1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
5  * Copyright 2007-2010	Johannes Berg <johannes@sipsolutions.net>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <net/mac80211.h>
21 #include <net/ieee80211_radiotap.h>
22 #include <asm/unaligned.h>
23 
24 #include "ieee80211_i.h"
25 #include "driver-ops.h"
26 #include "led.h"
27 #include "mesh.h"
28 #include "wep.h"
29 #include "wpa.h"
30 #include "tkip.h"
31 #include "wme.h"
32 #include "rate.h"
33 
34 /*
35  * monitor mode reception
36  *
37  * This function cleans up the SKB, i.e. it removes all the stuff
38  * only useful for monitoring.
39  */
remove_monitor_info(struct ieee80211_local * local,struct sk_buff * skb)40 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
41 					   struct sk_buff *skb)
42 {
43 	if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
44 		if (likely(skb->len > FCS_LEN))
45 			__pskb_trim(skb, skb->len - FCS_LEN);
46 		else {
47 			/* driver bug */
48 			WARN_ON(1);
49 			dev_kfree_skb(skb);
50 			skb = NULL;
51 		}
52 	}
53 
54 	return skb;
55 }
56 
should_drop_frame(struct sk_buff * skb,int present_fcs_len)57 static inline int should_drop_frame(struct sk_buff *skb,
58 				    int present_fcs_len)
59 {
60 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
61 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
62 
63 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
64 		return 1;
65 	if (unlikely(skb->len < 16 + present_fcs_len))
66 		return 1;
67 	if (ieee80211_is_ctl(hdr->frame_control) &&
68 	    !ieee80211_is_pspoll(hdr->frame_control) &&
69 	    !ieee80211_is_back_req(hdr->frame_control))
70 		return 1;
71 	return 0;
72 }
73 
74 static int
ieee80211_rx_radiotap_len(struct ieee80211_local * local,struct ieee80211_rx_status * status)75 ieee80211_rx_radiotap_len(struct ieee80211_local *local,
76 			  struct ieee80211_rx_status *status)
77 {
78 	int len;
79 
80 	/* always present fields */
81 	len = sizeof(struct ieee80211_radiotap_header) + 9;
82 
83 	if (status->flag & RX_FLAG_MACTIME_MPDU)
84 		len += 8;
85 	if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
86 		len += 1;
87 
88 	if (len & 1) /* padding for RX_FLAGS if necessary */
89 		len++;
90 
91 	if (status->flag & RX_FLAG_HT) /* HT info */
92 		len += 3;
93 
94 	return len;
95 }
96 
97 /*
98  * ieee80211_add_rx_radiotap_header - add radiotap header
99  *
100  * add a radiotap header containing all the fields which the hardware provided.
101  */
102 static void
ieee80211_add_rx_radiotap_header(struct ieee80211_local * local,struct sk_buff * skb,struct ieee80211_rate * rate,int rtap_len,bool has_fcs)103 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
104 				 struct sk_buff *skb,
105 				 struct ieee80211_rate *rate,
106 				 int rtap_len, bool has_fcs)
107 {
108 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
109 	struct ieee80211_radiotap_header *rthdr;
110 	unsigned char *pos;
111 	u16 rx_flags = 0;
112 
113 	rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
114 	memset(rthdr, 0, rtap_len);
115 
116 	/* radiotap header, set always present flags */
117 	rthdr->it_present =
118 		cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
119 			    (1 << IEEE80211_RADIOTAP_CHANNEL) |
120 			    (1 << IEEE80211_RADIOTAP_ANTENNA) |
121 			    (1 << IEEE80211_RADIOTAP_RX_FLAGS));
122 	rthdr->it_len = cpu_to_le16(rtap_len);
123 
124 	pos = (unsigned char *)(rthdr+1);
125 
126 	/* the order of the following fields is important */
127 
128 	/* IEEE80211_RADIOTAP_TSFT */
129 	if (status->flag & RX_FLAG_MACTIME_MPDU) {
130 		put_unaligned_le64(status->mactime, pos);
131 		rthdr->it_present |=
132 			cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
133 		pos += 8;
134 	}
135 
136 	/* IEEE80211_RADIOTAP_FLAGS */
137 	if (has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS))
138 		*pos |= IEEE80211_RADIOTAP_F_FCS;
139 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
140 		*pos |= IEEE80211_RADIOTAP_F_BADFCS;
141 	if (status->flag & RX_FLAG_SHORTPRE)
142 		*pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
143 	pos++;
144 
145 	/* IEEE80211_RADIOTAP_RATE */
146 	if (!rate || status->flag & RX_FLAG_HT) {
147 		/*
148 		 * Without rate information don't add it. If we have,
149 		 * MCS information is a separate field in radiotap,
150 		 * added below. The byte here is needed as padding
151 		 * for the channel though, so initialise it to 0.
152 		 */
153 		*pos = 0;
154 	} else {
155 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
156 		*pos = rate->bitrate / 5;
157 	}
158 	pos++;
159 
160 	/* IEEE80211_RADIOTAP_CHANNEL */
161 	put_unaligned_le16(status->freq, pos);
162 	pos += 2;
163 	if (status->band == IEEE80211_BAND_5GHZ)
164 		put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ,
165 				   pos);
166 	else if (status->flag & RX_FLAG_HT)
167 		put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ,
168 				   pos);
169 	else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
170 		put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ,
171 				   pos);
172 	else if (rate)
173 		put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ,
174 				   pos);
175 	else
176 		put_unaligned_le16(IEEE80211_CHAN_2GHZ, pos);
177 	pos += 2;
178 
179 	/* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
180 	if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM &&
181 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
182 		*pos = status->signal;
183 		rthdr->it_present |=
184 			cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
185 		pos++;
186 	}
187 
188 	/* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
189 
190 	/* IEEE80211_RADIOTAP_ANTENNA */
191 	*pos = status->antenna;
192 	pos++;
193 
194 	/* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
195 
196 	/* IEEE80211_RADIOTAP_RX_FLAGS */
197 	/* ensure 2 byte alignment for the 2 byte field as required */
198 	if ((pos - (u8 *)rthdr) & 1)
199 		pos++;
200 	if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
201 		rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
202 	put_unaligned_le16(rx_flags, pos);
203 	pos += 2;
204 
205 	if (status->flag & RX_FLAG_HT) {
206 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
207 		*pos++ = IEEE80211_RADIOTAP_MCS_HAVE_MCS |
208 			 IEEE80211_RADIOTAP_MCS_HAVE_GI |
209 			 IEEE80211_RADIOTAP_MCS_HAVE_BW;
210 		*pos = 0;
211 		if (status->flag & RX_FLAG_SHORT_GI)
212 			*pos |= IEEE80211_RADIOTAP_MCS_SGI;
213 		if (status->flag & RX_FLAG_40MHZ)
214 			*pos |= IEEE80211_RADIOTAP_MCS_BW_40;
215 		pos++;
216 		*pos++ = status->rate_idx;
217 	}
218 }
219 
220 /*
221  * This function copies a received frame to all monitor interfaces and
222  * returns a cleaned-up SKB that no longer includes the FCS nor the
223  * radiotap header the driver might have added.
224  */
225 static struct sk_buff *
ieee80211_rx_monitor(struct ieee80211_local * local,struct sk_buff * origskb,struct ieee80211_rate * rate)226 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
227 		     struct ieee80211_rate *rate)
228 {
229 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
230 	struct ieee80211_sub_if_data *sdata;
231 	int needed_headroom;
232 	struct sk_buff *skb, *skb2;
233 	struct net_device *prev_dev = NULL;
234 	int present_fcs_len = 0;
235 
236 	/*
237 	 * First, we may need to make a copy of the skb because
238 	 *  (1) we need to modify it for radiotap (if not present), and
239 	 *  (2) the other RX handlers will modify the skb we got.
240 	 *
241 	 * We don't need to, of course, if we aren't going to return
242 	 * the SKB because it has a bad FCS/PLCP checksum.
243 	 */
244 
245 	/* room for the radiotap header based on driver features */
246 	needed_headroom = ieee80211_rx_radiotap_len(local, status);
247 
248 	if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
249 		present_fcs_len = FCS_LEN;
250 
251 	/* make sure hdr->frame_control is on the linear part */
252 	if (!pskb_may_pull(origskb, 2)) {
253 		dev_kfree_skb(origskb);
254 		return NULL;
255 	}
256 
257 	if (!local->monitors) {
258 		if (should_drop_frame(origskb, present_fcs_len)) {
259 			dev_kfree_skb(origskb);
260 			return NULL;
261 		}
262 
263 		return remove_monitor_info(local, origskb);
264 	}
265 
266 	if (should_drop_frame(origskb, present_fcs_len)) {
267 		/* only need to expand headroom if necessary */
268 		skb = origskb;
269 		origskb = NULL;
270 
271 		/*
272 		 * This shouldn't trigger often because most devices have an
273 		 * RX header they pull before we get here, and that should
274 		 * be big enough for our radiotap information. We should
275 		 * probably export the length to drivers so that we can have
276 		 * them allocate enough headroom to start with.
277 		 */
278 		if (skb_headroom(skb) < needed_headroom &&
279 		    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
280 			dev_kfree_skb(skb);
281 			return NULL;
282 		}
283 	} else {
284 		/*
285 		 * Need to make a copy and possibly remove radiotap header
286 		 * and FCS from the original.
287 		 */
288 		skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
289 
290 		origskb = remove_monitor_info(local, origskb);
291 
292 		if (!skb)
293 			return origskb;
294 	}
295 
296 	/* prepend radiotap information */
297 	ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
298 					 true);
299 
300 	skb_reset_mac_header(skb);
301 	skb->ip_summed = CHECKSUM_UNNECESSARY;
302 	skb->pkt_type = PACKET_OTHERHOST;
303 	skb->protocol = htons(ETH_P_802_2);
304 
305 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
306 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
307 			continue;
308 
309 		if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
310 			continue;
311 
312 		if (!ieee80211_sdata_running(sdata))
313 			continue;
314 
315 		if (prev_dev) {
316 			skb2 = skb_clone(skb, GFP_ATOMIC);
317 			if (skb2) {
318 				skb2->dev = prev_dev;
319 				netif_receive_skb(skb2);
320 			}
321 		}
322 
323 		prev_dev = sdata->dev;
324 		sdata->dev->stats.rx_packets++;
325 		sdata->dev->stats.rx_bytes += skb->len;
326 	}
327 
328 	if (prev_dev) {
329 		skb->dev = prev_dev;
330 		netif_receive_skb(skb);
331 	} else
332 		dev_kfree_skb(skb);
333 
334 	return origskb;
335 }
336 
337 
ieee80211_parse_qos(struct ieee80211_rx_data * rx)338 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
339 {
340 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
341 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
342 	int tid, seqno_idx, security_idx;
343 
344 	/* does the frame have a qos control field? */
345 	if (ieee80211_is_data_qos(hdr->frame_control)) {
346 		u8 *qc = ieee80211_get_qos_ctl(hdr);
347 		/* frame has qos control */
348 		tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
349 		if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
350 			status->rx_flags |= IEEE80211_RX_AMSDU;
351 
352 		seqno_idx = tid;
353 		security_idx = tid;
354 	} else {
355 		/*
356 		 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
357 		 *
358 		 *	Sequence numbers for management frames, QoS data
359 		 *	frames with a broadcast/multicast address in the
360 		 *	Address 1 field, and all non-QoS data frames sent
361 		 *	by QoS STAs are assigned using an additional single
362 		 *	modulo-4096 counter, [...]
363 		 *
364 		 * We also use that counter for non-QoS STAs.
365 		 */
366 		seqno_idx = NUM_RX_DATA_QUEUES;
367 		security_idx = 0;
368 		if (ieee80211_is_mgmt(hdr->frame_control))
369 			security_idx = NUM_RX_DATA_QUEUES;
370 		tid = 0;
371 	}
372 
373 	rx->seqno_idx = seqno_idx;
374 	rx->security_idx = security_idx;
375 	/* Set skb->priority to 1d tag if highest order bit of TID is not set.
376 	 * For now, set skb->priority to 0 for other cases. */
377 	rx->skb->priority = (tid > 7) ? 0 : tid;
378 }
379 
380 /**
381  * DOC: Packet alignment
382  *
383  * Drivers always need to pass packets that are aligned to two-byte boundaries
384  * to the stack.
385  *
386  * Additionally, should, if possible, align the payload data in a way that
387  * guarantees that the contained IP header is aligned to a four-byte
388  * boundary. In the case of regular frames, this simply means aligning the
389  * payload to a four-byte boundary (because either the IP header is directly
390  * contained, or IV/RFC1042 headers that have a length divisible by four are
391  * in front of it).  If the payload data is not properly aligned and the
392  * architecture doesn't support efficient unaligned operations, mac80211
393  * will align the data.
394  *
395  * With A-MSDU frames, however, the payload data address must yield two modulo
396  * four because there are 14-byte 802.3 headers within the A-MSDU frames that
397  * push the IP header further back to a multiple of four again. Thankfully, the
398  * specs were sane enough this time around to require padding each A-MSDU
399  * subframe to a length that is a multiple of four.
400  *
401  * Padding like Atheros hardware adds which is between the 802.11 header and
402  * the payload is not supported, the driver is required to move the 802.11
403  * header to be directly in front of the payload in that case.
404  */
ieee80211_verify_alignment(struct ieee80211_rx_data * rx)405 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
406 {
407 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
408 	WARN_ONCE((unsigned long)rx->skb->data & 1,
409 		  "unaligned packet at 0x%p\n", rx->skb->data);
410 #endif
411 }
412 
413 
414 /* rx handlers */
415 
416 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_passive_scan(struct ieee80211_rx_data * rx)417 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data *rx)
418 {
419 	struct ieee80211_local *local = rx->local;
420 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
421 	struct sk_buff *skb = rx->skb;
422 
423 	if (likely(!(status->rx_flags & IEEE80211_RX_IN_SCAN) &&
424 		   !local->sched_scanning))
425 		return RX_CONTINUE;
426 
427 	if (test_bit(SCAN_HW_SCANNING, &local->scanning) ||
428 	    test_bit(SCAN_SW_SCANNING, &local->scanning) ||
429 	    local->sched_scanning)
430 		return ieee80211_scan_rx(rx->sdata, skb);
431 
432 	/* scanning finished during invoking of handlers */
433 	I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
434 	return RX_DROP_UNUSABLE;
435 }
436 
437 
ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff * skb)438 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
439 {
440 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
441 
442 	if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1))
443 		return 0;
444 
445 	return ieee80211_is_robust_mgmt_frame(hdr);
446 }
447 
448 
ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff * skb)449 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
450 {
451 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
452 
453 	if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1))
454 		return 0;
455 
456 	return ieee80211_is_robust_mgmt_frame(hdr);
457 }
458 
459 
460 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
ieee80211_get_mmie_keyidx(struct sk_buff * skb)461 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
462 {
463 	struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
464 	struct ieee80211_mmie *mmie;
465 
466 	if (skb->len < 24 + sizeof(*mmie) ||
467 	    !is_multicast_ether_addr(hdr->da))
468 		return -1;
469 
470 	if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr))
471 		return -1; /* not a robust management frame */
472 
473 	mmie = (struct ieee80211_mmie *)
474 		(skb->data + skb->len - sizeof(*mmie));
475 	if (mmie->element_id != WLAN_EID_MMIE ||
476 	    mmie->length != sizeof(*mmie) - 2)
477 		return -1;
478 
479 	return le16_to_cpu(mmie->key_id);
480 }
481 
482 
483 static ieee80211_rx_result
ieee80211_rx_mesh_check(struct ieee80211_rx_data * rx)484 ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
485 {
486 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
487 	char *dev_addr = rx->sdata->vif.addr;
488 
489 	if (ieee80211_is_data(hdr->frame_control)) {
490 		if (is_multicast_ether_addr(hdr->addr1)) {
491 			if (ieee80211_has_tods(hdr->frame_control) ||
492 				!ieee80211_has_fromds(hdr->frame_control))
493 				return RX_DROP_MONITOR;
494 			if (compare_ether_addr(hdr->addr3, dev_addr) == 0)
495 				return RX_DROP_MONITOR;
496 		} else {
497 			if (!ieee80211_has_a4(hdr->frame_control))
498 				return RX_DROP_MONITOR;
499 			if (compare_ether_addr(hdr->addr4, dev_addr) == 0)
500 				return RX_DROP_MONITOR;
501 		}
502 	}
503 
504 	/* If there is not an established peer link and this is not a peer link
505 	 * establisment frame, beacon or probe, drop the frame.
506 	 */
507 
508 	if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
509 		struct ieee80211_mgmt *mgmt;
510 
511 		if (!ieee80211_is_mgmt(hdr->frame_control))
512 			return RX_DROP_MONITOR;
513 
514 		if (ieee80211_is_action(hdr->frame_control)) {
515 			u8 category;
516 
517 			/* make sure category field is present */
518 			if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
519 				return RX_DROP_MONITOR;
520 
521 			mgmt = (struct ieee80211_mgmt *)hdr;
522 			category = mgmt->u.action.category;
523 			if (category != WLAN_CATEGORY_MESH_ACTION &&
524 				category != WLAN_CATEGORY_SELF_PROTECTED)
525 				return RX_DROP_MONITOR;
526 			return RX_CONTINUE;
527 		}
528 
529 		if (ieee80211_is_probe_req(hdr->frame_control) ||
530 		    ieee80211_is_probe_resp(hdr->frame_control) ||
531 		    ieee80211_is_beacon(hdr->frame_control) ||
532 		    ieee80211_is_auth(hdr->frame_control))
533 			return RX_CONTINUE;
534 
535 		return RX_DROP_MONITOR;
536 
537 	}
538 
539 	return RX_CONTINUE;
540 }
541 
542 #define SEQ_MODULO 0x1000
543 #define SEQ_MASK   0xfff
544 
seq_less(u16 sq1,u16 sq2)545 static inline int seq_less(u16 sq1, u16 sq2)
546 {
547 	return ((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1);
548 }
549 
seq_inc(u16 sq)550 static inline u16 seq_inc(u16 sq)
551 {
552 	return (sq + 1) & SEQ_MASK;
553 }
554 
seq_sub(u16 sq1,u16 sq2)555 static inline u16 seq_sub(u16 sq1, u16 sq2)
556 {
557 	return (sq1 - sq2) & SEQ_MASK;
558 }
559 
560 
ieee80211_release_reorder_frame(struct ieee80211_hw * hw,struct tid_ampdu_rx * tid_agg_rx,int index)561 static void ieee80211_release_reorder_frame(struct ieee80211_hw *hw,
562 					    struct tid_ampdu_rx *tid_agg_rx,
563 					    int index)
564 {
565 	struct ieee80211_local *local = hw_to_local(hw);
566 	struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
567 	struct ieee80211_rx_status *status;
568 
569 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
570 
571 	if (!skb)
572 		goto no_frame;
573 
574 	/* release the frame from the reorder ring buffer */
575 	tid_agg_rx->stored_mpdu_num--;
576 	tid_agg_rx->reorder_buf[index] = NULL;
577 	status = IEEE80211_SKB_RXCB(skb);
578 	status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
579 	skb_queue_tail(&local->rx_skb_queue, skb);
580 
581 no_frame:
582 	tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
583 }
584 
ieee80211_release_reorder_frames(struct ieee80211_hw * hw,struct tid_ampdu_rx * tid_agg_rx,u16 head_seq_num)585 static void ieee80211_release_reorder_frames(struct ieee80211_hw *hw,
586 					     struct tid_ampdu_rx *tid_agg_rx,
587 					     u16 head_seq_num)
588 {
589 	int index;
590 
591 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
592 
593 	while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) {
594 		index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
595 							tid_agg_rx->buf_size;
596 		ieee80211_release_reorder_frame(hw, tid_agg_rx, index);
597 	}
598 }
599 
600 /*
601  * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
602  * the skb was added to the buffer longer than this time ago, the earlier
603  * frames that have not yet been received are assumed to be lost and the skb
604  * can be released for processing. This may also release other skb's from the
605  * reorder buffer if there are no additional gaps between the frames.
606  *
607  * Callers must hold tid_agg_rx->reorder_lock.
608  */
609 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
610 
ieee80211_sta_reorder_release(struct ieee80211_hw * hw,struct tid_ampdu_rx * tid_agg_rx)611 static void ieee80211_sta_reorder_release(struct ieee80211_hw *hw,
612 					  struct tid_ampdu_rx *tid_agg_rx)
613 {
614 	int index, j;
615 
616 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
617 
618 	/* release the buffer until next missing frame */
619 	index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
620 						tid_agg_rx->buf_size;
621 	if (!tid_agg_rx->reorder_buf[index] &&
622 	    tid_agg_rx->stored_mpdu_num) {
623 		/*
624 		 * No buffers ready to be released, but check whether any
625 		 * frames in the reorder buffer have timed out.
626 		 */
627 		int skipped = 1;
628 		for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
629 		     j = (j + 1) % tid_agg_rx->buf_size) {
630 			if (!tid_agg_rx->reorder_buf[j]) {
631 				skipped++;
632 				continue;
633 			}
634 			if (skipped &&
635 			    !time_after(jiffies, tid_agg_rx->reorder_time[j] +
636 					HT_RX_REORDER_BUF_TIMEOUT))
637 				goto set_release_timer;
638 
639 #ifdef CONFIG_MAC80211_HT_DEBUG
640 			if (net_ratelimit())
641 				wiphy_debug(hw->wiphy,
642 					    "release an RX reorder frame due to timeout on earlier frames\n");
643 #endif
644 			ieee80211_release_reorder_frame(hw, tid_agg_rx, j);
645 
646 			/*
647 			 * Increment the head seq# also for the skipped slots.
648 			 */
649 			tid_agg_rx->head_seq_num =
650 				(tid_agg_rx->head_seq_num + skipped) & SEQ_MASK;
651 			skipped = 0;
652 		}
653 	} else while (tid_agg_rx->reorder_buf[index]) {
654 		ieee80211_release_reorder_frame(hw, tid_agg_rx, index);
655 		index =	seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
656 							tid_agg_rx->buf_size;
657 	}
658 
659 	if (tid_agg_rx->stored_mpdu_num) {
660 		j = index = seq_sub(tid_agg_rx->head_seq_num,
661 				    tid_agg_rx->ssn) % tid_agg_rx->buf_size;
662 
663 		for (; j != (index - 1) % tid_agg_rx->buf_size;
664 		     j = (j + 1) % tid_agg_rx->buf_size) {
665 			if (tid_agg_rx->reorder_buf[j])
666 				break;
667 		}
668 
669  set_release_timer:
670 
671 		mod_timer(&tid_agg_rx->reorder_timer,
672 			  tid_agg_rx->reorder_time[j] + 1 +
673 			  HT_RX_REORDER_BUF_TIMEOUT);
674 	} else {
675 		del_timer(&tid_agg_rx->reorder_timer);
676 	}
677 }
678 
679 /*
680  * As this function belongs to the RX path it must be under
681  * rcu_read_lock protection. It returns false if the frame
682  * can be processed immediately, true if it was consumed.
683  */
ieee80211_sta_manage_reorder_buf(struct ieee80211_hw * hw,struct tid_ampdu_rx * tid_agg_rx,struct sk_buff * skb)684 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
685 					     struct tid_ampdu_rx *tid_agg_rx,
686 					     struct sk_buff *skb)
687 {
688 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
689 	u16 sc = le16_to_cpu(hdr->seq_ctrl);
690 	u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
691 	u16 head_seq_num, buf_size;
692 	int index;
693 	bool ret = true;
694 
695 	spin_lock(&tid_agg_rx->reorder_lock);
696 
697 	buf_size = tid_agg_rx->buf_size;
698 	head_seq_num = tid_agg_rx->head_seq_num;
699 
700 	/* frame with out of date sequence number */
701 	if (seq_less(mpdu_seq_num, head_seq_num)) {
702 		dev_kfree_skb(skb);
703 		goto out;
704 	}
705 
706 	/*
707 	 * If frame the sequence number exceeds our buffering window
708 	 * size release some previous frames to make room for this one.
709 	 */
710 	if (!seq_less(mpdu_seq_num, head_seq_num + buf_size)) {
711 		head_seq_num = seq_inc(seq_sub(mpdu_seq_num, buf_size));
712 		/* release stored frames up to new head to stack */
713 		ieee80211_release_reorder_frames(hw, tid_agg_rx, head_seq_num);
714 	}
715 
716 	/* Now the new frame is always in the range of the reordering buffer */
717 
718 	index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn) % tid_agg_rx->buf_size;
719 
720 	/* check if we already stored this frame */
721 	if (tid_agg_rx->reorder_buf[index]) {
722 		dev_kfree_skb(skb);
723 		goto out;
724 	}
725 
726 	/*
727 	 * If the current MPDU is in the right order and nothing else
728 	 * is stored we can process it directly, no need to buffer it.
729 	 * If it is first but there's something stored, we may be able
730 	 * to release frames after this one.
731 	 */
732 	if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
733 	    tid_agg_rx->stored_mpdu_num == 0) {
734 		tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
735 		ret = false;
736 		goto out;
737 	}
738 
739 	/* put the frame in the reordering buffer */
740 	tid_agg_rx->reorder_buf[index] = skb;
741 	tid_agg_rx->reorder_time[index] = jiffies;
742 	tid_agg_rx->stored_mpdu_num++;
743 	ieee80211_sta_reorder_release(hw, tid_agg_rx);
744 
745  out:
746 	spin_unlock(&tid_agg_rx->reorder_lock);
747 	return ret;
748 }
749 
750 /*
751  * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
752  * true if the MPDU was buffered, false if it should be processed.
753  */
ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data * rx)754 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx)
755 {
756 	struct sk_buff *skb = rx->skb;
757 	struct ieee80211_local *local = rx->local;
758 	struct ieee80211_hw *hw = &local->hw;
759 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
760 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
761 	struct sta_info *sta = rx->sta;
762 	struct tid_ampdu_rx *tid_agg_rx;
763 	u16 sc;
764 	u8 tid, ack_policy;
765 
766 	if (!ieee80211_is_data_qos(hdr->frame_control) ||
767 	    is_multicast_ether_addr(hdr->addr1))
768 		goto dont_reorder;
769 
770 	/*
771 	 * filter the QoS data rx stream according to
772 	 * STA/TID and check if this STA/TID is on aggregation
773 	 */
774 
775 	if (!sta)
776 		goto dont_reorder;
777 
778 	ack_policy = *ieee80211_get_qos_ctl(hdr) &
779 		     IEEE80211_QOS_CTL_ACK_POLICY_MASK;
780 	tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
781 
782 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
783 	if (!tid_agg_rx)
784 		goto dont_reorder;
785 
786 	/* qos null data frames are excluded */
787 	if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
788 		goto dont_reorder;
789 
790 	/* not part of a BA session */
791 	if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
792 	    ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
793 		goto dont_reorder;
794 
795 	/* not actually part of this BA session */
796 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
797 		goto dont_reorder;
798 
799 	/* new, potentially un-ordered, ampdu frame - process it */
800 
801 	/* reset session timer */
802 	if (tid_agg_rx->timeout)
803 		mod_timer(&tid_agg_rx->session_timer,
804 			  TU_TO_EXP_TIME(tid_agg_rx->timeout));
805 
806 	/* if this mpdu is fragmented - terminate rx aggregation session */
807 	sc = le16_to_cpu(hdr->seq_ctrl);
808 	if (sc & IEEE80211_SCTL_FRAG) {
809 		skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
810 		skb_queue_tail(&rx->sdata->skb_queue, skb);
811 		ieee80211_queue_work(&local->hw, &rx->sdata->work);
812 		return;
813 	}
814 
815 	/*
816 	 * No locking needed -- we will only ever process one
817 	 * RX packet at a time, and thus own tid_agg_rx. All
818 	 * other code manipulating it needs to (and does) make
819 	 * sure that we cannot get to it any more before doing
820 	 * anything with it.
821 	 */
822 	if (ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb))
823 		return;
824 
825  dont_reorder:
826 	skb_queue_tail(&local->rx_skb_queue, skb);
827 }
828 
829 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_check(struct ieee80211_rx_data * rx)830 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
831 {
832 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
833 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
834 
835 	/*
836 	 * Drop duplicate 802.11 retransmissions
837 	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
838 	 */
839 	if (rx->skb->len >= 24 && rx->sta &&
840 	    !ieee80211_is_ctl(hdr->frame_control) &&
841 	    !ieee80211_is_qos_nullfunc(hdr->frame_control) &&
842 	    !is_multicast_ether_addr(hdr->addr1)) {
843 		if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
844 			     rx->sta->last_seq_ctrl[rx->seqno_idx] ==
845 			     hdr->seq_ctrl)) {
846 			if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
847 				rx->local->dot11FrameDuplicateCount++;
848 				rx->sta->num_duplicates++;
849 			}
850 			return RX_DROP_UNUSABLE;
851 		} else
852 			rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
853 	}
854 
855 	if (unlikely(rx->skb->len < 16)) {
856 		I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
857 		return RX_DROP_MONITOR;
858 	}
859 
860 	/* Drop disallowed frame classes based on STA auth/assoc state;
861 	 * IEEE 802.11, Chap 5.5.
862 	 *
863 	 * mac80211 filters only based on association state, i.e. it drops
864 	 * Class 3 frames from not associated stations. hostapd sends
865 	 * deauth/disassoc frames when needed. In addition, hostapd is
866 	 * responsible for filtering on both auth and assoc states.
867 	 */
868 
869 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
870 		return ieee80211_rx_mesh_check(rx);
871 
872 	if (unlikely((ieee80211_is_data(hdr->frame_control) ||
873 		      ieee80211_is_pspoll(hdr->frame_control)) &&
874 		     rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
875 		     rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
876 		     (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
877 		/*
878 		 * accept port control frames from the AP even when it's not
879 		 * yet marked ASSOC to prevent a race where we don't set the
880 		 * assoc bit quickly enough before it sends the first frame
881 		 */
882 		if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
883 		    ieee80211_is_data_present(hdr->frame_control)) {
884 			unsigned int hdrlen;
885 			__be16 ethertype;
886 
887 			hdrlen = ieee80211_hdrlen(hdr->frame_control);
888 
889 			if (rx->skb->len < hdrlen + 8)
890 				return RX_DROP_MONITOR;
891 
892 			skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
893 			if (ethertype == rx->sdata->control_port_protocol)
894 				return RX_CONTINUE;
895 		}
896 
897 		if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
898 		    cfg80211_rx_spurious_frame(rx->sdata->dev,
899 					       hdr->addr2,
900 					       GFP_ATOMIC))
901 			return RX_DROP_UNUSABLE;
902 
903 		return RX_DROP_MONITOR;
904 	}
905 
906 	return RX_CONTINUE;
907 }
908 
909 
910 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_decrypt(struct ieee80211_rx_data * rx)911 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
912 {
913 	struct sk_buff *skb = rx->skb;
914 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
915 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
916 	int keyidx;
917 	int hdrlen;
918 	ieee80211_rx_result result = RX_DROP_UNUSABLE;
919 	struct ieee80211_key *sta_ptk = NULL;
920 	int mmie_keyidx = -1;
921 	__le16 fc;
922 
923 	/*
924 	 * Key selection 101
925 	 *
926 	 * There are four types of keys:
927 	 *  - GTK (group keys)
928 	 *  - IGTK (group keys for management frames)
929 	 *  - PTK (pairwise keys)
930 	 *  - STK (station-to-station pairwise keys)
931 	 *
932 	 * When selecting a key, we have to distinguish between multicast
933 	 * (including broadcast) and unicast frames, the latter can only
934 	 * use PTKs and STKs while the former always use GTKs and IGTKs.
935 	 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
936 	 * unicast frames can also use key indices like GTKs. Hence, if we
937 	 * don't have a PTK/STK we check the key index for a WEP key.
938 	 *
939 	 * Note that in a regular BSS, multicast frames are sent by the
940 	 * AP only, associated stations unicast the frame to the AP first
941 	 * which then multicasts it on their behalf.
942 	 *
943 	 * There is also a slight problem in IBSS mode: GTKs are negotiated
944 	 * with each station, that is something we don't currently handle.
945 	 * The spec seems to expect that one negotiates the same key with
946 	 * every station but there's no such requirement; VLANs could be
947 	 * possible.
948 	 */
949 
950 	/*
951 	 * No point in finding a key and decrypting if the frame is neither
952 	 * addressed to us nor a multicast frame.
953 	 */
954 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
955 		return RX_CONTINUE;
956 
957 	/* start without a key */
958 	rx->key = NULL;
959 
960 	if (rx->sta)
961 		sta_ptk = rcu_dereference(rx->sta->ptk);
962 
963 	fc = hdr->frame_control;
964 
965 	if (!ieee80211_has_protected(fc))
966 		mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
967 
968 	if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
969 		rx->key = sta_ptk;
970 		if ((status->flag & RX_FLAG_DECRYPTED) &&
971 		    (status->flag & RX_FLAG_IV_STRIPPED))
972 			return RX_CONTINUE;
973 		/* Skip decryption if the frame is not protected. */
974 		if (!ieee80211_has_protected(fc))
975 			return RX_CONTINUE;
976 	} else if (mmie_keyidx >= 0) {
977 		/* Broadcast/multicast robust management frame / BIP */
978 		if ((status->flag & RX_FLAG_DECRYPTED) &&
979 		    (status->flag & RX_FLAG_IV_STRIPPED))
980 			return RX_CONTINUE;
981 
982 		if (mmie_keyidx < NUM_DEFAULT_KEYS ||
983 		    mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
984 			return RX_DROP_MONITOR; /* unexpected BIP keyidx */
985 		if (rx->sta)
986 			rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
987 		if (!rx->key)
988 			rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
989 	} else if (!ieee80211_has_protected(fc)) {
990 		/*
991 		 * The frame was not protected, so skip decryption. However, we
992 		 * need to set rx->key if there is a key that could have been
993 		 * used so that the frame may be dropped if encryption would
994 		 * have been expected.
995 		 */
996 		struct ieee80211_key *key = NULL;
997 		struct ieee80211_sub_if_data *sdata = rx->sdata;
998 		int i;
999 
1000 		if (ieee80211_is_mgmt(fc) &&
1001 		    is_multicast_ether_addr(hdr->addr1) &&
1002 		    (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1003 			rx->key = key;
1004 		else {
1005 			if (rx->sta) {
1006 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1007 					key = rcu_dereference(rx->sta->gtk[i]);
1008 					if (key)
1009 						break;
1010 				}
1011 			}
1012 			if (!key) {
1013 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1014 					key = rcu_dereference(sdata->keys[i]);
1015 					if (key)
1016 						break;
1017 				}
1018 			}
1019 			if (key)
1020 				rx->key = key;
1021 		}
1022 		return RX_CONTINUE;
1023 	} else {
1024 		u8 keyid;
1025 		/*
1026 		 * The device doesn't give us the IV so we won't be
1027 		 * able to look up the key. That's ok though, we
1028 		 * don't need to decrypt the frame, we just won't
1029 		 * be able to keep statistics accurate.
1030 		 * Except for key threshold notifications, should
1031 		 * we somehow allow the driver to tell us which key
1032 		 * the hardware used if this flag is set?
1033 		 */
1034 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1035 		    (status->flag & RX_FLAG_IV_STRIPPED))
1036 			return RX_CONTINUE;
1037 
1038 		hdrlen = ieee80211_hdrlen(fc);
1039 
1040 		if (rx->skb->len < 8 + hdrlen)
1041 			return RX_DROP_UNUSABLE; /* TODO: count this? */
1042 
1043 		/*
1044 		 * no need to call ieee80211_wep_get_keyidx,
1045 		 * it verifies a bunch of things we've done already
1046 		 */
1047 		skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1048 		keyidx = keyid >> 6;
1049 
1050 		/* check per-station GTK first, if multicast packet */
1051 		if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1052 			rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1053 
1054 		/* if not found, try default key */
1055 		if (!rx->key) {
1056 			rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1057 
1058 			/*
1059 			 * RSNA-protected unicast frames should always be
1060 			 * sent with pairwise or station-to-station keys,
1061 			 * but for WEP we allow using a key index as well.
1062 			 */
1063 			if (rx->key &&
1064 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1065 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1066 			    !is_multicast_ether_addr(hdr->addr1))
1067 				rx->key = NULL;
1068 		}
1069 	}
1070 
1071 	if (rx->key) {
1072 		if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1073 			return RX_DROP_MONITOR;
1074 
1075 		rx->key->tx_rx_count++;
1076 		/* TODO: add threshold stuff again */
1077 	} else {
1078 		return RX_DROP_MONITOR;
1079 	}
1080 
1081 	switch (rx->key->conf.cipher) {
1082 	case WLAN_CIPHER_SUITE_WEP40:
1083 	case WLAN_CIPHER_SUITE_WEP104:
1084 		result = ieee80211_crypto_wep_decrypt(rx);
1085 		break;
1086 	case WLAN_CIPHER_SUITE_TKIP:
1087 		result = ieee80211_crypto_tkip_decrypt(rx);
1088 		break;
1089 	case WLAN_CIPHER_SUITE_CCMP:
1090 		result = ieee80211_crypto_ccmp_decrypt(rx);
1091 		break;
1092 	case WLAN_CIPHER_SUITE_AES_CMAC:
1093 		result = ieee80211_crypto_aes_cmac_decrypt(rx);
1094 		break;
1095 	default:
1096 		/*
1097 		 * We can reach here only with HW-only algorithms
1098 		 * but why didn't it decrypt the frame?!
1099 		 */
1100 		return RX_DROP_UNUSABLE;
1101 	}
1102 
1103 	/* the hdr variable is invalid after the decrypt handlers */
1104 
1105 	/* either the frame has been decrypted or will be dropped */
1106 	status->flag |= RX_FLAG_DECRYPTED;
1107 
1108 	return result;
1109 }
1110 
1111 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_check_more_data(struct ieee80211_rx_data * rx)1112 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1113 {
1114 	struct ieee80211_local *local;
1115 	struct ieee80211_hdr *hdr;
1116 	struct sk_buff *skb;
1117 
1118 	local = rx->local;
1119 	skb = rx->skb;
1120 	hdr = (struct ieee80211_hdr *) skb->data;
1121 
1122 	if (!local->pspolling)
1123 		return RX_CONTINUE;
1124 
1125 	if (!ieee80211_has_fromds(hdr->frame_control))
1126 		/* this is not from AP */
1127 		return RX_CONTINUE;
1128 
1129 	if (!ieee80211_is_data(hdr->frame_control))
1130 		return RX_CONTINUE;
1131 
1132 	if (!ieee80211_has_moredata(hdr->frame_control)) {
1133 		/* AP has no more frames buffered for us */
1134 		local->pspolling = false;
1135 		return RX_CONTINUE;
1136 	}
1137 
1138 	/* more data bit is set, let's request a new frame from the AP */
1139 	ieee80211_send_pspoll(local, rx->sdata);
1140 
1141 	return RX_CONTINUE;
1142 }
1143 
ap_sta_ps_start(struct sta_info * sta)1144 static void ap_sta_ps_start(struct sta_info *sta)
1145 {
1146 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1147 	struct ieee80211_local *local = sdata->local;
1148 
1149 	atomic_inc(&sdata->bss->num_sta_ps);
1150 	set_sta_flag(sta, WLAN_STA_PS_STA);
1151 	if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1152 		drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1153 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1154 	printk(KERN_DEBUG "%s: STA %pM aid %d enters power save mode\n",
1155 	       sdata->name, sta->sta.addr, sta->sta.aid);
1156 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1157 }
1158 
ap_sta_ps_end(struct sta_info * sta)1159 static void ap_sta_ps_end(struct sta_info *sta)
1160 {
1161 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1162 	printk(KERN_DEBUG "%s: STA %pM aid %d exits power save mode\n",
1163 	       sta->sdata->name, sta->sta.addr, sta->sta.aid);
1164 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1165 
1166 	if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1167 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1168 		printk(KERN_DEBUG "%s: STA %pM aid %d driver-ps-blocked\n",
1169 		       sta->sdata->name, sta->sta.addr, sta->sta.aid);
1170 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1171 		return;
1172 	}
1173 
1174 	ieee80211_sta_ps_deliver_wakeup(sta);
1175 }
1176 
ieee80211_sta_ps_transition(struct ieee80211_sta * sta,bool start)1177 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start)
1178 {
1179 	struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
1180 	bool in_ps;
1181 
1182 	WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS));
1183 
1184 	/* Don't let the same PS state be set twice */
1185 	in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA);
1186 	if ((start && in_ps) || (!start && !in_ps))
1187 		return -EINVAL;
1188 
1189 	if (start)
1190 		ap_sta_ps_start(sta_inf);
1191 	else
1192 		ap_sta_ps_end(sta_inf);
1193 
1194 	return 0;
1195 }
1196 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1197 
1198 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data * rx)1199 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1200 {
1201 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1202 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1203 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1204 	int tid, ac;
1205 
1206 	if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH))
1207 		return RX_CONTINUE;
1208 
1209 	if (sdata->vif.type != NL80211_IFTYPE_AP &&
1210 	    sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1211 		return RX_CONTINUE;
1212 
1213 	/*
1214 	 * The device handles station powersave, so don't do anything about
1215 	 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1216 	 * it to mac80211 since they're handled.)
1217 	 */
1218 	if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS)
1219 		return RX_CONTINUE;
1220 
1221 	/*
1222 	 * Don't do anything if the station isn't already asleep. In
1223 	 * the uAPSD case, the station will probably be marked asleep,
1224 	 * in the PS-Poll case the station must be confused ...
1225 	 */
1226 	if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1227 		return RX_CONTINUE;
1228 
1229 	if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1230 		if (!test_sta_flag(rx->sta, WLAN_STA_SP)) {
1231 			if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1232 				ieee80211_sta_ps_deliver_poll_response(rx->sta);
1233 			else
1234 				set_sta_flag(rx->sta, WLAN_STA_PSPOLL);
1235 		}
1236 
1237 		/* Free PS Poll skb here instead of returning RX_DROP that would
1238 		 * count as an dropped frame. */
1239 		dev_kfree_skb(rx->skb);
1240 
1241 		return RX_QUEUED;
1242 	} else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1243 		   !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1244 		   ieee80211_has_pm(hdr->frame_control) &&
1245 		   (ieee80211_is_data_qos(hdr->frame_control) ||
1246 		    ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1247 		tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1248 		ac = ieee802_1d_to_ac[tid & 7];
1249 
1250 		/*
1251 		 * If this AC is not trigger-enabled do nothing.
1252 		 *
1253 		 * NB: This could/should check a separate bitmap of trigger-
1254 		 * enabled queues, but for now we only implement uAPSD w/o
1255 		 * TSPEC changes to the ACs, so they're always the same.
1256 		 */
1257 		if (!(rx->sta->sta.uapsd_queues & BIT(ac)))
1258 			return RX_CONTINUE;
1259 
1260 		/* if we are in a service period, do nothing */
1261 		if (test_sta_flag(rx->sta, WLAN_STA_SP))
1262 			return RX_CONTINUE;
1263 
1264 		if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1265 			ieee80211_sta_ps_deliver_uapsd(rx->sta);
1266 		else
1267 			set_sta_flag(rx->sta, WLAN_STA_UAPSD);
1268 	}
1269 
1270 	return RX_CONTINUE;
1271 }
1272 
1273 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_sta_process(struct ieee80211_rx_data * rx)1274 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1275 {
1276 	struct sta_info *sta = rx->sta;
1277 	struct sk_buff *skb = rx->skb;
1278 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1279 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1280 
1281 	if (!sta)
1282 		return RX_CONTINUE;
1283 
1284 	/*
1285 	 * Update last_rx only for IBSS packets which are for the current
1286 	 * BSSID to avoid keeping the current IBSS network alive in cases
1287 	 * where other STAs start using different BSSID.
1288 	 */
1289 	if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1290 		u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1291 						NL80211_IFTYPE_ADHOC);
1292 		if (compare_ether_addr(bssid, rx->sdata->u.ibss.bssid) == 0) {
1293 			sta->last_rx = jiffies;
1294 			if (ieee80211_is_data(hdr->frame_control)) {
1295 				sta->last_rx_rate_idx = status->rate_idx;
1296 				sta->last_rx_rate_flag = status->flag;
1297 			}
1298 		}
1299 	} else if (!is_multicast_ether_addr(hdr->addr1)) {
1300 		/*
1301 		 * Mesh beacons will update last_rx when if they are found to
1302 		 * match the current local configuration when processed.
1303 		 */
1304 		sta->last_rx = jiffies;
1305 		if (ieee80211_is_data(hdr->frame_control)) {
1306 			sta->last_rx_rate_idx = status->rate_idx;
1307 			sta->last_rx_rate_flag = status->flag;
1308 		}
1309 	}
1310 
1311 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1312 		return RX_CONTINUE;
1313 
1314 	if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1315 		ieee80211_sta_rx_notify(rx->sdata, hdr);
1316 
1317 	sta->rx_fragments++;
1318 	sta->rx_bytes += rx->skb->len;
1319 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1320 		sta->last_signal = status->signal;
1321 		ewma_add(&sta->avg_signal, -status->signal);
1322 	}
1323 
1324 	/*
1325 	 * Change STA power saving mode only at the end of a frame
1326 	 * exchange sequence.
1327 	 */
1328 	if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) &&
1329 	    !ieee80211_has_morefrags(hdr->frame_control) &&
1330 	    !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1331 	    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1332 	     rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1333 		if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1334 			/*
1335 			 * Ignore doze->wake transitions that are
1336 			 * indicated by non-data frames, the standard
1337 			 * is unclear here, but for example going to
1338 			 * PS mode and then scanning would cause a
1339 			 * doze->wake transition for the probe request,
1340 			 * and that is clearly undesirable.
1341 			 */
1342 			if (ieee80211_is_data(hdr->frame_control) &&
1343 			    !ieee80211_has_pm(hdr->frame_control))
1344 				ap_sta_ps_end(sta);
1345 		} else {
1346 			if (ieee80211_has_pm(hdr->frame_control))
1347 				ap_sta_ps_start(sta);
1348 		}
1349 	}
1350 
1351 	/*
1352 	 * Drop (qos-)data::nullfunc frames silently, since they
1353 	 * are used only to control station power saving mode.
1354 	 */
1355 	if (ieee80211_is_nullfunc(hdr->frame_control) ||
1356 	    ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1357 		I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1358 
1359 		/*
1360 		 * If we receive a 4-addr nullfunc frame from a STA
1361 		 * that was not moved to a 4-addr STA vlan yet send
1362 		 * the event to userspace and for older hostapd drop
1363 		 * the frame to the monitor interface.
1364 		 */
1365 		if (ieee80211_has_a4(hdr->frame_control) &&
1366 		    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1367 		     (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1368 		      !rx->sdata->u.vlan.sta))) {
1369 			if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1370 				cfg80211_rx_unexpected_4addr_frame(
1371 					rx->sdata->dev, sta->sta.addr,
1372 					GFP_ATOMIC);
1373 			return RX_DROP_MONITOR;
1374 		}
1375 		/*
1376 		 * Update counter and free packet here to avoid
1377 		 * counting this as a dropped packed.
1378 		 */
1379 		sta->rx_packets++;
1380 		dev_kfree_skb(rx->skb);
1381 		return RX_QUEUED;
1382 	}
1383 
1384 	return RX_CONTINUE;
1385 } /* ieee80211_rx_h_sta_process */
1386 
1387 static inline struct ieee80211_fragment_entry *
ieee80211_reassemble_add(struct ieee80211_sub_if_data * sdata,unsigned int frag,unsigned int seq,int rx_queue,struct sk_buff ** skb)1388 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1389 			 unsigned int frag, unsigned int seq, int rx_queue,
1390 			 struct sk_buff **skb)
1391 {
1392 	struct ieee80211_fragment_entry *entry;
1393 	int idx;
1394 
1395 	idx = sdata->fragment_next;
1396 	entry = &sdata->fragments[sdata->fragment_next++];
1397 	if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1398 		sdata->fragment_next = 0;
1399 
1400 	if (!skb_queue_empty(&entry->skb_list)) {
1401 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1402 		struct ieee80211_hdr *hdr =
1403 			(struct ieee80211_hdr *) entry->skb_list.next->data;
1404 		printk(KERN_DEBUG "%s: RX reassembly removed oldest "
1405 		       "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
1406 		       "addr1=%pM addr2=%pM\n",
1407 		       sdata->name, idx,
1408 		       jiffies - entry->first_frag_time, entry->seq,
1409 		       entry->last_frag, hdr->addr1, hdr->addr2);
1410 #endif
1411 		__skb_queue_purge(&entry->skb_list);
1412 	}
1413 
1414 	__skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1415 	*skb = NULL;
1416 	entry->first_frag_time = jiffies;
1417 	entry->seq = seq;
1418 	entry->rx_queue = rx_queue;
1419 	entry->last_frag = frag;
1420 	entry->ccmp = 0;
1421 	entry->extra_len = 0;
1422 
1423 	return entry;
1424 }
1425 
1426 static inline struct ieee80211_fragment_entry *
ieee80211_reassemble_find(struct ieee80211_sub_if_data * sdata,unsigned int frag,unsigned int seq,int rx_queue,struct ieee80211_hdr * hdr)1427 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1428 			  unsigned int frag, unsigned int seq,
1429 			  int rx_queue, struct ieee80211_hdr *hdr)
1430 {
1431 	struct ieee80211_fragment_entry *entry;
1432 	int i, idx;
1433 
1434 	idx = sdata->fragment_next;
1435 	for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1436 		struct ieee80211_hdr *f_hdr;
1437 
1438 		idx--;
1439 		if (idx < 0)
1440 			idx = IEEE80211_FRAGMENT_MAX - 1;
1441 
1442 		entry = &sdata->fragments[idx];
1443 		if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1444 		    entry->rx_queue != rx_queue ||
1445 		    entry->last_frag + 1 != frag)
1446 			continue;
1447 
1448 		f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1449 
1450 		/*
1451 		 * Check ftype and addresses are equal, else check next fragment
1452 		 */
1453 		if (((hdr->frame_control ^ f_hdr->frame_control) &
1454 		     cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1455 		    compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
1456 		    compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
1457 			continue;
1458 
1459 		if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1460 			__skb_queue_purge(&entry->skb_list);
1461 			continue;
1462 		}
1463 		return entry;
1464 	}
1465 
1466 	return NULL;
1467 }
1468 
1469 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_defragment(struct ieee80211_rx_data * rx)1470 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1471 {
1472 	struct ieee80211_hdr *hdr;
1473 	u16 sc;
1474 	__le16 fc;
1475 	unsigned int frag, seq;
1476 	struct ieee80211_fragment_entry *entry;
1477 	struct sk_buff *skb;
1478 	struct ieee80211_rx_status *status;
1479 
1480 	hdr = (struct ieee80211_hdr *)rx->skb->data;
1481 	fc = hdr->frame_control;
1482 
1483 	if (ieee80211_is_ctl(fc))
1484 		return RX_CONTINUE;
1485 
1486 	sc = le16_to_cpu(hdr->seq_ctrl);
1487 	frag = sc & IEEE80211_SCTL_FRAG;
1488 
1489 	if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1490 		   is_multicast_ether_addr(hdr->addr1))) {
1491 		/* not fragmented */
1492 		goto out;
1493 	}
1494 	I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1495 
1496 	if (skb_linearize(rx->skb))
1497 		return RX_DROP_UNUSABLE;
1498 
1499 	/*
1500 	 *  skb_linearize() might change the skb->data and
1501 	 *  previously cached variables (in this case, hdr) need to
1502 	 *  be refreshed with the new data.
1503 	 */
1504 	hdr = (struct ieee80211_hdr *)rx->skb->data;
1505 	seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1506 
1507 	if (frag == 0) {
1508 		/* This is the first fragment of a new frame. */
1509 		entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1510 						 rx->seqno_idx, &(rx->skb));
1511 		if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1512 		    ieee80211_has_protected(fc)) {
1513 			int queue = rx->security_idx;
1514 			/* Store CCMP PN so that we can verify that the next
1515 			 * fragment has a sequential PN value. */
1516 			entry->ccmp = 1;
1517 			memcpy(entry->last_pn,
1518 			       rx->key->u.ccmp.rx_pn[queue],
1519 			       CCMP_PN_LEN);
1520 		}
1521 		return RX_QUEUED;
1522 	}
1523 
1524 	/* This is a fragment for a frame that should already be pending in
1525 	 * fragment cache. Add this fragment to the end of the pending entry.
1526 	 */
1527 	entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1528 					  rx->seqno_idx, hdr);
1529 	if (!entry) {
1530 		I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1531 		return RX_DROP_MONITOR;
1532 	}
1533 
1534 	/* Verify that MPDUs within one MSDU have sequential PN values.
1535 	 * (IEEE 802.11i, 8.3.3.4.5) */
1536 	if (entry->ccmp) {
1537 		int i;
1538 		u8 pn[CCMP_PN_LEN], *rpn;
1539 		int queue;
1540 		if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1541 			return RX_DROP_UNUSABLE;
1542 		memcpy(pn, entry->last_pn, CCMP_PN_LEN);
1543 		for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
1544 			pn[i]++;
1545 			if (pn[i])
1546 				break;
1547 		}
1548 		queue = rx->security_idx;
1549 		rpn = rx->key->u.ccmp.rx_pn[queue];
1550 		if (memcmp(pn, rpn, CCMP_PN_LEN))
1551 			return RX_DROP_UNUSABLE;
1552 		memcpy(entry->last_pn, pn, CCMP_PN_LEN);
1553 	}
1554 
1555 	skb_pull(rx->skb, ieee80211_hdrlen(fc));
1556 	__skb_queue_tail(&entry->skb_list, rx->skb);
1557 	entry->last_frag = frag;
1558 	entry->extra_len += rx->skb->len;
1559 	if (ieee80211_has_morefrags(fc)) {
1560 		rx->skb = NULL;
1561 		return RX_QUEUED;
1562 	}
1563 
1564 	rx->skb = __skb_dequeue(&entry->skb_list);
1565 	if (skb_tailroom(rx->skb) < entry->extra_len) {
1566 		I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1567 		if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1568 					      GFP_ATOMIC))) {
1569 			I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1570 			__skb_queue_purge(&entry->skb_list);
1571 			return RX_DROP_UNUSABLE;
1572 		}
1573 	}
1574 	while ((skb = __skb_dequeue(&entry->skb_list))) {
1575 		memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1576 		dev_kfree_skb(skb);
1577 	}
1578 
1579 	/* Complete frame has been reassembled - process it now */
1580 	status = IEEE80211_SKB_RXCB(rx->skb);
1581 	status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1582 
1583  out:
1584 	if (rx->sta)
1585 		rx->sta->rx_packets++;
1586 	if (is_multicast_ether_addr(hdr->addr1))
1587 		rx->local->dot11MulticastReceivedFrameCount++;
1588 	else
1589 		ieee80211_led_rx(rx->local);
1590 	return RX_CONTINUE;
1591 }
1592 
1593 static int
ieee80211_802_1x_port_control(struct ieee80211_rx_data * rx)1594 ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1595 {
1596 	if (unlikely(!rx->sta ||
1597 	    !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
1598 		return -EACCES;
1599 
1600 	return 0;
1601 }
1602 
1603 static int
ieee80211_drop_unencrypted(struct ieee80211_rx_data * rx,__le16 fc)1604 ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1605 {
1606 	struct sk_buff *skb = rx->skb;
1607 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1608 
1609 	/*
1610 	 * Pass through unencrypted frames if the hardware has
1611 	 * decrypted them already.
1612 	 */
1613 	if (status->flag & RX_FLAG_DECRYPTED)
1614 		return 0;
1615 
1616 	/* Drop unencrypted frames if key is set. */
1617 	if (unlikely(!ieee80211_has_protected(fc) &&
1618 		     !ieee80211_is_nullfunc(fc) &&
1619 		     ieee80211_is_data(fc) &&
1620 		     (rx->key || rx->sdata->drop_unencrypted)))
1621 		return -EACCES;
1622 
1623 	return 0;
1624 }
1625 
1626 static int
ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data * rx)1627 ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1628 {
1629 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1630 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1631 	__le16 fc = hdr->frame_control;
1632 
1633 	/*
1634 	 * Pass through unencrypted frames if the hardware has
1635 	 * decrypted them already.
1636 	 */
1637 	if (status->flag & RX_FLAG_DECRYPTED)
1638 		return 0;
1639 
1640 	if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
1641 		if (unlikely(!ieee80211_has_protected(fc) &&
1642 			     ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1643 			     rx->key)) {
1644 			if (ieee80211_is_deauth(fc))
1645 				cfg80211_send_unprot_deauth(rx->sdata->dev,
1646 							    rx->skb->data,
1647 							    rx->skb->len);
1648 			else if (ieee80211_is_disassoc(fc))
1649 				cfg80211_send_unprot_disassoc(rx->sdata->dev,
1650 							      rx->skb->data,
1651 							      rx->skb->len);
1652 			return -EACCES;
1653 		}
1654 		/* BIP does not use Protected field, so need to check MMIE */
1655 		if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1656 			     ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1657 			if (ieee80211_is_deauth(fc))
1658 				cfg80211_send_unprot_deauth(rx->sdata->dev,
1659 							    rx->skb->data,
1660 							    rx->skb->len);
1661 			else if (ieee80211_is_disassoc(fc))
1662 				cfg80211_send_unprot_disassoc(rx->sdata->dev,
1663 							      rx->skb->data,
1664 							      rx->skb->len);
1665 			return -EACCES;
1666 		}
1667 		/*
1668 		 * When using MFP, Action frames are not allowed prior to
1669 		 * having configured keys.
1670 		 */
1671 		if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1672 			     ieee80211_is_robust_mgmt_frame(
1673 				     (struct ieee80211_hdr *) rx->skb->data)))
1674 			return -EACCES;
1675 	}
1676 
1677 	return 0;
1678 }
1679 
1680 static int
__ieee80211_data_to_8023(struct ieee80211_rx_data * rx,bool * port_control)1681 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
1682 {
1683 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1684 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1685 	bool check_port_control = false;
1686 	struct ethhdr *ehdr;
1687 	int ret;
1688 
1689 	*port_control = false;
1690 	if (ieee80211_has_a4(hdr->frame_control) &&
1691 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1692 		return -1;
1693 
1694 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1695 	    !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
1696 
1697 		if (!sdata->u.mgd.use_4addr)
1698 			return -1;
1699 		else
1700 			check_port_control = true;
1701 	}
1702 
1703 	if (is_multicast_ether_addr(hdr->addr1) &&
1704 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
1705 		return -1;
1706 
1707 	ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1708 	if (ret < 0)
1709 		return ret;
1710 
1711 	ehdr = (struct ethhdr *) rx->skb->data;
1712 	if (ehdr->h_proto == rx->sdata->control_port_protocol)
1713 		*port_control = true;
1714 	else if (check_port_control)
1715 		return -1;
1716 
1717 	return 0;
1718 }
1719 
1720 /*
1721  * requires that rx->skb is a frame with ethernet header
1722  */
ieee80211_frame_allowed(struct ieee80211_rx_data * rx,__le16 fc)1723 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1724 {
1725 	static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1726 		= { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1727 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1728 
1729 	/*
1730 	 * Allow EAPOL frames to us/the PAE group address regardless
1731 	 * of whether the frame was encrypted or not.
1732 	 */
1733 	if (ehdr->h_proto == rx->sdata->control_port_protocol &&
1734 	    (compare_ether_addr(ehdr->h_dest, rx->sdata->vif.addr) == 0 ||
1735 	     compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0))
1736 		return true;
1737 
1738 	if (ieee80211_802_1x_port_control(rx) ||
1739 	    ieee80211_drop_unencrypted(rx, fc))
1740 		return false;
1741 
1742 	return true;
1743 }
1744 
1745 /*
1746  * requires that rx->skb is a frame with ethernet header
1747  */
1748 static void
ieee80211_deliver_skb(struct ieee80211_rx_data * rx)1749 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1750 {
1751 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1752 	struct net_device *dev = sdata->dev;
1753 	struct sk_buff *skb, *xmit_skb;
1754 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1755 	struct sta_info *dsta;
1756 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1757 
1758 	skb = rx->skb;
1759 	xmit_skb = NULL;
1760 
1761 	if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1762 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1763 	    !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1764 	    (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
1765 	    (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1766 		if (is_multicast_ether_addr(ehdr->h_dest)) {
1767 			/*
1768 			 * send multicast frames both to higher layers in
1769 			 * local net stack and back to the wireless medium
1770 			 */
1771 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
1772 			if (!xmit_skb && net_ratelimit())
1773 				printk(KERN_DEBUG "%s: failed to clone "
1774 				       "multicast frame\n", dev->name);
1775 		} else {
1776 			dsta = sta_info_get(sdata, skb->data);
1777 			if (dsta) {
1778 				/*
1779 				 * The destination station is associated to
1780 				 * this AP (in this VLAN), so send the frame
1781 				 * directly to it and do not pass it to local
1782 				 * net stack.
1783 				 */
1784 				xmit_skb = skb;
1785 				skb = NULL;
1786 			}
1787 		}
1788 	}
1789 
1790 	if (skb) {
1791 		int align __maybe_unused;
1792 
1793 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1794 		/*
1795 		 * 'align' will only take the values 0 or 2 here
1796 		 * since all frames are required to be aligned
1797 		 * to 2-byte boundaries when being passed to
1798 		 * mac80211. That also explains the __skb_push()
1799 		 * below.
1800 		 */
1801 		align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3;
1802 		if (align) {
1803 			if (WARN_ON(skb_headroom(skb) < 3)) {
1804 				dev_kfree_skb(skb);
1805 				skb = NULL;
1806 			} else {
1807 				u8 *data = skb->data;
1808 				size_t len = skb_headlen(skb);
1809 				skb->data -= align;
1810 				memmove(skb->data, data, len);
1811 				skb_set_tail_pointer(skb, len);
1812 			}
1813 		}
1814 #endif
1815 
1816 		if (skb) {
1817 			/* deliver to local stack */
1818 			skb->protocol = eth_type_trans(skb, dev);
1819 			memset(skb->cb, 0, sizeof(skb->cb));
1820 			netif_receive_skb(skb);
1821 		}
1822 	}
1823 
1824 	if (xmit_skb) {
1825 		/*
1826 		 * Send to wireless media and increase priority by 256 to
1827 		 * keep the received priority instead of reclassifying
1828 		 * the frame (see cfg80211_classify8021d).
1829 		 */
1830 		xmit_skb->priority += 256;
1831 		xmit_skb->protocol = htons(ETH_P_802_3);
1832 		skb_reset_network_header(xmit_skb);
1833 		skb_reset_mac_header(xmit_skb);
1834 		dev_queue_xmit(xmit_skb);
1835 	}
1836 }
1837 
1838 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_amsdu(struct ieee80211_rx_data * rx)1839 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1840 {
1841 	struct net_device *dev = rx->sdata->dev;
1842 	struct sk_buff *skb = rx->skb;
1843 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1844 	__le16 fc = hdr->frame_control;
1845 	struct sk_buff_head frame_list;
1846 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1847 
1848 	if (unlikely(!ieee80211_is_data(fc)))
1849 		return RX_CONTINUE;
1850 
1851 	if (unlikely(!ieee80211_is_data_present(fc)))
1852 		return RX_DROP_MONITOR;
1853 
1854 	if (!(status->rx_flags & IEEE80211_RX_AMSDU))
1855 		return RX_CONTINUE;
1856 
1857 	if (ieee80211_has_a4(hdr->frame_control) &&
1858 	    rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1859 	    !rx->sdata->u.vlan.sta)
1860 		return RX_DROP_UNUSABLE;
1861 
1862 	if (is_multicast_ether_addr(hdr->addr1) &&
1863 	    ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1864 	      rx->sdata->u.vlan.sta) ||
1865 	     (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1866 	      rx->sdata->u.mgd.use_4addr)))
1867 		return RX_DROP_UNUSABLE;
1868 
1869 	skb->dev = dev;
1870 	__skb_queue_head_init(&frame_list);
1871 
1872 	if (skb_linearize(skb))
1873 		return RX_DROP_UNUSABLE;
1874 
1875 	ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
1876 				 rx->sdata->vif.type,
1877 				 rx->local->hw.extra_tx_headroom, true);
1878 
1879 	while (!skb_queue_empty(&frame_list)) {
1880 		rx->skb = __skb_dequeue(&frame_list);
1881 
1882 		if (!ieee80211_frame_allowed(rx, fc)) {
1883 			dev_kfree_skb(rx->skb);
1884 			continue;
1885 		}
1886 		dev->stats.rx_packets++;
1887 		dev->stats.rx_bytes += rx->skb->len;
1888 
1889 		ieee80211_deliver_skb(rx);
1890 	}
1891 
1892 	return RX_QUEUED;
1893 }
1894 
1895 #ifdef CONFIG_MAC80211_MESH
1896 static ieee80211_rx_result
ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data * rx)1897 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
1898 {
1899 	struct ieee80211_hdr *fwd_hdr, *hdr;
1900 	struct ieee80211_tx_info *info;
1901 	struct ieee80211s_hdr *mesh_hdr;
1902 	struct sk_buff *skb = rx->skb, *fwd_skb;
1903 	struct ieee80211_local *local = rx->local;
1904 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1905 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1906 	struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
1907 	__le16 reason = cpu_to_le16(WLAN_REASON_MESH_PATH_NOFORWARD);
1908 	u16 q, hdrlen;
1909 
1910 	hdr = (struct ieee80211_hdr *) skb->data;
1911 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
1912 
1913 	/* make sure fixed part of mesh header is there, also checks skb len */
1914 	if (!pskb_may_pull(rx->skb, hdrlen + 6))
1915 		return RX_DROP_MONITOR;
1916 
1917 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
1918 
1919 	/* make sure full mesh header is there, also checks skb len */
1920 	if (!pskb_may_pull(rx->skb,
1921 			   hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
1922 		return RX_DROP_MONITOR;
1923 
1924 	/* reload pointers */
1925 	hdr = (struct ieee80211_hdr *) skb->data;
1926 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
1927 
1928 	/* frame is in RMC, don't forward */
1929 	if (ieee80211_is_data(hdr->frame_control) &&
1930 	    is_multicast_ether_addr(hdr->addr1) &&
1931 	    mesh_rmc_check(hdr->addr3, mesh_hdr, rx->sdata))
1932 		return RX_DROP_MONITOR;
1933 
1934 	if (!ieee80211_is_data(hdr->frame_control) ||
1935 	    !(status->rx_flags & IEEE80211_RX_RA_MATCH))
1936 		return RX_CONTINUE;
1937 
1938 	if (!mesh_hdr->ttl)
1939 		return RX_DROP_MONITOR;
1940 
1941 	if (mesh_hdr->flags & MESH_FLAGS_AE) {
1942 		struct mesh_path *mppath;
1943 		char *proxied_addr;
1944 		char *mpp_addr;
1945 
1946 		if (is_multicast_ether_addr(hdr->addr1)) {
1947 			mpp_addr = hdr->addr3;
1948 			proxied_addr = mesh_hdr->eaddr1;
1949 		} else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) {
1950 			/* has_a4 already checked in ieee80211_rx_mesh_check */
1951 			mpp_addr = hdr->addr4;
1952 			proxied_addr = mesh_hdr->eaddr2;
1953 		} else {
1954 			return RX_DROP_MONITOR;
1955 		}
1956 
1957 		rcu_read_lock();
1958 		mppath = mpp_path_lookup(proxied_addr, sdata);
1959 		if (!mppath) {
1960 			mpp_path_add(proxied_addr, mpp_addr, sdata);
1961 		} else {
1962 			spin_lock_bh(&mppath->state_lock);
1963 			if (compare_ether_addr(mppath->mpp, mpp_addr) != 0)
1964 				memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
1965 			spin_unlock_bh(&mppath->state_lock);
1966 		}
1967 		rcu_read_unlock();
1968 	}
1969 
1970 	/* Frame has reached destination.  Don't forward */
1971 	if (!is_multicast_ether_addr(hdr->addr1) &&
1972 	    compare_ether_addr(sdata->vif.addr, hdr->addr3) == 0)
1973 		return RX_CONTINUE;
1974 
1975 	q = ieee80211_select_queue_80211(local, skb, hdr);
1976 	if (ieee80211_queue_stopped(&local->hw, q)) {
1977 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
1978 		return RX_DROP_MONITOR;
1979 	}
1980 	skb_set_queue_mapping(skb, q);
1981 
1982 	if (!--mesh_hdr->ttl) {
1983 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
1984 		return RX_DROP_MONITOR;
1985 	}
1986 
1987 	if (!ifmsh->mshcfg.dot11MeshForwarding)
1988 		goto out;
1989 
1990 	fwd_skb = skb_copy(skb, GFP_ATOMIC);
1991 	if (!fwd_skb) {
1992 		if (net_ratelimit())
1993 			printk(KERN_DEBUG "%s: failed to clone mesh frame\n",
1994 					sdata->name);
1995 		goto out;
1996 	}
1997 
1998 	fwd_hdr =  (struct ieee80211_hdr *) fwd_skb->data;
1999 	info = IEEE80211_SKB_CB(fwd_skb);
2000 	memset(info, 0, sizeof(*info));
2001 	info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2002 	info->control.vif = &rx->sdata->vif;
2003 	info->control.jiffies = jiffies;
2004 	if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2005 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2006 		memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2007 	} else if (!mesh_nexthop_lookup(fwd_skb, sdata)) {
2008 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2009 	} else {
2010 		/* unable to resolve next hop */
2011 		mesh_path_error_tx(ifmsh->mshcfg.element_ttl, fwd_hdr->addr3,
2012 				    0, reason, fwd_hdr->addr2, sdata);
2013 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2014 		kfree_skb(fwd_skb);
2015 		return RX_DROP_MONITOR;
2016 	}
2017 
2018 	IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2019 	ieee80211_add_pending_skb(local, fwd_skb);
2020  out:
2021 	if (is_multicast_ether_addr(hdr->addr1) ||
2022 	    sdata->dev->flags & IFF_PROMISC)
2023 		return RX_CONTINUE;
2024 	else
2025 		return RX_DROP_MONITOR;
2026 }
2027 #endif
2028 
2029 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_data(struct ieee80211_rx_data * rx)2030 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2031 {
2032 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2033 	struct ieee80211_local *local = rx->local;
2034 	struct net_device *dev = sdata->dev;
2035 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2036 	__le16 fc = hdr->frame_control;
2037 	bool port_control;
2038 	int err;
2039 
2040 	if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2041 		return RX_CONTINUE;
2042 
2043 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2044 		return RX_DROP_MONITOR;
2045 
2046 	/*
2047 	 * Send unexpected-4addr-frame event to hostapd. For older versions,
2048 	 * also drop the frame to cooked monitor interfaces.
2049 	 */
2050 	if (ieee80211_has_a4(hdr->frame_control) &&
2051 	    sdata->vif.type == NL80211_IFTYPE_AP) {
2052 		if (rx->sta &&
2053 		    !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2054 			cfg80211_rx_unexpected_4addr_frame(
2055 				rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2056 		return RX_DROP_MONITOR;
2057 	}
2058 
2059 	err = __ieee80211_data_to_8023(rx, &port_control);
2060 	if (unlikely(err))
2061 		return RX_DROP_UNUSABLE;
2062 
2063 	if (!ieee80211_frame_allowed(rx, fc))
2064 		return RX_DROP_MONITOR;
2065 
2066 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2067 	    unlikely(port_control) && sdata->bss) {
2068 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2069 				     u.ap);
2070 		dev = sdata->dev;
2071 		rx->sdata = sdata;
2072 	}
2073 
2074 	rx->skb->dev = dev;
2075 
2076 	dev->stats.rx_packets++;
2077 	dev->stats.rx_bytes += rx->skb->len;
2078 
2079 	if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2080 	    !is_multicast_ether_addr(
2081 		    ((struct ethhdr *)rx->skb->data)->h_dest) &&
2082 	    (!local->scanning &&
2083 	     !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
2084 			mod_timer(&local->dynamic_ps_timer, jiffies +
2085 			 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2086 	}
2087 
2088 	ieee80211_deliver_skb(rx);
2089 
2090 	return RX_QUEUED;
2091 }
2092 
2093 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_ctrl(struct ieee80211_rx_data * rx)2094 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx)
2095 {
2096 	struct ieee80211_local *local = rx->local;
2097 	struct ieee80211_hw *hw = &local->hw;
2098 	struct sk_buff *skb = rx->skb;
2099 	struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2100 	struct tid_ampdu_rx *tid_agg_rx;
2101 	u16 start_seq_num;
2102 	u16 tid;
2103 
2104 	if (likely(!ieee80211_is_ctl(bar->frame_control)))
2105 		return RX_CONTINUE;
2106 
2107 	if (ieee80211_is_back_req(bar->frame_control)) {
2108 		struct {
2109 			__le16 control, start_seq_num;
2110 		} __packed bar_data;
2111 
2112 		if (!rx->sta)
2113 			return RX_DROP_MONITOR;
2114 
2115 		if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2116 				  &bar_data, sizeof(bar_data)))
2117 			return RX_DROP_MONITOR;
2118 
2119 		tid = le16_to_cpu(bar_data.control) >> 12;
2120 
2121 		tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2122 		if (!tid_agg_rx)
2123 			return RX_DROP_MONITOR;
2124 
2125 		start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2126 
2127 		/* reset session timer */
2128 		if (tid_agg_rx->timeout)
2129 			mod_timer(&tid_agg_rx->session_timer,
2130 				  TU_TO_EXP_TIME(tid_agg_rx->timeout));
2131 
2132 		spin_lock(&tid_agg_rx->reorder_lock);
2133 		/* release stored frames up to start of BAR */
2134 		ieee80211_release_reorder_frames(hw, tid_agg_rx, start_seq_num);
2135 		spin_unlock(&tid_agg_rx->reorder_lock);
2136 
2137 		kfree_skb(skb);
2138 		return RX_QUEUED;
2139 	}
2140 
2141 	/*
2142 	 * After this point, we only want management frames,
2143 	 * so we can drop all remaining control frames to
2144 	 * cooked monitor interfaces.
2145 	 */
2146 	return RX_DROP_MONITOR;
2147 }
2148 
ieee80211_process_sa_query_req(struct ieee80211_sub_if_data * sdata,struct ieee80211_mgmt * mgmt,size_t len)2149 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2150 					   struct ieee80211_mgmt *mgmt,
2151 					   size_t len)
2152 {
2153 	struct ieee80211_local *local = sdata->local;
2154 	struct sk_buff *skb;
2155 	struct ieee80211_mgmt *resp;
2156 
2157 	if (compare_ether_addr(mgmt->da, sdata->vif.addr) != 0) {
2158 		/* Not to own unicast address */
2159 		return;
2160 	}
2161 
2162 	if (compare_ether_addr(mgmt->sa, sdata->u.mgd.bssid) != 0 ||
2163 	    compare_ether_addr(mgmt->bssid, sdata->u.mgd.bssid) != 0) {
2164 		/* Not from the current AP or not associated yet. */
2165 		return;
2166 	}
2167 
2168 	if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2169 		/* Too short SA Query request frame */
2170 		return;
2171 	}
2172 
2173 	skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2174 	if (skb == NULL)
2175 		return;
2176 
2177 	skb_reserve(skb, local->hw.extra_tx_headroom);
2178 	resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2179 	memset(resp, 0, 24);
2180 	memcpy(resp->da, mgmt->sa, ETH_ALEN);
2181 	memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2182 	memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2183 	resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2184 					  IEEE80211_STYPE_ACTION);
2185 	skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2186 	resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2187 	resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2188 	memcpy(resp->u.action.u.sa_query.trans_id,
2189 	       mgmt->u.action.u.sa_query.trans_id,
2190 	       WLAN_SA_QUERY_TR_ID_LEN);
2191 
2192 	ieee80211_tx_skb(sdata, skb);
2193 }
2194 
2195 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data * rx)2196 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2197 {
2198 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2199 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2200 
2201 	/*
2202 	 * From here on, look only at management frames.
2203 	 * Data and control frames are already handled,
2204 	 * and unknown (reserved) frames are useless.
2205 	 */
2206 	if (rx->skb->len < 24)
2207 		return RX_DROP_MONITOR;
2208 
2209 	if (!ieee80211_is_mgmt(mgmt->frame_control))
2210 		return RX_DROP_MONITOR;
2211 
2212 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2213 	    ieee80211_is_beacon(mgmt->frame_control) &&
2214 	    !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2215 		int sig = 0;
2216 
2217 		if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2218 			sig = status->signal;
2219 
2220 		cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2221 					    rx->skb->data, rx->skb->len,
2222 					    status->freq, sig, GFP_ATOMIC);
2223 		rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2224 	}
2225 
2226 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2227 		return RX_DROP_MONITOR;
2228 
2229 	if (ieee80211_drop_unencrypted_mgmt(rx))
2230 		return RX_DROP_UNUSABLE;
2231 
2232 	return RX_CONTINUE;
2233 }
2234 
2235 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_action(struct ieee80211_rx_data * rx)2236 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2237 {
2238 	struct ieee80211_local *local = rx->local;
2239 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2240 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2241 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2242 	int len = rx->skb->len;
2243 
2244 	if (!ieee80211_is_action(mgmt->frame_control))
2245 		return RX_CONTINUE;
2246 
2247 	/* drop too small frames */
2248 	if (len < IEEE80211_MIN_ACTION_SIZE)
2249 		return RX_DROP_UNUSABLE;
2250 
2251 	if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC)
2252 		return RX_DROP_UNUSABLE;
2253 
2254 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2255 		return RX_DROP_UNUSABLE;
2256 
2257 	switch (mgmt->u.action.category) {
2258 	case WLAN_CATEGORY_HT:
2259 		/* reject HT action frames from stations not supporting HT */
2260 		if (!rx->sta->sta.ht_cap.ht_supported)
2261 			goto invalid;
2262 
2263 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2264 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2265 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2266 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2267 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2268 			break;
2269 
2270 		/* verify action & smps_control are present */
2271 		if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2272 			goto invalid;
2273 
2274 		switch (mgmt->u.action.u.ht_smps.action) {
2275 		case WLAN_HT_ACTION_SMPS: {
2276 			struct ieee80211_supported_band *sband;
2277 			u8 smps;
2278 
2279 			/* convert to HT capability */
2280 			switch (mgmt->u.action.u.ht_smps.smps_control) {
2281 			case WLAN_HT_SMPS_CONTROL_DISABLED:
2282 				smps = WLAN_HT_CAP_SM_PS_DISABLED;
2283 				break;
2284 			case WLAN_HT_SMPS_CONTROL_STATIC:
2285 				smps = WLAN_HT_CAP_SM_PS_STATIC;
2286 				break;
2287 			case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2288 				smps = WLAN_HT_CAP_SM_PS_DYNAMIC;
2289 				break;
2290 			default:
2291 				goto invalid;
2292 			}
2293 			smps <<= IEEE80211_HT_CAP_SM_PS_SHIFT;
2294 
2295 			/* if no change do nothing */
2296 			if ((rx->sta->sta.ht_cap.cap &
2297 					IEEE80211_HT_CAP_SM_PS) == smps)
2298 				goto handled;
2299 
2300 			rx->sta->sta.ht_cap.cap &= ~IEEE80211_HT_CAP_SM_PS;
2301 			rx->sta->sta.ht_cap.cap |= smps;
2302 
2303 			sband = rx->local->hw.wiphy->bands[status->band];
2304 
2305 			rate_control_rate_update(
2306 				local, sband, rx->sta,
2307 				IEEE80211_RC_SMPS_CHANGED,
2308 				ieee80211_get_tx_channel_type(
2309 					local, local->_oper_channel_type));
2310 			goto handled;
2311 		}
2312 		default:
2313 			goto invalid;
2314 		}
2315 
2316 		break;
2317 	case WLAN_CATEGORY_BACK:
2318 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2319 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2320 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2321 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2322 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2323 			break;
2324 
2325 		/* verify action_code is present */
2326 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2327 			break;
2328 
2329 		switch (mgmt->u.action.u.addba_req.action_code) {
2330 		case WLAN_ACTION_ADDBA_REQ:
2331 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2332 				   sizeof(mgmt->u.action.u.addba_req)))
2333 				goto invalid;
2334 			break;
2335 		case WLAN_ACTION_ADDBA_RESP:
2336 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2337 				   sizeof(mgmt->u.action.u.addba_resp)))
2338 				goto invalid;
2339 			break;
2340 		case WLAN_ACTION_DELBA:
2341 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2342 				   sizeof(mgmt->u.action.u.delba)))
2343 				goto invalid;
2344 			break;
2345 		default:
2346 			goto invalid;
2347 		}
2348 
2349 		goto queue;
2350 	case WLAN_CATEGORY_SPECTRUM_MGMT:
2351 		if (local->hw.conf.channel->band != IEEE80211_BAND_5GHZ)
2352 			break;
2353 
2354 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
2355 			break;
2356 
2357 		/* verify action_code is present */
2358 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2359 			break;
2360 
2361 		switch (mgmt->u.action.u.measurement.action_code) {
2362 		case WLAN_ACTION_SPCT_MSR_REQ:
2363 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2364 				   sizeof(mgmt->u.action.u.measurement)))
2365 				break;
2366 			ieee80211_process_measurement_req(sdata, mgmt, len);
2367 			goto handled;
2368 		case WLAN_ACTION_SPCT_CHL_SWITCH:
2369 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2370 				   sizeof(mgmt->u.action.u.chan_switch)))
2371 				break;
2372 
2373 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
2374 				break;
2375 
2376 			if (compare_ether_addr(mgmt->bssid, sdata->u.mgd.bssid))
2377 				break;
2378 
2379 			goto queue;
2380 		}
2381 		break;
2382 	case WLAN_CATEGORY_SA_QUERY:
2383 		if (len < (IEEE80211_MIN_ACTION_SIZE +
2384 			   sizeof(mgmt->u.action.u.sa_query)))
2385 			break;
2386 
2387 		switch (mgmt->u.action.u.sa_query.action) {
2388 		case WLAN_ACTION_SA_QUERY_REQUEST:
2389 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
2390 				break;
2391 			ieee80211_process_sa_query_req(sdata, mgmt, len);
2392 			goto handled;
2393 		}
2394 		break;
2395 	case WLAN_CATEGORY_SELF_PROTECTED:
2396 		if (len < (IEEE80211_MIN_ACTION_SIZE +
2397 			   sizeof(mgmt->u.action.u.self_prot.action_code)))
2398 			break;
2399 
2400 		switch (mgmt->u.action.u.self_prot.action_code) {
2401 		case WLAN_SP_MESH_PEERING_OPEN:
2402 		case WLAN_SP_MESH_PEERING_CLOSE:
2403 		case WLAN_SP_MESH_PEERING_CONFIRM:
2404 			if (!ieee80211_vif_is_mesh(&sdata->vif))
2405 				goto invalid;
2406 			if (sdata->u.mesh.security != IEEE80211_MESH_SEC_NONE)
2407 				/* userspace handles this frame */
2408 				break;
2409 			goto queue;
2410 		case WLAN_SP_MGK_INFORM:
2411 		case WLAN_SP_MGK_ACK:
2412 			if (!ieee80211_vif_is_mesh(&sdata->vif))
2413 				goto invalid;
2414 			break;
2415 		}
2416 		break;
2417 	case WLAN_CATEGORY_MESH_ACTION:
2418 		if (len < (IEEE80211_MIN_ACTION_SIZE +
2419 			   sizeof(mgmt->u.action.u.mesh_action.action_code)))
2420 			break;
2421 
2422 		if (!ieee80211_vif_is_mesh(&sdata->vif))
2423 			break;
2424 		if (mesh_action_is_path_sel(mgmt) &&
2425 		  (!mesh_path_sel_is_hwmp(sdata)))
2426 			break;
2427 		goto queue;
2428 	}
2429 
2430 	return RX_CONTINUE;
2431 
2432  invalid:
2433 	status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2434 	/* will return in the next handlers */
2435 	return RX_CONTINUE;
2436 
2437  handled:
2438 	if (rx->sta)
2439 		rx->sta->rx_packets++;
2440 	dev_kfree_skb(rx->skb);
2441 	return RX_QUEUED;
2442 
2443  queue:
2444 	rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2445 	skb_queue_tail(&sdata->skb_queue, rx->skb);
2446 	ieee80211_queue_work(&local->hw, &sdata->work);
2447 	if (rx->sta)
2448 		rx->sta->rx_packets++;
2449 	return RX_QUEUED;
2450 }
2451 
2452 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data * rx)2453 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2454 {
2455 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2456 	int sig = 0;
2457 
2458 	/* skip known-bad action frames and return them in the next handler */
2459 	if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2460 		return RX_CONTINUE;
2461 
2462 	/*
2463 	 * Getting here means the kernel doesn't know how to handle
2464 	 * it, but maybe userspace does ... include returned frames
2465 	 * so userspace can register for those to know whether ones
2466 	 * it transmitted were processed or returned.
2467 	 */
2468 
2469 	if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2470 		sig = status->signal;
2471 
2472 	if (cfg80211_rx_mgmt(rx->sdata->dev, status->freq, sig,
2473 			     rx->skb->data, rx->skb->len,
2474 			     GFP_ATOMIC)) {
2475 		if (rx->sta)
2476 			rx->sta->rx_packets++;
2477 		dev_kfree_skb(rx->skb);
2478 		return RX_QUEUED;
2479 	}
2480 
2481 
2482 	return RX_CONTINUE;
2483 }
2484 
2485 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_action_return(struct ieee80211_rx_data * rx)2486 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2487 {
2488 	struct ieee80211_local *local = rx->local;
2489 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2490 	struct sk_buff *nskb;
2491 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2492 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2493 
2494 	if (!ieee80211_is_action(mgmt->frame_control))
2495 		return RX_CONTINUE;
2496 
2497 	/*
2498 	 * For AP mode, hostapd is responsible for handling any action
2499 	 * frames that we didn't handle, including returning unknown
2500 	 * ones. For all other modes we will return them to the sender,
2501 	 * setting the 0x80 bit in the action category, as required by
2502 	 * 802.11-2012 9.24.4.
2503 	 * Newer versions of hostapd shall also use the management frame
2504 	 * registration mechanisms, but older ones still use cooked
2505 	 * monitor interfaces so push all frames there.
2506 	 */
2507 	if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2508 	    (sdata->vif.type == NL80211_IFTYPE_AP ||
2509 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2510 		return RX_DROP_MONITOR;
2511 
2512 	if (is_multicast_ether_addr(mgmt->da))
2513 		return RX_DROP_MONITOR;
2514 
2515 	/* do not return rejected action frames */
2516 	if (mgmt->u.action.category & 0x80)
2517 		return RX_DROP_UNUSABLE;
2518 
2519 	nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2520 			       GFP_ATOMIC);
2521 	if (nskb) {
2522 		struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2523 
2524 		nmgmt->u.action.category |= 0x80;
2525 		memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2526 		memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2527 
2528 		memset(nskb->cb, 0, sizeof(nskb->cb));
2529 
2530 		ieee80211_tx_skb(rx->sdata, nskb);
2531 	}
2532 	dev_kfree_skb(rx->skb);
2533 	return RX_QUEUED;
2534 }
2535 
2536 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_mgmt(struct ieee80211_rx_data * rx)2537 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2538 {
2539 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2540 	struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2541 	__le16 stype;
2542 
2543 	stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2544 
2545 	if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2546 	    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2547 	    sdata->vif.type != NL80211_IFTYPE_STATION)
2548 		return RX_DROP_MONITOR;
2549 
2550 	switch (stype) {
2551 	case cpu_to_le16(IEEE80211_STYPE_AUTH):
2552 	case cpu_to_le16(IEEE80211_STYPE_BEACON):
2553 	case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2554 		/* process for all: mesh, mlme, ibss */
2555 		break;
2556 	case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
2557 	case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
2558 	case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2559 	case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2560 		if (is_multicast_ether_addr(mgmt->da) &&
2561 		    !is_broadcast_ether_addr(mgmt->da))
2562 			return RX_DROP_MONITOR;
2563 
2564 		/* process only for station */
2565 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
2566 			return RX_DROP_MONITOR;
2567 		break;
2568 	case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2569 		/* process only for ibss */
2570 		if (sdata->vif.type != NL80211_IFTYPE_ADHOC)
2571 			return RX_DROP_MONITOR;
2572 		break;
2573 	default:
2574 		return RX_DROP_MONITOR;
2575 	}
2576 
2577 	/* queue up frame and kick off work to process it */
2578 	rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2579 	skb_queue_tail(&sdata->skb_queue, rx->skb);
2580 	ieee80211_queue_work(&rx->local->hw, &sdata->work);
2581 	if (rx->sta)
2582 		rx->sta->rx_packets++;
2583 
2584 	return RX_QUEUED;
2585 }
2586 
2587 /* TODO: use IEEE80211_RX_FRAGMENTED */
ieee80211_rx_cooked_monitor(struct ieee80211_rx_data * rx,struct ieee80211_rate * rate)2588 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2589 					struct ieee80211_rate *rate)
2590 {
2591 	struct ieee80211_sub_if_data *sdata;
2592 	struct ieee80211_local *local = rx->local;
2593 	struct sk_buff *skb = rx->skb, *skb2;
2594 	struct net_device *prev_dev = NULL;
2595 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2596 	int needed_headroom;
2597 
2598 	/*
2599 	 * If cooked monitor has been processed already, then
2600 	 * don't do it again. If not, set the flag.
2601 	 */
2602 	if (rx->flags & IEEE80211_RX_CMNTR)
2603 		goto out_free_skb;
2604 	rx->flags |= IEEE80211_RX_CMNTR;
2605 
2606 	/* If there are no cooked monitor interfaces, just free the SKB */
2607 	if (!local->cooked_mntrs)
2608 		goto out_free_skb;
2609 
2610 	/* room for the radiotap header based on driver features */
2611 	needed_headroom = ieee80211_rx_radiotap_len(local, status);
2612 
2613 	if (skb_headroom(skb) < needed_headroom &&
2614 	    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
2615 		goto out_free_skb;
2616 
2617 	/* prepend radiotap information */
2618 	ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
2619 					 false);
2620 
2621 	skb_set_mac_header(skb, 0);
2622 	skb->ip_summed = CHECKSUM_UNNECESSARY;
2623 	skb->pkt_type = PACKET_OTHERHOST;
2624 	skb->protocol = htons(ETH_P_802_2);
2625 
2626 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2627 		if (!ieee80211_sdata_running(sdata))
2628 			continue;
2629 
2630 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2631 		    !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2632 			continue;
2633 
2634 		if (prev_dev) {
2635 			skb2 = skb_clone(skb, GFP_ATOMIC);
2636 			if (skb2) {
2637 				skb2->dev = prev_dev;
2638 				netif_receive_skb(skb2);
2639 			}
2640 		}
2641 
2642 		prev_dev = sdata->dev;
2643 		sdata->dev->stats.rx_packets++;
2644 		sdata->dev->stats.rx_bytes += skb->len;
2645 	}
2646 
2647 	if (prev_dev) {
2648 		skb->dev = prev_dev;
2649 		netif_receive_skb(skb);
2650 		return;
2651 	}
2652 
2653  out_free_skb:
2654 	dev_kfree_skb(skb);
2655 }
2656 
ieee80211_rx_handlers_result(struct ieee80211_rx_data * rx,ieee80211_rx_result res)2657 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
2658 					 ieee80211_rx_result res)
2659 {
2660 	switch (res) {
2661 	case RX_DROP_MONITOR:
2662 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2663 		if (rx->sta)
2664 			rx->sta->rx_dropped++;
2665 		/* fall through */
2666 	case RX_CONTINUE: {
2667 		struct ieee80211_rate *rate = NULL;
2668 		struct ieee80211_supported_band *sband;
2669 		struct ieee80211_rx_status *status;
2670 
2671 		status = IEEE80211_SKB_RXCB((rx->skb));
2672 
2673 		sband = rx->local->hw.wiphy->bands[status->band];
2674 		if (!(status->flag & RX_FLAG_HT))
2675 			rate = &sband->bitrates[status->rate_idx];
2676 
2677 		ieee80211_rx_cooked_monitor(rx, rate);
2678 		break;
2679 		}
2680 	case RX_DROP_UNUSABLE:
2681 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2682 		if (rx->sta)
2683 			rx->sta->rx_dropped++;
2684 		dev_kfree_skb(rx->skb);
2685 		break;
2686 	case RX_QUEUED:
2687 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
2688 		break;
2689 	}
2690 }
2691 
ieee80211_rx_handlers(struct ieee80211_rx_data * rx)2692 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx)
2693 {
2694 	ieee80211_rx_result res = RX_DROP_MONITOR;
2695 	struct sk_buff *skb;
2696 
2697 #define CALL_RXH(rxh)			\
2698 	do {				\
2699 		res = rxh(rx);		\
2700 		if (res != RX_CONTINUE)	\
2701 			goto rxh_next;  \
2702 	} while (0);
2703 
2704 	spin_lock(&rx->local->rx_skb_queue.lock);
2705 	if (rx->local->running_rx_handler)
2706 		goto unlock;
2707 
2708 	rx->local->running_rx_handler = true;
2709 
2710 	while ((skb = __skb_dequeue(&rx->local->rx_skb_queue))) {
2711 		spin_unlock(&rx->local->rx_skb_queue.lock);
2712 
2713 		/*
2714 		 * all the other fields are valid across frames
2715 		 * that belong to an aMPDU since they are on the
2716 		 * same TID from the same station
2717 		 */
2718 		rx->skb = skb;
2719 
2720 		CALL_RXH(ieee80211_rx_h_decrypt)
2721 		CALL_RXH(ieee80211_rx_h_check_more_data)
2722 		CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll)
2723 		CALL_RXH(ieee80211_rx_h_sta_process)
2724 		CALL_RXH(ieee80211_rx_h_defragment)
2725 		CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2726 		/* must be after MMIC verify so header is counted in MPDU mic */
2727 #ifdef CONFIG_MAC80211_MESH
2728 		if (ieee80211_vif_is_mesh(&rx->sdata->vif))
2729 			CALL_RXH(ieee80211_rx_h_mesh_fwding);
2730 #endif
2731 		CALL_RXH(ieee80211_rx_h_amsdu)
2732 		CALL_RXH(ieee80211_rx_h_data)
2733 		CALL_RXH(ieee80211_rx_h_ctrl);
2734 		CALL_RXH(ieee80211_rx_h_mgmt_check)
2735 		CALL_RXH(ieee80211_rx_h_action)
2736 		CALL_RXH(ieee80211_rx_h_userspace_mgmt)
2737 		CALL_RXH(ieee80211_rx_h_action_return)
2738 		CALL_RXH(ieee80211_rx_h_mgmt)
2739 
2740  rxh_next:
2741 		ieee80211_rx_handlers_result(rx, res);
2742 		spin_lock(&rx->local->rx_skb_queue.lock);
2743 #undef CALL_RXH
2744 	}
2745 
2746 	rx->local->running_rx_handler = false;
2747 
2748  unlock:
2749 	spin_unlock(&rx->local->rx_skb_queue.lock);
2750 }
2751 
ieee80211_invoke_rx_handlers(struct ieee80211_rx_data * rx)2752 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
2753 {
2754 	ieee80211_rx_result res = RX_DROP_MONITOR;
2755 
2756 #define CALL_RXH(rxh)			\
2757 	do {				\
2758 		res = rxh(rx);		\
2759 		if (res != RX_CONTINUE)	\
2760 			goto rxh_next;  \
2761 	} while (0);
2762 
2763 	CALL_RXH(ieee80211_rx_h_passive_scan)
2764 	CALL_RXH(ieee80211_rx_h_check)
2765 
2766 	ieee80211_rx_reorder_ampdu(rx);
2767 
2768 	ieee80211_rx_handlers(rx);
2769 	return;
2770 
2771  rxh_next:
2772 	ieee80211_rx_handlers_result(rx, res);
2773 
2774 #undef CALL_RXH
2775 }
2776 
2777 /*
2778  * This function makes calls into the RX path, therefore
2779  * it has to be invoked under RCU read lock.
2780  */
ieee80211_release_reorder_timeout(struct sta_info * sta,int tid)2781 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
2782 {
2783 	struct ieee80211_rx_data rx = {
2784 		.sta = sta,
2785 		.sdata = sta->sdata,
2786 		.local = sta->local,
2787 		/* This is OK -- must be QoS data frame */
2788 		.security_idx = tid,
2789 		.seqno_idx = tid,
2790 		.flags = 0,
2791 	};
2792 	struct tid_ampdu_rx *tid_agg_rx;
2793 
2794 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
2795 	if (!tid_agg_rx)
2796 		return;
2797 
2798 	spin_lock(&tid_agg_rx->reorder_lock);
2799 	ieee80211_sta_reorder_release(&sta->local->hw, tid_agg_rx);
2800 	spin_unlock(&tid_agg_rx->reorder_lock);
2801 
2802 	ieee80211_rx_handlers(&rx);
2803 }
2804 
2805 /* main receive path */
2806 
prepare_for_handlers(struct ieee80211_rx_data * rx,struct ieee80211_hdr * hdr)2807 static int prepare_for_handlers(struct ieee80211_rx_data *rx,
2808 				struct ieee80211_hdr *hdr)
2809 {
2810 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2811 	struct sk_buff *skb = rx->skb;
2812 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2813 	u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
2814 	int multicast = is_multicast_ether_addr(hdr->addr1);
2815 
2816 	switch (sdata->vif.type) {
2817 	case NL80211_IFTYPE_STATION:
2818 		if (!bssid && !sdata->u.mgd.use_4addr)
2819 			return 0;
2820 		if (!multicast &&
2821 		    compare_ether_addr(sdata->vif.addr, hdr->addr1) != 0) {
2822 			if (!(sdata->dev->flags & IFF_PROMISC) ||
2823 			    sdata->u.mgd.use_4addr)
2824 				return 0;
2825 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2826 		}
2827 		break;
2828 	case NL80211_IFTYPE_ADHOC:
2829 		if (!bssid)
2830 			return 0;
2831 		if (compare_ether_addr(sdata->vif.addr, hdr->addr2) == 0 ||
2832 		    compare_ether_addr(sdata->u.ibss.bssid, hdr->addr2) == 0)
2833 			return 0;
2834 		if (ieee80211_is_beacon(hdr->frame_control)) {
2835 			return 1;
2836 		}
2837 		else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
2838 			if (!(status->rx_flags & IEEE80211_RX_IN_SCAN))
2839 				return 0;
2840 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2841 		} else if (!multicast &&
2842 			   compare_ether_addr(sdata->vif.addr,
2843 					      hdr->addr1) != 0) {
2844 			if (!(sdata->dev->flags & IFF_PROMISC))
2845 				return 0;
2846 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2847 		} else if (!rx->sta) {
2848 			int rate_idx;
2849 			if (status->flag & RX_FLAG_HT)
2850 				rate_idx = 0; /* TODO: HT rates */
2851 			else
2852 				rate_idx = status->rate_idx;
2853 			ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
2854 						 BIT(rate_idx));
2855 		}
2856 		break;
2857 	case NL80211_IFTYPE_MESH_POINT:
2858 		if (!multicast &&
2859 		    compare_ether_addr(sdata->vif.addr,
2860 				       hdr->addr1) != 0) {
2861 			if (!(sdata->dev->flags & IFF_PROMISC))
2862 				return 0;
2863 
2864 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2865 		}
2866 		break;
2867 	case NL80211_IFTYPE_AP_VLAN:
2868 	case NL80211_IFTYPE_AP:
2869 		if (!bssid) {
2870 			if (compare_ether_addr(sdata->vif.addr,
2871 					       hdr->addr1))
2872 				return 0;
2873 		} else if (!ieee80211_bssid_match(bssid,
2874 					sdata->vif.addr)) {
2875 			/*
2876 			 * Accept public action frames even when the
2877 			 * BSSID doesn't match, this is used for P2P
2878 			 * and location updates. Note that mac80211
2879 			 * itself never looks at these frames.
2880 			 */
2881 			if (!(status->rx_flags & IEEE80211_RX_IN_SCAN) &&
2882 			    ieee80211_is_public_action(hdr, skb->len))
2883 				return 1;
2884 			if (!(status->rx_flags & IEEE80211_RX_IN_SCAN) &&
2885 			    !ieee80211_is_beacon(hdr->frame_control))
2886 				return 0;
2887 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2888 		}
2889 		break;
2890 	case NL80211_IFTYPE_WDS:
2891 		if (bssid || !ieee80211_is_data(hdr->frame_control))
2892 			return 0;
2893 		if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2))
2894 			return 0;
2895 		break;
2896 	default:
2897 		/* should never get here */
2898 		WARN_ON(1);
2899 		break;
2900 	}
2901 
2902 	return 1;
2903 }
2904 
2905 /*
2906  * This function returns whether or not the SKB
2907  * was destined for RX processing or not, which,
2908  * if consume is true, is equivalent to whether
2909  * or not the skb was consumed.
2910  */
ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data * rx,struct sk_buff * skb,bool consume)2911 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
2912 					    struct sk_buff *skb, bool consume)
2913 {
2914 	struct ieee80211_local *local = rx->local;
2915 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2916 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2917 	struct ieee80211_hdr *hdr = (void *)skb->data;
2918 	int prepares;
2919 
2920 	rx->skb = skb;
2921 	status->rx_flags |= IEEE80211_RX_RA_MATCH;
2922 	prepares = prepare_for_handlers(rx, hdr);
2923 
2924 	if (!prepares)
2925 		return false;
2926 
2927 	if (!consume) {
2928 		skb = skb_copy(skb, GFP_ATOMIC);
2929 		if (!skb) {
2930 			if (net_ratelimit())
2931 				wiphy_debug(local->hw.wiphy,
2932 					"failed to copy skb for %s\n",
2933 					sdata->name);
2934 			return true;
2935 		}
2936 
2937 		rx->skb = skb;
2938 	}
2939 
2940 	ieee80211_invoke_rx_handlers(rx);
2941 	return true;
2942 }
2943 
2944 /*
2945  * This is the actual Rx frames handler. as it blongs to Rx path it must
2946  * be called with rcu_read_lock protection.
2947  */
__ieee80211_rx_handle_packet(struct ieee80211_hw * hw,struct sk_buff * skb)2948 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
2949 					 struct sk_buff *skb)
2950 {
2951 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2952 	struct ieee80211_local *local = hw_to_local(hw);
2953 	struct ieee80211_sub_if_data *sdata;
2954 	struct ieee80211_hdr *hdr;
2955 	__le16 fc;
2956 	struct ieee80211_rx_data rx;
2957 	struct ieee80211_sub_if_data *prev;
2958 	struct sta_info *sta, *tmp, *prev_sta;
2959 	int err = 0;
2960 
2961 	fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
2962 	memset(&rx, 0, sizeof(rx));
2963 	rx.skb = skb;
2964 	rx.local = local;
2965 
2966 	if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
2967 		local->dot11ReceivedFragmentCount++;
2968 
2969 	if (unlikely(test_bit(SCAN_HW_SCANNING, &local->scanning) ||
2970 		     test_bit(SCAN_SW_SCANNING, &local->scanning)))
2971 		status->rx_flags |= IEEE80211_RX_IN_SCAN;
2972 
2973 	if (ieee80211_is_mgmt(fc)) {
2974 		/* drop frame if too short for header */
2975 		if (skb->len < ieee80211_hdrlen(fc))
2976 			err = -ENOBUFS;
2977 		else
2978 			err = skb_linearize(skb);
2979 	} else {
2980 		err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
2981 	}
2982 
2983 	if (err) {
2984 		dev_kfree_skb(skb);
2985 		return;
2986 	}
2987 
2988 	hdr = (struct ieee80211_hdr *)skb->data;
2989 	ieee80211_parse_qos(&rx);
2990 	ieee80211_verify_alignment(&rx);
2991 
2992 	if (ieee80211_is_data(fc)) {
2993 		prev_sta = NULL;
2994 
2995 		for_each_sta_info(local, hdr->addr2, sta, tmp) {
2996 			if (!prev_sta) {
2997 				prev_sta = sta;
2998 				continue;
2999 			}
3000 
3001 			rx.sta = prev_sta;
3002 			rx.sdata = prev_sta->sdata;
3003 			ieee80211_prepare_and_rx_handle(&rx, skb, false);
3004 
3005 			prev_sta = sta;
3006 		}
3007 
3008 		if (prev_sta) {
3009 			rx.sta = prev_sta;
3010 			rx.sdata = prev_sta->sdata;
3011 
3012 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3013 				return;
3014 			goto out;
3015 		}
3016 	}
3017 
3018 	prev = NULL;
3019 
3020 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3021 		if (!ieee80211_sdata_running(sdata))
3022 			continue;
3023 
3024 		if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
3025 		    sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
3026 			continue;
3027 
3028 		/*
3029 		 * frame is destined for this interface, but if it's
3030 		 * not also for the previous one we handle that after
3031 		 * the loop to avoid copying the SKB once too much
3032 		 */
3033 
3034 		if (!prev) {
3035 			prev = sdata;
3036 			continue;
3037 		}
3038 
3039 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
3040 		rx.sdata = prev;
3041 		ieee80211_prepare_and_rx_handle(&rx, skb, false);
3042 
3043 		prev = sdata;
3044 	}
3045 
3046 	if (prev) {
3047 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
3048 		rx.sdata = prev;
3049 
3050 		if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3051 			return;
3052 	}
3053 
3054  out:
3055 	dev_kfree_skb(skb);
3056 }
3057 
3058 /*
3059  * This is the receive path handler. It is called by a low level driver when an
3060  * 802.11 MPDU is received from the hardware.
3061  */
ieee80211_rx(struct ieee80211_hw * hw,struct sk_buff * skb)3062 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
3063 {
3064 	struct ieee80211_local *local = hw_to_local(hw);
3065 	struct ieee80211_rate *rate = NULL;
3066 	struct ieee80211_supported_band *sband;
3067 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3068 
3069 	WARN_ON_ONCE(softirq_count() == 0);
3070 
3071 	if (WARN_ON(status->band < 0 ||
3072 		    status->band >= IEEE80211_NUM_BANDS))
3073 		goto drop;
3074 
3075 	sband = local->hw.wiphy->bands[status->band];
3076 	if (WARN_ON(!sband))
3077 		goto drop;
3078 
3079 	/*
3080 	 * If we're suspending, it is possible although not too likely
3081 	 * that we'd be receiving frames after having already partially
3082 	 * quiesced the stack. We can't process such frames then since
3083 	 * that might, for example, cause stations to be added or other
3084 	 * driver callbacks be invoked.
3085 	 */
3086 	if (unlikely(local->quiescing || local->suspended))
3087 		goto drop;
3088 
3089 	/*
3090 	 * The same happens when we're not even started,
3091 	 * but that's worth a warning.
3092 	 */
3093 	if (WARN_ON(!local->started))
3094 		goto drop;
3095 
3096 	if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
3097 		/*
3098 		 * Validate the rate, unless a PLCP error means that
3099 		 * we probably can't have a valid rate here anyway.
3100 		 */
3101 
3102 		if (status->flag & RX_FLAG_HT) {
3103 			/*
3104 			 * rate_idx is MCS index, which can be [0-76]
3105 			 * as documented on:
3106 			 *
3107 			 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
3108 			 *
3109 			 * Anything else would be some sort of driver or
3110 			 * hardware error. The driver should catch hardware
3111 			 * errors.
3112 			 */
3113 			if (WARN((status->rate_idx < 0 ||
3114 				 status->rate_idx > 76),
3115 				 "Rate marked as an HT rate but passed "
3116 				 "status->rate_idx is not "
3117 				 "an MCS index [0-76]: %d (0x%02x)\n",
3118 				 status->rate_idx,
3119 				 status->rate_idx))
3120 				goto drop;
3121 		} else {
3122 			if (WARN_ON(status->rate_idx < 0 ||
3123 				    status->rate_idx >= sband->n_bitrates))
3124 				goto drop;
3125 			rate = &sband->bitrates[status->rate_idx];
3126 		}
3127 	}
3128 
3129 	status->rx_flags = 0;
3130 
3131 	/*
3132 	 * key references and virtual interfaces are protected using RCU
3133 	 * and this requires that we are in a read-side RCU section during
3134 	 * receive processing
3135 	 */
3136 	rcu_read_lock();
3137 
3138 	/*
3139 	 * Frames with failed FCS/PLCP checksum are not returned,
3140 	 * all other frames are returned without radiotap header
3141 	 * if it was previously present.
3142 	 * Also, frames with less than 16 bytes are dropped.
3143 	 */
3144 	skb = ieee80211_rx_monitor(local, skb, rate);
3145 	if (!skb) {
3146 		rcu_read_unlock();
3147 		return;
3148 	}
3149 
3150 	ieee80211_tpt_led_trig_rx(local,
3151 			((struct ieee80211_hdr *)skb->data)->frame_control,
3152 			skb->len);
3153 	__ieee80211_rx_handle_packet(hw, skb);
3154 
3155 	rcu_read_unlock();
3156 
3157 	return;
3158  drop:
3159 	kfree_skb(skb);
3160 }
3161 EXPORT_SYMBOL(ieee80211_rx);
3162 
3163 /* This is a version of the rx handler that can be called from hard irq
3164  * context. Post the skb on the queue and schedule the tasklet */
ieee80211_rx_irqsafe(struct ieee80211_hw * hw,struct sk_buff * skb)3165 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
3166 {
3167 	struct ieee80211_local *local = hw_to_local(hw);
3168 
3169 	BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
3170 
3171 	skb->pkt_type = IEEE80211_RX_MSG;
3172 	skb_queue_tail(&local->skb_queue, skb);
3173 	tasklet_schedule(&local->tasklet);
3174 }
3175 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
3176