1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This abstraction carries sctp events to the ULP (sockets).
10  *
11  * This SCTP implementation is free software;
12  * you can redistribute it and/or modify it under the terms of
13  * the GNU General Public License as published by
14  * the Free Software Foundation; either version 2, or (at your option)
15  * any later version.
16  *
17  * This SCTP implementation is distributed in the hope that it
18  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
19  *                 ************************
20  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
21  * See the GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with GNU CC; see the file COPYING.  If not, write to
25  * the Free Software Foundation, 59 Temple Place - Suite 330,
26  * Boston, MA 02111-1307, USA.
27  *
28  * Please send any bug reports or fixes you make to the
29  * email address(es):
30  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
31  *
32  * Or submit a bug report through the following website:
33  *    http://www.sf.net/projects/lksctp
34  *
35  * Written or modified by:
36  *    Jon Grimm             <jgrimm@us.ibm.com>
37  *    La Monte H.P. Yarroll <piggy@acm.org>
38  *    Sridhar Samudrala     <sri@us.ibm.com>
39  *
40  * Any bugs reported given to us we will try to fix... any fixes shared will
41  * be incorporated into the next SCTP release.
42  */
43 
44 #include <linux/slab.h>
45 #include <linux/types.h>
46 #include <linux/skbuff.h>
47 #include <net/sock.h>
48 #include <net/sctp/structs.h>
49 #include <net/sctp/sctp.h>
50 #include <net/sctp/sm.h>
51 
52 /* Forward declarations for internal helpers.  */
53 static struct sctp_ulpevent * sctp_ulpq_reasm(struct sctp_ulpq *ulpq,
54 					      struct sctp_ulpevent *);
55 static struct sctp_ulpevent * sctp_ulpq_order(struct sctp_ulpq *,
56 					      struct sctp_ulpevent *);
57 static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq);
58 
59 /* 1st Level Abstractions */
60 
61 /* Initialize a ULP queue from a block of memory.  */
sctp_ulpq_init(struct sctp_ulpq * ulpq,struct sctp_association * asoc)62 struct sctp_ulpq *sctp_ulpq_init(struct sctp_ulpq *ulpq,
63 				 struct sctp_association *asoc)
64 {
65 	memset(ulpq, 0, sizeof(struct sctp_ulpq));
66 
67 	ulpq->asoc = asoc;
68 	skb_queue_head_init(&ulpq->reasm);
69 	skb_queue_head_init(&ulpq->lobby);
70 	ulpq->pd_mode  = 0;
71 	ulpq->malloced = 0;
72 
73 	return ulpq;
74 }
75 
76 
77 /* Flush the reassembly and ordering queues.  */
sctp_ulpq_flush(struct sctp_ulpq * ulpq)78 void sctp_ulpq_flush(struct sctp_ulpq *ulpq)
79 {
80 	struct sk_buff *skb;
81 	struct sctp_ulpevent *event;
82 
83 	while ((skb = __skb_dequeue(&ulpq->lobby)) != NULL) {
84 		event = sctp_skb2event(skb);
85 		sctp_ulpevent_free(event);
86 	}
87 
88 	while ((skb = __skb_dequeue(&ulpq->reasm)) != NULL) {
89 		event = sctp_skb2event(skb);
90 		sctp_ulpevent_free(event);
91 	}
92 
93 }
94 
95 /* Dispose of a ulpqueue.  */
sctp_ulpq_free(struct sctp_ulpq * ulpq)96 void sctp_ulpq_free(struct sctp_ulpq *ulpq)
97 {
98 	sctp_ulpq_flush(ulpq);
99 	if (ulpq->malloced)
100 		kfree(ulpq);
101 }
102 
103 /* Process an incoming DATA chunk.  */
sctp_ulpq_tail_data(struct sctp_ulpq * ulpq,struct sctp_chunk * chunk,gfp_t gfp)104 int sctp_ulpq_tail_data(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk,
105 			gfp_t gfp)
106 {
107 	struct sk_buff_head temp;
108 	struct sctp_ulpevent *event;
109 
110 	/* Create an event from the incoming chunk. */
111 	event = sctp_ulpevent_make_rcvmsg(chunk->asoc, chunk, gfp);
112 	if (!event)
113 		return -ENOMEM;
114 
115 	/* Do reassembly if needed.  */
116 	event = sctp_ulpq_reasm(ulpq, event);
117 
118 	/* Do ordering if needed.  */
119 	if ((event) && (event->msg_flags & MSG_EOR)){
120 		/* Create a temporary list to collect chunks on.  */
121 		skb_queue_head_init(&temp);
122 		__skb_queue_tail(&temp, sctp_event2skb(event));
123 
124 		event = sctp_ulpq_order(ulpq, event);
125 	}
126 
127 	/* Send event to the ULP.  'event' is the sctp_ulpevent for
128 	 * very first SKB on the 'temp' list.
129 	 */
130 	if (event)
131 		sctp_ulpq_tail_event(ulpq, event);
132 
133 	return 0;
134 }
135 
136 /* Add a new event for propagation to the ULP.  */
137 /* Clear the partial delivery mode for this socket.   Note: This
138  * assumes that no association is currently in partial delivery mode.
139  */
sctp_clear_pd(struct sock * sk,struct sctp_association * asoc)140 int sctp_clear_pd(struct sock *sk, struct sctp_association *asoc)
141 {
142 	struct sctp_sock *sp = sctp_sk(sk);
143 
144 	if (atomic_dec_and_test(&sp->pd_mode)) {
145 		/* This means there are no other associations in PD, so
146 		 * we can go ahead and clear out the lobby in one shot
147 		 */
148 		if (!skb_queue_empty(&sp->pd_lobby)) {
149 			struct list_head *list;
150 			sctp_skb_list_tail(&sp->pd_lobby, &sk->sk_receive_queue);
151 			list = (struct list_head *)&sctp_sk(sk)->pd_lobby;
152 			INIT_LIST_HEAD(list);
153 			return 1;
154 		}
155 	} else {
156 		/* There are other associations in PD, so we only need to
157 		 * pull stuff out of the lobby that belongs to the
158 		 * associations that is exiting PD (all of its notifications
159 		 * are posted here).
160 		 */
161 		if (!skb_queue_empty(&sp->pd_lobby) && asoc) {
162 			struct sk_buff *skb, *tmp;
163 			struct sctp_ulpevent *event;
164 
165 			sctp_skb_for_each(skb, &sp->pd_lobby, tmp) {
166 				event = sctp_skb2event(skb);
167 				if (event->asoc == asoc) {
168 					__skb_unlink(skb, &sp->pd_lobby);
169 					__skb_queue_tail(&sk->sk_receive_queue,
170 							 skb);
171 				}
172 			}
173 		}
174 	}
175 
176 	return 0;
177 }
178 
179 /* Set the pd_mode on the socket and ulpq */
sctp_ulpq_set_pd(struct sctp_ulpq * ulpq)180 static void sctp_ulpq_set_pd(struct sctp_ulpq *ulpq)
181 {
182 	struct sctp_sock *sp = sctp_sk(ulpq->asoc->base.sk);
183 
184 	atomic_inc(&sp->pd_mode);
185 	ulpq->pd_mode = 1;
186 }
187 
188 /* Clear the pd_mode and restart any pending messages waiting for delivery. */
sctp_ulpq_clear_pd(struct sctp_ulpq * ulpq)189 static int sctp_ulpq_clear_pd(struct sctp_ulpq *ulpq)
190 {
191 	ulpq->pd_mode = 0;
192 	sctp_ulpq_reasm_drain(ulpq);
193 	return sctp_clear_pd(ulpq->asoc->base.sk, ulpq->asoc);
194 }
195 
196 /* If the SKB of 'event' is on a list, it is the first such member
197  * of that list.
198  */
sctp_ulpq_tail_event(struct sctp_ulpq * ulpq,struct sctp_ulpevent * event)199 int sctp_ulpq_tail_event(struct sctp_ulpq *ulpq, struct sctp_ulpevent *event)
200 {
201 	struct sock *sk = ulpq->asoc->base.sk;
202 	struct sk_buff_head *queue, *skb_list;
203 	struct sk_buff *skb = sctp_event2skb(event);
204 	int clear_pd = 0;
205 
206 	skb_list = (struct sk_buff_head *) skb->prev;
207 
208 	/* If the socket is just going to throw this away, do not
209 	 * even try to deliver it.
210 	 */
211 	if (sock_flag(sk, SOCK_DEAD) || (sk->sk_shutdown & RCV_SHUTDOWN))
212 		goto out_free;
213 
214 	/* Check if the user wishes to receive this event.  */
215 	if (!sctp_ulpevent_is_enabled(event, &sctp_sk(sk)->subscribe))
216 		goto out_free;
217 
218 	/* If we are in partial delivery mode, post to the lobby until
219 	 * partial delivery is cleared, unless, of course _this_ is
220 	 * the association the cause of the partial delivery.
221 	 */
222 
223 	if (atomic_read(&sctp_sk(sk)->pd_mode) == 0) {
224 		queue = &sk->sk_receive_queue;
225 	} else {
226 		if (ulpq->pd_mode) {
227 			/* If the association is in partial delivery, we
228 			 * need to finish delivering the partially processed
229 			 * packet before passing any other data.  This is
230 			 * because we don't truly support stream interleaving.
231 			 */
232 			if ((event->msg_flags & MSG_NOTIFICATION) ||
233 			    (SCTP_DATA_NOT_FRAG ==
234 				    (event->msg_flags & SCTP_DATA_FRAG_MASK)))
235 				queue = &sctp_sk(sk)->pd_lobby;
236 			else {
237 				clear_pd = event->msg_flags & MSG_EOR;
238 				queue = &sk->sk_receive_queue;
239 			}
240 		} else {
241 			/*
242 			 * If fragment interleave is enabled, we
243 			 * can queue this to the receive queue instead
244 			 * of the lobby.
245 			 */
246 			if (sctp_sk(sk)->frag_interleave)
247 				queue = &sk->sk_receive_queue;
248 			else
249 				queue = &sctp_sk(sk)->pd_lobby;
250 		}
251 	}
252 
253 	/* If we are harvesting multiple skbs they will be
254 	 * collected on a list.
255 	 */
256 	if (skb_list)
257 		sctp_skb_list_tail(skb_list, queue);
258 	else
259 		__skb_queue_tail(queue, skb);
260 
261 	/* Did we just complete partial delivery and need to get
262 	 * rolling again?  Move pending data to the receive
263 	 * queue.
264 	 */
265 	if (clear_pd)
266 		sctp_ulpq_clear_pd(ulpq);
267 
268 	if (queue == &sk->sk_receive_queue)
269 		sk->sk_data_ready(sk, 0);
270 	return 1;
271 
272 out_free:
273 	if (skb_list)
274 		sctp_queue_purge_ulpevents(skb_list);
275 	else
276 		sctp_ulpevent_free(event);
277 
278 	return 0;
279 }
280 
281 /* 2nd Level Abstractions */
282 
283 /* Helper function to store chunks that need to be reassembled.  */
sctp_ulpq_store_reasm(struct sctp_ulpq * ulpq,struct sctp_ulpevent * event)284 static void sctp_ulpq_store_reasm(struct sctp_ulpq *ulpq,
285 					 struct sctp_ulpevent *event)
286 {
287 	struct sk_buff *pos;
288 	struct sctp_ulpevent *cevent;
289 	__u32 tsn, ctsn;
290 
291 	tsn = event->tsn;
292 
293 	/* See if it belongs at the end. */
294 	pos = skb_peek_tail(&ulpq->reasm);
295 	if (!pos) {
296 		__skb_queue_tail(&ulpq->reasm, sctp_event2skb(event));
297 		return;
298 	}
299 
300 	/* Short circuit just dropping it at the end. */
301 	cevent = sctp_skb2event(pos);
302 	ctsn = cevent->tsn;
303 	if (TSN_lt(ctsn, tsn)) {
304 		__skb_queue_tail(&ulpq->reasm, sctp_event2skb(event));
305 		return;
306 	}
307 
308 	/* Find the right place in this list. We store them by TSN.  */
309 	skb_queue_walk(&ulpq->reasm, pos) {
310 		cevent = sctp_skb2event(pos);
311 		ctsn = cevent->tsn;
312 
313 		if (TSN_lt(tsn, ctsn))
314 			break;
315 	}
316 
317 	/* Insert before pos. */
318 	__skb_queue_before(&ulpq->reasm, pos, sctp_event2skb(event));
319 
320 }
321 
322 /* Helper function to return an event corresponding to the reassembled
323  * datagram.
324  * This routine creates a re-assembled skb given the first and last skb's
325  * as stored in the reassembly queue. The skb's may be non-linear if the sctp
326  * payload was fragmented on the way and ip had to reassemble them.
327  * We add the rest of skb's to the first skb's fraglist.
328  */
sctp_make_reassembled_event(struct sk_buff_head * queue,struct sk_buff * f_frag,struct sk_buff * l_frag)329 static struct sctp_ulpevent *sctp_make_reassembled_event(struct sk_buff_head *queue, struct sk_buff *f_frag, struct sk_buff *l_frag)
330 {
331 	struct sk_buff *pos;
332 	struct sk_buff *new = NULL;
333 	struct sctp_ulpevent *event;
334 	struct sk_buff *pnext, *last;
335 	struct sk_buff *list = skb_shinfo(f_frag)->frag_list;
336 
337 	/* Store the pointer to the 2nd skb */
338 	if (f_frag == l_frag)
339 		pos = NULL;
340 	else
341 		pos = f_frag->next;
342 
343 	/* Get the last skb in the f_frag's frag_list if present. */
344 	for (last = list; list; last = list, list = list->next);
345 
346 	/* Add the list of remaining fragments to the first fragments
347 	 * frag_list.
348 	 */
349 	if (last)
350 		last->next = pos;
351 	else {
352 		if (skb_cloned(f_frag)) {
353 			/* This is a cloned skb, we can't just modify
354 			 * the frag_list.  We need a new skb to do that.
355 			 * Instead of calling skb_unshare(), we'll do it
356 			 * ourselves since we need to delay the free.
357 			 */
358 			new = skb_copy(f_frag, GFP_ATOMIC);
359 			if (!new)
360 				return NULL;	/* try again later */
361 
362 			sctp_skb_set_owner_r(new, f_frag->sk);
363 
364 			skb_shinfo(new)->frag_list = pos;
365 		} else
366 			skb_shinfo(f_frag)->frag_list = pos;
367 	}
368 
369 	/* Remove the first fragment from the reassembly queue.  */
370 	__skb_unlink(f_frag, queue);
371 
372 	/* if we did unshare, then free the old skb and re-assign */
373 	if (new) {
374 		kfree_skb(f_frag);
375 		f_frag = new;
376 	}
377 
378 	while (pos) {
379 
380 		pnext = pos->next;
381 
382 		/* Update the len and data_len fields of the first fragment. */
383 		f_frag->len += pos->len;
384 		f_frag->data_len += pos->len;
385 
386 		/* Remove the fragment from the reassembly queue.  */
387 		__skb_unlink(pos, queue);
388 
389 		/* Break if we have reached the last fragment.  */
390 		if (pos == l_frag)
391 			break;
392 		pos->next = pnext;
393 		pos = pnext;
394 	}
395 
396 	event = sctp_skb2event(f_frag);
397 	SCTP_INC_STATS(SCTP_MIB_REASMUSRMSGS);
398 
399 	return event;
400 }
401 
402 
403 /* Helper function to check if an incoming chunk has filled up the last
404  * missing fragment in a SCTP datagram and return the corresponding event.
405  */
sctp_ulpq_retrieve_reassembled(struct sctp_ulpq * ulpq)406 static struct sctp_ulpevent *sctp_ulpq_retrieve_reassembled(struct sctp_ulpq *ulpq)
407 {
408 	struct sk_buff *pos;
409 	struct sctp_ulpevent *cevent;
410 	struct sk_buff *first_frag = NULL;
411 	__u32 ctsn, next_tsn;
412 	struct sctp_ulpevent *retval = NULL;
413 	struct sk_buff *pd_first = NULL;
414 	struct sk_buff *pd_last = NULL;
415 	size_t pd_len = 0;
416 	struct sctp_association *asoc;
417 	u32 pd_point;
418 
419 	/* Initialized to 0 just to avoid compiler warning message.  Will
420 	 * never be used with this value. It is referenced only after it
421 	 * is set when we find the first fragment of a message.
422 	 */
423 	next_tsn = 0;
424 
425 	/* The chunks are held in the reasm queue sorted by TSN.
426 	 * Walk through the queue sequentially and look for a sequence of
427 	 * fragmented chunks that complete a datagram.
428 	 * 'first_frag' and next_tsn are reset when we find a chunk which
429 	 * is the first fragment of a datagram. Once these 2 fields are set
430 	 * we expect to find the remaining middle fragments and the last
431 	 * fragment in order. If not, first_frag is reset to NULL and we
432 	 * start the next pass when we find another first fragment.
433 	 *
434 	 * There is a potential to do partial delivery if user sets
435 	 * SCTP_PARTIAL_DELIVERY_POINT option. Lets count some things here
436 	 * to see if can do PD.
437 	 */
438 	skb_queue_walk(&ulpq->reasm, pos) {
439 		cevent = sctp_skb2event(pos);
440 		ctsn = cevent->tsn;
441 
442 		switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
443 		case SCTP_DATA_FIRST_FRAG:
444 			/* If this "FIRST_FRAG" is the first
445 			 * element in the queue, then count it towards
446 			 * possible PD.
447 			 */
448 			if (pos == ulpq->reasm.next) {
449 			    pd_first = pos;
450 			    pd_last = pos;
451 			    pd_len = pos->len;
452 			} else {
453 			    pd_first = NULL;
454 			    pd_last = NULL;
455 			    pd_len = 0;
456 			}
457 
458 			first_frag = pos;
459 			next_tsn = ctsn + 1;
460 			break;
461 
462 		case SCTP_DATA_MIDDLE_FRAG:
463 			if ((first_frag) && (ctsn == next_tsn)) {
464 				next_tsn++;
465 				if (pd_first) {
466 				    pd_last = pos;
467 				    pd_len += pos->len;
468 				}
469 			} else
470 				first_frag = NULL;
471 			break;
472 
473 		case SCTP_DATA_LAST_FRAG:
474 			if (first_frag && (ctsn == next_tsn))
475 				goto found;
476 			else
477 				first_frag = NULL;
478 			break;
479 		}
480 	}
481 
482 	asoc = ulpq->asoc;
483 	if (pd_first) {
484 		/* Make sure we can enter partial deliver.
485 		 * We can trigger partial delivery only if framgent
486 		 * interleave is set, or the socket is not already
487 		 * in  partial delivery.
488 		 */
489 		if (!sctp_sk(asoc->base.sk)->frag_interleave &&
490 		    atomic_read(&sctp_sk(asoc->base.sk)->pd_mode))
491 			goto done;
492 
493 		cevent = sctp_skb2event(pd_first);
494 		pd_point = sctp_sk(asoc->base.sk)->pd_point;
495 		if (pd_point && pd_point <= pd_len) {
496 			retval = sctp_make_reassembled_event(&ulpq->reasm,
497 							     pd_first,
498 							     pd_last);
499 			if (retval)
500 				sctp_ulpq_set_pd(ulpq);
501 		}
502 	}
503 done:
504 	return retval;
505 found:
506 	retval = sctp_make_reassembled_event(&ulpq->reasm, first_frag, pos);
507 	if (retval)
508 		retval->msg_flags |= MSG_EOR;
509 	goto done;
510 }
511 
512 /* Retrieve the next set of fragments of a partial message. */
sctp_ulpq_retrieve_partial(struct sctp_ulpq * ulpq)513 static struct sctp_ulpevent *sctp_ulpq_retrieve_partial(struct sctp_ulpq *ulpq)
514 {
515 	struct sk_buff *pos, *last_frag, *first_frag;
516 	struct sctp_ulpevent *cevent;
517 	__u32 ctsn, next_tsn;
518 	int is_last;
519 	struct sctp_ulpevent *retval;
520 
521 	/* The chunks are held in the reasm queue sorted by TSN.
522 	 * Walk through the queue sequentially and look for the first
523 	 * sequence of fragmented chunks.
524 	 */
525 
526 	if (skb_queue_empty(&ulpq->reasm))
527 		return NULL;
528 
529 	last_frag = first_frag = NULL;
530 	retval = NULL;
531 	next_tsn = 0;
532 	is_last = 0;
533 
534 	skb_queue_walk(&ulpq->reasm, pos) {
535 		cevent = sctp_skb2event(pos);
536 		ctsn = cevent->tsn;
537 
538 		switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
539 		case SCTP_DATA_MIDDLE_FRAG:
540 			if (!first_frag) {
541 				first_frag = pos;
542 				next_tsn = ctsn + 1;
543 				last_frag = pos;
544 			} else if (next_tsn == ctsn)
545 				next_tsn++;
546 			else
547 				goto done;
548 			break;
549 		case SCTP_DATA_LAST_FRAG:
550 			if (!first_frag)
551 				first_frag = pos;
552 			else if (ctsn != next_tsn)
553 				goto done;
554 			last_frag = pos;
555 			is_last = 1;
556 			goto done;
557 		default:
558 			return NULL;
559 		}
560 	}
561 
562 	/* We have the reassembled event. There is no need to look
563 	 * further.
564 	 */
565 done:
566 	retval = sctp_make_reassembled_event(&ulpq->reasm, first_frag, last_frag);
567 	if (retval && is_last)
568 		retval->msg_flags |= MSG_EOR;
569 
570 	return retval;
571 }
572 
573 
574 /* Helper function to reassemble chunks.  Hold chunks on the reasm queue that
575  * need reassembling.
576  */
sctp_ulpq_reasm(struct sctp_ulpq * ulpq,struct sctp_ulpevent * event)577 static struct sctp_ulpevent *sctp_ulpq_reasm(struct sctp_ulpq *ulpq,
578 						struct sctp_ulpevent *event)
579 {
580 	struct sctp_ulpevent *retval = NULL;
581 
582 	/* Check if this is part of a fragmented message.  */
583 	if (SCTP_DATA_NOT_FRAG == (event->msg_flags & SCTP_DATA_FRAG_MASK)) {
584 		event->msg_flags |= MSG_EOR;
585 		return event;
586 	}
587 
588 	sctp_ulpq_store_reasm(ulpq, event);
589 	if (!ulpq->pd_mode)
590 		retval = sctp_ulpq_retrieve_reassembled(ulpq);
591 	else {
592 		__u32 ctsn, ctsnap;
593 
594 		/* Do not even bother unless this is the next tsn to
595 		 * be delivered.
596 		 */
597 		ctsn = event->tsn;
598 		ctsnap = sctp_tsnmap_get_ctsn(&ulpq->asoc->peer.tsn_map);
599 		if (TSN_lte(ctsn, ctsnap))
600 			retval = sctp_ulpq_retrieve_partial(ulpq);
601 	}
602 
603 	return retval;
604 }
605 
606 /* Retrieve the first part (sequential fragments) for partial delivery.  */
sctp_ulpq_retrieve_first(struct sctp_ulpq * ulpq)607 static struct sctp_ulpevent *sctp_ulpq_retrieve_first(struct sctp_ulpq *ulpq)
608 {
609 	struct sk_buff *pos, *last_frag, *first_frag;
610 	struct sctp_ulpevent *cevent;
611 	__u32 ctsn, next_tsn;
612 	struct sctp_ulpevent *retval;
613 
614 	/* The chunks are held in the reasm queue sorted by TSN.
615 	 * Walk through the queue sequentially and look for a sequence of
616 	 * fragmented chunks that start a datagram.
617 	 */
618 
619 	if (skb_queue_empty(&ulpq->reasm))
620 		return NULL;
621 
622 	last_frag = first_frag = NULL;
623 	retval = NULL;
624 	next_tsn = 0;
625 
626 	skb_queue_walk(&ulpq->reasm, pos) {
627 		cevent = sctp_skb2event(pos);
628 		ctsn = cevent->tsn;
629 
630 		switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
631 		case SCTP_DATA_FIRST_FRAG:
632 			if (!first_frag) {
633 				first_frag = pos;
634 				next_tsn = ctsn + 1;
635 				last_frag = pos;
636 			} else
637 				goto done;
638 			break;
639 
640 		case SCTP_DATA_MIDDLE_FRAG:
641 			if (!first_frag)
642 				return NULL;
643 			if (ctsn == next_tsn) {
644 				next_tsn++;
645 				last_frag = pos;
646 			} else
647 				goto done;
648 			break;
649 		default:
650 			return NULL;
651 		}
652 	}
653 
654 	/* We have the reassembled event. There is no need to look
655 	 * further.
656 	 */
657 done:
658 	retval = sctp_make_reassembled_event(&ulpq->reasm, first_frag, last_frag);
659 	return retval;
660 }
661 
662 /*
663  * Flush out stale fragments from the reassembly queue when processing
664  * a Forward TSN.
665  *
666  * RFC 3758, Section 3.6
667  *
668  * After receiving and processing a FORWARD TSN, the data receiver MUST
669  * take cautions in updating its re-assembly queue.  The receiver MUST
670  * remove any partially reassembled message, which is still missing one
671  * or more TSNs earlier than or equal to the new cumulative TSN point.
672  * In the event that the receiver has invoked the partial delivery API,
673  * a notification SHOULD also be generated to inform the upper layer API
674  * that the message being partially delivered will NOT be completed.
675  */
sctp_ulpq_reasm_flushtsn(struct sctp_ulpq * ulpq,__u32 fwd_tsn)676 void sctp_ulpq_reasm_flushtsn(struct sctp_ulpq *ulpq, __u32 fwd_tsn)
677 {
678 	struct sk_buff *pos, *tmp;
679 	struct sctp_ulpevent *event;
680 	__u32 tsn;
681 
682 	if (skb_queue_empty(&ulpq->reasm))
683 		return;
684 
685 	skb_queue_walk_safe(&ulpq->reasm, pos, tmp) {
686 		event = sctp_skb2event(pos);
687 		tsn = event->tsn;
688 
689 		/* Since the entire message must be abandoned by the
690 		 * sender (item A3 in Section 3.5, RFC 3758), we can
691 		 * free all fragments on the list that are less then
692 		 * or equal to ctsn_point
693 		 */
694 		if (TSN_lte(tsn, fwd_tsn)) {
695 			__skb_unlink(pos, &ulpq->reasm);
696 			sctp_ulpevent_free(event);
697 		} else
698 			break;
699 	}
700 }
701 
702 /*
703  * Drain the reassembly queue.  If we just cleared parted delivery, it
704  * is possible that the reassembly queue will contain already reassembled
705  * messages.  Retrieve any such messages and give them to the user.
706  */
sctp_ulpq_reasm_drain(struct sctp_ulpq * ulpq)707 static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq)
708 {
709 	struct sctp_ulpevent *event = NULL;
710 	struct sk_buff_head temp;
711 
712 	if (skb_queue_empty(&ulpq->reasm))
713 		return;
714 
715 	while ((event = sctp_ulpq_retrieve_reassembled(ulpq)) != NULL) {
716 		/* Do ordering if needed.  */
717 		if ((event) && (event->msg_flags & MSG_EOR)){
718 			skb_queue_head_init(&temp);
719 			__skb_queue_tail(&temp, sctp_event2skb(event));
720 
721 			event = sctp_ulpq_order(ulpq, event);
722 		}
723 
724 		/* Send event to the ULP.  'event' is the
725 		 * sctp_ulpevent for  very first SKB on the  temp' list.
726 		 */
727 		if (event)
728 			sctp_ulpq_tail_event(ulpq, event);
729 	}
730 }
731 
732 
733 /* Helper function to gather skbs that have possibly become
734  * ordered by an an incoming chunk.
735  */
sctp_ulpq_retrieve_ordered(struct sctp_ulpq * ulpq,struct sctp_ulpevent * event)736 static void sctp_ulpq_retrieve_ordered(struct sctp_ulpq *ulpq,
737 					      struct sctp_ulpevent *event)
738 {
739 	struct sk_buff_head *event_list;
740 	struct sk_buff *pos, *tmp;
741 	struct sctp_ulpevent *cevent;
742 	struct sctp_stream *in;
743 	__u16 sid, csid, cssn;
744 
745 	sid = event->stream;
746 	in  = &ulpq->asoc->ssnmap->in;
747 
748 	event_list = (struct sk_buff_head *) sctp_event2skb(event)->prev;
749 
750 	/* We are holding the chunks by stream, by SSN.  */
751 	sctp_skb_for_each(pos, &ulpq->lobby, tmp) {
752 		cevent = (struct sctp_ulpevent *) pos->cb;
753 		csid = cevent->stream;
754 		cssn = cevent->ssn;
755 
756 		/* Have we gone too far?  */
757 		if (csid > sid)
758 			break;
759 
760 		/* Have we not gone far enough?  */
761 		if (csid < sid)
762 			continue;
763 
764 		if (cssn != sctp_ssn_peek(in, sid))
765 			break;
766 
767 		/* Found it, so mark in the ssnmap. */
768 		sctp_ssn_next(in, sid);
769 
770 		__skb_unlink(pos, &ulpq->lobby);
771 
772 		/* Attach all gathered skbs to the event.  */
773 		__skb_queue_tail(event_list, pos);
774 	}
775 }
776 
777 /* Helper function to store chunks needing ordering.  */
sctp_ulpq_store_ordered(struct sctp_ulpq * ulpq,struct sctp_ulpevent * event)778 static void sctp_ulpq_store_ordered(struct sctp_ulpq *ulpq,
779 					   struct sctp_ulpevent *event)
780 {
781 	struct sk_buff *pos;
782 	struct sctp_ulpevent *cevent;
783 	__u16 sid, csid;
784 	__u16 ssn, cssn;
785 
786 	pos = skb_peek_tail(&ulpq->lobby);
787 	if (!pos) {
788 		__skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
789 		return;
790 	}
791 
792 	sid = event->stream;
793 	ssn = event->ssn;
794 
795 	cevent = (struct sctp_ulpevent *) pos->cb;
796 	csid = cevent->stream;
797 	cssn = cevent->ssn;
798 	if (sid > csid) {
799 		__skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
800 		return;
801 	}
802 
803 	if ((sid == csid) && SSN_lt(cssn, ssn)) {
804 		__skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
805 		return;
806 	}
807 
808 	/* Find the right place in this list.  We store them by
809 	 * stream ID and then by SSN.
810 	 */
811 	skb_queue_walk(&ulpq->lobby, pos) {
812 		cevent = (struct sctp_ulpevent *) pos->cb;
813 		csid = cevent->stream;
814 		cssn = cevent->ssn;
815 
816 		if (csid > sid)
817 			break;
818 		if (csid == sid && SSN_lt(ssn, cssn))
819 			break;
820 	}
821 
822 
823 	/* Insert before pos. */
824 	__skb_queue_before(&ulpq->lobby, pos, sctp_event2skb(event));
825 }
826 
sctp_ulpq_order(struct sctp_ulpq * ulpq,struct sctp_ulpevent * event)827 static struct sctp_ulpevent *sctp_ulpq_order(struct sctp_ulpq *ulpq,
828 					     struct sctp_ulpevent *event)
829 {
830 	__u16 sid, ssn;
831 	struct sctp_stream *in;
832 
833 	/* Check if this message needs ordering.  */
834 	if (SCTP_DATA_UNORDERED & event->msg_flags)
835 		return event;
836 
837 	/* Note: The stream ID must be verified before this routine.  */
838 	sid = event->stream;
839 	ssn = event->ssn;
840 	in  = &ulpq->asoc->ssnmap->in;
841 
842 	/* Is this the expected SSN for this stream ID?  */
843 	if (ssn != sctp_ssn_peek(in, sid)) {
844 		/* We've received something out of order, so find where it
845 		 * needs to be placed.  We order by stream and then by SSN.
846 		 */
847 		sctp_ulpq_store_ordered(ulpq, event);
848 		return NULL;
849 	}
850 
851 	/* Mark that the next chunk has been found.  */
852 	sctp_ssn_next(in, sid);
853 
854 	/* Go find any other chunks that were waiting for
855 	 * ordering.
856 	 */
857 	sctp_ulpq_retrieve_ordered(ulpq, event);
858 
859 	return event;
860 }
861 
862 /* Helper function to gather skbs that have possibly become
863  * ordered by forward tsn skipping their dependencies.
864  */
sctp_ulpq_reap_ordered(struct sctp_ulpq * ulpq,__u16 sid)865 static void sctp_ulpq_reap_ordered(struct sctp_ulpq *ulpq, __u16 sid)
866 {
867 	struct sk_buff *pos, *tmp;
868 	struct sctp_ulpevent *cevent;
869 	struct sctp_ulpevent *event;
870 	struct sctp_stream *in;
871 	struct sk_buff_head temp;
872 	struct sk_buff_head *lobby = &ulpq->lobby;
873 	__u16 csid, cssn;
874 
875 	in  = &ulpq->asoc->ssnmap->in;
876 
877 	/* We are holding the chunks by stream, by SSN.  */
878 	skb_queue_head_init(&temp);
879 	event = NULL;
880 	sctp_skb_for_each(pos, lobby, tmp) {
881 		cevent = (struct sctp_ulpevent *) pos->cb;
882 		csid = cevent->stream;
883 		cssn = cevent->ssn;
884 
885 		/* Have we gone too far?  */
886 		if (csid > sid)
887 			break;
888 
889 		/* Have we not gone far enough?  */
890 		if (csid < sid)
891 			continue;
892 
893 		/* see if this ssn has been marked by skipping */
894 		if (!SSN_lt(cssn, sctp_ssn_peek(in, csid)))
895 			break;
896 
897 		__skb_unlink(pos, lobby);
898 		if (!event)
899 			/* Create a temporary list to collect chunks on.  */
900 			event = sctp_skb2event(pos);
901 
902 		/* Attach all gathered skbs to the event.  */
903 		__skb_queue_tail(&temp, pos);
904 	}
905 
906 	/* If we didn't reap any data, see if the next expected SSN
907 	 * is next on the queue and if so, use that.
908 	 */
909 	if (event == NULL && pos != (struct sk_buff *)lobby) {
910 		cevent = (struct sctp_ulpevent *) pos->cb;
911 		csid = cevent->stream;
912 		cssn = cevent->ssn;
913 
914 		if (csid == sid && cssn == sctp_ssn_peek(in, csid)) {
915 			sctp_ssn_next(in, csid);
916 			__skb_unlink(pos, lobby);
917 			__skb_queue_tail(&temp, pos);
918 			event = sctp_skb2event(pos);
919 		}
920 	}
921 
922 	/* Send event to the ULP.  'event' is the sctp_ulpevent for
923 	 * very first SKB on the 'temp' list.
924 	 */
925 	if (event) {
926 		/* see if we have more ordered that we can deliver */
927 		sctp_ulpq_retrieve_ordered(ulpq, event);
928 		sctp_ulpq_tail_event(ulpq, event);
929 	}
930 }
931 
932 /* Skip over an SSN. This is used during the processing of
933  * Forwared TSN chunk to skip over the abandoned ordered data
934  */
sctp_ulpq_skip(struct sctp_ulpq * ulpq,__u16 sid,__u16 ssn)935 void sctp_ulpq_skip(struct sctp_ulpq *ulpq, __u16 sid, __u16 ssn)
936 {
937 	struct sctp_stream *in;
938 
939 	/* Note: The stream ID must be verified before this routine.  */
940 	in  = &ulpq->asoc->ssnmap->in;
941 
942 	/* Is this an old SSN?  If so ignore. */
943 	if (SSN_lt(ssn, sctp_ssn_peek(in, sid)))
944 		return;
945 
946 	/* Mark that we are no longer expecting this SSN or lower. */
947 	sctp_ssn_skip(in, sid, ssn);
948 
949 	/* Go find any other chunks that were waiting for
950 	 * ordering and deliver them if needed.
951 	 */
952 	sctp_ulpq_reap_ordered(ulpq, sid);
953 }
954 
sctp_ulpq_renege_list(struct sctp_ulpq * ulpq,struct sk_buff_head * list,__u16 needed)955 static __u16 sctp_ulpq_renege_list(struct sctp_ulpq *ulpq,
956 		struct sk_buff_head *list, __u16 needed)
957 {
958 	__u16 freed = 0;
959 	__u32 tsn;
960 	struct sk_buff *skb;
961 	struct sctp_ulpevent *event;
962 	struct sctp_tsnmap *tsnmap;
963 
964 	tsnmap = &ulpq->asoc->peer.tsn_map;
965 
966 	while ((skb = __skb_dequeue_tail(list)) != NULL) {
967 		freed += skb_headlen(skb);
968 		event = sctp_skb2event(skb);
969 		tsn = event->tsn;
970 
971 		sctp_ulpevent_free(event);
972 		sctp_tsnmap_renege(tsnmap, tsn);
973 		if (freed >= needed)
974 			return freed;
975 	}
976 
977 	return freed;
978 }
979 
980 /* Renege 'needed' bytes from the ordering queue. */
sctp_ulpq_renege_order(struct sctp_ulpq * ulpq,__u16 needed)981 static __u16 sctp_ulpq_renege_order(struct sctp_ulpq *ulpq, __u16 needed)
982 {
983 	return sctp_ulpq_renege_list(ulpq, &ulpq->lobby, needed);
984 }
985 
986 /* Renege 'needed' bytes from the reassembly queue. */
sctp_ulpq_renege_frags(struct sctp_ulpq * ulpq,__u16 needed)987 static __u16 sctp_ulpq_renege_frags(struct sctp_ulpq *ulpq, __u16 needed)
988 {
989 	return sctp_ulpq_renege_list(ulpq, &ulpq->reasm, needed);
990 }
991 
992 /* Partial deliver the first message as there is pressure on rwnd. */
sctp_ulpq_partial_delivery(struct sctp_ulpq * ulpq,struct sctp_chunk * chunk,gfp_t gfp)993 void sctp_ulpq_partial_delivery(struct sctp_ulpq *ulpq,
994 				struct sctp_chunk *chunk,
995 				gfp_t gfp)
996 {
997 	struct sctp_ulpevent *event;
998 	struct sctp_association *asoc;
999 	struct sctp_sock *sp;
1000 
1001 	asoc = ulpq->asoc;
1002 	sp = sctp_sk(asoc->base.sk);
1003 
1004 	/* If the association is already in Partial Delivery mode
1005 	 * we have noting to do.
1006 	 */
1007 	if (ulpq->pd_mode)
1008 		return;
1009 
1010 	/* If the user enabled fragment interleave socket option,
1011 	 * multiple associations can enter partial delivery.
1012 	 * Otherwise, we can only enter partial delivery if the
1013 	 * socket is not in partial deliver mode.
1014 	 */
1015 	if (sp->frag_interleave || atomic_read(&sp->pd_mode) == 0) {
1016 		/* Is partial delivery possible?  */
1017 		event = sctp_ulpq_retrieve_first(ulpq);
1018 		/* Send event to the ULP.   */
1019 		if (event) {
1020 			sctp_ulpq_tail_event(ulpq, event);
1021 			sctp_ulpq_set_pd(ulpq);
1022 			return;
1023 		}
1024 	}
1025 }
1026 
1027 /* Renege some packets to make room for an incoming chunk.  */
sctp_ulpq_renege(struct sctp_ulpq * ulpq,struct sctp_chunk * chunk,gfp_t gfp)1028 void sctp_ulpq_renege(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk,
1029 		      gfp_t gfp)
1030 {
1031 	struct sctp_association *asoc;
1032 	__u16 needed, freed;
1033 
1034 	asoc = ulpq->asoc;
1035 
1036 	if (chunk) {
1037 		needed = ntohs(chunk->chunk_hdr->length);
1038 		needed -= sizeof(sctp_data_chunk_t);
1039 	} else
1040 		needed = SCTP_DEFAULT_MAXWINDOW;
1041 
1042 	freed = 0;
1043 
1044 	if (skb_queue_empty(&asoc->base.sk->sk_receive_queue)) {
1045 		freed = sctp_ulpq_renege_order(ulpq, needed);
1046 		if (freed < needed) {
1047 			freed += sctp_ulpq_renege_frags(ulpq, needed - freed);
1048 		}
1049 	}
1050 	/* If able to free enough room, accept this chunk. */
1051 	if (chunk && (freed >= needed)) {
1052 		__u32 tsn;
1053 		tsn = ntohl(chunk->subh.data_hdr->tsn);
1054 		sctp_tsnmap_mark(&asoc->peer.tsn_map, tsn);
1055 		sctp_ulpq_tail_data(ulpq, chunk, gfp);
1056 
1057 		sctp_ulpq_partial_delivery(ulpq, chunk, gfp);
1058 	}
1059 
1060 	sk_mem_reclaim(asoc->base.sk);
1061 }
1062 
1063 
1064 
1065 /* Notify the application if an association is aborted and in
1066  * partial delivery mode.  Send up any pending received messages.
1067  */
sctp_ulpq_abort_pd(struct sctp_ulpq * ulpq,gfp_t gfp)1068 void sctp_ulpq_abort_pd(struct sctp_ulpq *ulpq, gfp_t gfp)
1069 {
1070 	struct sctp_ulpevent *ev = NULL;
1071 	struct sock *sk;
1072 
1073 	if (!ulpq->pd_mode)
1074 		return;
1075 
1076 	sk = ulpq->asoc->base.sk;
1077 	if (sctp_ulpevent_type_enabled(SCTP_PARTIAL_DELIVERY_EVENT,
1078 				       &sctp_sk(sk)->subscribe))
1079 		ev = sctp_ulpevent_make_pdapi(ulpq->asoc,
1080 					      SCTP_PARTIAL_DELIVERY_ABORTED,
1081 					      gfp);
1082 	if (ev)
1083 		__skb_queue_tail(&sk->sk_receive_queue, sctp_event2skb(ev));
1084 
1085 	/* If there is data waiting, send it up the socket now. */
1086 	if (sctp_ulpq_clear_pd(ulpq) || ev)
1087 		sk->sk_data_ready(sk, 0);
1088 }
1089