1 /* SCTP kernel implementation
2  * Copyright (c) 1999-2000 Cisco, Inc.
3  * Copyright (c) 1999-2001 Motorola, Inc.
4  * Copyright (c) 2001-2003 International Business Machines Corp.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 La Monte H.P. Yarroll
7  *
8  * This file is part of the SCTP kernel implementation
9  *
10  * This module provides the abstraction for an SCTP tranport representing
11  * a remote transport address.  For local transport addresses, we just use
12  * union sctp_addr.
13  *
14  * This SCTP implementation is free software;
15  * you can redistribute it and/or modify it under the terms of
16  * the GNU General Public License as published by
17  * the Free Software Foundation; either version 2, or (at your option)
18  * any later version.
19  *
20  * This SCTP implementation is distributed in the hope that it
21  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
22  *                 ************************
23  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
24  * See the GNU General Public License for more details.
25  *
26  * You should have received a copy of the GNU General Public License
27  * along with GNU CC; see the file COPYING.  If not, write to
28  * the Free Software Foundation, 59 Temple Place - Suite 330,
29  * Boston, MA 02111-1307, USA.
30  *
31  * Please send any bug reports or fixes you make to the
32  * email address(es):
33  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
34  *
35  * Or submit a bug report through the following website:
36  *    http://www.sf.net/projects/lksctp
37  *
38  * Written or modified by:
39  *    La Monte H.P. Yarroll <piggy@acm.org>
40  *    Karl Knutson          <karl@athena.chicago.il.us>
41  *    Jon Grimm             <jgrimm@us.ibm.com>
42  *    Xingang Guo           <xingang.guo@intel.com>
43  *    Hui Huang             <hui.huang@nokia.com>
44  *    Sridhar Samudrala	    <sri@us.ibm.com>
45  *    Ardelle Fan	    <ardelle.fan@intel.com>
46  *
47  * Any bugs reported given to us we will try to fix... any fixes shared will
48  * be incorporated into the next SCTP release.
49  */
50 
51 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
52 
53 #include <linux/slab.h>
54 #include <linux/types.h>
55 #include <linux/random.h>
56 #include <net/sctp/sctp.h>
57 #include <net/sctp/sm.h>
58 
59 /* 1st Level Abstractions.  */
60 
61 /* Initialize a new transport from provided memory.  */
sctp_transport_init(struct sctp_transport * peer,const union sctp_addr * addr,gfp_t gfp)62 static struct sctp_transport *sctp_transport_init(struct sctp_transport *peer,
63 						  const union sctp_addr *addr,
64 						  gfp_t gfp)
65 {
66 	/* Copy in the address.  */
67 	peer->ipaddr = *addr;
68 	peer->af_specific = sctp_get_af_specific(addr->sa.sa_family);
69 	memset(&peer->saddr, 0, sizeof(union sctp_addr));
70 
71 	/* From 6.3.1 RTO Calculation:
72 	 *
73 	 * C1) Until an RTT measurement has been made for a packet sent to the
74 	 * given destination transport address, set RTO to the protocol
75 	 * parameter 'RTO.Initial'.
76 	 */
77 	peer->rto = msecs_to_jiffies(sctp_rto_initial);
78 
79 	peer->last_time_heard = jiffies;
80 	peer->last_time_ecne_reduced = jiffies;
81 
82 	peer->param_flags = SPP_HB_DISABLE |
83 			    SPP_PMTUD_ENABLE |
84 			    SPP_SACKDELAY_ENABLE;
85 
86 	/* Initialize the default path max_retrans.  */
87 	peer->pathmaxrxt  = sctp_max_retrans_path;
88 
89 	INIT_LIST_HEAD(&peer->transmitted);
90 	INIT_LIST_HEAD(&peer->send_ready);
91 	INIT_LIST_HEAD(&peer->transports);
92 
93 	setup_timer(&peer->T3_rtx_timer, sctp_generate_t3_rtx_event,
94 			(unsigned long)peer);
95 	setup_timer(&peer->hb_timer, sctp_generate_heartbeat_event,
96 			(unsigned long)peer);
97 	setup_timer(&peer->proto_unreach_timer,
98 		    sctp_generate_proto_unreach_event, (unsigned long)peer);
99 
100 	/* Initialize the 64-bit random nonce sent with heartbeat. */
101 	get_random_bytes(&peer->hb_nonce, sizeof(peer->hb_nonce));
102 
103 	atomic_set(&peer->refcnt, 1);
104 
105 	return peer;
106 }
107 
108 /* Allocate and initialize a new transport.  */
sctp_transport_new(const union sctp_addr * addr,gfp_t gfp)109 struct sctp_transport *sctp_transport_new(const union sctp_addr *addr,
110 					  gfp_t gfp)
111 {
112 	struct sctp_transport *transport;
113 
114 	transport = t_new(struct sctp_transport, gfp);
115 	if (!transport)
116 		goto fail;
117 
118 	if (!sctp_transport_init(transport, addr, gfp))
119 		goto fail_init;
120 
121 	transport->malloced = 1;
122 	SCTP_DBG_OBJCNT_INC(transport);
123 
124 	return transport;
125 
126 fail_init:
127 	kfree(transport);
128 
129 fail:
130 	return NULL;
131 }
132 
133 /* This transport is no longer needed.  Free up if possible, or
134  * delay until it last reference count.
135  */
sctp_transport_free(struct sctp_transport * transport)136 void sctp_transport_free(struct sctp_transport *transport)
137 {
138 	transport->dead = 1;
139 
140 	/* Try to delete the heartbeat timer.  */
141 	if (del_timer(&transport->hb_timer))
142 		sctp_transport_put(transport);
143 
144 	/* Delete the T3_rtx timer if it's active.
145 	 * There is no point in not doing this now and letting
146 	 * structure hang around in memory since we know
147 	 * the tranport is going away.
148 	 */
149 	if (timer_pending(&transport->T3_rtx_timer) &&
150 	    del_timer(&transport->T3_rtx_timer))
151 		sctp_transport_put(transport);
152 
153 	/* Delete the ICMP proto unreachable timer if it's active. */
154 	if (timer_pending(&transport->proto_unreach_timer) &&
155 	    del_timer(&transport->proto_unreach_timer))
156 		sctp_association_put(transport->asoc);
157 
158 	sctp_transport_put(transport);
159 }
160 
161 /* Destroy the transport data structure.
162  * Assumes there are no more users of this structure.
163  */
sctp_transport_destroy(struct sctp_transport * transport)164 static void sctp_transport_destroy(struct sctp_transport *transport)
165 {
166 	SCTP_ASSERT(transport->dead, "Transport is not dead", return);
167 
168 	if (transport->asoc)
169 		sctp_association_put(transport->asoc);
170 
171 	sctp_packet_free(&transport->packet);
172 
173 	dst_release(transport->dst);
174 	kfree(transport);
175 	SCTP_DBG_OBJCNT_DEC(transport);
176 }
177 
178 /* Start T3_rtx timer if it is not already running and update the heartbeat
179  * timer.  This routine is called every time a DATA chunk is sent.
180  */
sctp_transport_reset_timers(struct sctp_transport * transport)181 void sctp_transport_reset_timers(struct sctp_transport *transport)
182 {
183 	/* RFC 2960 6.3.2 Retransmission Timer Rules
184 	 *
185 	 * R1) Every time a DATA chunk is sent to any address(including a
186 	 * retransmission), if the T3-rtx timer of that address is not running
187 	 * start it running so that it will expire after the RTO of that
188 	 * address.
189 	 */
190 
191 	if (!timer_pending(&transport->T3_rtx_timer))
192 		if (!mod_timer(&transport->T3_rtx_timer,
193 			       jiffies + transport->rto))
194 			sctp_transport_hold(transport);
195 
196 	/* When a data chunk is sent, reset the heartbeat interval.  */
197 	if (!mod_timer(&transport->hb_timer,
198 		       sctp_transport_timeout(transport)))
199 	    sctp_transport_hold(transport);
200 }
201 
202 /* This transport has been assigned to an association.
203  * Initialize fields from the association or from the sock itself.
204  * Register the reference count in the association.
205  */
sctp_transport_set_owner(struct sctp_transport * transport,struct sctp_association * asoc)206 void sctp_transport_set_owner(struct sctp_transport *transport,
207 			      struct sctp_association *asoc)
208 {
209 	transport->asoc = asoc;
210 	sctp_association_hold(asoc);
211 }
212 
213 /* Initialize the pmtu of a transport. */
sctp_transport_pmtu(struct sctp_transport * transport,struct sock * sk)214 void sctp_transport_pmtu(struct sctp_transport *transport, struct sock *sk)
215 {
216 	/* If we don't have a fresh route, look one up */
217 	if (!transport->dst || transport->dst->obsolete > 1) {
218 		dst_release(transport->dst);
219 		transport->af_specific->get_dst(transport, &transport->saddr,
220 						&transport->fl, sk);
221 	}
222 
223 	if (transport->dst) {
224 		transport->pathmtu = dst_mtu(transport->dst);
225 	} else
226 		transport->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
227 }
228 
sctp_transport_update_pmtu(struct sctp_transport * t,u32 pmtu)229 void sctp_transport_update_pmtu(struct sctp_transport *t, u32 pmtu)
230 {
231 	struct dst_entry *dst;
232 
233 	if (unlikely(pmtu < SCTP_DEFAULT_MINSEGMENT)) {
234 		pr_warn("%s: Reported pmtu %d too low, using default minimum of %d\n",
235 			__func__, pmtu,
236 			SCTP_DEFAULT_MINSEGMENT);
237 		/* Use default minimum segment size and disable
238 		 * pmtu discovery on this transport.
239 		 */
240 		t->pathmtu = SCTP_DEFAULT_MINSEGMENT;
241 	} else {
242 		t->pathmtu = pmtu;
243 	}
244 
245 	dst = sctp_transport_dst_check(t);
246 	if (dst)
247 		dst->ops->update_pmtu(dst, pmtu);
248 }
249 
250 /* Caches the dst entry and source address for a transport's destination
251  * address.
252  */
sctp_transport_route(struct sctp_transport * transport,union sctp_addr * saddr,struct sctp_sock * opt)253 void sctp_transport_route(struct sctp_transport *transport,
254 			  union sctp_addr *saddr, struct sctp_sock *opt)
255 {
256 	struct sctp_association *asoc = transport->asoc;
257 	struct sctp_af *af = transport->af_specific;
258 
259 	af->get_dst(transport, saddr, &transport->fl, sctp_opt2sk(opt));
260 
261 	if (saddr)
262 		memcpy(&transport->saddr, saddr, sizeof(union sctp_addr));
263 	else
264 		af->get_saddr(opt, transport, &transport->fl);
265 
266 	if ((transport->param_flags & SPP_PMTUD_DISABLE) && transport->pathmtu) {
267 		return;
268 	}
269 	if (transport->dst) {
270 		transport->pathmtu = dst_mtu(transport->dst);
271 
272 		/* Initialize sk->sk_rcv_saddr, if the transport is the
273 		 * association's active path for getsockname().
274 		 */
275 		if (asoc && (!asoc->peer.primary_path ||
276 				(transport == asoc->peer.active_path)))
277 			opt->pf->af->to_sk_saddr(&transport->saddr,
278 						 asoc->base.sk);
279 	} else
280 		transport->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
281 }
282 
283 /* Hold a reference to a transport.  */
sctp_transport_hold(struct sctp_transport * transport)284 void sctp_transport_hold(struct sctp_transport *transport)
285 {
286 	atomic_inc(&transport->refcnt);
287 }
288 
289 /* Release a reference to a transport and clean up
290  * if there are no more references.
291  */
sctp_transport_put(struct sctp_transport * transport)292 void sctp_transport_put(struct sctp_transport *transport)
293 {
294 	if (atomic_dec_and_test(&transport->refcnt))
295 		sctp_transport_destroy(transport);
296 }
297 
298 /* Update transport's RTO based on the newly calculated RTT. */
sctp_transport_update_rto(struct sctp_transport * tp,__u32 rtt)299 void sctp_transport_update_rto(struct sctp_transport *tp, __u32 rtt)
300 {
301 	/* Check for valid transport.  */
302 	SCTP_ASSERT(tp, "NULL transport", return);
303 
304 	/* We should not be doing any RTO updates unless rto_pending is set.  */
305 	SCTP_ASSERT(tp->rto_pending, "rto_pending not set", return);
306 
307 	if (tp->rttvar || tp->srtt) {
308 		/* 6.3.1 C3) When a new RTT measurement R' is made, set
309 		 * RTTVAR <- (1 - RTO.Beta) * RTTVAR + RTO.Beta * |SRTT - R'|
310 		 * SRTT <- (1 - RTO.Alpha) * SRTT + RTO.Alpha * R'
311 		 */
312 
313 		/* Note:  The above algorithm has been rewritten to
314 		 * express rto_beta and rto_alpha as inverse powers
315 		 * of two.
316 		 * For example, assuming the default value of RTO.Alpha of
317 		 * 1/8, rto_alpha would be expressed as 3.
318 		 */
319 		tp->rttvar = tp->rttvar - (tp->rttvar >> sctp_rto_beta)
320 			+ ((abs(tp->srtt - rtt)) >> sctp_rto_beta);
321 		tp->srtt = tp->srtt - (tp->srtt >> sctp_rto_alpha)
322 			+ (rtt >> sctp_rto_alpha);
323 	} else {
324 		/* 6.3.1 C2) When the first RTT measurement R is made, set
325 		 * SRTT <- R, RTTVAR <- R/2.
326 		 */
327 		tp->srtt = rtt;
328 		tp->rttvar = rtt >> 1;
329 	}
330 
331 	/* 6.3.1 G1) Whenever RTTVAR is computed, if RTTVAR = 0, then
332 	 * adjust RTTVAR <- G, where G is the CLOCK GRANULARITY.
333 	 */
334 	if (tp->rttvar == 0)
335 		tp->rttvar = SCTP_CLOCK_GRANULARITY;
336 
337 	/* 6.3.1 C3) After the computation, update RTO <- SRTT + 4 * RTTVAR. */
338 	tp->rto = tp->srtt + (tp->rttvar << 2);
339 
340 	/* 6.3.1 C6) Whenever RTO is computed, if it is less than RTO.Min
341 	 * seconds then it is rounded up to RTO.Min seconds.
342 	 */
343 	if (tp->rto < tp->asoc->rto_min)
344 		tp->rto = tp->asoc->rto_min;
345 
346 	/* 6.3.1 C7) A maximum value may be placed on RTO provided it is
347 	 * at least RTO.max seconds.
348 	 */
349 	if (tp->rto > tp->asoc->rto_max)
350 		tp->rto = tp->asoc->rto_max;
351 
352 	tp->rtt = rtt;
353 
354 	/* Reset rto_pending so that a new RTT measurement is started when a
355 	 * new data chunk is sent.
356 	 */
357 	tp->rto_pending = 0;
358 
359 	SCTP_DEBUG_PRINTK("%s: transport: %p, rtt: %d, srtt: %d "
360 			  "rttvar: %d, rto: %ld\n", __func__,
361 			  tp, rtt, tp->srtt, tp->rttvar, tp->rto);
362 }
363 
364 /* This routine updates the transport's cwnd and partial_bytes_acked
365  * parameters based on the bytes acked in the received SACK.
366  */
sctp_transport_raise_cwnd(struct sctp_transport * transport,__u32 sack_ctsn,__u32 bytes_acked)367 void sctp_transport_raise_cwnd(struct sctp_transport *transport,
368 			       __u32 sack_ctsn, __u32 bytes_acked)
369 {
370 	struct sctp_association *asoc = transport->asoc;
371 	__u32 cwnd, ssthresh, flight_size, pba, pmtu;
372 
373 	cwnd = transport->cwnd;
374 	flight_size = transport->flight_size;
375 
376 	/* See if we need to exit Fast Recovery first */
377 	if (asoc->fast_recovery &&
378 	    TSN_lte(asoc->fast_recovery_exit, sack_ctsn))
379 		asoc->fast_recovery = 0;
380 
381 	/* The appropriate cwnd increase algorithm is performed if, and only
382 	 * if the cumulative TSN whould advanced and the congestion window is
383 	 * being fully utilized.
384 	 */
385 	if (TSN_lte(sack_ctsn, transport->asoc->ctsn_ack_point) ||
386 	    (flight_size < cwnd))
387 		return;
388 
389 	ssthresh = transport->ssthresh;
390 	pba = transport->partial_bytes_acked;
391 	pmtu = transport->asoc->pathmtu;
392 
393 	if (cwnd <= ssthresh) {
394 		/* RFC 4960 7.2.1
395 		 * o  When cwnd is less than or equal to ssthresh, an SCTP
396 		 *    endpoint MUST use the slow-start algorithm to increase
397 		 *    cwnd only if the current congestion window is being fully
398 		 *    utilized, an incoming SACK advances the Cumulative TSN
399 		 *    Ack Point, and the data sender is not in Fast Recovery.
400 		 *    Only when these three conditions are met can the cwnd be
401 		 *    increased; otherwise, the cwnd MUST not be increased.
402 		 *    If these conditions are met, then cwnd MUST be increased
403 		 *    by, at most, the lesser of 1) the total size of the
404 		 *    previously outstanding DATA chunk(s) acknowledged, and
405 		 *    2) the destination's path MTU.  This upper bound protects
406 		 *    against the ACK-Splitting attack outlined in [SAVAGE99].
407 		 */
408 		if (asoc->fast_recovery)
409 			return;
410 
411 		if (bytes_acked > pmtu)
412 			cwnd += pmtu;
413 		else
414 			cwnd += bytes_acked;
415 		SCTP_DEBUG_PRINTK("%s: SLOW START: transport: %p, "
416 				  "bytes_acked: %d, cwnd: %d, ssthresh: %d, "
417 				  "flight_size: %d, pba: %d\n",
418 				  __func__,
419 				  transport, bytes_acked, cwnd,
420 				  ssthresh, flight_size, pba);
421 	} else {
422 		/* RFC 2960 7.2.2 Whenever cwnd is greater than ssthresh,
423 		 * upon each SACK arrival that advances the Cumulative TSN Ack
424 		 * Point, increase partial_bytes_acked by the total number of
425 		 * bytes of all new chunks acknowledged in that SACK including
426 		 * chunks acknowledged by the new Cumulative TSN Ack and by
427 		 * Gap Ack Blocks.
428 		 *
429 		 * When partial_bytes_acked is equal to or greater than cwnd
430 		 * and before the arrival of the SACK the sender had cwnd or
431 		 * more bytes of data outstanding (i.e., before arrival of the
432 		 * SACK, flightsize was greater than or equal to cwnd),
433 		 * increase cwnd by MTU, and reset partial_bytes_acked to
434 		 * (partial_bytes_acked - cwnd).
435 		 */
436 		pba += bytes_acked;
437 		if (pba >= cwnd) {
438 			cwnd += pmtu;
439 			pba = ((cwnd < pba) ? (pba - cwnd) : 0);
440 		}
441 		SCTP_DEBUG_PRINTK("%s: CONGESTION AVOIDANCE: "
442 				  "transport: %p, bytes_acked: %d, cwnd: %d, "
443 				  "ssthresh: %d, flight_size: %d, pba: %d\n",
444 				  __func__,
445 				  transport, bytes_acked, cwnd,
446 				  ssthresh, flight_size, pba);
447 	}
448 
449 	transport->cwnd = cwnd;
450 	transport->partial_bytes_acked = pba;
451 }
452 
453 /* This routine is used to lower the transport's cwnd when congestion is
454  * detected.
455  */
sctp_transport_lower_cwnd(struct sctp_transport * transport,sctp_lower_cwnd_t reason)456 void sctp_transport_lower_cwnd(struct sctp_transport *transport,
457 			       sctp_lower_cwnd_t reason)
458 {
459 	struct sctp_association *asoc = transport->asoc;
460 
461 	switch (reason) {
462 	case SCTP_LOWER_CWND_T3_RTX:
463 		/* RFC 2960 Section 7.2.3, sctpimpguide
464 		 * When the T3-rtx timer expires on an address, SCTP should
465 		 * perform slow start by:
466 		 *      ssthresh = max(cwnd/2, 4*MTU)
467 		 *      cwnd = 1*MTU
468 		 *      partial_bytes_acked = 0
469 		 */
470 		transport->ssthresh = max(transport->cwnd/2,
471 					  4*asoc->pathmtu);
472 		transport->cwnd = asoc->pathmtu;
473 
474 		/* T3-rtx also clears fast recovery */
475 		asoc->fast_recovery = 0;
476 		break;
477 
478 	case SCTP_LOWER_CWND_FAST_RTX:
479 		/* RFC 2960 7.2.4 Adjust the ssthresh and cwnd of the
480 		 * destination address(es) to which the missing DATA chunks
481 		 * were last sent, according to the formula described in
482 		 * Section 7.2.3.
483 		 *
484 		 * RFC 2960 7.2.3, sctpimpguide Upon detection of packet
485 		 * losses from SACK (see Section 7.2.4), An endpoint
486 		 * should do the following:
487 		 *      ssthresh = max(cwnd/2, 4*MTU)
488 		 *      cwnd = ssthresh
489 		 *      partial_bytes_acked = 0
490 		 */
491 		if (asoc->fast_recovery)
492 			return;
493 
494 		/* Mark Fast recovery */
495 		asoc->fast_recovery = 1;
496 		asoc->fast_recovery_exit = asoc->next_tsn - 1;
497 
498 		transport->ssthresh = max(transport->cwnd/2,
499 					  4*asoc->pathmtu);
500 		transport->cwnd = transport->ssthresh;
501 		break;
502 
503 	case SCTP_LOWER_CWND_ECNE:
504 		/* RFC 2481 Section 6.1.2.
505 		 * If the sender receives an ECN-Echo ACK packet
506 		 * then the sender knows that congestion was encountered in the
507 		 * network on the path from the sender to the receiver. The
508 		 * indication of congestion should be treated just as a
509 		 * congestion loss in non-ECN Capable TCP. That is, the TCP
510 		 * source halves the congestion window "cwnd" and reduces the
511 		 * slow start threshold "ssthresh".
512 		 * A critical condition is that TCP does not react to
513 		 * congestion indications more than once every window of
514 		 * data (or more loosely more than once every round-trip time).
515 		 */
516 		if (time_after(jiffies, transport->last_time_ecne_reduced +
517 					transport->rtt)) {
518 			transport->ssthresh = max(transport->cwnd/2,
519 						  4*asoc->pathmtu);
520 			transport->cwnd = transport->ssthresh;
521 			transport->last_time_ecne_reduced = jiffies;
522 		}
523 		break;
524 
525 	case SCTP_LOWER_CWND_INACTIVE:
526 		/* RFC 2960 Section 7.2.1, sctpimpguide
527 		 * When the endpoint does not transmit data on a given
528 		 * transport address, the cwnd of the transport address
529 		 * should be adjusted to max(cwnd/2, 4*MTU) per RTO.
530 		 * NOTE: Although the draft recommends that this check needs
531 		 * to be done every RTO interval, we do it every hearbeat
532 		 * interval.
533 		 */
534 		transport->cwnd = max(transport->cwnd/2,
535 					 4*asoc->pathmtu);
536 		break;
537 	}
538 
539 	transport->partial_bytes_acked = 0;
540 	SCTP_DEBUG_PRINTK("%s: transport: %p reason: %d cwnd: "
541 			  "%d ssthresh: %d\n", __func__,
542 			  transport, reason,
543 			  transport->cwnd, transport->ssthresh);
544 }
545 
546 /* Apply Max.Burst limit to the congestion window:
547  * sctpimpguide-05 2.14.2
548  * D) When the time comes for the sender to
549  * transmit new DATA chunks, the protocol parameter Max.Burst MUST
550  * first be applied to limit how many new DATA chunks may be sent.
551  * The limit is applied by adjusting cwnd as follows:
552  * 	if ((flightsize+ Max.Burst * MTU) < cwnd)
553  * 		cwnd = flightsize + Max.Burst * MTU
554  */
555 
sctp_transport_burst_limited(struct sctp_transport * t)556 void sctp_transport_burst_limited(struct sctp_transport *t)
557 {
558 	struct sctp_association *asoc = t->asoc;
559 	u32 old_cwnd = t->cwnd;
560 	u32 max_burst_bytes;
561 
562 	if (t->burst_limited)
563 		return;
564 
565 	max_burst_bytes = t->flight_size + (asoc->max_burst * asoc->pathmtu);
566 	if (max_burst_bytes < old_cwnd) {
567 		t->cwnd = max_burst_bytes;
568 		t->burst_limited = old_cwnd;
569 	}
570 }
571 
572 /* Restore the old cwnd congestion window, after the burst had it's
573  * desired effect.
574  */
sctp_transport_burst_reset(struct sctp_transport * t)575 void sctp_transport_burst_reset(struct sctp_transport *t)
576 {
577 	if (t->burst_limited) {
578 		t->cwnd = t->burst_limited;
579 		t->burst_limited = 0;
580 	}
581 }
582 
583 /* What is the next timeout value for this transport? */
sctp_transport_timeout(struct sctp_transport * t)584 unsigned long sctp_transport_timeout(struct sctp_transport *t)
585 {
586 	unsigned long timeout;
587 	timeout = t->rto + sctp_jitter(t->rto);
588 	if (t->state != SCTP_UNCONFIRMED)
589 		timeout += t->hbinterval;
590 	timeout += jiffies;
591 	return timeout;
592 }
593 
594 /* Reset transport variables to their initial values */
sctp_transport_reset(struct sctp_transport * t)595 void sctp_transport_reset(struct sctp_transport *t)
596 {
597 	struct sctp_association *asoc = t->asoc;
598 
599 	/* RFC 2960 (bis), Section 5.2.4
600 	 * All the congestion control parameters (e.g., cwnd, ssthresh)
601 	 * related to this peer MUST be reset to their initial values
602 	 * (see Section 6.2.1)
603 	 */
604 	t->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
605 	t->burst_limited = 0;
606 	t->ssthresh = asoc->peer.i.a_rwnd;
607 	t->rto = asoc->rto_initial;
608 	t->rtt = 0;
609 	t->srtt = 0;
610 	t->rttvar = 0;
611 
612 	/* Reset these additional varibles so that we have a clean
613 	 * slate.
614 	 */
615 	t->partial_bytes_acked = 0;
616 	t->flight_size = 0;
617 	t->error_count = 0;
618 	t->rto_pending = 0;
619 	t->hb_sent = 0;
620 
621 	/* Initialize the state information for SFR-CACC */
622 	t->cacc.changeover_active = 0;
623 	t->cacc.cycling_changeover = 0;
624 	t->cacc.next_tsn_at_change = 0;
625 	t->cacc.cacc_saw_newack = 0;
626 }
627 
628 /* Schedule retransmission on the given transport */
sctp_transport_immediate_rtx(struct sctp_transport * t)629 void sctp_transport_immediate_rtx(struct sctp_transport *t)
630 {
631 	/* Stop pending T3_rtx_timer */
632 	if (timer_pending(&t->T3_rtx_timer)) {
633 		(void)del_timer(&t->T3_rtx_timer);
634 		sctp_transport_put(t);
635 	}
636 	sctp_retransmit(&t->asoc->outqueue, t, SCTP_RTXR_T3_RTX);
637 	if (!timer_pending(&t->T3_rtx_timer)) {
638 		if (!mod_timer(&t->T3_rtx_timer, jiffies + t->rto))
639 			sctp_transport_hold(t);
640 	}
641 	return;
642 }
643