev, offsetof(struct virtio_blk_config, geometry), &conf);
1724 
1725 	verbose("device %u: virtblock %llu sectors\n",
1726 		++devices.device_num, le64_to_cpu(conf.capacity));
1727 }
1728 
1729 /*L:211
1730  * Our random number generator device reads from /dev/random into the Guest's
1731  * input buffers.  The usual case is that the Guest doesn't want random numbers
1732  * and so has no buffers although /dev/random is still readable, whereas
1733  * console is the reverse.
1734  *
1735  * The same logic applies, however.
1736  */
1737 struct rng_info {
1738 	int rfd;
1739 };
1740 
rng_input(struct virtqueue * vq)1741 static void rng_input(struct virtqueue *vq)
1742 {
1743 	int len;
1744 	unsigned int head, in_num, out_num, totlen = 0;
1745 	struct rng_info *rng_info = vq->dev->priv;
1746 	struct iovec iov[vq->vring.num];
1747 
1748 	/* First we need a buffer from the Guests's virtqueue. */
1749 	head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
1750 	if (out_num)
1751 		errx(1, "Output buffers in rng?");
1752 
1753 	/*
1754 	 * Just like the console write, we loop to cover the whole iovec.
1755 	 * In this case, short reads actually happen quite a bit.
1756 	 */
1757 	while (!iov_empty(iov, in_num)) {
1758 		len = readv(rng_info->rfd, iov, in_num);
1759 		if (len <= 0)
1760 			err(1, "Read from /dev/random gave %i", len);
1761 		iov_consume(iov, in_num, len);
1762 		totlen += len;
1763 	}
1764 
1765 	/* Tell the Guest about the new input. */
1766 	add_used(vq, head, totlen);
1767 }
1768 
1769 /*L:199
1770  * This creates a "hardware" random number device for the Guest.
1771  */
setup_rng(void)1772 static void setup_rng(void)
1773 {
1774 	struct device *dev;
1775 	struct rng_info *rng_info = malloc(sizeof(*rng_info));
1776 
1777 	/* Our device's privat info simply contains the /dev/random fd. */
1778 	rng_info->rfd = open_or_die("/dev/random", O_RDONLY);
1779 
1780 	/* Create the new device. */
1781 	dev = new_device("rng", VIRTIO_ID_RNG);
1782 	dev->priv = rng_info;
1783 
1784 	/* The device has one virtqueue, where the Guest places inbufs. */
1785 	add_virtqueue(dev, VIRTQUEUE_NUM, rng_input);
1786 
1787 	verbose("device %u: rng\n", devices.device_num++);
1788 }
1789 /* That's the end of device setup. */
1790 
1791 /*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */
restart_guest(void)1792 static void __attribute__((noreturn)) restart_guest(void)
1793 {
1794 	unsigned int i;
1795 
1796 	/*
1797 	 * Since we don't track all open fds, we simply close everything beyond
1798 	 * stderr.
1799 	 */
1800 	for (i = 3; i < FD_SETSIZE; i++)
1801 		close(i);
1802 
1803 	/* Reset all the devices (kills all threads). */
1804 	cleanup_devices();
1805 
1806 	execv(main_args[0], main_args);
1807 	err(1, "Could not exec %s", main_args[0]);
1808 }
1809 
1810 /*L:220
1811  * Finally we reach the core of the Launcher which runs the Guest, serves
1812  * its input and output, and finally, lays it to rest.
1813  */
run_guest(void)1814 static void __attribute__((noreturn)) run_guest(void)
1815 {
1816 	for (;;) {
1817 		unsigned long notify_addr;
1818 		int readval;
1819 
1820 		/* We read from the /dev/lguest device to run the Guest. */
1821 		readval = pread(lguest_fd, &notify_addr,
1822 				sizeof(notify_addr), cpu_id);
1823 
1824 		/* One unsigned long means the Guest did HCALL_NOTIFY */
1825 		if (readval == sizeof(notify_addr)) {
1826 			verbose("Notify on address %#lx\n", notify_addr);
1827 			handle_output(notify_addr);
1828 		/* ENOENT means the Guest died.  Reading tells us why. */
1829 		} else if (errno == ENOENT) {
1830 			char reason[1024] = { 0 };
1831 			pread(lguest_fd, reason, sizeof(reason)-1, cpu_id);
1832 			errx(1, "%s", reason);
1833 		/* ERESTART means that we need to reboot the guest */
1834 		} else if (errno == ERESTART) {
1835 			restart_guest();
1836 		/* Anything else means a bug or incompatible change. */
1837 		} else
1838 			err(1, "Running guest failed");
1839 	}
1840 }
1841 /*L:240
1842  * This is the end of the Launcher.  The good news: we are over halfway
1843  * through!  The bad news: the most fiendish part of the code still lies ahead
1844  * of us.
1845  *
1846  * Are you ready?  Take a deep breath and join me in the core of the Host, in
1847  * "make Host".
1848 :*/
1849 
1850 static struct option opts[] = {
1851 	{ "verbose", 0, NULL, 'v' },
1852 	{ "tunnet", 1, NULL, 't' },
1853 	{ "block", 1, NULL, 'b' },
1854 	{ "rng", 0, NULL, 'r' },
1855 	{ "initrd", 1, NULL, 'i' },
1856 	{ "username", 1, NULL, 'u' },
1857 	{ "chroot", 1, NULL, 'c' },
1858 	{ NULL },
1859 };
usage(void)1860 static void usage(void)
1861 {
1862 	errx(1, "Usage: lguest [--verbose] "
1863 	     "[--tunnet=(<ipaddr>:<macaddr>|bridge:<bridgename>:<macaddr>)\n"
1864 	     "|--block=<filename>|--initrd=<filename>]...\n"
1865 	     "<mem-in-mb> vmlinux [args...]");
1866 }
1867 
1868 /*L:105 The main routine is where the real work begins: */
main(int argc,char * argv[])1869 int main(int argc, char *argv[])
1870 {
1871 	/* Memory, code startpoint and size of the (optional) initrd. */
1872 	unsigned long mem = 0, start, initrd_size = 0;
1873 	/* Two temporaries. */
1874 	int i, c;
1875 	/* The boot information for the Guest. */
1876 	struct boot_params *boot;
1877 	/* If they specify an initrd file to load. */
1878 	const char *initrd_name = NULL;
1879 
1880 	/* Password structure for initgroups/setres[gu]id */
1881 	struct passwd *user_details = NULL;
1882 
1883 	/* Directory to chroot to */
1884 	char *chroot_path = NULL;
1885 
1886 	/* Save the args: we "reboot" by execing ourselves again. */
1887 	main_args = argv;
1888 
1889 	/*
1890 	 * First we initialize the device list.  We keep a pointer to the last
1891 	 * device, and the next interrupt number to use for devices (1:
1892 	 * remember that 0 is used by the timer).
1893 	 */
1894 	devices.lastdev = NULL;
1895 	devices.next_irq = 1;
1896 
1897 	/* We're CPU 0.  In fact, that's the only CPU possible right now. */
1898 	cpu_id = 0;
1899 
1900 	/*
1901 	 * We need to know how much memory so we can set up the device
1902 	 * descriptor and memory pages for the devices as we parse the command
1903 	 * line.  So we quickly look through the arguments to find the amount
1904 	 * of memory now.
1905 	 */
1906 	for (i = 1; i < argc; i++) {
1907 		if (argv[i][0] != '-') {
1908 			mem = atoi(argv[i]) * 1024 * 1024;
1909 			/*
1910 			 * We start by mapping anonymous pages over all of
1911 			 * guest-physical memory range.  This fills it with 0,
1912 			 * and ensures that the Guest won't be killed when it
1913 			 * tries to access it.
1914 			 */
1915 			guest_base = map_zeroed_pages(mem / getpagesize()
1916 						      + DEVICE_PAGES);
1917 			guest_limit = mem;
1918 			guest_max = mem + DEVICE_PAGES*getpagesize();
1919 			devices.descpage = get_pages(1);
1920 			break;
1921 		}
1922 	}
1923 
1924 	/* The options are fairly straight-forward */
1925 	while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
1926 		switch (c) {
1927 		case 'v':
1928 			verbose = true;
1929 			break;
1930 		case 't':
1931 			setup_tun_net(optarg);
1932 			break;
1933 		case 'b':
1934 			setup_block_file(optarg);
1935 			break;
1936 		case 'r':
1937 			setup_rng();
1938 			break;
1939 		case 'i':
1940 			initrd_name = optarg;
1941 			break;
1942 		case 'u':
1943 			user_details = getpwnam(optarg);
1944 			if (!user_details)
1945 				err(1, "getpwnam failed, incorrect username?");
1946 			break;
1947 		case 'c':
1948 			chroot_path = optarg;
1949 			break;
1950 		default:
1951 			warnx("Unknown argument %s", argv[optind]);
1952 			usage();
1953 		}
1954 	}
1955 	/*
1956 	 * After the other arguments we expect memory and kernel image name,
1957 	 * followed by command line arguments for the kernel.
1958 	 */
1959 	if (optind + 2 > argc)
1960 		usage();
1961 
1962 	verbose("Guest base is at %p\n", guest_base);
1963 
1964 	/* We always have a console device */
1965 	setup_console();
1966 
1967 	/* Now we load the kernel */
1968 	start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
1969 
1970 	/* Boot information is stashed at physical address 0 */
1971 	boot = from_guest_phys(0);
1972 
1973 	/* Map the initrd image if requested (at top of physical memory) */
1974 	if (initrd_name) {
1975 		initrd_size = load_initrd(initrd_name, mem);
1976 		/*
1977 		 * These are the location in the Linux boot header where the
1978 		 * start and size of the initrd are expected to be found.
1979 		 */
1980 		boot->hdr.ramdisk_image = mem - initrd_size;
1981 		boot->hdr.ramdisk_size = initrd_size;
1982 		/* The bootloader type 0xFF means "unknown"; that's OK. */
1983 		boot->hdr.type_of_loader = 0xFF;
1984 	}
1985 
1986 	/*
1987 	 * The Linux boot header contains an "E820" memory map: ours is a
1988 	 * simple, single region.
1989 	 */
1990 	boot->e820_entries = 1;
1991 	boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
1992 	/*
1993 	 * The boot header contains a command line pointer: we put the command
1994 	 * line after the boot header.
1995 	 */
1996 	boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
1997 	/* We use a simple helper to copy the arguments separated by spaces. */
1998 	concat((char *)(boot + 1), argv+optind+2);
1999 
2000 	/* Set kernel alignment to 16M (CONFIG_PHYSICAL_ALIGN) */
2001 	boot->hdr.kernel_alignment = 0x1000000;
2002 
2003 	/* Boot protocol version: 2.07 supports the fields for lguest. */
2004 	boot->hdr.version = 0x207;
2005 
2006 	/* The hardware_subarch value of "1" tells the Guest it's an lguest. */
2007 	boot->hdr.hardware_subarch = 1;
2008 
2009 	/* Tell the entry path not to try to reload segment registers. */
2010 	boot->hdr.loadflags |= KEEP_SEGMENTS;
2011 
2012 	/* We tell the kernel to initialize the Guest. */
2013 	tell_kernel(start);
2014 
2015 	/* Ensure that we terminate if a device-servicing child dies. */
2016 	signal(SIGCHLD, kill_launcher);
2017 
2018 	/* If we exit via err(), this kills all the threads, restores tty. */
2019 	atexit(cleanup_devices);
2020 
2021 	/* If requested, chroot to a directory */
2022 	if (chroot_path) {
2023 		if (chroot(chroot_path) != 0)
2024 			err(1, "chroot(\"%s\") failed", chroot_path);
2025 
2026 		if (chdir("/") != 0)
2027 			err(1, "chdir(\"/\") failed");
2028 
2029 		verbose("chroot done\n");
2030 	}
2031 
2032 	/* If requested, drop privileges */
2033 	if (user_details) {
2034 		uid_t u;
2035 		gid_t g;
2036 
2037 		u = user_details->pw_uid;
2038 		g = user_details->pw_gid;
2039 
2040 		if (initgroups(user_details->pw_name, g) != 0)
2041 			err(1, "initgroups failed");
2042 
2043 		if (setresgid(g, g, g) != 0)
2044 			err(1, "setresgid failed");
2045 
2046 		if (setresuid(u, u, u) != 0)
2047 			err(1, "setresuid failed");
2048 
2049 		verbose("Dropping privileges completed\n");
2050 	}
2051 
2052 	/* Finally, run the Guest.  This doesn't return. */
2053 	run_guest();
2054 }
2055 /*:*/
2056 
2057 /*M:999
2058  * Mastery is done: you now know everything I do.
2059  *
2060  * But surely you have seen code, features and bugs in your wanderings which
2061  * you now yearn to attack?  That is the real game, and I look forward to you
2062  * patching and forking lguest into the Your-Name-Here-visor.
2063  *
2064  * Farewell, and good coding!
2065  * Rusty Russell.
2066  */
2067