1 /*
2  * Implementation of the security services.
3  *
4  * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5  *	     James Morris <jmorris@redhat.com>
6  *
7  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
8  *
9  *	Support for enhanced MLS infrastructure.
10  *	Support for context based audit filters.
11  *
12  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13  *
14  *	Added conditional policy language extensions
15  *
16  * Updated: Hewlett-Packard <paul@paul-moore.com>
17  *
18  *      Added support for NetLabel
19  *      Added support for the policy capability bitmap
20  *
21  * Updated: Chad Sellers <csellers@tresys.com>
22  *
23  *  Added validation of kernel classes and permissions
24  *
25  * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
26  *
27  *  Added support for bounds domain and audit messaged on masked permissions
28  *
29  * Updated: Guido Trentalancia <guido@trentalancia.com>
30  *
31  *  Added support for runtime switching of the policy type
32  *
33  * Copyright (C) 2008, 2009 NEC Corporation
34  * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
35  * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
36  * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
37  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
38  *	This program is free software; you can redistribute it and/or modify
39  *	it under the terms of the GNU General Public License as published by
40  *	the Free Software Foundation, version 2.
41  */
42 #include <linux/kernel.h>
43 #include <linux/slab.h>
44 #include <linux/string.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/errno.h>
48 #include <linux/in.h>
49 #include <linux/sched.h>
50 #include <linux/audit.h>
51 #include <linux/mutex.h>
52 #include <linux/selinux.h>
53 #include <linux/flex_array.h>
54 #include <linux/vmalloc.h>
55 #include <net/netlabel.h>
56 
57 #include "flask.h"
58 #include "avc.h"
59 #include "avc_ss.h"
60 #include "security.h"
61 #include "context.h"
62 #include "policydb.h"
63 #include "sidtab.h"
64 #include "services.h"
65 #include "conditional.h"
66 #include "mls.h"
67 #include "objsec.h"
68 #include "netlabel.h"
69 #include "xfrm.h"
70 #include "ebitmap.h"
71 #include "audit.h"
72 
73 int selinux_policycap_netpeer;
74 int selinux_policycap_openperm;
75 
76 static DEFINE_RWLOCK(policy_rwlock);
77 
78 static struct sidtab sidtab;
79 struct policydb policydb;
80 int ss_initialized;
81 
82 /*
83  * The largest sequence number that has been used when
84  * providing an access decision to the access vector cache.
85  * The sequence number only changes when a policy change
86  * occurs.
87  */
88 static u32 latest_granting;
89 
90 /* Forward declaration. */
91 static int context_struct_to_string(struct context *context, char **scontext,
92 				    u32 *scontext_len);
93 
94 static void context_struct_compute_av(struct context *scontext,
95 				      struct context *tcontext,
96 				      u16 tclass,
97 				      struct av_decision *avd);
98 
99 struct selinux_mapping {
100 	u16 value; /* policy value */
101 	unsigned num_perms;
102 	u32 perms[sizeof(u32) * 8];
103 };
104 
105 static struct selinux_mapping *current_mapping;
106 static u16 current_mapping_size;
107 
selinux_set_mapping(struct policydb * pol,struct security_class_mapping * map,struct selinux_mapping ** out_map_p,u16 * out_map_size)108 static int selinux_set_mapping(struct policydb *pol,
109 			       struct security_class_mapping *map,
110 			       struct selinux_mapping **out_map_p,
111 			       u16 *out_map_size)
112 {
113 	struct selinux_mapping *out_map = NULL;
114 	size_t size = sizeof(struct selinux_mapping);
115 	u16 i, j;
116 	unsigned k;
117 	bool print_unknown_handle = false;
118 
119 	/* Find number of classes in the input mapping */
120 	if (!map)
121 		return -EINVAL;
122 	i = 0;
123 	while (map[i].name)
124 		i++;
125 
126 	/* Allocate space for the class records, plus one for class zero */
127 	out_map = kcalloc(++i, size, GFP_ATOMIC);
128 	if (!out_map)
129 		return -ENOMEM;
130 
131 	/* Store the raw class and permission values */
132 	j = 0;
133 	while (map[j].name) {
134 		struct security_class_mapping *p_in = map + (j++);
135 		struct selinux_mapping *p_out = out_map + j;
136 
137 		/* An empty class string skips ahead */
138 		if (!strcmp(p_in->name, "")) {
139 			p_out->num_perms = 0;
140 			continue;
141 		}
142 
143 		p_out->value = string_to_security_class(pol, p_in->name);
144 		if (!p_out->value) {
145 			printk(KERN_INFO
146 			       "SELinux:  Class %s not defined in policy.\n",
147 			       p_in->name);
148 			if (pol->reject_unknown)
149 				goto err;
150 			p_out->num_perms = 0;
151 			print_unknown_handle = true;
152 			continue;
153 		}
154 
155 		k = 0;
156 		while (p_in->perms && p_in->perms[k]) {
157 			/* An empty permission string skips ahead */
158 			if (!*p_in->perms[k]) {
159 				k++;
160 				continue;
161 			}
162 			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
163 							    p_in->perms[k]);
164 			if (!p_out->perms[k]) {
165 				printk(KERN_INFO
166 				       "SELinux:  Permission %s in class %s not defined in policy.\n",
167 				       p_in->perms[k], p_in->name);
168 				if (pol->reject_unknown)
169 					goto err;
170 				print_unknown_handle = true;
171 			}
172 
173 			k++;
174 		}
175 		p_out->num_perms = k;
176 	}
177 
178 	if (print_unknown_handle)
179 		printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
180 		       pol->allow_unknown ? "allowed" : "denied");
181 
182 	*out_map_p = out_map;
183 	*out_map_size = i;
184 	return 0;
185 err:
186 	kfree(out_map);
187 	return -EINVAL;
188 }
189 
190 /*
191  * Get real, policy values from mapped values
192  */
193 
unmap_class(u16 tclass)194 static u16 unmap_class(u16 tclass)
195 {
196 	if (tclass < current_mapping_size)
197 		return current_mapping[tclass].value;
198 
199 	return tclass;
200 }
201 
202 /*
203  * Get kernel value for class from its policy value
204  */
map_class(u16 pol_value)205 static u16 map_class(u16 pol_value)
206 {
207 	u16 i;
208 
209 	for (i = 1; i < current_mapping_size; i++) {
210 		if (current_mapping[i].value == pol_value)
211 			return i;
212 	}
213 
214 	return SECCLASS_NULL;
215 }
216 
map_decision(u16 tclass,struct av_decision * avd,int allow_unknown)217 static void map_decision(u16 tclass, struct av_decision *avd,
218 			 int allow_unknown)
219 {
220 	if (tclass < current_mapping_size) {
221 		unsigned i, n = current_mapping[tclass].num_perms;
222 		u32 result;
223 
224 		for (i = 0, result = 0; i < n; i++) {
225 			if (avd->allowed & current_mapping[tclass].perms[i])
226 				result |= 1<<i;
227 			if (allow_unknown && !current_mapping[tclass].perms[i])
228 				result |= 1<<i;
229 		}
230 		avd->allowed = result;
231 
232 		for (i = 0, result = 0; i < n; i++)
233 			if (avd->auditallow & current_mapping[tclass].perms[i])
234 				result |= 1<<i;
235 		avd->auditallow = result;
236 
237 		for (i = 0, result = 0; i < n; i++) {
238 			if (avd->auditdeny & current_mapping[tclass].perms[i])
239 				result |= 1<<i;
240 			if (!allow_unknown && !current_mapping[tclass].perms[i])
241 				result |= 1<<i;
242 		}
243 		/*
244 		 * In case the kernel has a bug and requests a permission
245 		 * between num_perms and the maximum permission number, we
246 		 * should audit that denial
247 		 */
248 		for (; i < (sizeof(u32)*8); i++)
249 			result |= 1<<i;
250 		avd->auditdeny = result;
251 	}
252 }
253 
security_mls_enabled(void)254 int security_mls_enabled(void)
255 {
256 	return policydb.mls_enabled;
257 }
258 
259 /*
260  * Return the boolean value of a constraint expression
261  * when it is applied to the specified source and target
262  * security contexts.
263  *
264  * xcontext is a special beast...  It is used by the validatetrans rules
265  * only.  For these rules, scontext is the context before the transition,
266  * tcontext is the context after the transition, and xcontext is the context
267  * of the process performing the transition.  All other callers of
268  * constraint_expr_eval should pass in NULL for xcontext.
269  */
constraint_expr_eval(struct context * scontext,struct context * tcontext,struct context * xcontext,struct constraint_expr * cexpr)270 static int constraint_expr_eval(struct context *scontext,
271 				struct context *tcontext,
272 				struct context *xcontext,
273 				struct constraint_expr *cexpr)
274 {
275 	u32 val1, val2;
276 	struct context *c;
277 	struct role_datum *r1, *r2;
278 	struct mls_level *l1, *l2;
279 	struct constraint_expr *e;
280 	int s[CEXPR_MAXDEPTH];
281 	int sp = -1;
282 
283 	for (e = cexpr; e; e = e->next) {
284 		switch (e->expr_type) {
285 		case CEXPR_NOT:
286 			BUG_ON(sp < 0);
287 			s[sp] = !s[sp];
288 			break;
289 		case CEXPR_AND:
290 			BUG_ON(sp < 1);
291 			sp--;
292 			s[sp] &= s[sp + 1];
293 			break;
294 		case CEXPR_OR:
295 			BUG_ON(sp < 1);
296 			sp--;
297 			s[sp] |= s[sp + 1];
298 			break;
299 		case CEXPR_ATTR:
300 			if (sp == (CEXPR_MAXDEPTH - 1))
301 				return 0;
302 			switch (e->attr) {
303 			case CEXPR_USER:
304 				val1 = scontext->user;
305 				val2 = tcontext->user;
306 				break;
307 			case CEXPR_TYPE:
308 				val1 = scontext->type;
309 				val2 = tcontext->type;
310 				break;
311 			case CEXPR_ROLE:
312 				val1 = scontext->role;
313 				val2 = tcontext->role;
314 				r1 = policydb.role_val_to_struct[val1 - 1];
315 				r2 = policydb.role_val_to_struct[val2 - 1];
316 				switch (e->op) {
317 				case CEXPR_DOM:
318 					s[++sp] = ebitmap_get_bit(&r1->dominates,
319 								  val2 - 1);
320 					continue;
321 				case CEXPR_DOMBY:
322 					s[++sp] = ebitmap_get_bit(&r2->dominates,
323 								  val1 - 1);
324 					continue;
325 				case CEXPR_INCOMP:
326 					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
327 								    val2 - 1) &&
328 						   !ebitmap_get_bit(&r2->dominates,
329 								    val1 - 1));
330 					continue;
331 				default:
332 					break;
333 				}
334 				break;
335 			case CEXPR_L1L2:
336 				l1 = &(scontext->range.level[0]);
337 				l2 = &(tcontext->range.level[0]);
338 				goto mls_ops;
339 			case CEXPR_L1H2:
340 				l1 = &(scontext->range.level[0]);
341 				l2 = &(tcontext->range.level[1]);
342 				goto mls_ops;
343 			case CEXPR_H1L2:
344 				l1 = &(scontext->range.level[1]);
345 				l2 = &(tcontext->range.level[0]);
346 				goto mls_ops;
347 			case CEXPR_H1H2:
348 				l1 = &(scontext->range.level[1]);
349 				l2 = &(tcontext->range.level[1]);
350 				goto mls_ops;
351 			case CEXPR_L1H1:
352 				l1 = &(scontext->range.level[0]);
353 				l2 = &(scontext->range.level[1]);
354 				goto mls_ops;
355 			case CEXPR_L2H2:
356 				l1 = &(tcontext->range.level[0]);
357 				l2 = &(tcontext->range.level[1]);
358 				goto mls_ops;
359 mls_ops:
360 			switch (e->op) {
361 			case CEXPR_EQ:
362 				s[++sp] = mls_level_eq(l1, l2);
363 				continue;
364 			case CEXPR_NEQ:
365 				s[++sp] = !mls_level_eq(l1, l2);
366 				continue;
367 			case CEXPR_DOM:
368 				s[++sp] = mls_level_dom(l1, l2);
369 				continue;
370 			case CEXPR_DOMBY:
371 				s[++sp] = mls_level_dom(l2, l1);
372 				continue;
373 			case CEXPR_INCOMP:
374 				s[++sp] = mls_level_incomp(l2, l1);
375 				continue;
376 			default:
377 				BUG();
378 				return 0;
379 			}
380 			break;
381 			default:
382 				BUG();
383 				return 0;
384 			}
385 
386 			switch (e->op) {
387 			case CEXPR_EQ:
388 				s[++sp] = (val1 == val2);
389 				break;
390 			case CEXPR_NEQ:
391 				s[++sp] = (val1 != val2);
392 				break;
393 			default:
394 				BUG();
395 				return 0;
396 			}
397 			break;
398 		case CEXPR_NAMES:
399 			if (sp == (CEXPR_MAXDEPTH-1))
400 				return 0;
401 			c = scontext;
402 			if (e->attr & CEXPR_TARGET)
403 				c = tcontext;
404 			else if (e->attr & CEXPR_XTARGET) {
405 				c = xcontext;
406 				if (!c) {
407 					BUG();
408 					return 0;
409 				}
410 			}
411 			if (e->attr & CEXPR_USER)
412 				val1 = c->user;
413 			else if (e->attr & CEXPR_ROLE)
414 				val1 = c->role;
415 			else if (e->attr & CEXPR_TYPE)
416 				val1 = c->type;
417 			else {
418 				BUG();
419 				return 0;
420 			}
421 
422 			switch (e->op) {
423 			case CEXPR_EQ:
424 				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
425 				break;
426 			case CEXPR_NEQ:
427 				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
428 				break;
429 			default:
430 				BUG();
431 				return 0;
432 			}
433 			break;
434 		default:
435 			BUG();
436 			return 0;
437 		}
438 	}
439 
440 	BUG_ON(sp != 0);
441 	return s[0];
442 }
443 
444 /*
445  * security_dump_masked_av - dumps masked permissions during
446  * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
447  */
dump_masked_av_helper(void * k,void * d,void * args)448 static int dump_masked_av_helper(void *k, void *d, void *args)
449 {
450 	struct perm_datum *pdatum = d;
451 	char **permission_names = args;
452 
453 	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
454 
455 	permission_names[pdatum->value - 1] = (char *)k;
456 
457 	return 0;
458 }
459 
security_dump_masked_av(struct context * scontext,struct context * tcontext,u16 tclass,u32 permissions,const char * reason)460 static void security_dump_masked_av(struct context *scontext,
461 				    struct context *tcontext,
462 				    u16 tclass,
463 				    u32 permissions,
464 				    const char *reason)
465 {
466 	struct common_datum *common_dat;
467 	struct class_datum *tclass_dat;
468 	struct audit_buffer *ab;
469 	char *tclass_name;
470 	char *scontext_name = NULL;
471 	char *tcontext_name = NULL;
472 	char *permission_names[32];
473 	int index;
474 	u32 length;
475 	bool need_comma = false;
476 
477 	if (!permissions)
478 		return;
479 
480 	tclass_name = sym_name(&policydb, SYM_CLASSES, tclass - 1);
481 	tclass_dat = policydb.class_val_to_struct[tclass - 1];
482 	common_dat = tclass_dat->comdatum;
483 
484 	/* init permission_names */
485 	if (common_dat &&
486 	    hashtab_map(common_dat->permissions.table,
487 			dump_masked_av_helper, permission_names) < 0)
488 		goto out;
489 
490 	if (hashtab_map(tclass_dat->permissions.table,
491 			dump_masked_av_helper, permission_names) < 0)
492 		goto out;
493 
494 	/* get scontext/tcontext in text form */
495 	if (context_struct_to_string(scontext,
496 				     &scontext_name, &length) < 0)
497 		goto out;
498 
499 	if (context_struct_to_string(tcontext,
500 				     &tcontext_name, &length) < 0)
501 		goto out;
502 
503 	/* audit a message */
504 	ab = audit_log_start(current->audit_context,
505 			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
506 	if (!ab)
507 		goto out;
508 
509 	audit_log_format(ab, "op=security_compute_av reason=%s "
510 			 "scontext=%s tcontext=%s tclass=%s perms=",
511 			 reason, scontext_name, tcontext_name, tclass_name);
512 
513 	for (index = 0; index < 32; index++) {
514 		u32 mask = (1 << index);
515 
516 		if ((mask & permissions) == 0)
517 			continue;
518 
519 		audit_log_format(ab, "%s%s",
520 				 need_comma ? "," : "",
521 				 permission_names[index]
522 				 ? permission_names[index] : "????");
523 		need_comma = true;
524 	}
525 	audit_log_end(ab);
526 out:
527 	/* release scontext/tcontext */
528 	kfree(tcontext_name);
529 	kfree(scontext_name);
530 
531 	return;
532 }
533 
534 /*
535  * security_boundary_permission - drops violated permissions
536  * on boundary constraint.
537  */
type_attribute_bounds_av(struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd)538 static void type_attribute_bounds_av(struct context *scontext,
539 				     struct context *tcontext,
540 				     u16 tclass,
541 				     struct av_decision *avd)
542 {
543 	struct context lo_scontext;
544 	struct context lo_tcontext;
545 	struct av_decision lo_avd;
546 	struct type_datum *source;
547 	struct type_datum *target;
548 	u32 masked = 0;
549 
550 	source = flex_array_get_ptr(policydb.type_val_to_struct_array,
551 				    scontext->type - 1);
552 	BUG_ON(!source);
553 
554 	target = flex_array_get_ptr(policydb.type_val_to_struct_array,
555 				    tcontext->type - 1);
556 	BUG_ON(!target);
557 
558 	if (source->bounds) {
559 		memset(&lo_avd, 0, sizeof(lo_avd));
560 
561 		memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
562 		lo_scontext.type = source->bounds;
563 
564 		context_struct_compute_av(&lo_scontext,
565 					  tcontext,
566 					  tclass,
567 					  &lo_avd);
568 		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
569 			return;		/* no masked permission */
570 		masked = ~lo_avd.allowed & avd->allowed;
571 	}
572 
573 	if (target->bounds) {
574 		memset(&lo_avd, 0, sizeof(lo_avd));
575 
576 		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
577 		lo_tcontext.type = target->bounds;
578 
579 		context_struct_compute_av(scontext,
580 					  &lo_tcontext,
581 					  tclass,
582 					  &lo_avd);
583 		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
584 			return;		/* no masked permission */
585 		masked = ~lo_avd.allowed & avd->allowed;
586 	}
587 
588 	if (source->bounds && target->bounds) {
589 		memset(&lo_avd, 0, sizeof(lo_avd));
590 		/*
591 		 * lo_scontext and lo_tcontext are already
592 		 * set up.
593 		 */
594 
595 		context_struct_compute_av(&lo_scontext,
596 					  &lo_tcontext,
597 					  tclass,
598 					  &lo_avd);
599 		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
600 			return;		/* no masked permission */
601 		masked = ~lo_avd.allowed & avd->allowed;
602 	}
603 
604 	if (masked) {
605 		/* mask violated permissions */
606 		avd->allowed &= ~masked;
607 
608 		/* audit masked permissions */
609 		security_dump_masked_av(scontext, tcontext,
610 					tclass, masked, "bounds");
611 	}
612 }
613 
614 /*
615  * Compute access vectors based on a context structure pair for
616  * the permissions in a particular class.
617  */
context_struct_compute_av(struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd)618 static void context_struct_compute_av(struct context *scontext,
619 				      struct context *tcontext,
620 				      u16 tclass,
621 				      struct av_decision *avd)
622 {
623 	struct constraint_node *constraint;
624 	struct role_allow *ra;
625 	struct avtab_key avkey;
626 	struct avtab_node *node;
627 	struct class_datum *tclass_datum;
628 	struct ebitmap *sattr, *tattr;
629 	struct ebitmap_node *snode, *tnode;
630 	unsigned int i, j;
631 
632 	avd->allowed = 0;
633 	avd->auditallow = 0;
634 	avd->auditdeny = 0xffffffff;
635 
636 	if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
637 		if (printk_ratelimit())
638 			printk(KERN_WARNING "SELinux:  Invalid class %hu\n", tclass);
639 		return;
640 	}
641 
642 	tclass_datum = policydb.class_val_to_struct[tclass - 1];
643 
644 	/*
645 	 * If a specific type enforcement rule was defined for
646 	 * this permission check, then use it.
647 	 */
648 	avkey.target_class = tclass;
649 	avkey.specified = AVTAB_AV;
650 	sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1);
651 	BUG_ON(!sattr);
652 	tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1);
653 	BUG_ON(!tattr);
654 	ebitmap_for_each_positive_bit(sattr, snode, i) {
655 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
656 			avkey.source_type = i + 1;
657 			avkey.target_type = j + 1;
658 			for (node = avtab_search_node(&policydb.te_avtab, &avkey);
659 			     node;
660 			     node = avtab_search_node_next(node, avkey.specified)) {
661 				if (node->key.specified == AVTAB_ALLOWED)
662 					avd->allowed |= node->datum.data;
663 				else if (node->key.specified == AVTAB_AUDITALLOW)
664 					avd->auditallow |= node->datum.data;
665 				else if (node->key.specified == AVTAB_AUDITDENY)
666 					avd->auditdeny &= node->datum.data;
667 			}
668 
669 			/* Check conditional av table for additional permissions */
670 			cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
671 
672 		}
673 	}
674 
675 	/*
676 	 * Remove any permissions prohibited by a constraint (this includes
677 	 * the MLS policy).
678 	 */
679 	constraint = tclass_datum->constraints;
680 	while (constraint) {
681 		if ((constraint->permissions & (avd->allowed)) &&
682 		    !constraint_expr_eval(scontext, tcontext, NULL,
683 					  constraint->expr)) {
684 			avd->allowed &= ~(constraint->permissions);
685 		}
686 		constraint = constraint->next;
687 	}
688 
689 	/*
690 	 * If checking process transition permission and the
691 	 * role is changing, then check the (current_role, new_role)
692 	 * pair.
693 	 */
694 	if (tclass == policydb.process_class &&
695 	    (avd->allowed & policydb.process_trans_perms) &&
696 	    scontext->role != tcontext->role) {
697 		for (ra = policydb.role_allow; ra; ra = ra->next) {
698 			if (scontext->role == ra->role &&
699 			    tcontext->role == ra->new_role)
700 				break;
701 		}
702 		if (!ra)
703 			avd->allowed &= ~policydb.process_trans_perms;
704 	}
705 
706 	/*
707 	 * If the given source and target types have boundary
708 	 * constraint, lazy checks have to mask any violated
709 	 * permission and notice it to userspace via audit.
710 	 */
711 	type_attribute_bounds_av(scontext, tcontext,
712 				 tclass, avd);
713 }
714 
security_validtrans_handle_fail(struct context * ocontext,struct context * ncontext,struct context * tcontext,u16 tclass)715 static int security_validtrans_handle_fail(struct context *ocontext,
716 					   struct context *ncontext,
717 					   struct context *tcontext,
718 					   u16 tclass)
719 {
720 	char *o = NULL, *n = NULL, *t = NULL;
721 	u32 olen, nlen, tlen;
722 
723 	if (context_struct_to_string(ocontext, &o, &olen))
724 		goto out;
725 	if (context_struct_to_string(ncontext, &n, &nlen))
726 		goto out;
727 	if (context_struct_to_string(tcontext, &t, &tlen))
728 		goto out;
729 	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
730 		  "security_validate_transition:  denied for"
731 		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
732 		  o, n, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
733 out:
734 	kfree(o);
735 	kfree(n);
736 	kfree(t);
737 
738 	if (!selinux_enforcing)
739 		return 0;
740 	return -EPERM;
741 }
742 
security_validate_transition(u32 oldsid,u32 newsid,u32 tasksid,u16 orig_tclass)743 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
744 				 u16 orig_tclass)
745 {
746 	struct context *ocontext;
747 	struct context *ncontext;
748 	struct context *tcontext;
749 	struct class_datum *tclass_datum;
750 	struct constraint_node *constraint;
751 	u16 tclass;
752 	int rc = 0;
753 
754 	if (!ss_initialized)
755 		return 0;
756 
757 	read_lock(&policy_rwlock);
758 
759 	tclass = unmap_class(orig_tclass);
760 
761 	if (!tclass || tclass > policydb.p_classes.nprim) {
762 		printk(KERN_ERR "SELinux: %s:  unrecognized class %d\n",
763 			__func__, tclass);
764 		rc = -EINVAL;
765 		goto out;
766 	}
767 	tclass_datum = policydb.class_val_to_struct[tclass - 1];
768 
769 	ocontext = sidtab_search(&sidtab, oldsid);
770 	if (!ocontext) {
771 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
772 			__func__, oldsid);
773 		rc = -EINVAL;
774 		goto out;
775 	}
776 
777 	ncontext = sidtab_search(&sidtab, newsid);
778 	if (!ncontext) {
779 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
780 			__func__, newsid);
781 		rc = -EINVAL;
782 		goto out;
783 	}
784 
785 	tcontext = sidtab_search(&sidtab, tasksid);
786 	if (!tcontext) {
787 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
788 			__func__, tasksid);
789 		rc = -EINVAL;
790 		goto out;
791 	}
792 
793 	constraint = tclass_datum->validatetrans;
794 	while (constraint) {
795 		if (!constraint_expr_eval(ocontext, ncontext, tcontext,
796 					  constraint->expr)) {
797 			rc = security_validtrans_handle_fail(ocontext, ncontext,
798 							     tcontext, tclass);
799 			goto out;
800 		}
801 		constraint = constraint->next;
802 	}
803 
804 out:
805 	read_unlock(&policy_rwlock);
806 	return rc;
807 }
808 
809 /*
810  * security_bounded_transition - check whether the given
811  * transition is directed to bounded, or not.
812  * It returns 0, if @newsid is bounded by @oldsid.
813  * Otherwise, it returns error code.
814  *
815  * @oldsid : current security identifier
816  * @newsid : destinated security identifier
817  */
security_bounded_transition(u32 old_sid,u32 new_sid)818 int security_bounded_transition(u32 old_sid, u32 new_sid)
819 {
820 	struct context *old_context, *new_context;
821 	struct type_datum *type;
822 	int index;
823 	int rc;
824 
825 	read_lock(&policy_rwlock);
826 
827 	rc = -EINVAL;
828 	old_context = sidtab_search(&sidtab, old_sid);
829 	if (!old_context) {
830 		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
831 		       __func__, old_sid);
832 		goto out;
833 	}
834 
835 	rc = -EINVAL;
836 	new_context = sidtab_search(&sidtab, new_sid);
837 	if (!new_context) {
838 		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
839 		       __func__, new_sid);
840 		goto out;
841 	}
842 
843 	rc = 0;
844 	/* type/domain unchanged */
845 	if (old_context->type == new_context->type)
846 		goto out;
847 
848 	index = new_context->type;
849 	while (true) {
850 		type = flex_array_get_ptr(policydb.type_val_to_struct_array,
851 					  index - 1);
852 		BUG_ON(!type);
853 
854 		/* not bounded anymore */
855 		rc = -EPERM;
856 		if (!type->bounds)
857 			break;
858 
859 		/* @newsid is bounded by @oldsid */
860 		rc = 0;
861 		if (type->bounds == old_context->type)
862 			break;
863 
864 		index = type->bounds;
865 	}
866 
867 	if (rc) {
868 		char *old_name = NULL;
869 		char *new_name = NULL;
870 		u32 length;
871 
872 		if (!context_struct_to_string(old_context,
873 					      &old_name, &length) &&
874 		    !context_struct_to_string(new_context,
875 					      &new_name, &length)) {
876 			audit_log(current->audit_context,
877 				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
878 				  "op=security_bounded_transition "
879 				  "result=denied "
880 				  "oldcontext=%s newcontext=%s",
881 				  old_name, new_name);
882 		}
883 		kfree(new_name);
884 		kfree(old_name);
885 	}
886 out:
887 	read_unlock(&policy_rwlock);
888 
889 	return rc;
890 }
891 
avd_init(struct av_decision * avd)892 static void avd_init(struct av_decision *avd)
893 {
894 	avd->allowed = 0;
895 	avd->auditallow = 0;
896 	avd->auditdeny = 0xffffffff;
897 	avd->seqno = latest_granting;
898 	avd->flags = 0;
899 }
900 
901 
902 /**
903  * security_compute_av - Compute access vector decisions.
904  * @ssid: source security identifier
905  * @tsid: target security identifier
906  * @tclass: target security class
907  * @avd: access vector decisions
908  *
909  * Compute a set of access vector decisions based on the
910  * SID pair (@ssid, @tsid) for the permissions in @tclass.
911  */
security_compute_av(u32 ssid,u32 tsid,u16 orig_tclass,struct av_decision * avd)912 void security_compute_av(u32 ssid,
913 			 u32 tsid,
914 			 u16 orig_tclass,
915 			 struct av_decision *avd)
916 {
917 	u16 tclass;
918 	struct context *scontext = NULL, *tcontext = NULL;
919 
920 	read_lock(&policy_rwlock);
921 	avd_init(avd);
922 	if (!ss_initialized)
923 		goto allow;
924 
925 	scontext = sidtab_search(&sidtab, ssid);
926 	if (!scontext) {
927 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
928 		       __func__, ssid);
929 		goto out;
930 	}
931 
932 	/* permissive domain? */
933 	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
934 		avd->flags |= AVD_FLAGS_PERMISSIVE;
935 
936 	tcontext = sidtab_search(&sidtab, tsid);
937 	if (!tcontext) {
938 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
939 		       __func__, tsid);
940 		goto out;
941 	}
942 
943 	tclass = unmap_class(orig_tclass);
944 	if (unlikely(orig_tclass && !tclass)) {
945 		if (policydb.allow_unknown)
946 			goto allow;
947 		goto out;
948 	}
949 	context_struct_compute_av(scontext, tcontext, tclass, avd);
950 	map_decision(orig_tclass, avd, policydb.allow_unknown);
951 out:
952 	read_unlock(&policy_rwlock);
953 	return;
954 allow:
955 	avd->allowed = 0xffffffff;
956 	goto out;
957 }
958 
security_compute_av_user(u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd)959 void security_compute_av_user(u32 ssid,
960 			      u32 tsid,
961 			      u16 tclass,
962 			      struct av_decision *avd)
963 {
964 	struct context *scontext = NULL, *tcontext = NULL;
965 
966 	read_lock(&policy_rwlock);
967 	avd_init(avd);
968 	if (!ss_initialized)
969 		goto allow;
970 
971 	scontext = sidtab_search(&sidtab, ssid);
972 	if (!scontext) {
973 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
974 		       __func__, ssid);
975 		goto out;
976 	}
977 
978 	/* permissive domain? */
979 	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
980 		avd->flags |= AVD_FLAGS_PERMISSIVE;
981 
982 	tcontext = sidtab_search(&sidtab, tsid);
983 	if (!tcontext) {
984 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
985 		       __func__, tsid);
986 		goto out;
987 	}
988 
989 	if (unlikely(!tclass)) {
990 		if (policydb.allow_unknown)
991 			goto allow;
992 		goto out;
993 	}
994 
995 	context_struct_compute_av(scontext, tcontext, tclass, avd);
996  out:
997 	read_unlock(&policy_rwlock);
998 	return;
999 allow:
1000 	avd->allowed = 0xffffffff;
1001 	goto out;
1002 }
1003 
1004 /*
1005  * Write the security context string representation of
1006  * the context structure `context' into a dynamically
1007  * allocated string of the correct size.  Set `*scontext'
1008  * to point to this string and set `*scontext_len' to
1009  * the length of the string.
1010  */
context_struct_to_string(struct context * context,char ** scontext,u32 * scontext_len)1011 static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
1012 {
1013 	char *scontextp;
1014 
1015 	if (scontext)
1016 		*scontext = NULL;
1017 	*scontext_len = 0;
1018 
1019 	if (context->len) {
1020 		*scontext_len = context->len;
1021 		*scontext = kstrdup(context->str, GFP_ATOMIC);
1022 		if (!(*scontext))
1023 			return -ENOMEM;
1024 		return 0;
1025 	}
1026 
1027 	/* Compute the size of the context. */
1028 	*scontext_len += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) + 1;
1029 	*scontext_len += strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) + 1;
1030 	*scontext_len += strlen(sym_name(&policydb, SYM_TYPES, context->type - 1)) + 1;
1031 	*scontext_len += mls_compute_context_len(context);
1032 
1033 	if (!scontext)
1034 		return 0;
1035 
1036 	/* Allocate space for the context; caller must free this space. */
1037 	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1038 	if (!scontextp)
1039 		return -ENOMEM;
1040 	*scontext = scontextp;
1041 
1042 	/*
1043 	 * Copy the user name, role name and type name into the context.
1044 	 */
1045 	sprintf(scontextp, "%s:%s:%s",
1046 		sym_name(&policydb, SYM_USERS, context->user - 1),
1047 		sym_name(&policydb, SYM_ROLES, context->role - 1),
1048 		sym_name(&policydb, SYM_TYPES, context->type - 1));
1049 	scontextp += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) +
1050 		     1 + strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) +
1051 		     1 + strlen(sym_name(&policydb, SYM_TYPES, context->type - 1));
1052 
1053 	mls_sid_to_context(context, &scontextp);
1054 
1055 	*scontextp = 0;
1056 
1057 	return 0;
1058 }
1059 
1060 #include "initial_sid_to_string.h"
1061 
security_get_initial_sid_context(u32 sid)1062 const char *security_get_initial_sid_context(u32 sid)
1063 {
1064 	if (unlikely(sid > SECINITSID_NUM))
1065 		return NULL;
1066 	return initial_sid_to_string[sid];
1067 }
1068 
security_sid_to_context_core(u32 sid,char ** scontext,u32 * scontext_len,int force)1069 static int security_sid_to_context_core(u32 sid, char **scontext,
1070 					u32 *scontext_len, int force)
1071 {
1072 	struct context *context;
1073 	int rc = 0;
1074 
1075 	if (scontext)
1076 		*scontext = NULL;
1077 	*scontext_len  = 0;
1078 
1079 	if (!ss_initialized) {
1080 		if (sid <= SECINITSID_NUM) {
1081 			char *scontextp;
1082 
1083 			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1084 			if (!scontext)
1085 				goto out;
1086 			scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1087 			if (!scontextp) {
1088 				rc = -ENOMEM;
1089 				goto out;
1090 			}
1091 			strcpy(scontextp, initial_sid_to_string[sid]);
1092 			*scontext = scontextp;
1093 			goto out;
1094 		}
1095 		printk(KERN_ERR "SELinux: %s:  called before initial "
1096 		       "load_policy on unknown SID %d\n", __func__, sid);
1097 		rc = -EINVAL;
1098 		goto out;
1099 	}
1100 	read_lock(&policy_rwlock);
1101 	if (force)
1102 		context = sidtab_search_force(&sidtab, sid);
1103 	else
1104 		context = sidtab_search(&sidtab, sid);
1105 	if (!context) {
1106 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1107 			__func__, sid);
1108 		rc = -EINVAL;
1109 		goto out_unlock;
1110 	}
1111 	rc = context_struct_to_string(context, scontext, scontext_len);
1112 out_unlock:
1113 	read_unlock(&policy_rwlock);
1114 out:
1115 	return rc;
1116 
1117 }
1118 
1119 /**
1120  * security_sid_to_context - Obtain a context for a given SID.
1121  * @sid: security identifier, SID
1122  * @scontext: security context
1123  * @scontext_len: length in bytes
1124  *
1125  * Write the string representation of the context associated with @sid
1126  * into a dynamically allocated string of the correct size.  Set @scontext
1127  * to point to this string and set @scontext_len to the length of the string.
1128  */
security_sid_to_context(u32 sid,char ** scontext,u32 * scontext_len)1129 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1130 {
1131 	return security_sid_to_context_core(sid, scontext, scontext_len, 0);
1132 }
1133 
security_sid_to_context_force(u32 sid,char ** scontext,u32 * scontext_len)1134 int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
1135 {
1136 	return security_sid_to_context_core(sid, scontext, scontext_len, 1);
1137 }
1138 
1139 /*
1140  * Caveat:  Mutates scontext.
1141  */
string_to_context_struct(struct policydb * pol,struct sidtab * sidtabp,char * scontext,u32 scontext_len,struct context * ctx,u32 def_sid)1142 static int string_to_context_struct(struct policydb *pol,
1143 				    struct sidtab *sidtabp,
1144 				    char *scontext,
1145 				    u32 scontext_len,
1146 				    struct context *ctx,
1147 				    u32 def_sid)
1148 {
1149 	struct role_datum *role;
1150 	struct type_datum *typdatum;
1151 	struct user_datum *usrdatum;
1152 	char *scontextp, *p, oldc;
1153 	int rc = 0;
1154 
1155 	context_init(ctx);
1156 
1157 	/* Parse the security context. */
1158 
1159 	rc = -EINVAL;
1160 	scontextp = (char *) scontext;
1161 
1162 	/* Extract the user. */
1163 	p = scontextp;
1164 	while (*p && *p != ':')
1165 		p++;
1166 
1167 	if (*p == 0)
1168 		goto out;
1169 
1170 	*p++ = 0;
1171 
1172 	usrdatum = hashtab_search(pol->p_users.table, scontextp);
1173 	if (!usrdatum)
1174 		goto out;
1175 
1176 	ctx->user = usrdatum->value;
1177 
1178 	/* Extract role. */
1179 	scontextp = p;
1180 	while (*p && *p != ':')
1181 		p++;
1182 
1183 	if (*p == 0)
1184 		goto out;
1185 
1186 	*p++ = 0;
1187 
1188 	role = hashtab_search(pol->p_roles.table, scontextp);
1189 	if (!role)
1190 		goto out;
1191 	ctx->role = role->value;
1192 
1193 	/* Extract type. */
1194 	scontextp = p;
1195 	while (*p && *p != ':')
1196 		p++;
1197 	oldc = *p;
1198 	*p++ = 0;
1199 
1200 	typdatum = hashtab_search(pol->p_types.table, scontextp);
1201 	if (!typdatum || typdatum->attribute)
1202 		goto out;
1203 
1204 	ctx->type = typdatum->value;
1205 
1206 	rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1207 	if (rc)
1208 		goto out;
1209 
1210 	rc = -EINVAL;
1211 	if ((p - scontext) < scontext_len)
1212 		goto out;
1213 
1214 	/* Check the validity of the new context. */
1215 	if (!policydb_context_isvalid(pol, ctx))
1216 		goto out;
1217 	rc = 0;
1218 out:
1219 	if (rc)
1220 		context_destroy(ctx);
1221 	return rc;
1222 }
1223 
security_context_to_sid_core(const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags,int force)1224 static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1225 					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1226 					int force)
1227 {
1228 	char *scontext2, *str = NULL;
1229 	struct context context;
1230 	int rc = 0;
1231 
1232 	/* An empty security context is never valid. */
1233 	if (!scontext_len)
1234 		return -EINVAL;
1235 
1236 	if (!ss_initialized) {
1237 		int i;
1238 
1239 		for (i = 1; i < SECINITSID_NUM; i++) {
1240 			if (!strcmp(initial_sid_to_string[i], scontext)) {
1241 				*sid = i;
1242 				return 0;
1243 			}
1244 		}
1245 		*sid = SECINITSID_KERNEL;
1246 		return 0;
1247 	}
1248 	*sid = SECSID_NULL;
1249 
1250 	/* Copy the string so that we can modify the copy as we parse it. */
1251 	scontext2 = kmalloc(scontext_len + 1, gfp_flags);
1252 	if (!scontext2)
1253 		return -ENOMEM;
1254 	memcpy(scontext2, scontext, scontext_len);
1255 	scontext2[scontext_len] = 0;
1256 
1257 	if (force) {
1258 		/* Save another copy for storing in uninterpreted form */
1259 		rc = -ENOMEM;
1260 		str = kstrdup(scontext2, gfp_flags);
1261 		if (!str)
1262 			goto out;
1263 	}
1264 
1265 	read_lock(&policy_rwlock);
1266 	rc = string_to_context_struct(&policydb, &sidtab, scontext2,
1267 				      scontext_len, &context, def_sid);
1268 	if (rc == -EINVAL && force) {
1269 		context.str = str;
1270 		context.len = scontext_len;
1271 		str = NULL;
1272 	} else if (rc)
1273 		goto out_unlock;
1274 	rc = sidtab_context_to_sid(&sidtab, &context, sid);
1275 	context_destroy(&context);
1276 out_unlock:
1277 	read_unlock(&policy_rwlock);
1278 out:
1279 	kfree(scontext2);
1280 	kfree(str);
1281 	return rc;
1282 }
1283 
1284 /**
1285  * security_context_to_sid - Obtain a SID for a given security context.
1286  * @scontext: security context
1287  * @scontext_len: length in bytes
1288  * @sid: security identifier, SID
1289  *
1290  * Obtains a SID associated with the security context that
1291  * has the string representation specified by @scontext.
1292  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1293  * memory is available, or 0 on success.
1294  */
security_context_to_sid(const char * scontext,u32 scontext_len,u32 * sid)1295 int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid)
1296 {
1297 	return security_context_to_sid_core(scontext, scontext_len,
1298 					    sid, SECSID_NULL, GFP_KERNEL, 0);
1299 }
1300 
1301 /**
1302  * security_context_to_sid_default - Obtain a SID for a given security context,
1303  * falling back to specified default if needed.
1304  *
1305  * @scontext: security context
1306  * @scontext_len: length in bytes
1307  * @sid: security identifier, SID
1308  * @def_sid: default SID to assign on error
1309  *
1310  * Obtains a SID associated with the security context that
1311  * has the string representation specified by @scontext.
1312  * The default SID is passed to the MLS layer to be used to allow
1313  * kernel labeling of the MLS field if the MLS field is not present
1314  * (for upgrading to MLS without full relabel).
1315  * Implicitly forces adding of the context even if it cannot be mapped yet.
1316  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1317  * memory is available, or 0 on success.
1318  */
security_context_to_sid_default(const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags)1319 int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1320 				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1321 {
1322 	return security_context_to_sid_core(scontext, scontext_len,
1323 					    sid, def_sid, gfp_flags, 1);
1324 }
1325 
security_context_to_sid_force(const char * scontext,u32 scontext_len,u32 * sid)1326 int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1327 				  u32 *sid)
1328 {
1329 	return security_context_to_sid_core(scontext, scontext_len,
1330 					    sid, SECSID_NULL, GFP_KERNEL, 1);
1331 }
1332 
compute_sid_handle_invalid_context(struct context * scontext,struct context * tcontext,u16 tclass,struct context * newcontext)1333 static int compute_sid_handle_invalid_context(
1334 	struct context *scontext,
1335 	struct context *tcontext,
1336 	u16 tclass,
1337 	struct context *newcontext)
1338 {
1339 	char *s = NULL, *t = NULL, *n = NULL;
1340 	u32 slen, tlen, nlen;
1341 
1342 	if (context_struct_to_string(scontext, &s, &slen))
1343 		goto out;
1344 	if (context_struct_to_string(tcontext, &t, &tlen))
1345 		goto out;
1346 	if (context_struct_to_string(newcontext, &n, &nlen))
1347 		goto out;
1348 	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1349 		  "security_compute_sid:  invalid context %s"
1350 		  " for scontext=%s"
1351 		  " tcontext=%s"
1352 		  " tclass=%s",
1353 		  n, s, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
1354 out:
1355 	kfree(s);
1356 	kfree(t);
1357 	kfree(n);
1358 	if (!selinux_enforcing)
1359 		return 0;
1360 	return -EACCES;
1361 }
1362 
filename_compute_type(struct policydb * p,struct context * newcontext,u32 stype,u32 ttype,u16 tclass,const char * objname)1363 static void filename_compute_type(struct policydb *p, struct context *newcontext,
1364 				  u32 stype, u32 ttype, u16 tclass,
1365 				  const char *objname)
1366 {
1367 	struct filename_trans ft;
1368 	struct filename_trans_datum *otype;
1369 
1370 	/*
1371 	 * Most filename trans rules are going to live in specific directories
1372 	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1373 	 * if the ttype does not contain any rules.
1374 	 */
1375 	if (!ebitmap_get_bit(&p->filename_trans_ttypes, ttype))
1376 		return;
1377 
1378 	ft.stype = stype;
1379 	ft.ttype = ttype;
1380 	ft.tclass = tclass;
1381 	ft.name = objname;
1382 
1383 	otype = hashtab_search(p->filename_trans, &ft);
1384 	if (otype)
1385 		newcontext->type = otype->otype;
1386 }
1387 
security_compute_sid(u32 ssid,u32 tsid,u16 orig_tclass,u32 specified,const char * objname,u32 * out_sid,bool kern)1388 static int security_compute_sid(u32 ssid,
1389 				u32 tsid,
1390 				u16 orig_tclass,
1391 				u32 specified,
1392 				const char *objname,
1393 				u32 *out_sid,
1394 				bool kern)
1395 {
1396 	struct context *scontext = NULL, *tcontext = NULL, newcontext;
1397 	struct role_trans *roletr = NULL;
1398 	struct avtab_key avkey;
1399 	struct avtab_datum *avdatum;
1400 	struct avtab_node *node;
1401 	u16 tclass;
1402 	int rc = 0;
1403 	bool sock;
1404 
1405 	if (!ss_initialized) {
1406 		switch (orig_tclass) {
1407 		case SECCLASS_PROCESS: /* kernel value */
1408 			*out_sid = ssid;
1409 			break;
1410 		default:
1411 			*out_sid = tsid;
1412 			break;
1413 		}
1414 		goto out;
1415 	}
1416 
1417 	context_init(&newcontext);
1418 
1419 	read_lock(&policy_rwlock);
1420 
1421 	if (kern) {
1422 		tclass = unmap_class(orig_tclass);
1423 		sock = security_is_socket_class(orig_tclass);
1424 	} else {
1425 		tclass = orig_tclass;
1426 		sock = security_is_socket_class(map_class(tclass));
1427 	}
1428 
1429 	scontext = sidtab_search(&sidtab, ssid);
1430 	if (!scontext) {
1431 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1432 		       __func__, ssid);
1433 		rc = -EINVAL;
1434 		goto out_unlock;
1435 	}
1436 	tcontext = sidtab_search(&sidtab, tsid);
1437 	if (!tcontext) {
1438 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1439 		       __func__, tsid);
1440 		rc = -EINVAL;
1441 		goto out_unlock;
1442 	}
1443 
1444 	/* Set the user identity. */
1445 	switch (specified) {
1446 	case AVTAB_TRANSITION:
1447 	case AVTAB_CHANGE:
1448 		/* Use the process user identity. */
1449 		newcontext.user = scontext->user;
1450 		break;
1451 	case AVTAB_MEMBER:
1452 		/* Use the related object owner. */
1453 		newcontext.user = tcontext->user;
1454 		break;
1455 	}
1456 
1457 	/* Set the role and type to default values. */
1458 	if ((tclass == policydb.process_class) || (sock == true)) {
1459 		/* Use the current role and type of process. */
1460 		newcontext.role = scontext->role;
1461 		newcontext.type = scontext->type;
1462 	} else {
1463 		/* Use the well-defined object role. */
1464 		newcontext.role = OBJECT_R_VAL;
1465 		/* Use the type of the related object. */
1466 		newcontext.type = tcontext->type;
1467 	}
1468 
1469 	/* Look for a type transition/member/change rule. */
1470 	avkey.source_type = scontext->type;
1471 	avkey.target_type = tcontext->type;
1472 	avkey.target_class = tclass;
1473 	avkey.specified = specified;
1474 	avdatum = avtab_search(&policydb.te_avtab, &avkey);
1475 
1476 	/* If no permanent rule, also check for enabled conditional rules */
1477 	if (!avdatum) {
1478 		node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1479 		for (; node; node = avtab_search_node_next(node, specified)) {
1480 			if (node->key.specified & AVTAB_ENABLED) {
1481 				avdatum = &node->datum;
1482 				break;
1483 			}
1484 		}
1485 	}
1486 
1487 	if (avdatum) {
1488 		/* Use the type from the type transition/member/change rule. */
1489 		newcontext.type = avdatum->data;
1490 	}
1491 
1492 	/* if we have a objname this is a file trans check so check those rules */
1493 	if (objname)
1494 		filename_compute_type(&policydb, &newcontext, scontext->type,
1495 				      tcontext->type, tclass, objname);
1496 
1497 	/* Check for class-specific changes. */
1498 	if (specified & AVTAB_TRANSITION) {
1499 		/* Look for a role transition rule. */
1500 		for (roletr = policydb.role_tr; roletr; roletr = roletr->next) {
1501 			if ((roletr->role == scontext->role) &&
1502 			    (roletr->type == tcontext->type) &&
1503 			    (roletr->tclass == tclass)) {
1504 				/* Use the role transition rule. */
1505 				newcontext.role = roletr->new_role;
1506 				break;
1507 			}
1508 		}
1509 	}
1510 
1511 	/* Set the MLS attributes.
1512 	   This is done last because it may allocate memory. */
1513 	rc = mls_compute_sid(scontext, tcontext, tclass, specified,
1514 			     &newcontext, sock);
1515 	if (rc)
1516 		goto out_unlock;
1517 
1518 	/* Check the validity of the context. */
1519 	if (!policydb_context_isvalid(&policydb, &newcontext)) {
1520 		rc = compute_sid_handle_invalid_context(scontext,
1521 							tcontext,
1522 							tclass,
1523 							&newcontext);
1524 		if (rc)
1525 			goto out_unlock;
1526 	}
1527 	/* Obtain the sid for the context. */
1528 	rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1529 out_unlock:
1530 	read_unlock(&policy_rwlock);
1531 	context_destroy(&newcontext);
1532 out:
1533 	return rc;
1534 }
1535 
1536 /**
1537  * security_transition_sid - Compute the SID for a new subject/object.
1538  * @ssid: source security identifier
1539  * @tsid: target security identifier
1540  * @tclass: target security class
1541  * @out_sid: security identifier for new subject/object
1542  *
1543  * Compute a SID to use for labeling a new subject or object in the
1544  * class @tclass based on a SID pair (@ssid, @tsid).
1545  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1546  * if insufficient memory is available, or %0 if the new SID was
1547  * computed successfully.
1548  */
security_transition_sid(u32 ssid,u32 tsid,u16 tclass,const struct qstr * qstr,u32 * out_sid)1549 int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
1550 			    const struct qstr *qstr, u32 *out_sid)
1551 {
1552 	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1553 				    qstr ? qstr->name : NULL, out_sid, true);
1554 }
1555 
security_transition_sid_user(u32 ssid,u32 tsid,u16 tclass,const char * objname,u32 * out_sid)1556 int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
1557 				 const char *objname, u32 *out_sid)
1558 {
1559 	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1560 				    objname, out_sid, false);
1561 }
1562 
1563 /**
1564  * security_member_sid - Compute the SID for member selection.
1565  * @ssid: source security identifier
1566  * @tsid: target security identifier
1567  * @tclass: target security class
1568  * @out_sid: security identifier for selected member
1569  *
1570  * Compute a SID to use when selecting a member of a polyinstantiated
1571  * object of class @tclass based on a SID pair (@ssid, @tsid).
1572  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1573  * if insufficient memory is available, or %0 if the SID was
1574  * computed successfully.
1575  */
security_member_sid(u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1576 int security_member_sid(u32 ssid,
1577 			u32 tsid,
1578 			u16 tclass,
1579 			u32 *out_sid)
1580 {
1581 	return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, NULL,
1582 				    out_sid, false);
1583 }
1584 
1585 /**
1586  * security_change_sid - Compute the SID for object relabeling.
1587  * @ssid: source security identifier
1588  * @tsid: target security identifier
1589  * @tclass: target security class
1590  * @out_sid: security identifier for selected member
1591  *
1592  * Compute a SID to use for relabeling an object of class @tclass
1593  * based on a SID pair (@ssid, @tsid).
1594  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1595  * if insufficient memory is available, or %0 if the SID was
1596  * computed successfully.
1597  */
security_change_sid(u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1598 int security_change_sid(u32 ssid,
1599 			u32 tsid,
1600 			u16 tclass,
1601 			u32 *out_sid)
1602 {
1603 	return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1604 				    out_sid, false);
1605 }
1606 
1607 /* Clone the SID into the new SID table. */
clone_sid(u32 sid,struct context * context,void * arg)1608 static int clone_sid(u32 sid,
1609 		     struct context *context,
1610 		     void *arg)
1611 {
1612 	struct sidtab *s = arg;
1613 
1614 	if (sid > SECINITSID_NUM)
1615 		return sidtab_insert(s, sid, context);
1616 	else
1617 		return 0;
1618 }
1619 
convert_context_handle_invalid_context(struct context * context)1620 static inline int convert_context_handle_invalid_context(struct context *context)
1621 {
1622 	char *s;
1623 	u32 len;
1624 
1625 	if (selinux_enforcing)
1626 		return -EINVAL;
1627 
1628 	if (!context_struct_to_string(context, &s, &len)) {
1629 		printk(KERN_WARNING "SELinux:  Context %s would be invalid if enforcing\n", s);
1630 		kfree(s);
1631 	}
1632 	return 0;
1633 }
1634 
1635 struct convert_context_args {
1636 	struct policydb *oldp;
1637 	struct policydb *newp;
1638 };
1639 
1640 /*
1641  * Convert the values in the security context
1642  * structure `c' from the values specified
1643  * in the policy `p->oldp' to the values specified
1644  * in the policy `p->newp'.  Verify that the
1645  * context is valid under the new policy.
1646  */
convert_context(u32 key,struct context * c,void * p)1647 static int convert_context(u32 key,
1648 			   struct context *c,
1649 			   void *p)
1650 {
1651 	struct convert_context_args *args;
1652 	struct context oldc;
1653 	struct ocontext *oc;
1654 	struct mls_range *range;
1655 	struct role_datum *role;
1656 	struct type_datum *typdatum;
1657 	struct user_datum *usrdatum;
1658 	char *s;
1659 	u32 len;
1660 	int rc = 0;
1661 
1662 	if (key <= SECINITSID_NUM)
1663 		goto out;
1664 
1665 	args = p;
1666 
1667 	if (c->str) {
1668 		struct context ctx;
1669 
1670 		rc = -ENOMEM;
1671 		s = kstrdup(c->str, GFP_KERNEL);
1672 		if (!s)
1673 			goto out;
1674 
1675 		rc = string_to_context_struct(args->newp, NULL, s,
1676 					      c->len, &ctx, SECSID_NULL);
1677 		kfree(s);
1678 		if (!rc) {
1679 			printk(KERN_INFO "SELinux:  Context %s became valid (mapped).\n",
1680 			       c->str);
1681 			/* Replace string with mapped representation. */
1682 			kfree(c->str);
1683 			memcpy(c, &ctx, sizeof(*c));
1684 			goto out;
1685 		} else if (rc == -EINVAL) {
1686 			/* Retain string representation for later mapping. */
1687 			rc = 0;
1688 			goto out;
1689 		} else {
1690 			/* Other error condition, e.g. ENOMEM. */
1691 			printk(KERN_ERR "SELinux:   Unable to map context %s, rc = %d.\n",
1692 			       c->str, -rc);
1693 			goto out;
1694 		}
1695 	}
1696 
1697 	rc = context_cpy(&oldc, c);
1698 	if (rc)
1699 		goto out;
1700 
1701 	/* Convert the user. */
1702 	rc = -EINVAL;
1703 	usrdatum = hashtab_search(args->newp->p_users.table,
1704 				  sym_name(args->oldp, SYM_USERS, c->user - 1));
1705 	if (!usrdatum)
1706 		goto bad;
1707 	c->user = usrdatum->value;
1708 
1709 	/* Convert the role. */
1710 	rc = -EINVAL;
1711 	role = hashtab_search(args->newp->p_roles.table,
1712 			      sym_name(args->oldp, SYM_ROLES, c->role - 1));
1713 	if (!role)
1714 		goto bad;
1715 	c->role = role->value;
1716 
1717 	/* Convert the type. */
1718 	rc = -EINVAL;
1719 	typdatum = hashtab_search(args->newp->p_types.table,
1720 				  sym_name(args->oldp, SYM_TYPES, c->type - 1));
1721 	if (!typdatum)
1722 		goto bad;
1723 	c->type = typdatum->value;
1724 
1725 	/* Convert the MLS fields if dealing with MLS policies */
1726 	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
1727 		rc = mls_convert_context(args->oldp, args->newp, c);
1728 		if (rc)
1729 			goto bad;
1730 	} else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
1731 		/*
1732 		 * Switching between MLS and non-MLS policy:
1733 		 * free any storage used by the MLS fields in the
1734 		 * context for all existing entries in the sidtab.
1735 		 */
1736 		mls_context_destroy(c);
1737 	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
1738 		/*
1739 		 * Switching between non-MLS and MLS policy:
1740 		 * ensure that the MLS fields of the context for all
1741 		 * existing entries in the sidtab are filled in with a
1742 		 * suitable default value, likely taken from one of the
1743 		 * initial SIDs.
1744 		 */
1745 		oc = args->newp->ocontexts[OCON_ISID];
1746 		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
1747 			oc = oc->next;
1748 		rc = -EINVAL;
1749 		if (!oc) {
1750 			printk(KERN_ERR "SELinux:  unable to look up"
1751 				" the initial SIDs list\n");
1752 			goto bad;
1753 		}
1754 		range = &oc->context[0].range;
1755 		rc = mls_range_set(c, range);
1756 		if (rc)
1757 			goto bad;
1758 	}
1759 
1760 	/* Check the validity of the new context. */
1761 	if (!policydb_context_isvalid(args->newp, c)) {
1762 		rc = convert_context_handle_invalid_context(&oldc);
1763 		if (rc)
1764 			goto bad;
1765 	}
1766 
1767 	context_destroy(&oldc);
1768 
1769 	rc = 0;
1770 out:
1771 	return rc;
1772 bad:
1773 	/* Map old representation to string and save it. */
1774 	rc = context_struct_to_string(&oldc, &s, &len);
1775 	if (rc)
1776 		return rc;
1777 	context_destroy(&oldc);
1778 	context_destroy(c);
1779 	c->str = s;
1780 	c->len = len;
1781 	printk(KERN_INFO "SELinux:  Context %s became invalid (unmapped).\n",
1782 	       c->str);
1783 	rc = 0;
1784 	goto out;
1785 }
1786 
security_load_policycaps(void)1787 static void security_load_policycaps(void)
1788 {
1789 	selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
1790 						  POLICYDB_CAPABILITY_NETPEER);
1791 	selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
1792 						  POLICYDB_CAPABILITY_OPENPERM);
1793 }
1794 
1795 static int security_preserve_bools(struct policydb *p);
1796 
1797 /**
1798  * security_load_policy - Load a security policy configuration.
1799  * @data: binary policy data
1800  * @len: length of data in bytes
1801  *
1802  * Load a new set of security policy configuration data,
1803  * validate it and convert the SID table as necessary.
1804  * This function will flush the access vector cache after
1805  * loading the new policy.
1806  */
security_load_policy(void * data,size_t len)1807 int security_load_policy(void *data, size_t len)
1808 {
1809 	struct policydb oldpolicydb, newpolicydb;
1810 	struct sidtab oldsidtab, newsidtab;
1811 	struct selinux_mapping *oldmap, *map = NULL;
1812 	struct convert_context_args args;
1813 	u32 seqno;
1814 	u16 map_size;
1815 	int rc = 0;
1816 	struct policy_file file = { data, len }, *fp = &file;
1817 
1818 	if (!ss_initialized) {
1819 		avtab_cache_init();
1820 		rc = policydb_read(&policydb, fp);
1821 		if (rc) {
1822 			avtab_cache_destroy();
1823 			return rc;
1824 		}
1825 
1826 		policydb.len = len;
1827 		rc = selinux_set_mapping(&policydb, secclass_map,
1828 					 &current_mapping,
1829 					 &current_mapping_size);
1830 		if (rc) {
1831 			policydb_destroy(&policydb);
1832 			avtab_cache_destroy();
1833 			return rc;
1834 		}
1835 
1836 		rc = policydb_load_isids(&policydb, &sidtab);
1837 		if (rc) {
1838 			policydb_destroy(&policydb);
1839 			avtab_cache_destroy();
1840 			return rc;
1841 		}
1842 
1843 		security_load_policycaps();
1844 		ss_initialized = 1;
1845 		seqno = ++latest_granting;
1846 		selinux_complete_init();
1847 		avc_ss_reset(seqno);
1848 		selnl_notify_policyload(seqno);
1849 		selinux_status_update_policyload(seqno);
1850 		selinux_netlbl_cache_invalidate();
1851 		selinux_xfrm_notify_policyload();
1852 		return 0;
1853 	}
1854 
1855 #if 0
1856 	sidtab_hash_eval(&sidtab, "sids");
1857 #endif
1858 
1859 	rc = policydb_read(&newpolicydb, fp);
1860 	if (rc)
1861 		return rc;
1862 
1863 	newpolicydb.len = len;
1864 	/* If switching between different policy types, log MLS status */
1865 	if (policydb.mls_enabled && !newpolicydb.mls_enabled)
1866 		printk(KERN_INFO "SELinux: Disabling MLS support...\n");
1867 	else if (!policydb.mls_enabled && newpolicydb.mls_enabled)
1868 		printk(KERN_INFO "SELinux: Enabling MLS support...\n");
1869 
1870 	rc = policydb_load_isids(&newpolicydb, &newsidtab);
1871 	if (rc) {
1872 		printk(KERN_ERR "SELinux:  unable to load the initial SIDs\n");
1873 		policydb_destroy(&newpolicydb);
1874 		return rc;
1875 	}
1876 
1877 	rc = selinux_set_mapping(&newpolicydb, secclass_map, &map, &map_size);
1878 	if (rc)
1879 		goto err;
1880 
1881 	rc = security_preserve_bools(&newpolicydb);
1882 	if (rc) {
1883 		printk(KERN_ERR "SELinux:  unable to preserve booleans\n");
1884 		goto err;
1885 	}
1886 
1887 	/* Clone the SID table. */
1888 	sidtab_shutdown(&sidtab);
1889 
1890 	rc = sidtab_map(&sidtab, clone_sid, &newsidtab);
1891 	if (rc)
1892 		goto err;
1893 
1894 	/*
1895 	 * Convert the internal representations of contexts
1896 	 * in the new SID table.
1897 	 */
1898 	args.oldp = &policydb;
1899 	args.newp = &newpolicydb;
1900 	rc = sidtab_map(&newsidtab, convert_context, &args);
1901 	if (rc) {
1902 		printk(KERN_ERR "SELinux:  unable to convert the internal"
1903 			" representation of contexts in the new SID"
1904 			" table\n");
1905 		goto err;
1906 	}
1907 
1908 	/* Save the old policydb and SID table to free later. */
1909 	memcpy(&oldpolicydb, &policydb, sizeof policydb);
1910 	sidtab_set(&oldsidtab, &sidtab);
1911 
1912 	/* Install the new policydb and SID table. */
1913 	write_lock_irq(&policy_rwlock);
1914 	memcpy(&policydb, &newpolicydb, sizeof policydb);
1915 	sidtab_set(&sidtab, &newsidtab);
1916 	security_load_policycaps();
1917 	oldmap = current_mapping;
1918 	current_mapping = map;
1919 	current_mapping_size = map_size;
1920 	seqno = ++latest_granting;
1921 	write_unlock_irq(&policy_rwlock);
1922 
1923 	/* Free the old policydb and SID table. */
1924 	policydb_destroy(&oldpolicydb);
1925 	sidtab_destroy(&oldsidtab);
1926 	kfree(oldmap);
1927 
1928 	avc_ss_reset(seqno);
1929 	selnl_notify_policyload(seqno);
1930 	selinux_status_update_policyload(seqno);
1931 	selinux_netlbl_cache_invalidate();
1932 	selinux_xfrm_notify_policyload();
1933 
1934 	return 0;
1935 
1936 err:
1937 	kfree(map);
1938 	sidtab_destroy(&newsidtab);
1939 	policydb_destroy(&newpolicydb);
1940 	return rc;
1941 
1942 }
1943 
security_policydb_len(void)1944 size_t security_policydb_len(void)
1945 {
1946 	size_t len;
1947 
1948 	read_lock(&policy_rwlock);
1949 	len = policydb.len;
1950 	read_unlock(&policy_rwlock);
1951 
1952 	return len;
1953 }
1954 
1955 /**
1956  * security_port_sid - Obtain the SID for a port.
1957  * @protocol: protocol number
1958  * @port: port number
1959  * @out_sid: security identifier
1960  */
security_port_sid(u8 protocol,u16 port,u32 * out_sid)1961 int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
1962 {
1963 	struct ocontext *c;
1964 	int rc = 0;
1965 
1966 	read_lock(&policy_rwlock);
1967 
1968 	c = policydb.ocontexts[OCON_PORT];
1969 	while (c) {
1970 		if (c->u.port.protocol == protocol &&
1971 		    c->u.port.low_port <= port &&
1972 		    c->u.port.high_port >= port)
1973 			break;
1974 		c = c->next;
1975 	}
1976 
1977 	if (c) {
1978 		if (!c->sid[0]) {
1979 			rc = sidtab_context_to_sid(&sidtab,
1980 						   &c->context[0],
1981 						   &c->sid[0]);
1982 			if (rc)
1983 				goto out;
1984 		}
1985 		*out_sid = c->sid[0];
1986 	} else {
1987 		*out_sid = SECINITSID_PORT;
1988 	}
1989 
1990 out:
1991 	read_unlock(&policy_rwlock);
1992 	return rc;
1993 }
1994 
1995 /**
1996  * security_netif_sid - Obtain the SID for a network interface.
1997  * @name: interface name
1998  * @if_sid: interface SID
1999  */
security_netif_sid(char * name,u32 * if_sid)2000 int security_netif_sid(char *name, u32 *if_sid)
2001 {
2002 	int rc = 0;
2003 	struct ocontext *c;
2004 
2005 	read_lock(&policy_rwlock);
2006 
2007 	c = policydb.ocontexts[OCON_NETIF];
2008 	while (c) {
2009 		if (strcmp(name, c->u.name) == 0)
2010 			break;
2011 		c = c->next;
2012 	}
2013 
2014 	if (c) {
2015 		if (!c->sid[0] || !c->sid[1]) {
2016 			rc = sidtab_context_to_sid(&sidtab,
2017 						  &c->context[0],
2018 						  &c->sid[0]);
2019 			if (rc)
2020 				goto out;
2021 			rc = sidtab_context_to_sid(&sidtab,
2022 						   &c->context[1],
2023 						   &c->sid[1]);
2024 			if (rc)
2025 				goto out;
2026 		}
2027 		*if_sid = c->sid[0];
2028 	} else
2029 		*if_sid = SECINITSID_NETIF;
2030 
2031 out:
2032 	read_unlock(&policy_rwlock);
2033 	return rc;
2034 }
2035 
match_ipv6_addrmask(u32 * input,u32 * addr,u32 * mask)2036 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2037 {
2038 	int i, fail = 0;
2039 
2040 	for (i = 0; i < 4; i++)
2041 		if (addr[i] != (input[i] & mask[i])) {
2042 			fail = 1;
2043 			break;
2044 		}
2045 
2046 	return !fail;
2047 }
2048 
2049 /**
2050  * security_node_sid - Obtain the SID for a node (host).
2051  * @domain: communication domain aka address family
2052  * @addrp: address
2053  * @addrlen: address length in bytes
2054  * @out_sid: security identifier
2055  */
security_node_sid(u16 domain,void * addrp,u32 addrlen,u32 * out_sid)2056 int security_node_sid(u16 domain,
2057 		      void *addrp,
2058 		      u32 addrlen,
2059 		      u32 *out_sid)
2060 {
2061 	int rc;
2062 	struct ocontext *c;
2063 
2064 	read_lock(&policy_rwlock);
2065 
2066 	switch (domain) {
2067 	case AF_INET: {
2068 		u32 addr;
2069 
2070 		rc = -EINVAL;
2071 		if (addrlen != sizeof(u32))
2072 			goto out;
2073 
2074 		addr = *((u32 *)addrp);
2075 
2076 		c = policydb.ocontexts[OCON_NODE];
2077 		while (c) {
2078 			if (c->u.node.addr == (addr & c->u.node.mask))
2079 				break;
2080 			c = c->next;
2081 		}
2082 		break;
2083 	}
2084 
2085 	case AF_INET6:
2086 		rc = -EINVAL;
2087 		if (addrlen != sizeof(u64) * 2)
2088 			goto out;
2089 		c = policydb.ocontexts[OCON_NODE6];
2090 		while (c) {
2091 			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2092 						c->u.node6.mask))
2093 				break;
2094 			c = c->next;
2095 		}
2096 		break;
2097 
2098 	default:
2099 		rc = 0;
2100 		*out_sid = SECINITSID_NODE;
2101 		goto out;
2102 	}
2103 
2104 	if (c) {
2105 		if (!c->sid[0]) {
2106 			rc = sidtab_context_to_sid(&sidtab,
2107 						   &c->context[0],
2108 						   &c->sid[0]);
2109 			if (rc)
2110 				goto out;
2111 		}
2112 		*out_sid = c->sid[0];
2113 	} else {
2114 		*out_sid = SECINITSID_NODE;
2115 	}
2116 
2117 	rc = 0;
2118 out:
2119 	read_unlock(&policy_rwlock);
2120 	return rc;
2121 }
2122 
2123 #define SIDS_NEL 25
2124 
2125 /**
2126  * security_get_user_sids - Obtain reachable SIDs for a user.
2127  * @fromsid: starting SID
2128  * @username: username
2129  * @sids: array of reachable SIDs for user
2130  * @nel: number of elements in @sids
2131  *
2132  * Generate the set of SIDs for legal security contexts
2133  * for a given user that can be reached by @fromsid.
2134  * Set *@sids to point to a dynamically allocated
2135  * array containing the set of SIDs.  Set *@nel to the
2136  * number of elements in the array.
2137  */
2138 
security_get_user_sids(u32 fromsid,char * username,u32 ** sids,u32 * nel)2139 int security_get_user_sids(u32 fromsid,
2140 			   char *username,
2141 			   u32 **sids,
2142 			   u32 *nel)
2143 {
2144 	struct context *fromcon, usercon;
2145 	u32 *mysids = NULL, *mysids2, sid;
2146 	u32 mynel = 0, maxnel = SIDS_NEL;
2147 	struct user_datum *user;
2148 	struct role_datum *role;
2149 	struct ebitmap_node *rnode, *tnode;
2150 	int rc = 0, i, j;
2151 
2152 	*sids = NULL;
2153 	*nel = 0;
2154 
2155 	if (!ss_initialized)
2156 		goto out;
2157 
2158 	read_lock(&policy_rwlock);
2159 
2160 	context_init(&usercon);
2161 
2162 	rc = -EINVAL;
2163 	fromcon = sidtab_search(&sidtab, fromsid);
2164 	if (!fromcon)
2165 		goto out_unlock;
2166 
2167 	rc = -EINVAL;
2168 	user = hashtab_search(policydb.p_users.table, username);
2169 	if (!user)
2170 		goto out_unlock;
2171 
2172 	usercon.user = user->value;
2173 
2174 	rc = -ENOMEM;
2175 	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2176 	if (!mysids)
2177 		goto out_unlock;
2178 
2179 	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2180 		role = policydb.role_val_to_struct[i];
2181 		usercon.role = i + 1;
2182 		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2183 			usercon.type = j + 1;
2184 
2185 			if (mls_setup_user_range(fromcon, user, &usercon))
2186 				continue;
2187 
2188 			rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
2189 			if (rc)
2190 				goto out_unlock;
2191 			if (mynel < maxnel) {
2192 				mysids[mynel++] = sid;
2193 			} else {
2194 				rc = -ENOMEM;
2195 				maxnel += SIDS_NEL;
2196 				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2197 				if (!mysids2)
2198 					goto out_unlock;
2199 				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2200 				kfree(mysids);
2201 				mysids = mysids2;
2202 				mysids[mynel++] = sid;
2203 			}
2204 		}
2205 	}
2206 	rc = 0;
2207 out_unlock:
2208 	read_unlock(&policy_rwlock);
2209 	if (rc || !mynel) {
2210 		kfree(mysids);
2211 		goto out;
2212 	}
2213 
2214 	rc = -ENOMEM;
2215 	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2216 	if (!mysids2) {
2217 		kfree(mysids);
2218 		goto out;
2219 	}
2220 	for (i = 0, j = 0; i < mynel; i++) {
2221 		struct av_decision dummy_avd;
2222 		rc = avc_has_perm_noaudit(fromsid, mysids[i],
2223 					  SECCLASS_PROCESS, /* kernel value */
2224 					  PROCESS__TRANSITION, AVC_STRICT,
2225 					  &dummy_avd);
2226 		if (!rc)
2227 			mysids2[j++] = mysids[i];
2228 		cond_resched();
2229 	}
2230 	rc = 0;
2231 	kfree(mysids);
2232 	*sids = mysids2;
2233 	*nel = j;
2234 out:
2235 	return rc;
2236 }
2237 
2238 /**
2239  * security_genfs_sid - Obtain a SID for a file in a filesystem
2240  * @fstype: filesystem type
2241  * @path: path from root of mount
2242  * @sclass: file security class
2243  * @sid: SID for path
2244  *
2245  * Obtain a SID to use for a file in a filesystem that
2246  * cannot support xattr or use a fixed labeling behavior like
2247  * transition SIDs or task SIDs.
2248  */
security_genfs_sid(const char * fstype,char * path,u16 orig_sclass,u32 * sid)2249 int security_genfs_sid(const char *fstype,
2250 		       char *path,
2251 		       u16 orig_sclass,
2252 		       u32 *sid)
2253 {
2254 	int len;
2255 	u16 sclass;
2256 	struct genfs *genfs;
2257 	struct ocontext *c;
2258 	int rc, cmp = 0;
2259 
2260 	while (path[0] == '/' && path[1] == '/')
2261 		path++;
2262 
2263 	read_lock(&policy_rwlock);
2264 
2265 	sclass = unmap_class(orig_sclass);
2266 	*sid = SECINITSID_UNLABELED;
2267 
2268 	for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2269 		cmp = strcmp(fstype, genfs->fstype);
2270 		if (cmp <= 0)
2271 			break;
2272 	}
2273 
2274 	rc = -ENOENT;
2275 	if (!genfs || cmp)
2276 		goto out;
2277 
2278 	for (c = genfs->head; c; c = c->next) {
2279 		len = strlen(c->u.name);
2280 		if ((!c->v.sclass || sclass == c->v.sclass) &&
2281 		    (strncmp(c->u.name, path, len) == 0))
2282 			break;
2283 	}
2284 
2285 	rc = -ENOENT;
2286 	if (!c)
2287 		goto out;
2288 
2289 	if (!c->sid[0]) {
2290 		rc = sidtab_context_to_sid(&sidtab, &c->context[0], &c->sid[0]);
2291 		if (rc)
2292 			goto out;
2293 	}
2294 
2295 	*sid = c->sid[0];
2296 	rc = 0;
2297 out:
2298 	read_unlock(&policy_rwlock);
2299 	return rc;
2300 }
2301 
2302 /**
2303  * security_fs_use - Determine how to handle labeling for a filesystem.
2304  * @fstype: filesystem type
2305  * @behavior: labeling behavior
2306  * @sid: SID for filesystem (superblock)
2307  */
security_fs_use(const char * fstype,unsigned int * behavior,u32 * sid)2308 int security_fs_use(
2309 	const char *fstype,
2310 	unsigned int *behavior,
2311 	u32 *sid)
2312 {
2313 	int rc = 0;
2314 	struct ocontext *c;
2315 
2316 	read_lock(&policy_rwlock);
2317 
2318 	c = policydb.ocontexts[OCON_FSUSE];
2319 	while (c) {
2320 		if (strcmp(fstype, c->u.name) == 0)
2321 			break;
2322 		c = c->next;
2323 	}
2324 
2325 	if (c) {
2326 		*behavior = c->v.behavior;
2327 		if (!c->sid[0]) {
2328 			rc = sidtab_context_to_sid(&sidtab, &c->context[0],
2329 						   &c->sid[0]);
2330 			if (rc)
2331 				goto out;
2332 		}
2333 		*sid = c->sid[0];
2334 	} else {
2335 		rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
2336 		if (rc) {
2337 			*behavior = SECURITY_FS_USE_NONE;
2338 			rc = 0;
2339 		} else {
2340 			*behavior = SECURITY_FS_USE_GENFS;
2341 		}
2342 	}
2343 
2344 out:
2345 	read_unlock(&policy_rwlock);
2346 	return rc;
2347 }
2348 
security_get_bools(int * len,char *** names,int ** values)2349 int security_get_bools(int *len, char ***names, int **values)
2350 {
2351 	int i, rc;
2352 
2353 	read_lock(&policy_rwlock);
2354 	*names = NULL;
2355 	*values = NULL;
2356 
2357 	rc = 0;
2358 	*len = policydb.p_bools.nprim;
2359 	if (!*len)
2360 		goto out;
2361 
2362 	rc = -ENOMEM;
2363 	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2364 	if (!*names)
2365 		goto err;
2366 
2367 	rc = -ENOMEM;
2368 	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2369 	if (!*values)
2370 		goto err;
2371 
2372 	for (i = 0; i < *len; i++) {
2373 		size_t name_len;
2374 
2375 		(*values)[i] = policydb.bool_val_to_struct[i]->state;
2376 		name_len = strlen(sym_name(&policydb, SYM_BOOLS, i)) + 1;
2377 
2378 		rc = -ENOMEM;
2379 		(*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
2380 		if (!(*names)[i])
2381 			goto err;
2382 
2383 		strncpy((*names)[i], sym_name(&policydb, SYM_BOOLS, i), name_len);
2384 		(*names)[i][name_len - 1] = 0;
2385 	}
2386 	rc = 0;
2387 out:
2388 	read_unlock(&policy_rwlock);
2389 	return rc;
2390 err:
2391 	if (*names) {
2392 		for (i = 0; i < *len; i++)
2393 			kfree((*names)[i]);
2394 	}
2395 	kfree(*values);
2396 	goto out;
2397 }
2398 
2399 
security_set_bools(int len,int * values)2400 int security_set_bools(int len, int *values)
2401 {
2402 	int i, rc;
2403 	int lenp, seqno = 0;
2404 	struct cond_node *cur;
2405 
2406 	write_lock_irq(&policy_rwlock);
2407 
2408 	rc = -EFAULT;
2409 	lenp = policydb.p_bools.nprim;
2410 	if (len != lenp)
2411 		goto out;
2412 
2413 	for (i = 0; i < len; i++) {
2414 		if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2415 			audit_log(current->audit_context, GFP_ATOMIC,
2416 				AUDIT_MAC_CONFIG_CHANGE,
2417 				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2418 				sym_name(&policydb, SYM_BOOLS, i),
2419 				!!values[i],
2420 				policydb.bool_val_to_struct[i]->state,
2421 				audit_get_loginuid(current),
2422 				audit_get_sessionid(current));
2423 		}
2424 		if (values[i])
2425 			policydb.bool_val_to_struct[i]->state = 1;
2426 		else
2427 			policydb.bool_val_to_struct[i]->state = 0;
2428 	}
2429 
2430 	for (cur = policydb.cond_list; cur; cur = cur->next) {
2431 		rc = evaluate_cond_node(&policydb, cur);
2432 		if (rc)
2433 			goto out;
2434 	}
2435 
2436 	seqno = ++latest_granting;
2437 	rc = 0;
2438 out:
2439 	write_unlock_irq(&policy_rwlock);
2440 	if (!rc) {
2441 		avc_ss_reset(seqno);
2442 		selnl_notify_policyload(seqno);
2443 		selinux_status_update_policyload(seqno);
2444 		selinux_xfrm_notify_policyload();
2445 	}
2446 	return rc;
2447 }
2448 
security_get_bool_value(int bool)2449 int security_get_bool_value(int bool)
2450 {
2451 	int rc;
2452 	int len;
2453 
2454 	read_lock(&policy_rwlock);
2455 
2456 	rc = -EFAULT;
2457 	len = policydb.p_bools.nprim;
2458 	if (bool >= len)
2459 		goto out;
2460 
2461 	rc = policydb.bool_val_to_struct[bool]->state;
2462 out:
2463 	read_unlock(&policy_rwlock);
2464 	return rc;
2465 }
2466 
security_preserve_bools(struct policydb * p)2467 static int security_preserve_bools(struct policydb *p)
2468 {
2469 	int rc, nbools = 0, *bvalues = NULL, i;
2470 	char **bnames = NULL;
2471 	struct cond_bool_datum *booldatum;
2472 	struct cond_node *cur;
2473 
2474 	rc = security_get_bools(&nbools, &bnames, &bvalues);
2475 	if (rc)
2476 		goto out;
2477 	for (i = 0; i < nbools; i++) {
2478 		booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2479 		if (booldatum)
2480 			booldatum->state = bvalues[i];
2481 	}
2482 	for (cur = p->cond_list; cur; cur = cur->next) {
2483 		rc = evaluate_cond_node(p, cur);
2484 		if (rc)
2485 			goto out;
2486 	}
2487 
2488 out:
2489 	if (bnames) {
2490 		for (i = 0; i < nbools; i++)
2491 			kfree(bnames[i]);
2492 	}
2493 	kfree(bnames);
2494 	kfree(bvalues);
2495 	return rc;
2496 }
2497 
2498 /*
2499  * security_sid_mls_copy() - computes a new sid based on the given
2500  * sid and the mls portion of mls_sid.
2501  */
security_sid_mls_copy(u32 sid,u32 mls_sid,u32 * new_sid)2502 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
2503 {
2504 	struct context *context1;
2505 	struct context *context2;
2506 	struct context newcon;
2507 	char *s;
2508 	u32 len;
2509 	int rc;
2510 
2511 	rc = 0;
2512 	if (!ss_initialized || !policydb.mls_enabled) {
2513 		*new_sid = sid;
2514 		goto out;
2515 	}
2516 
2517 	context_init(&newcon);
2518 
2519 	read_lock(&policy_rwlock);
2520 
2521 	rc = -EINVAL;
2522 	context1 = sidtab_search(&sidtab, sid);
2523 	if (!context1) {
2524 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2525 			__func__, sid);
2526 		goto out_unlock;
2527 	}
2528 
2529 	rc = -EINVAL;
2530 	context2 = sidtab_search(&sidtab, mls_sid);
2531 	if (!context2) {
2532 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2533 			__func__, mls_sid);
2534 		goto out_unlock;
2535 	}
2536 
2537 	newcon.user = context1->user;
2538 	newcon.role = context1->role;
2539 	newcon.type = context1->type;
2540 	rc = mls_context_cpy(&newcon, context2);
2541 	if (rc)
2542 		goto out_unlock;
2543 
2544 	/* Check the validity of the new context. */
2545 	if (!policydb_context_isvalid(&policydb, &newcon)) {
2546 		rc = convert_context_handle_invalid_context(&newcon);
2547 		if (rc) {
2548 			if (!context_struct_to_string(&newcon, &s, &len)) {
2549 				audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2550 					  "security_sid_mls_copy: invalid context %s", s);
2551 				kfree(s);
2552 			}
2553 			goto out_unlock;
2554 		}
2555 	}
2556 
2557 	rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2558 out_unlock:
2559 	read_unlock(&policy_rwlock);
2560 	context_destroy(&newcon);
2561 out:
2562 	return rc;
2563 }
2564 
2565 /**
2566  * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2567  * @nlbl_sid: NetLabel SID
2568  * @nlbl_type: NetLabel labeling protocol type
2569  * @xfrm_sid: XFRM SID
2570  *
2571  * Description:
2572  * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2573  * resolved into a single SID it is returned via @peer_sid and the function
2574  * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
2575  * returns a negative value.  A table summarizing the behavior is below:
2576  *
2577  *                                 | function return |      @sid
2578  *   ------------------------------+-----------------+-----------------
2579  *   no peer labels                |        0        |    SECSID_NULL
2580  *   single peer label             |        0        |    <peer_label>
2581  *   multiple, consistent labels   |        0        |    <peer_label>
2582  *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
2583  *
2584  */
security_net_peersid_resolve(u32 nlbl_sid,u32 nlbl_type,u32 xfrm_sid,u32 * peer_sid)2585 int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
2586 				 u32 xfrm_sid,
2587 				 u32 *peer_sid)
2588 {
2589 	int rc;
2590 	struct context *nlbl_ctx;
2591 	struct context *xfrm_ctx;
2592 
2593 	*peer_sid = SECSID_NULL;
2594 
2595 	/* handle the common (which also happens to be the set of easy) cases
2596 	 * right away, these two if statements catch everything involving a
2597 	 * single or absent peer SID/label */
2598 	if (xfrm_sid == SECSID_NULL) {
2599 		*peer_sid = nlbl_sid;
2600 		return 0;
2601 	}
2602 	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2603 	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2604 	 * is present */
2605 	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2606 		*peer_sid = xfrm_sid;
2607 		return 0;
2608 	}
2609 
2610 	/* we don't need to check ss_initialized here since the only way both
2611 	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2612 	 * security server was initialized and ss_initialized was true */
2613 	if (!policydb.mls_enabled)
2614 		return 0;
2615 
2616 	read_lock(&policy_rwlock);
2617 
2618 	rc = -EINVAL;
2619 	nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2620 	if (!nlbl_ctx) {
2621 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2622 		       __func__, nlbl_sid);
2623 		goto out;
2624 	}
2625 	rc = -EINVAL;
2626 	xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2627 	if (!xfrm_ctx) {
2628 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2629 		       __func__, xfrm_sid);
2630 		goto out;
2631 	}
2632 	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2633 	if (rc)
2634 		goto out;
2635 
2636 	/* at present NetLabel SIDs/labels really only carry MLS
2637 	 * information so if the MLS portion of the NetLabel SID
2638 	 * matches the MLS portion of the labeled XFRM SID/label
2639 	 * then pass along the XFRM SID as it is the most
2640 	 * expressive */
2641 	*peer_sid = xfrm_sid;
2642 out:
2643 	read_unlock(&policy_rwlock);
2644 	return rc;
2645 }
2646 
get_classes_callback(void * k,void * d,void * args)2647 static int get_classes_callback(void *k, void *d, void *args)
2648 {
2649 	struct class_datum *datum = d;
2650 	char *name = k, **classes = args;
2651 	int value = datum->value - 1;
2652 
2653 	classes[value] = kstrdup(name, GFP_ATOMIC);
2654 	if (!classes[value])
2655 		return -ENOMEM;
2656 
2657 	return 0;
2658 }
2659 
security_get_classes(char *** classes,int * nclasses)2660 int security_get_classes(char ***classes, int *nclasses)
2661 {
2662 	int rc;
2663 
2664 	read_lock(&policy_rwlock);
2665 
2666 	rc = -ENOMEM;
2667 	*nclasses = policydb.p_classes.nprim;
2668 	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
2669 	if (!*classes)
2670 		goto out;
2671 
2672 	rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2673 			*classes);
2674 	if (rc) {
2675 		int i;
2676 		for (i = 0; i < *nclasses; i++)
2677 			kfree((*classes)[i]);
2678 		kfree(*classes);
2679 	}
2680 
2681 out:
2682 	read_unlock(&policy_rwlock);
2683 	return rc;
2684 }
2685 
get_permissions_callback(void * k,void * d,void * args)2686 static int get_permissions_callback(void *k, void *d, void *args)
2687 {
2688 	struct perm_datum *datum = d;
2689 	char *name = k, **perms = args;
2690 	int value = datum->value - 1;
2691 
2692 	perms[value] = kstrdup(name, GFP_ATOMIC);
2693 	if (!perms[value])
2694 		return -ENOMEM;
2695 
2696 	return 0;
2697 }
2698 
security_get_permissions(char * class,char *** perms,int * nperms)2699 int security_get_permissions(char *class, char ***perms, int *nperms)
2700 {
2701 	int rc, i;
2702 	struct class_datum *match;
2703 
2704 	read_lock(&policy_rwlock);
2705 
2706 	rc = -EINVAL;
2707 	match = hashtab_search(policydb.p_classes.table, class);
2708 	if (!match) {
2709 		printk(KERN_ERR "SELinux: %s:  unrecognized class %s\n",
2710 			__func__, class);
2711 		goto out;
2712 	}
2713 
2714 	rc = -ENOMEM;
2715 	*nperms = match->permissions.nprim;
2716 	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
2717 	if (!*perms)
2718 		goto out;
2719 
2720 	if (match->comdatum) {
2721 		rc = hashtab_map(match->comdatum->permissions.table,
2722 				get_permissions_callback, *perms);
2723 		if (rc)
2724 			goto err;
2725 	}
2726 
2727 	rc = hashtab_map(match->permissions.table, get_permissions_callback,
2728 			*perms);
2729 	if (rc)
2730 		goto err;
2731 
2732 out:
2733 	read_unlock(&policy_rwlock);
2734 	return rc;
2735 
2736 err:
2737 	read_unlock(&policy_rwlock);
2738 	for (i = 0; i < *nperms; i++)
2739 		kfree((*perms)[i]);
2740 	kfree(*perms);
2741 	return rc;
2742 }
2743 
security_get_reject_unknown(void)2744 int security_get_reject_unknown(void)
2745 {
2746 	return policydb.reject_unknown;
2747 }
2748 
security_get_allow_unknown(void)2749 int security_get_allow_unknown(void)
2750 {
2751 	return policydb.allow_unknown;
2752 }
2753 
2754 /**
2755  * security_policycap_supported - Check for a specific policy capability
2756  * @req_cap: capability
2757  *
2758  * Description:
2759  * This function queries the currently loaded policy to see if it supports the
2760  * capability specified by @req_cap.  Returns true (1) if the capability is
2761  * supported, false (0) if it isn't supported.
2762  *
2763  */
security_policycap_supported(unsigned int req_cap)2764 int security_policycap_supported(unsigned int req_cap)
2765 {
2766 	int rc;
2767 
2768 	read_lock(&policy_rwlock);
2769 	rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
2770 	read_unlock(&policy_rwlock);
2771 
2772 	return rc;
2773 }
2774 
2775 struct selinux_audit_rule {
2776 	u32 au_seqno;
2777 	struct context au_ctxt;
2778 };
2779 
selinux_audit_rule_free(void * vrule)2780 void selinux_audit_rule_free(void *vrule)
2781 {
2782 	struct selinux_audit_rule *rule = vrule;
2783 
2784 	if (rule) {
2785 		context_destroy(&rule->au_ctxt);
2786 		kfree(rule);
2787 	}
2788 }
2789 
selinux_audit_rule_init(u32 field,u32 op,char * rulestr,void ** vrule)2790 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
2791 {
2792 	struct selinux_audit_rule *tmprule;
2793 	struct role_datum *roledatum;
2794 	struct type_datum *typedatum;
2795 	struct user_datum *userdatum;
2796 	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
2797 	int rc = 0;
2798 
2799 	*rule = NULL;
2800 
2801 	if (!ss_initialized)
2802 		return -EOPNOTSUPP;
2803 
2804 	switch (field) {
2805 	case AUDIT_SUBJ_USER:
2806 	case AUDIT_SUBJ_ROLE:
2807 	case AUDIT_SUBJ_TYPE:
2808 	case AUDIT_OBJ_USER:
2809 	case AUDIT_OBJ_ROLE:
2810 	case AUDIT_OBJ_TYPE:
2811 		/* only 'equals' and 'not equals' fit user, role, and type */
2812 		if (op != Audit_equal && op != Audit_not_equal)
2813 			return -EINVAL;
2814 		break;
2815 	case AUDIT_SUBJ_SEN:
2816 	case AUDIT_SUBJ_CLR:
2817 	case AUDIT_OBJ_LEV_LOW:
2818 	case AUDIT_OBJ_LEV_HIGH:
2819 		/* we do not allow a range, indicated by the presence of '-' */
2820 		if (strchr(rulestr, '-'))
2821 			return -EINVAL;
2822 		break;
2823 	default:
2824 		/* only the above fields are valid */
2825 		return -EINVAL;
2826 	}
2827 
2828 	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
2829 	if (!tmprule)
2830 		return -ENOMEM;
2831 
2832 	context_init(&tmprule->au_ctxt);
2833 
2834 	read_lock(&policy_rwlock);
2835 
2836 	tmprule->au_seqno = latest_granting;
2837 
2838 	switch (field) {
2839 	case AUDIT_SUBJ_USER:
2840 	case AUDIT_OBJ_USER:
2841 		rc = -EINVAL;
2842 		userdatum = hashtab_search(policydb.p_users.table, rulestr);
2843 		if (!userdatum)
2844 			goto out;
2845 		tmprule->au_ctxt.user = userdatum->value;
2846 		break;
2847 	case AUDIT_SUBJ_ROLE:
2848 	case AUDIT_OBJ_ROLE:
2849 		rc = -EINVAL;
2850 		roledatum = hashtab_search(policydb.p_roles.table, rulestr);
2851 		if (!roledatum)
2852 			goto out;
2853 		tmprule->au_ctxt.role = roledatum->value;
2854 		break;
2855 	case AUDIT_SUBJ_TYPE:
2856 	case AUDIT_OBJ_TYPE:
2857 		rc = -EINVAL;
2858 		typedatum = hashtab_search(policydb.p_types.table, rulestr);
2859 		if (!typedatum)
2860 			goto out;
2861 		tmprule->au_ctxt.type = typedatum->value;
2862 		break;
2863 	case AUDIT_SUBJ_SEN:
2864 	case AUDIT_SUBJ_CLR:
2865 	case AUDIT_OBJ_LEV_LOW:
2866 	case AUDIT_OBJ_LEV_HIGH:
2867 		rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
2868 		if (rc)
2869 			goto out;
2870 		break;
2871 	}
2872 	rc = 0;
2873 out:
2874 	read_unlock(&policy_rwlock);
2875 
2876 	if (rc) {
2877 		selinux_audit_rule_free(tmprule);
2878 		tmprule = NULL;
2879 	}
2880 
2881 	*rule = tmprule;
2882 
2883 	return rc;
2884 }
2885 
2886 /* Check to see if the rule contains any selinux fields */
selinux_audit_rule_known(struct audit_krule * rule)2887 int selinux_audit_rule_known(struct audit_krule *rule)
2888 {
2889 	int i;
2890 
2891 	for (i = 0; i < rule->field_count; i++) {
2892 		struct audit_field *f = &rule->fields[i];
2893 		switch (f->type) {
2894 		case AUDIT_SUBJ_USER:
2895 		case AUDIT_SUBJ_ROLE:
2896 		case AUDIT_SUBJ_TYPE:
2897 		case AUDIT_SUBJ_SEN:
2898 		case AUDIT_SUBJ_CLR:
2899 		case AUDIT_OBJ_USER:
2900 		case AUDIT_OBJ_ROLE:
2901 		case AUDIT_OBJ_TYPE:
2902 		case AUDIT_OBJ_LEV_LOW:
2903 		case AUDIT_OBJ_LEV_HIGH:
2904 			return 1;
2905 		}
2906 	}
2907 
2908 	return 0;
2909 }
2910 
selinux_audit_rule_match(u32 sid,u32 field,u32 op,void * vrule,struct audit_context * actx)2911 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
2912 			     struct audit_context *actx)
2913 {
2914 	struct context *ctxt;
2915 	struct mls_level *level;
2916 	struct selinux_audit_rule *rule = vrule;
2917 	int match = 0;
2918 
2919 	if (!rule) {
2920 		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2921 			  "selinux_audit_rule_match: missing rule\n");
2922 		return -ENOENT;
2923 	}
2924 
2925 	read_lock(&policy_rwlock);
2926 
2927 	if (rule->au_seqno < latest_granting) {
2928 		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2929 			  "selinux_audit_rule_match: stale rule\n");
2930 		match = -ESTALE;
2931 		goto out;
2932 	}
2933 
2934 	ctxt = sidtab_search(&sidtab, sid);
2935 	if (!ctxt) {
2936 		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2937 			  "selinux_audit_rule_match: unrecognized SID %d\n",
2938 			  sid);
2939 		match = -ENOENT;
2940 		goto out;
2941 	}
2942 
2943 	/* a field/op pair that is not caught here will simply fall through
2944 	   without a match */
2945 	switch (field) {
2946 	case AUDIT_SUBJ_USER:
2947 	case AUDIT_OBJ_USER:
2948 		switch (op) {
2949 		case Audit_equal:
2950 			match = (ctxt->user == rule->au_ctxt.user);
2951 			break;
2952 		case Audit_not_equal:
2953 			match = (ctxt->user != rule->au_ctxt.user);
2954 			break;
2955 		}
2956 		break;
2957 	case AUDIT_SUBJ_ROLE:
2958 	case AUDIT_OBJ_ROLE:
2959 		switch (op) {
2960 		case Audit_equal:
2961 			match = (ctxt->role == rule->au_ctxt.role);
2962 			break;
2963 		case Audit_not_equal:
2964 			match = (ctxt->role != rule->au_ctxt.role);
2965 			break;
2966 		}
2967 		break;
2968 	case AUDIT_SUBJ_TYPE:
2969 	case AUDIT_OBJ_TYPE:
2970 		switch (op) {
2971 		case Audit_equal:
2972 			match = (ctxt->type == rule->au_ctxt.type);
2973 			break;
2974 		case Audit_not_equal:
2975 			match = (ctxt->type != rule->au_ctxt.type);
2976 			break;
2977 		}
2978 		break;
2979 	case AUDIT_SUBJ_SEN:
2980 	case AUDIT_SUBJ_CLR:
2981 	case AUDIT_OBJ_LEV_LOW:
2982 	case AUDIT_OBJ_LEV_HIGH:
2983 		level = ((field == AUDIT_SUBJ_SEN ||
2984 			  field == AUDIT_OBJ_LEV_LOW) ?
2985 			 &ctxt->range.level[0] : &ctxt->range.level[1]);
2986 		switch (op) {
2987 		case Audit_equal:
2988 			match = mls_level_eq(&rule->au_ctxt.range.level[0],
2989 					     level);
2990 			break;
2991 		case Audit_not_equal:
2992 			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
2993 					      level);
2994 			break;
2995 		case Audit_lt:
2996 			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
2997 					       level) &&
2998 				 !mls_level_eq(&rule->au_ctxt.range.level[0],
2999 					       level));
3000 			break;
3001 		case Audit_le:
3002 			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3003 					      level);
3004 			break;
3005 		case Audit_gt:
3006 			match = (mls_level_dom(level,
3007 					      &rule->au_ctxt.range.level[0]) &&
3008 				 !mls_level_eq(level,
3009 					       &rule->au_ctxt.range.level[0]));
3010 			break;
3011 		case Audit_ge:
3012 			match = mls_level_dom(level,
3013 					      &rule->au_ctxt.range.level[0]);
3014 			break;
3015 		}
3016 	}
3017 
3018 out:
3019 	read_unlock(&policy_rwlock);
3020 	return match;
3021 }
3022 
3023 static int (*aurule_callback)(void) = audit_update_lsm_rules;
3024 
aurule_avc_callback(u32 event,u32 ssid,u32 tsid,u16 class,u32 perms,u32 * retained)3025 static int aurule_avc_callback(u32 event, u32 ssid, u32 tsid,
3026 			       u16 class, u32 perms, u32 *retained)
3027 {
3028 	int err = 0;
3029 
3030 	if (event == AVC_CALLBACK_RESET && aurule_callback)
3031 		err = aurule_callback();
3032 	return err;
3033 }
3034 
aurule_init(void)3035 static int __init aurule_init(void)
3036 {
3037 	int err;
3038 
3039 	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET,
3040 			       SECSID_NULL, SECSID_NULL, SECCLASS_NULL, 0);
3041 	if (err)
3042 		panic("avc_add_callback() failed, error %d\n", err);
3043 
3044 	return err;
3045 }
3046 __initcall(aurule_init);
3047 
3048 #ifdef CONFIG_NETLABEL
3049 /**
3050  * security_netlbl_cache_add - Add an entry to the NetLabel cache
3051  * @secattr: the NetLabel packet security attributes
3052  * @sid: the SELinux SID
3053  *
3054  * Description:
3055  * Attempt to cache the context in @ctx, which was derived from the packet in
3056  * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3057  * already been initialized.
3058  *
3059  */
security_netlbl_cache_add(struct netlbl_lsm_secattr * secattr,u32 sid)3060 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3061 				      u32 sid)
3062 {
3063 	u32 *sid_cache;
3064 
3065 	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3066 	if (sid_cache == NULL)
3067 		return;
3068 	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3069 	if (secattr->cache == NULL) {
3070 		kfree(sid_cache);
3071 		return;
3072 	}
3073 
3074 	*sid_cache = sid;
3075 	secattr->cache->free = kfree;
3076 	secattr->cache->data = sid_cache;
3077 	secattr->flags |= NETLBL_SECATTR_CACHE;
3078 }
3079 
3080 /**
3081  * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3082  * @secattr: the NetLabel packet security attributes
3083  * @sid: the SELinux SID
3084  *
3085  * Description:
3086  * Convert the given NetLabel security attributes in @secattr into a
3087  * SELinux SID.  If the @secattr field does not contain a full SELinux
3088  * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3089  * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3090  * allow the @secattr to be used by NetLabel to cache the secattr to SID
3091  * conversion for future lookups.  Returns zero on success, negative values on
3092  * failure.
3093  *
3094  */
security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr * secattr,u32 * sid)3095 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
3096 				   u32 *sid)
3097 {
3098 	int rc;
3099 	struct context *ctx;
3100 	struct context ctx_new;
3101 
3102 	if (!ss_initialized) {
3103 		*sid = SECSID_NULL;
3104 		return 0;
3105 	}
3106 
3107 	read_lock(&policy_rwlock);
3108 
3109 	if (secattr->flags & NETLBL_SECATTR_CACHE)
3110 		*sid = *(u32 *)secattr->cache->data;
3111 	else if (secattr->flags & NETLBL_SECATTR_SECID)
3112 		*sid = secattr->attr.secid;
3113 	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3114 		rc = -EIDRM;
3115 		ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
3116 		if (ctx == NULL)
3117 			goto out;
3118 
3119 		context_init(&ctx_new);
3120 		ctx_new.user = ctx->user;
3121 		ctx_new.role = ctx->role;
3122 		ctx_new.type = ctx->type;
3123 		mls_import_netlbl_lvl(&ctx_new, secattr);
3124 		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3125 			rc = ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
3126 						   secattr->attr.mls.cat);
3127 			if (rc)
3128 				goto out;
3129 			memcpy(&ctx_new.range.level[1].cat,
3130 			       &ctx_new.range.level[0].cat,
3131 			       sizeof(ctx_new.range.level[0].cat));
3132 		}
3133 		rc = -EIDRM;
3134 		if (!mls_context_isvalid(&policydb, &ctx_new))
3135 			goto out_free;
3136 
3137 		rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
3138 		if (rc)
3139 			goto out_free;
3140 
3141 		security_netlbl_cache_add(secattr, *sid);
3142 
3143 		ebitmap_destroy(&ctx_new.range.level[0].cat);
3144 	} else
3145 		*sid = SECSID_NULL;
3146 
3147 	read_unlock(&policy_rwlock);
3148 	return 0;
3149 out_free:
3150 	ebitmap_destroy(&ctx_new.range.level[0].cat);
3151 out:
3152 	read_unlock(&policy_rwlock);
3153 	return rc;
3154 }
3155 
3156 /**
3157  * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3158  * @sid: the SELinux SID
3159  * @secattr: the NetLabel packet security attributes
3160  *
3161  * Description:
3162  * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3163  * Returns zero on success, negative values on failure.
3164  *
3165  */
security_netlbl_sid_to_secattr(u32 sid,struct netlbl_lsm_secattr * secattr)3166 int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3167 {
3168 	int rc;
3169 	struct context *ctx;
3170 
3171 	if (!ss_initialized)
3172 		return 0;
3173 
3174 	read_lock(&policy_rwlock);
3175 
3176 	rc = -ENOENT;
3177 	ctx = sidtab_search(&sidtab, sid);
3178 	if (ctx == NULL)
3179 		goto out;
3180 
3181 	rc = -ENOMEM;
3182 	secattr->domain = kstrdup(sym_name(&policydb, SYM_TYPES, ctx->type - 1),
3183 				  GFP_ATOMIC);
3184 	if (secattr->domain == NULL)
3185 		goto out;
3186 
3187 	secattr->attr.secid = sid;
3188 	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3189 	mls_export_netlbl_lvl(ctx, secattr);
3190 	rc = mls_export_netlbl_cat(ctx, secattr);
3191 out:
3192 	read_unlock(&policy_rwlock);
3193 	return rc;
3194 }
3195 #endif /* CONFIG_NETLABEL */
3196 
3197 /**
3198  * security_read_policy - read the policy.
3199  * @data: binary policy data
3200  * @len: length of data in bytes
3201  *
3202  */
security_read_policy(void ** data,size_t * len)3203 int security_read_policy(void **data, size_t *len)
3204 {
3205 	int rc;
3206 	struct policy_file fp;
3207 
3208 	if (!ss_initialized)
3209 		return -EINVAL;
3210 
3211 	*len = security_policydb_len();
3212 
3213 	*data = vmalloc_user(*len);
3214 	if (!*data)
3215 		return -ENOMEM;
3216 
3217 	fp.data = *data;
3218 	fp.len = *len;
3219 
3220 	read_lock(&policy_rwlock);
3221 	rc = policydb_write(&policydb, &fp);
3222 	read_unlock(&policy_rwlock);
3223 
3224 	if (rc)
3225 		return rc;
3226 
3227 	*len = (unsigned long)fp.data - (unsigned long)*data;
3228 	return 0;
3229 
3230 }
3231