1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
90 */
91
92 #include <linux/capability.h>
93 #include <linux/errno.h>
94 #include <linux/types.h>
95 #include <linux/socket.h>
96 #include <linux/in.h>
97 #include <linux/kernel.h>
98 #include <linux/module.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/sched.h>
102 #include <linux/timer.h>
103 #include <linux/string.h>
104 #include <linux/sockios.h>
105 #include <linux/net.h>
106 #include <linux/mm.h>
107 #include <linux/slab.h>
108 #include <linux/interrupt.h>
109 #include <linux/poll.h>
110 #include <linux/tcp.h>
111 #include <linux/init.h>
112 #include <linux/highmem.h>
113 #include <linux/user_namespace.h>
114 #include <linux/static_key.h>
115 #include <linux/memcontrol.h>
116
117 #include <asm/uaccess.h>
118
119 #include <linux/netdevice.h>
120 #include <net/protocol.h>
121 #include <linux/skbuff.h>
122 #include <net/net_namespace.h>
123 #include <net/request_sock.h>
124 #include <net/sock.h>
125 #include <linux/net_tstamp.h>
126 #include <net/xfrm.h>
127 #include <linux/ipsec.h>
128 #include <net/cls_cgroup.h>
129 #include <net/netprio_cgroup.h>
130
131 #include <linux/filter.h>
132
133 #include <trace/events/sock.h>
134
135 #ifdef CONFIG_INET
136 #include <net/tcp.h>
137 #endif
138
139 static DEFINE_MUTEX(proto_list_mutex);
140 static LIST_HEAD(proto_list);
141
142 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
mem_cgroup_sockets_init(struct cgroup * cgrp,struct cgroup_subsys * ss)143 int mem_cgroup_sockets_init(struct cgroup *cgrp, struct cgroup_subsys *ss)
144 {
145 struct proto *proto;
146 int ret = 0;
147
148 mutex_lock(&proto_list_mutex);
149 list_for_each_entry(proto, &proto_list, node) {
150 if (proto->init_cgroup) {
151 ret = proto->init_cgroup(cgrp, ss);
152 if (ret)
153 goto out;
154 }
155 }
156
157 mutex_unlock(&proto_list_mutex);
158 return ret;
159 out:
160 list_for_each_entry_continue_reverse(proto, &proto_list, node)
161 if (proto->destroy_cgroup)
162 proto->destroy_cgroup(cgrp);
163 mutex_unlock(&proto_list_mutex);
164 return ret;
165 }
166
mem_cgroup_sockets_destroy(struct cgroup * cgrp)167 void mem_cgroup_sockets_destroy(struct cgroup *cgrp)
168 {
169 struct proto *proto;
170
171 mutex_lock(&proto_list_mutex);
172 list_for_each_entry_reverse(proto, &proto_list, node)
173 if (proto->destroy_cgroup)
174 proto->destroy_cgroup(cgrp);
175 mutex_unlock(&proto_list_mutex);
176 }
177 #endif
178
179 /*
180 * Each address family might have different locking rules, so we have
181 * one slock key per address family:
182 */
183 static struct lock_class_key af_family_keys[AF_MAX];
184 static struct lock_class_key af_family_slock_keys[AF_MAX];
185
186 struct static_key memcg_socket_limit_enabled;
187 EXPORT_SYMBOL(memcg_socket_limit_enabled);
188
189 /*
190 * Make lock validator output more readable. (we pre-construct these
191 * strings build-time, so that runtime initialization of socket
192 * locks is fast):
193 */
194 static const char *const af_family_key_strings[AF_MAX+1] = {
195 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
196 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
197 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
198 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
199 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
200 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
201 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
202 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
203 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
204 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
205 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
206 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
207 "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
208 "sk_lock-AF_NFC" , "sk_lock-AF_MAX"
209 };
210 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
211 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
212 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
213 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
214 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
215 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
216 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
217 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
218 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
219 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
220 "slock-27" , "slock-28" , "slock-AF_CAN" ,
221 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
222 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
223 "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
224 "slock-AF_NFC" , "slock-AF_MAX"
225 };
226 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
227 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
228 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
229 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
230 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
231 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
232 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
233 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
234 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
235 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
236 "clock-27" , "clock-28" , "clock-AF_CAN" ,
237 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
238 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
239 "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
240 "clock-AF_NFC" , "clock-AF_MAX"
241 };
242
243 /*
244 * sk_callback_lock locking rules are per-address-family,
245 * so split the lock classes by using a per-AF key:
246 */
247 static struct lock_class_key af_callback_keys[AF_MAX];
248
249 /* Take into consideration the size of the struct sk_buff overhead in the
250 * determination of these values, since that is non-constant across
251 * platforms. This makes socket queueing behavior and performance
252 * not depend upon such differences.
253 */
254 #define _SK_MEM_PACKETS 256
255 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
256 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
257 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
258
259 /* Run time adjustable parameters. */
260 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
261 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
262 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
263 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
264
265 /* Maximal space eaten by iovec or ancillary data plus some space */
266 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
267 EXPORT_SYMBOL(sysctl_optmem_max);
268
269 #if defined(CONFIG_CGROUPS)
270 #if !defined(CONFIG_NET_CLS_CGROUP)
271 int net_cls_subsys_id = -1;
272 EXPORT_SYMBOL_GPL(net_cls_subsys_id);
273 #endif
274 #if !defined(CONFIG_NETPRIO_CGROUP)
275 int net_prio_subsys_id = -1;
276 EXPORT_SYMBOL_GPL(net_prio_subsys_id);
277 #endif
278 #endif
279
sock_set_timeout(long * timeo_p,char __user * optval,int optlen)280 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
281 {
282 struct timeval tv;
283
284 if (optlen < sizeof(tv))
285 return -EINVAL;
286 if (copy_from_user(&tv, optval, sizeof(tv)))
287 return -EFAULT;
288 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
289 return -EDOM;
290
291 if (tv.tv_sec < 0) {
292 static int warned __read_mostly;
293
294 *timeo_p = 0;
295 if (warned < 10 && net_ratelimit()) {
296 warned++;
297 printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
298 "tries to set negative timeout\n",
299 current->comm, task_pid_nr(current));
300 }
301 return 0;
302 }
303 *timeo_p = MAX_SCHEDULE_TIMEOUT;
304 if (tv.tv_sec == 0 && tv.tv_usec == 0)
305 return 0;
306 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
307 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
308 return 0;
309 }
310
sock_warn_obsolete_bsdism(const char * name)311 static void sock_warn_obsolete_bsdism(const char *name)
312 {
313 static int warned;
314 static char warncomm[TASK_COMM_LEN];
315 if (strcmp(warncomm, current->comm) && warned < 5) {
316 strcpy(warncomm, current->comm);
317 printk(KERN_WARNING "process `%s' is using obsolete "
318 "%s SO_BSDCOMPAT\n", warncomm, name);
319 warned++;
320 }
321 }
322
323 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
324
sock_disable_timestamp(struct sock * sk,unsigned long flags)325 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
326 {
327 if (sk->sk_flags & flags) {
328 sk->sk_flags &= ~flags;
329 if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
330 net_disable_timestamp();
331 }
332 }
333
334
sock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)335 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
336 {
337 int err;
338 int skb_len;
339 unsigned long flags;
340 struct sk_buff_head *list = &sk->sk_receive_queue;
341
342 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
343 atomic_inc(&sk->sk_drops);
344 trace_sock_rcvqueue_full(sk, skb);
345 return -ENOMEM;
346 }
347
348 err = sk_filter(sk, skb);
349 if (err)
350 return err;
351
352 if (!sk_rmem_schedule(sk, skb->truesize)) {
353 atomic_inc(&sk->sk_drops);
354 return -ENOBUFS;
355 }
356
357 skb->dev = NULL;
358 skb_set_owner_r(skb, sk);
359
360 /* Cache the SKB length before we tack it onto the receive
361 * queue. Once it is added it no longer belongs to us and
362 * may be freed by other threads of control pulling packets
363 * from the queue.
364 */
365 skb_len = skb->len;
366
367 /* we escape from rcu protected region, make sure we dont leak
368 * a norefcounted dst
369 */
370 skb_dst_force(skb);
371
372 spin_lock_irqsave(&list->lock, flags);
373 skb->dropcount = atomic_read(&sk->sk_drops);
374 __skb_queue_tail(list, skb);
375 spin_unlock_irqrestore(&list->lock, flags);
376
377 if (!sock_flag(sk, SOCK_DEAD))
378 sk->sk_data_ready(sk, skb_len);
379 return 0;
380 }
381 EXPORT_SYMBOL(sock_queue_rcv_skb);
382
sk_receive_skb(struct sock * sk,struct sk_buff * skb,const int nested)383 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
384 {
385 int rc = NET_RX_SUCCESS;
386
387 if (sk_filter(sk, skb))
388 goto discard_and_relse;
389
390 skb->dev = NULL;
391
392 if (sk_rcvqueues_full(sk, skb)) {
393 atomic_inc(&sk->sk_drops);
394 goto discard_and_relse;
395 }
396 if (nested)
397 bh_lock_sock_nested(sk);
398 else
399 bh_lock_sock(sk);
400 if (!sock_owned_by_user(sk)) {
401 /*
402 * trylock + unlock semantics:
403 */
404 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
405
406 rc = sk_backlog_rcv(sk, skb);
407
408 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
409 } else if (sk_add_backlog(sk, skb)) {
410 bh_unlock_sock(sk);
411 atomic_inc(&sk->sk_drops);
412 goto discard_and_relse;
413 }
414
415 bh_unlock_sock(sk);
416 out:
417 sock_put(sk);
418 return rc;
419 discard_and_relse:
420 kfree_skb(skb);
421 goto out;
422 }
423 EXPORT_SYMBOL(sk_receive_skb);
424
sk_reset_txq(struct sock * sk)425 void sk_reset_txq(struct sock *sk)
426 {
427 sk_tx_queue_clear(sk);
428 }
429 EXPORT_SYMBOL(sk_reset_txq);
430
__sk_dst_check(struct sock * sk,u32 cookie)431 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
432 {
433 struct dst_entry *dst = __sk_dst_get(sk);
434
435 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
436 sk_tx_queue_clear(sk);
437 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
438 dst_release(dst);
439 return NULL;
440 }
441
442 return dst;
443 }
444 EXPORT_SYMBOL(__sk_dst_check);
445
sk_dst_check(struct sock * sk,u32 cookie)446 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
447 {
448 struct dst_entry *dst = sk_dst_get(sk);
449
450 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
451 sk_dst_reset(sk);
452 dst_release(dst);
453 return NULL;
454 }
455
456 return dst;
457 }
458 EXPORT_SYMBOL(sk_dst_check);
459
sock_bindtodevice(struct sock * sk,char __user * optval,int optlen)460 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
461 {
462 int ret = -ENOPROTOOPT;
463 #ifdef CONFIG_NETDEVICES
464 struct net *net = sock_net(sk);
465 char devname[IFNAMSIZ];
466 int index;
467
468 /* Sorry... */
469 ret = -EPERM;
470 if (!capable(CAP_NET_RAW))
471 goto out;
472
473 ret = -EINVAL;
474 if (optlen < 0)
475 goto out;
476
477 /* Bind this socket to a particular device like "eth0",
478 * as specified in the passed interface name. If the
479 * name is "" or the option length is zero the socket
480 * is not bound.
481 */
482 if (optlen > IFNAMSIZ - 1)
483 optlen = IFNAMSIZ - 1;
484 memset(devname, 0, sizeof(devname));
485
486 ret = -EFAULT;
487 if (copy_from_user(devname, optval, optlen))
488 goto out;
489
490 index = 0;
491 if (devname[0] != '\0') {
492 struct net_device *dev;
493
494 rcu_read_lock();
495 dev = dev_get_by_name_rcu(net, devname);
496 if (dev)
497 index = dev->ifindex;
498 rcu_read_unlock();
499 ret = -ENODEV;
500 if (!dev)
501 goto out;
502 }
503
504 lock_sock(sk);
505 sk->sk_bound_dev_if = index;
506 sk_dst_reset(sk);
507 release_sock(sk);
508
509 ret = 0;
510
511 out:
512 #endif
513
514 return ret;
515 }
516
sock_valbool_flag(struct sock * sk,int bit,int valbool)517 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
518 {
519 if (valbool)
520 sock_set_flag(sk, bit);
521 else
522 sock_reset_flag(sk, bit);
523 }
524
525 /*
526 * This is meant for all protocols to use and covers goings on
527 * at the socket level. Everything here is generic.
528 */
529
sock_setsockopt(struct socket * sock,int level,int optname,char __user * optval,unsigned int optlen)530 int sock_setsockopt(struct socket *sock, int level, int optname,
531 char __user *optval, unsigned int optlen)
532 {
533 struct sock *sk = sock->sk;
534 int val;
535 int valbool;
536 struct linger ling;
537 int ret = 0;
538
539 /*
540 * Options without arguments
541 */
542
543 if (optname == SO_BINDTODEVICE)
544 return sock_bindtodevice(sk, optval, optlen);
545
546 if (optlen < sizeof(int))
547 return -EINVAL;
548
549 if (get_user(val, (int __user *)optval))
550 return -EFAULT;
551
552 valbool = val ? 1 : 0;
553
554 lock_sock(sk);
555
556 switch (optname) {
557 case SO_DEBUG:
558 if (val && !capable(CAP_NET_ADMIN))
559 ret = -EACCES;
560 else
561 sock_valbool_flag(sk, SOCK_DBG, valbool);
562 break;
563 case SO_REUSEADDR:
564 sk->sk_reuse = valbool;
565 break;
566 case SO_TYPE:
567 case SO_PROTOCOL:
568 case SO_DOMAIN:
569 case SO_ERROR:
570 ret = -ENOPROTOOPT;
571 break;
572 case SO_DONTROUTE:
573 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
574 break;
575 case SO_BROADCAST:
576 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
577 break;
578 case SO_SNDBUF:
579 /* Don't error on this BSD doesn't and if you think
580 about it this is right. Otherwise apps have to
581 play 'guess the biggest size' games. RCVBUF/SNDBUF
582 are treated in BSD as hints */
583
584 if (val > sysctl_wmem_max)
585 val = sysctl_wmem_max;
586 set_sndbuf:
587 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
588 if ((val * 2) < SOCK_MIN_SNDBUF)
589 sk->sk_sndbuf = SOCK_MIN_SNDBUF;
590 else
591 sk->sk_sndbuf = val * 2;
592
593 /*
594 * Wake up sending tasks if we
595 * upped the value.
596 */
597 sk->sk_write_space(sk);
598 break;
599
600 case SO_SNDBUFFORCE:
601 if (!capable(CAP_NET_ADMIN)) {
602 ret = -EPERM;
603 break;
604 }
605 goto set_sndbuf;
606
607 case SO_RCVBUF:
608 /* Don't error on this BSD doesn't and if you think
609 about it this is right. Otherwise apps have to
610 play 'guess the biggest size' games. RCVBUF/SNDBUF
611 are treated in BSD as hints */
612
613 if (val > sysctl_rmem_max)
614 val = sysctl_rmem_max;
615 set_rcvbuf:
616 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
617 /*
618 * We double it on the way in to account for
619 * "struct sk_buff" etc. overhead. Applications
620 * assume that the SO_RCVBUF setting they make will
621 * allow that much actual data to be received on that
622 * socket.
623 *
624 * Applications are unaware that "struct sk_buff" and
625 * other overheads allocate from the receive buffer
626 * during socket buffer allocation.
627 *
628 * And after considering the possible alternatives,
629 * returning the value we actually used in getsockopt
630 * is the most desirable behavior.
631 */
632 if ((val * 2) < SOCK_MIN_RCVBUF)
633 sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
634 else
635 sk->sk_rcvbuf = val * 2;
636 break;
637
638 case SO_RCVBUFFORCE:
639 if (!capable(CAP_NET_ADMIN)) {
640 ret = -EPERM;
641 break;
642 }
643 goto set_rcvbuf;
644
645 case SO_KEEPALIVE:
646 #ifdef CONFIG_INET
647 if (sk->sk_protocol == IPPROTO_TCP &&
648 sk->sk_type == SOCK_STREAM)
649 tcp_set_keepalive(sk, valbool);
650 #endif
651 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
652 break;
653
654 case SO_OOBINLINE:
655 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
656 break;
657
658 case SO_NO_CHECK:
659 sk->sk_no_check = valbool;
660 break;
661
662 case SO_PRIORITY:
663 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
664 sk->sk_priority = val;
665 else
666 ret = -EPERM;
667 break;
668
669 case SO_LINGER:
670 if (optlen < sizeof(ling)) {
671 ret = -EINVAL; /* 1003.1g */
672 break;
673 }
674 if (copy_from_user(&ling, optval, sizeof(ling))) {
675 ret = -EFAULT;
676 break;
677 }
678 if (!ling.l_onoff)
679 sock_reset_flag(sk, SOCK_LINGER);
680 else {
681 #if (BITS_PER_LONG == 32)
682 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
683 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
684 else
685 #endif
686 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
687 sock_set_flag(sk, SOCK_LINGER);
688 }
689 break;
690
691 case SO_BSDCOMPAT:
692 sock_warn_obsolete_bsdism("setsockopt");
693 break;
694
695 case SO_PASSCRED:
696 if (valbool)
697 set_bit(SOCK_PASSCRED, &sock->flags);
698 else
699 clear_bit(SOCK_PASSCRED, &sock->flags);
700 break;
701
702 case SO_TIMESTAMP:
703 case SO_TIMESTAMPNS:
704 if (valbool) {
705 if (optname == SO_TIMESTAMP)
706 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
707 else
708 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
709 sock_set_flag(sk, SOCK_RCVTSTAMP);
710 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
711 } else {
712 sock_reset_flag(sk, SOCK_RCVTSTAMP);
713 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
714 }
715 break;
716
717 case SO_TIMESTAMPING:
718 if (val & ~SOF_TIMESTAMPING_MASK) {
719 ret = -EINVAL;
720 break;
721 }
722 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
723 val & SOF_TIMESTAMPING_TX_HARDWARE);
724 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
725 val & SOF_TIMESTAMPING_TX_SOFTWARE);
726 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
727 val & SOF_TIMESTAMPING_RX_HARDWARE);
728 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
729 sock_enable_timestamp(sk,
730 SOCK_TIMESTAMPING_RX_SOFTWARE);
731 else
732 sock_disable_timestamp(sk,
733 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
734 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
735 val & SOF_TIMESTAMPING_SOFTWARE);
736 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
737 val & SOF_TIMESTAMPING_SYS_HARDWARE);
738 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
739 val & SOF_TIMESTAMPING_RAW_HARDWARE);
740 break;
741
742 case SO_RCVLOWAT:
743 if (val < 0)
744 val = INT_MAX;
745 sk->sk_rcvlowat = val ? : 1;
746 break;
747
748 case SO_RCVTIMEO:
749 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
750 break;
751
752 case SO_SNDTIMEO:
753 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
754 break;
755
756 case SO_ATTACH_FILTER:
757 ret = -EINVAL;
758 if (optlen == sizeof(struct sock_fprog)) {
759 struct sock_fprog fprog;
760
761 ret = -EFAULT;
762 if (copy_from_user(&fprog, optval, sizeof(fprog)))
763 break;
764
765 ret = sk_attach_filter(&fprog, sk);
766 }
767 break;
768
769 case SO_DETACH_FILTER:
770 ret = sk_detach_filter(sk);
771 break;
772
773 case SO_PASSSEC:
774 if (valbool)
775 set_bit(SOCK_PASSSEC, &sock->flags);
776 else
777 clear_bit(SOCK_PASSSEC, &sock->flags);
778 break;
779 case SO_MARK:
780 if (!capable(CAP_NET_ADMIN))
781 ret = -EPERM;
782 else
783 sk->sk_mark = val;
784 break;
785
786 /* We implement the SO_SNDLOWAT etc to
787 not be settable (1003.1g 5.3) */
788 case SO_RXQ_OVFL:
789 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
790 break;
791
792 case SO_WIFI_STATUS:
793 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
794 break;
795
796 case SO_PEEK_OFF:
797 if (sock->ops->set_peek_off)
798 ret = sock->ops->set_peek_off(sk, val);
799 else
800 ret = -EOPNOTSUPP;
801 break;
802
803 case SO_NOFCS:
804 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
805 break;
806
807 default:
808 ret = -ENOPROTOOPT;
809 break;
810 }
811 release_sock(sk);
812 return ret;
813 }
814 EXPORT_SYMBOL(sock_setsockopt);
815
816
cred_to_ucred(struct pid * pid,const struct cred * cred,struct ucred * ucred,bool use_effective)817 void cred_to_ucred(struct pid *pid, const struct cred *cred,
818 struct ucred *ucred, bool use_effective)
819 {
820 ucred->pid = pid_vnr(pid);
821 ucred->uid = ucred->gid = -1;
822 if (cred) {
823 struct user_namespace *current_ns = current_user_ns();
824
825 if (use_effective) {
826 ucred->uid = user_ns_map_uid(current_ns, cred, cred->euid);
827 ucred->gid = user_ns_map_gid(current_ns, cred, cred->egid);
828 } else {
829 ucred->uid = user_ns_map_uid(current_ns, cred, cred->uid);
830 ucred->gid = user_ns_map_gid(current_ns, cred, cred->gid);
831 }
832 }
833 }
834 EXPORT_SYMBOL_GPL(cred_to_ucred);
835
sock_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)836 int sock_getsockopt(struct socket *sock, int level, int optname,
837 char __user *optval, int __user *optlen)
838 {
839 struct sock *sk = sock->sk;
840
841 union {
842 int val;
843 struct linger ling;
844 struct timeval tm;
845 } v;
846
847 int lv = sizeof(int);
848 int len;
849
850 if (get_user(len, optlen))
851 return -EFAULT;
852 if (len < 0)
853 return -EINVAL;
854
855 memset(&v, 0, sizeof(v));
856
857 switch (optname) {
858 case SO_DEBUG:
859 v.val = sock_flag(sk, SOCK_DBG);
860 break;
861
862 case SO_DONTROUTE:
863 v.val = sock_flag(sk, SOCK_LOCALROUTE);
864 break;
865
866 case SO_BROADCAST:
867 v.val = !!sock_flag(sk, SOCK_BROADCAST);
868 break;
869
870 case SO_SNDBUF:
871 v.val = sk->sk_sndbuf;
872 break;
873
874 case SO_RCVBUF:
875 v.val = sk->sk_rcvbuf;
876 break;
877
878 case SO_REUSEADDR:
879 v.val = sk->sk_reuse;
880 break;
881
882 case SO_KEEPALIVE:
883 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
884 break;
885
886 case SO_TYPE:
887 v.val = sk->sk_type;
888 break;
889
890 case SO_PROTOCOL:
891 v.val = sk->sk_protocol;
892 break;
893
894 case SO_DOMAIN:
895 v.val = sk->sk_family;
896 break;
897
898 case SO_ERROR:
899 v.val = -sock_error(sk);
900 if (v.val == 0)
901 v.val = xchg(&sk->sk_err_soft, 0);
902 break;
903
904 case SO_OOBINLINE:
905 v.val = !!sock_flag(sk, SOCK_URGINLINE);
906 break;
907
908 case SO_NO_CHECK:
909 v.val = sk->sk_no_check;
910 break;
911
912 case SO_PRIORITY:
913 v.val = sk->sk_priority;
914 break;
915
916 case SO_LINGER:
917 lv = sizeof(v.ling);
918 v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER);
919 v.ling.l_linger = sk->sk_lingertime / HZ;
920 break;
921
922 case SO_BSDCOMPAT:
923 sock_warn_obsolete_bsdism("getsockopt");
924 break;
925
926 case SO_TIMESTAMP:
927 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
928 !sock_flag(sk, SOCK_RCVTSTAMPNS);
929 break;
930
931 case SO_TIMESTAMPNS:
932 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
933 break;
934
935 case SO_TIMESTAMPING:
936 v.val = 0;
937 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
938 v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
939 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
940 v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
941 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
942 v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
943 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
944 v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
945 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
946 v.val |= SOF_TIMESTAMPING_SOFTWARE;
947 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
948 v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
949 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
950 v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
951 break;
952
953 case SO_RCVTIMEO:
954 lv = sizeof(struct timeval);
955 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
956 v.tm.tv_sec = 0;
957 v.tm.tv_usec = 0;
958 } else {
959 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
960 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
961 }
962 break;
963
964 case SO_SNDTIMEO:
965 lv = sizeof(struct timeval);
966 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
967 v.tm.tv_sec = 0;
968 v.tm.tv_usec = 0;
969 } else {
970 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
971 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
972 }
973 break;
974
975 case SO_RCVLOWAT:
976 v.val = sk->sk_rcvlowat;
977 break;
978
979 case SO_SNDLOWAT:
980 v.val = 1;
981 break;
982
983 case SO_PASSCRED:
984 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
985 break;
986
987 case SO_PEERCRED:
988 {
989 struct ucred peercred;
990 if (len > sizeof(peercred))
991 len = sizeof(peercred);
992 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred,
993 &peercred, true);
994 if (copy_to_user(optval, &peercred, len))
995 return -EFAULT;
996 goto lenout;
997 }
998
999 case SO_PEERNAME:
1000 {
1001 char address[128];
1002
1003 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1004 return -ENOTCONN;
1005 if (lv < len)
1006 return -EINVAL;
1007 if (copy_to_user(optval, address, len))
1008 return -EFAULT;
1009 goto lenout;
1010 }
1011
1012 /* Dubious BSD thing... Probably nobody even uses it, but
1013 * the UNIX standard wants it for whatever reason... -DaveM
1014 */
1015 case SO_ACCEPTCONN:
1016 v.val = sk->sk_state == TCP_LISTEN;
1017 break;
1018
1019 case SO_PASSSEC:
1020 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
1021 break;
1022
1023 case SO_PEERSEC:
1024 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1025
1026 case SO_MARK:
1027 v.val = sk->sk_mark;
1028 break;
1029
1030 case SO_RXQ_OVFL:
1031 v.val = !!sock_flag(sk, SOCK_RXQ_OVFL);
1032 break;
1033
1034 case SO_WIFI_STATUS:
1035 v.val = !!sock_flag(sk, SOCK_WIFI_STATUS);
1036 break;
1037
1038 case SO_PEEK_OFF:
1039 if (!sock->ops->set_peek_off)
1040 return -EOPNOTSUPP;
1041
1042 v.val = sk->sk_peek_off;
1043 break;
1044 case SO_NOFCS:
1045 v.val = !!sock_flag(sk, SOCK_NOFCS);
1046 break;
1047 default:
1048 return -ENOPROTOOPT;
1049 }
1050
1051 if (len > lv)
1052 len = lv;
1053 if (copy_to_user(optval, &v, len))
1054 return -EFAULT;
1055 lenout:
1056 if (put_user(len, optlen))
1057 return -EFAULT;
1058 return 0;
1059 }
1060
1061 /*
1062 * Initialize an sk_lock.
1063 *
1064 * (We also register the sk_lock with the lock validator.)
1065 */
sock_lock_init(struct sock * sk)1066 static inline void sock_lock_init(struct sock *sk)
1067 {
1068 sock_lock_init_class_and_name(sk,
1069 af_family_slock_key_strings[sk->sk_family],
1070 af_family_slock_keys + sk->sk_family,
1071 af_family_key_strings[sk->sk_family],
1072 af_family_keys + sk->sk_family);
1073 }
1074
1075 /*
1076 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1077 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1078 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1079 */
sock_copy(struct sock * nsk,const struct sock * osk)1080 static void sock_copy(struct sock *nsk, const struct sock *osk)
1081 {
1082 #ifdef CONFIG_SECURITY_NETWORK
1083 void *sptr = nsk->sk_security;
1084 #endif
1085 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1086
1087 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1088 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1089
1090 #ifdef CONFIG_SECURITY_NETWORK
1091 nsk->sk_security = sptr;
1092 security_sk_clone(osk, nsk);
1093 #endif
1094 }
1095
sk_prot_clear_portaddr_nulls(struct sock * sk,int size)1096 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1097 {
1098 unsigned long nulls1, nulls2;
1099
1100 nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1101 nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1102 if (nulls1 > nulls2)
1103 swap(nulls1, nulls2);
1104
1105 if (nulls1 != 0)
1106 memset((char *)sk, 0, nulls1);
1107 memset((char *)sk + nulls1 + sizeof(void *), 0,
1108 nulls2 - nulls1 - sizeof(void *));
1109 memset((char *)sk + nulls2 + sizeof(void *), 0,
1110 size - nulls2 - sizeof(void *));
1111 }
1112 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1113
sk_prot_alloc(struct proto * prot,gfp_t priority,int family)1114 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1115 int family)
1116 {
1117 struct sock *sk;
1118 struct kmem_cache *slab;
1119
1120 slab = prot->slab;
1121 if (slab != NULL) {
1122 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1123 if (!sk)
1124 return sk;
1125 if (priority & __GFP_ZERO) {
1126 if (prot->clear_sk)
1127 prot->clear_sk(sk, prot->obj_size);
1128 else
1129 sk_prot_clear_nulls(sk, prot->obj_size);
1130 }
1131 } else
1132 sk = kmalloc(prot->obj_size, priority);
1133
1134 if (sk != NULL) {
1135 kmemcheck_annotate_bitfield(sk, flags);
1136
1137 if (security_sk_alloc(sk, family, priority))
1138 goto out_free;
1139
1140 if (!try_module_get(prot->owner))
1141 goto out_free_sec;
1142 sk_tx_queue_clear(sk);
1143 }
1144
1145 return sk;
1146
1147 out_free_sec:
1148 security_sk_free(sk);
1149 out_free:
1150 if (slab != NULL)
1151 kmem_cache_free(slab, sk);
1152 else
1153 kfree(sk);
1154 return NULL;
1155 }
1156
sk_prot_free(struct proto * prot,struct sock * sk)1157 static void sk_prot_free(struct proto *prot, struct sock *sk)
1158 {
1159 struct kmem_cache *slab;
1160 struct module *owner;
1161
1162 owner = prot->owner;
1163 slab = prot->slab;
1164
1165 security_sk_free(sk);
1166 if (slab != NULL)
1167 kmem_cache_free(slab, sk);
1168 else
1169 kfree(sk);
1170 module_put(owner);
1171 }
1172
1173 #ifdef CONFIG_CGROUPS
sock_update_classid(struct sock * sk)1174 void sock_update_classid(struct sock *sk)
1175 {
1176 u32 classid;
1177
1178 rcu_read_lock(); /* doing current task, which cannot vanish. */
1179 classid = task_cls_classid(current);
1180 rcu_read_unlock();
1181 if (classid && classid != sk->sk_classid)
1182 sk->sk_classid = classid;
1183 }
1184 EXPORT_SYMBOL(sock_update_classid);
1185
sock_update_netprioidx(struct sock * sk)1186 void sock_update_netprioidx(struct sock *sk)
1187 {
1188 if (in_interrupt())
1189 return;
1190
1191 sk->sk_cgrp_prioidx = task_netprioidx(current);
1192 }
1193 EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1194 #endif
1195
1196 /**
1197 * sk_alloc - All socket objects are allocated here
1198 * @net: the applicable net namespace
1199 * @family: protocol family
1200 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1201 * @prot: struct proto associated with this new sock instance
1202 */
sk_alloc(struct net * net,int family,gfp_t priority,struct proto * prot)1203 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1204 struct proto *prot)
1205 {
1206 struct sock *sk;
1207
1208 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1209 if (sk) {
1210 sk->sk_family = family;
1211 /*
1212 * See comment in struct sock definition to understand
1213 * why we need sk_prot_creator -acme
1214 */
1215 sk->sk_prot = sk->sk_prot_creator = prot;
1216 sock_lock_init(sk);
1217 sock_net_set(sk, get_net(net));
1218 atomic_set(&sk->sk_wmem_alloc, 1);
1219
1220 sock_update_classid(sk);
1221 sock_update_netprioidx(sk);
1222 }
1223
1224 return sk;
1225 }
1226 EXPORT_SYMBOL(sk_alloc);
1227
__sk_free(struct sock * sk)1228 static void __sk_free(struct sock *sk)
1229 {
1230 struct sk_filter *filter;
1231
1232 if (sk->sk_destruct)
1233 sk->sk_destruct(sk);
1234
1235 filter = rcu_dereference_check(sk->sk_filter,
1236 atomic_read(&sk->sk_wmem_alloc) == 0);
1237 if (filter) {
1238 sk_filter_uncharge(sk, filter);
1239 RCU_INIT_POINTER(sk->sk_filter, NULL);
1240 }
1241
1242 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1243
1244 if (atomic_read(&sk->sk_omem_alloc))
1245 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1246 __func__, atomic_read(&sk->sk_omem_alloc));
1247
1248 if (sk->sk_peer_cred)
1249 put_cred(sk->sk_peer_cred);
1250 put_pid(sk->sk_peer_pid);
1251 put_net(sock_net(sk));
1252 sk_prot_free(sk->sk_prot_creator, sk);
1253 }
1254
sk_free(struct sock * sk)1255 void sk_free(struct sock *sk)
1256 {
1257 /*
1258 * We subtract one from sk_wmem_alloc and can know if
1259 * some packets are still in some tx queue.
1260 * If not null, sock_wfree() will call __sk_free(sk) later
1261 */
1262 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1263 __sk_free(sk);
1264 }
1265 EXPORT_SYMBOL(sk_free);
1266
1267 /*
1268 * Last sock_put should drop reference to sk->sk_net. It has already
1269 * been dropped in sk_change_net. Taking reference to stopping namespace
1270 * is not an option.
1271 * Take reference to a socket to remove it from hash _alive_ and after that
1272 * destroy it in the context of init_net.
1273 */
sk_release_kernel(struct sock * sk)1274 void sk_release_kernel(struct sock *sk)
1275 {
1276 if (sk == NULL || sk->sk_socket == NULL)
1277 return;
1278
1279 sock_hold(sk);
1280 sock_release(sk->sk_socket);
1281 release_net(sock_net(sk));
1282 sock_net_set(sk, get_net(&init_net));
1283 sock_put(sk);
1284 }
1285 EXPORT_SYMBOL(sk_release_kernel);
1286
sk_update_clone(const struct sock * sk,struct sock * newsk)1287 static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1288 {
1289 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1290 sock_update_memcg(newsk);
1291 }
1292
1293 /**
1294 * sk_clone_lock - clone a socket, and lock its clone
1295 * @sk: the socket to clone
1296 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1297 *
1298 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1299 */
sk_clone_lock(const struct sock * sk,const gfp_t priority)1300 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1301 {
1302 struct sock *newsk;
1303
1304 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1305 if (newsk != NULL) {
1306 struct sk_filter *filter;
1307
1308 sock_copy(newsk, sk);
1309
1310 /* SANITY */
1311 get_net(sock_net(newsk));
1312 sk_node_init(&newsk->sk_node);
1313 sock_lock_init(newsk);
1314 bh_lock_sock(newsk);
1315 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1316 newsk->sk_backlog.len = 0;
1317
1318 atomic_set(&newsk->sk_rmem_alloc, 0);
1319 /*
1320 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1321 */
1322 atomic_set(&newsk->sk_wmem_alloc, 1);
1323 atomic_set(&newsk->sk_omem_alloc, 0);
1324 skb_queue_head_init(&newsk->sk_receive_queue);
1325 skb_queue_head_init(&newsk->sk_write_queue);
1326 #ifdef CONFIG_NET_DMA
1327 skb_queue_head_init(&newsk->sk_async_wait_queue);
1328 #endif
1329
1330 spin_lock_init(&newsk->sk_dst_lock);
1331 rwlock_init(&newsk->sk_callback_lock);
1332 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1333 af_callback_keys + newsk->sk_family,
1334 af_family_clock_key_strings[newsk->sk_family]);
1335
1336 newsk->sk_dst_cache = NULL;
1337 newsk->sk_wmem_queued = 0;
1338 newsk->sk_forward_alloc = 0;
1339 newsk->sk_send_head = NULL;
1340 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1341
1342 sock_reset_flag(newsk, SOCK_DONE);
1343 skb_queue_head_init(&newsk->sk_error_queue);
1344
1345 filter = rcu_dereference_protected(newsk->sk_filter, 1);
1346 if (filter != NULL)
1347 sk_filter_charge(newsk, filter);
1348
1349 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1350 /* It is still raw copy of parent, so invalidate
1351 * destructor and make plain sk_free() */
1352 newsk->sk_destruct = NULL;
1353 bh_unlock_sock(newsk);
1354 sk_free(newsk);
1355 newsk = NULL;
1356 goto out;
1357 }
1358
1359 newsk->sk_err = 0;
1360 newsk->sk_priority = 0;
1361 /*
1362 * Before updating sk_refcnt, we must commit prior changes to memory
1363 * (Documentation/RCU/rculist_nulls.txt for details)
1364 */
1365 smp_wmb();
1366 atomic_set(&newsk->sk_refcnt, 2);
1367
1368 /*
1369 * Increment the counter in the same struct proto as the master
1370 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1371 * is the same as sk->sk_prot->socks, as this field was copied
1372 * with memcpy).
1373 *
1374 * This _changes_ the previous behaviour, where
1375 * tcp_create_openreq_child always was incrementing the
1376 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1377 * to be taken into account in all callers. -acme
1378 */
1379 sk_refcnt_debug_inc(newsk);
1380 sk_set_socket(newsk, NULL);
1381 newsk->sk_wq = NULL;
1382
1383 sk_update_clone(sk, newsk);
1384
1385 if (newsk->sk_prot->sockets_allocated)
1386 sk_sockets_allocated_inc(newsk);
1387
1388 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1389 net_enable_timestamp();
1390 }
1391 out:
1392 return newsk;
1393 }
1394 EXPORT_SYMBOL_GPL(sk_clone_lock);
1395
sk_setup_caps(struct sock * sk,struct dst_entry * dst)1396 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1397 {
1398 __sk_dst_set(sk, dst);
1399 sk->sk_route_caps = dst->dev->features;
1400 if (sk->sk_route_caps & NETIF_F_GSO)
1401 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1402 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1403 if (sk_can_gso(sk)) {
1404 if (dst->header_len) {
1405 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1406 } else {
1407 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1408 sk->sk_gso_max_size = dst->dev->gso_max_size;
1409 sk->sk_gso_max_segs = dst->dev->gso_max_segs;
1410 }
1411 }
1412 }
1413 EXPORT_SYMBOL_GPL(sk_setup_caps);
1414
sk_init(void)1415 void __init sk_init(void)
1416 {
1417 if (totalram_pages <= 4096) {
1418 sysctl_wmem_max = 32767;
1419 sysctl_rmem_max = 32767;
1420 sysctl_wmem_default = 32767;
1421 sysctl_rmem_default = 32767;
1422 } else if (totalram_pages >= 131072) {
1423 sysctl_wmem_max = 131071;
1424 sysctl_rmem_max = 131071;
1425 }
1426 }
1427
1428 /*
1429 * Simple resource managers for sockets.
1430 */
1431
1432
1433 /*
1434 * Write buffer destructor automatically called from kfree_skb.
1435 */
sock_wfree(struct sk_buff * skb)1436 void sock_wfree(struct sk_buff *skb)
1437 {
1438 struct sock *sk = skb->sk;
1439 unsigned int len = skb->truesize;
1440
1441 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1442 /*
1443 * Keep a reference on sk_wmem_alloc, this will be released
1444 * after sk_write_space() call
1445 */
1446 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1447 sk->sk_write_space(sk);
1448 len = 1;
1449 }
1450 /*
1451 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1452 * could not do because of in-flight packets
1453 */
1454 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1455 __sk_free(sk);
1456 }
1457 EXPORT_SYMBOL(sock_wfree);
1458
1459 /*
1460 * Read buffer destructor automatically called from kfree_skb.
1461 */
sock_rfree(struct sk_buff * skb)1462 void sock_rfree(struct sk_buff *skb)
1463 {
1464 struct sock *sk = skb->sk;
1465 unsigned int len = skb->truesize;
1466
1467 atomic_sub(len, &sk->sk_rmem_alloc);
1468 sk_mem_uncharge(sk, len);
1469 }
1470 EXPORT_SYMBOL(sock_rfree);
1471
1472
sock_i_uid(struct sock * sk)1473 int sock_i_uid(struct sock *sk)
1474 {
1475 int uid;
1476
1477 read_lock_bh(&sk->sk_callback_lock);
1478 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1479 read_unlock_bh(&sk->sk_callback_lock);
1480 return uid;
1481 }
1482 EXPORT_SYMBOL(sock_i_uid);
1483
sock_i_ino(struct sock * sk)1484 unsigned long sock_i_ino(struct sock *sk)
1485 {
1486 unsigned long ino;
1487
1488 read_lock_bh(&sk->sk_callback_lock);
1489 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1490 read_unlock_bh(&sk->sk_callback_lock);
1491 return ino;
1492 }
1493 EXPORT_SYMBOL(sock_i_ino);
1494
1495 /*
1496 * Allocate a skb from the socket's send buffer.
1497 */
sock_wmalloc(struct sock * sk,unsigned long size,int force,gfp_t priority)1498 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1499 gfp_t priority)
1500 {
1501 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1502 struct sk_buff *skb = alloc_skb(size, priority);
1503 if (skb) {
1504 skb_set_owner_w(skb, sk);
1505 return skb;
1506 }
1507 }
1508 return NULL;
1509 }
1510 EXPORT_SYMBOL(sock_wmalloc);
1511
1512 /*
1513 * Allocate a skb from the socket's receive buffer.
1514 */
sock_rmalloc(struct sock * sk,unsigned long size,int force,gfp_t priority)1515 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1516 gfp_t priority)
1517 {
1518 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1519 struct sk_buff *skb = alloc_skb(size, priority);
1520 if (skb) {
1521 skb_set_owner_r(skb, sk);
1522 return skb;
1523 }
1524 }
1525 return NULL;
1526 }
1527
1528 /*
1529 * Allocate a memory block from the socket's option memory buffer.
1530 */
sock_kmalloc(struct sock * sk,int size,gfp_t priority)1531 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1532 {
1533 if ((unsigned)size <= sysctl_optmem_max &&
1534 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1535 void *mem;
1536 /* First do the add, to avoid the race if kmalloc
1537 * might sleep.
1538 */
1539 atomic_add(size, &sk->sk_omem_alloc);
1540 mem = kmalloc(size, priority);
1541 if (mem)
1542 return mem;
1543 atomic_sub(size, &sk->sk_omem_alloc);
1544 }
1545 return NULL;
1546 }
1547 EXPORT_SYMBOL(sock_kmalloc);
1548
1549 /*
1550 * Free an option memory block.
1551 */
sock_kfree_s(struct sock * sk,void * mem,int size)1552 void sock_kfree_s(struct sock *sk, void *mem, int size)
1553 {
1554 kfree(mem);
1555 atomic_sub(size, &sk->sk_omem_alloc);
1556 }
1557 EXPORT_SYMBOL(sock_kfree_s);
1558
1559 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1560 I think, these locks should be removed for datagram sockets.
1561 */
sock_wait_for_wmem(struct sock * sk,long timeo)1562 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1563 {
1564 DEFINE_WAIT(wait);
1565
1566 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1567 for (;;) {
1568 if (!timeo)
1569 break;
1570 if (signal_pending(current))
1571 break;
1572 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1573 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1574 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1575 break;
1576 if (sk->sk_shutdown & SEND_SHUTDOWN)
1577 break;
1578 if (sk->sk_err)
1579 break;
1580 timeo = schedule_timeout(timeo);
1581 }
1582 finish_wait(sk_sleep(sk), &wait);
1583 return timeo;
1584 }
1585
1586
1587 /*
1588 * Generic send/receive buffer handlers
1589 */
1590
sock_alloc_send_pskb(struct sock * sk,unsigned long header_len,unsigned long data_len,int noblock,int * errcode)1591 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1592 unsigned long data_len, int noblock,
1593 int *errcode)
1594 {
1595 struct sk_buff *skb;
1596 gfp_t gfp_mask;
1597 long timeo;
1598 int err;
1599 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1600
1601 err = -EMSGSIZE;
1602 if (npages > MAX_SKB_FRAGS)
1603 goto failure;
1604
1605 gfp_mask = sk->sk_allocation;
1606 if (gfp_mask & __GFP_WAIT)
1607 gfp_mask |= __GFP_REPEAT;
1608
1609 timeo = sock_sndtimeo(sk, noblock);
1610 while (1) {
1611 err = sock_error(sk);
1612 if (err != 0)
1613 goto failure;
1614
1615 err = -EPIPE;
1616 if (sk->sk_shutdown & SEND_SHUTDOWN)
1617 goto failure;
1618
1619 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1620 skb = alloc_skb(header_len, gfp_mask);
1621 if (skb) {
1622 int i;
1623
1624 /* No pages, we're done... */
1625 if (!data_len)
1626 break;
1627
1628 skb->truesize += data_len;
1629 skb_shinfo(skb)->nr_frags = npages;
1630 for (i = 0; i < npages; i++) {
1631 struct page *page;
1632
1633 page = alloc_pages(sk->sk_allocation, 0);
1634 if (!page) {
1635 err = -ENOBUFS;
1636 skb_shinfo(skb)->nr_frags = i;
1637 kfree_skb(skb);
1638 goto failure;
1639 }
1640
1641 __skb_fill_page_desc(skb, i,
1642 page, 0,
1643 (data_len >= PAGE_SIZE ?
1644 PAGE_SIZE :
1645 data_len));
1646 data_len -= PAGE_SIZE;
1647 }
1648
1649 /* Full success... */
1650 break;
1651 }
1652 err = -ENOBUFS;
1653 goto failure;
1654 }
1655 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1656 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1657 err = -EAGAIN;
1658 if (!timeo)
1659 goto failure;
1660 if (signal_pending(current))
1661 goto interrupted;
1662 timeo = sock_wait_for_wmem(sk, timeo);
1663 }
1664
1665 skb_set_owner_w(skb, sk);
1666 return skb;
1667
1668 interrupted:
1669 err = sock_intr_errno(timeo);
1670 failure:
1671 *errcode = err;
1672 return NULL;
1673 }
1674 EXPORT_SYMBOL(sock_alloc_send_pskb);
1675
sock_alloc_send_skb(struct sock * sk,unsigned long size,int noblock,int * errcode)1676 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1677 int noblock, int *errcode)
1678 {
1679 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1680 }
1681 EXPORT_SYMBOL(sock_alloc_send_skb);
1682
__lock_sock(struct sock * sk)1683 static void __lock_sock(struct sock *sk)
1684 __releases(&sk->sk_lock.slock)
1685 __acquires(&sk->sk_lock.slock)
1686 {
1687 DEFINE_WAIT(wait);
1688
1689 for (;;) {
1690 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1691 TASK_UNINTERRUPTIBLE);
1692 spin_unlock_bh(&sk->sk_lock.slock);
1693 schedule();
1694 spin_lock_bh(&sk->sk_lock.slock);
1695 if (!sock_owned_by_user(sk))
1696 break;
1697 }
1698 finish_wait(&sk->sk_lock.wq, &wait);
1699 }
1700
__release_sock(struct sock * sk)1701 static void __release_sock(struct sock *sk)
1702 __releases(&sk->sk_lock.slock)
1703 __acquires(&sk->sk_lock.slock)
1704 {
1705 struct sk_buff *skb = sk->sk_backlog.head;
1706
1707 do {
1708 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1709 bh_unlock_sock(sk);
1710
1711 do {
1712 struct sk_buff *next = skb->next;
1713
1714 WARN_ON_ONCE(skb_dst_is_noref(skb));
1715 skb->next = NULL;
1716 sk_backlog_rcv(sk, skb);
1717
1718 /*
1719 * We are in process context here with softirqs
1720 * disabled, use cond_resched_softirq() to preempt.
1721 * This is safe to do because we've taken the backlog
1722 * queue private:
1723 */
1724 cond_resched_softirq();
1725
1726 skb = next;
1727 } while (skb != NULL);
1728
1729 bh_lock_sock(sk);
1730 } while ((skb = sk->sk_backlog.head) != NULL);
1731
1732 /*
1733 * Doing the zeroing here guarantee we can not loop forever
1734 * while a wild producer attempts to flood us.
1735 */
1736 sk->sk_backlog.len = 0;
1737 }
1738
1739 /**
1740 * sk_wait_data - wait for data to arrive at sk_receive_queue
1741 * @sk: sock to wait on
1742 * @timeo: for how long
1743 *
1744 * Now socket state including sk->sk_err is changed only under lock,
1745 * hence we may omit checks after joining wait queue.
1746 * We check receive queue before schedule() only as optimization;
1747 * it is very likely that release_sock() added new data.
1748 */
sk_wait_data(struct sock * sk,long * timeo)1749 int sk_wait_data(struct sock *sk, long *timeo)
1750 {
1751 int rc;
1752 DEFINE_WAIT(wait);
1753
1754 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1755 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1756 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1757 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1758 finish_wait(sk_sleep(sk), &wait);
1759 return rc;
1760 }
1761 EXPORT_SYMBOL(sk_wait_data);
1762
1763 /**
1764 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1765 * @sk: socket
1766 * @size: memory size to allocate
1767 * @kind: allocation type
1768 *
1769 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1770 * rmem allocation. This function assumes that protocols which have
1771 * memory_pressure use sk_wmem_queued as write buffer accounting.
1772 */
__sk_mem_schedule(struct sock * sk,int size,int kind)1773 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1774 {
1775 struct proto *prot = sk->sk_prot;
1776 int amt = sk_mem_pages(size);
1777 long allocated;
1778 int parent_status = UNDER_LIMIT;
1779
1780 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1781
1782 allocated = sk_memory_allocated_add(sk, amt, &parent_status);
1783
1784 /* Under limit. */
1785 if (parent_status == UNDER_LIMIT &&
1786 allocated <= sk_prot_mem_limits(sk, 0)) {
1787 sk_leave_memory_pressure(sk);
1788 return 1;
1789 }
1790
1791 /* Under pressure. (we or our parents) */
1792 if ((parent_status > SOFT_LIMIT) ||
1793 allocated > sk_prot_mem_limits(sk, 1))
1794 sk_enter_memory_pressure(sk);
1795
1796 /* Over hard limit (we or our parents) */
1797 if ((parent_status == OVER_LIMIT) ||
1798 (allocated > sk_prot_mem_limits(sk, 2)))
1799 goto suppress_allocation;
1800
1801 /* guarantee minimum buffer size under pressure */
1802 if (kind == SK_MEM_RECV) {
1803 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1804 return 1;
1805
1806 } else { /* SK_MEM_SEND */
1807 if (sk->sk_type == SOCK_STREAM) {
1808 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1809 return 1;
1810 } else if (atomic_read(&sk->sk_wmem_alloc) <
1811 prot->sysctl_wmem[0])
1812 return 1;
1813 }
1814
1815 if (sk_has_memory_pressure(sk)) {
1816 int alloc;
1817
1818 if (!sk_under_memory_pressure(sk))
1819 return 1;
1820 alloc = sk_sockets_allocated_read_positive(sk);
1821 if (sk_prot_mem_limits(sk, 2) > alloc *
1822 sk_mem_pages(sk->sk_wmem_queued +
1823 atomic_read(&sk->sk_rmem_alloc) +
1824 sk->sk_forward_alloc))
1825 return 1;
1826 }
1827
1828 suppress_allocation:
1829
1830 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1831 sk_stream_moderate_sndbuf(sk);
1832
1833 /* Fail only if socket is _under_ its sndbuf.
1834 * In this case we cannot block, so that we have to fail.
1835 */
1836 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1837 return 1;
1838 }
1839
1840 trace_sock_exceed_buf_limit(sk, prot, allocated);
1841
1842 /* Alas. Undo changes. */
1843 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1844
1845 sk_memory_allocated_sub(sk, amt);
1846
1847 return 0;
1848 }
1849 EXPORT_SYMBOL(__sk_mem_schedule);
1850
1851 /**
1852 * __sk_reclaim - reclaim memory_allocated
1853 * @sk: socket
1854 */
__sk_mem_reclaim(struct sock * sk)1855 void __sk_mem_reclaim(struct sock *sk)
1856 {
1857 sk_memory_allocated_sub(sk,
1858 sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
1859 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1860
1861 if (sk_under_memory_pressure(sk) &&
1862 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
1863 sk_leave_memory_pressure(sk);
1864 }
1865 EXPORT_SYMBOL(__sk_mem_reclaim);
1866
1867
1868 /*
1869 * Set of default routines for initialising struct proto_ops when
1870 * the protocol does not support a particular function. In certain
1871 * cases where it makes no sense for a protocol to have a "do nothing"
1872 * function, some default processing is provided.
1873 */
1874
sock_no_bind(struct socket * sock,struct sockaddr * saddr,int len)1875 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1876 {
1877 return -EOPNOTSUPP;
1878 }
1879 EXPORT_SYMBOL(sock_no_bind);
1880
sock_no_connect(struct socket * sock,struct sockaddr * saddr,int len,int flags)1881 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1882 int len, int flags)
1883 {
1884 return -EOPNOTSUPP;
1885 }
1886 EXPORT_SYMBOL(sock_no_connect);
1887
sock_no_socketpair(struct socket * sock1,struct socket * sock2)1888 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1889 {
1890 return -EOPNOTSUPP;
1891 }
1892 EXPORT_SYMBOL(sock_no_socketpair);
1893
sock_no_accept(struct socket * sock,struct socket * newsock,int flags)1894 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1895 {
1896 return -EOPNOTSUPP;
1897 }
1898 EXPORT_SYMBOL(sock_no_accept);
1899
sock_no_getname(struct socket * sock,struct sockaddr * saddr,int * len,int peer)1900 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1901 int *len, int peer)
1902 {
1903 return -EOPNOTSUPP;
1904 }
1905 EXPORT_SYMBOL(sock_no_getname);
1906
sock_no_poll(struct file * file,struct socket * sock,poll_table * pt)1907 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1908 {
1909 return 0;
1910 }
1911 EXPORT_SYMBOL(sock_no_poll);
1912
sock_no_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)1913 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1914 {
1915 return -EOPNOTSUPP;
1916 }
1917 EXPORT_SYMBOL(sock_no_ioctl);
1918
sock_no_listen(struct socket * sock,int backlog)1919 int sock_no_listen(struct socket *sock, int backlog)
1920 {
1921 return -EOPNOTSUPP;
1922 }
1923 EXPORT_SYMBOL(sock_no_listen);
1924
sock_no_shutdown(struct socket * sock,int how)1925 int sock_no_shutdown(struct socket *sock, int how)
1926 {
1927 return -EOPNOTSUPP;
1928 }
1929 EXPORT_SYMBOL(sock_no_shutdown);
1930
sock_no_setsockopt(struct socket * sock,int level,int optname,char __user * optval,unsigned int optlen)1931 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1932 char __user *optval, unsigned int optlen)
1933 {
1934 return -EOPNOTSUPP;
1935 }
1936 EXPORT_SYMBOL(sock_no_setsockopt);
1937
sock_no_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)1938 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1939 char __user *optval, int __user *optlen)
1940 {
1941 return -EOPNOTSUPP;
1942 }
1943 EXPORT_SYMBOL(sock_no_getsockopt);
1944
sock_no_sendmsg(struct kiocb * iocb,struct socket * sock,struct msghdr * m,size_t len)1945 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1946 size_t len)
1947 {
1948 return -EOPNOTSUPP;
1949 }
1950 EXPORT_SYMBOL(sock_no_sendmsg);
1951
sock_no_recvmsg(struct kiocb * iocb,struct socket * sock,struct msghdr * m,size_t len,int flags)1952 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1953 size_t len, int flags)
1954 {
1955 return -EOPNOTSUPP;
1956 }
1957 EXPORT_SYMBOL(sock_no_recvmsg);
1958
sock_no_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)1959 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1960 {
1961 /* Mirror missing mmap method error code */
1962 return -ENODEV;
1963 }
1964 EXPORT_SYMBOL(sock_no_mmap);
1965
sock_no_sendpage(struct socket * sock,struct page * page,int offset,size_t size,int flags)1966 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1967 {
1968 ssize_t res;
1969 struct msghdr msg = {.msg_flags = flags};
1970 struct kvec iov;
1971 char *kaddr = kmap(page);
1972 iov.iov_base = kaddr + offset;
1973 iov.iov_len = size;
1974 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1975 kunmap(page);
1976 return res;
1977 }
1978 EXPORT_SYMBOL(sock_no_sendpage);
1979
1980 /*
1981 * Default Socket Callbacks
1982 */
1983
sock_def_wakeup(struct sock * sk)1984 static void sock_def_wakeup(struct sock *sk)
1985 {
1986 struct socket_wq *wq;
1987
1988 rcu_read_lock();
1989 wq = rcu_dereference(sk->sk_wq);
1990 if (wq_has_sleeper(wq))
1991 wake_up_interruptible_all(&wq->wait);
1992 rcu_read_unlock();
1993 }
1994
sock_def_error_report(struct sock * sk)1995 static void sock_def_error_report(struct sock *sk)
1996 {
1997 struct socket_wq *wq;
1998
1999 rcu_read_lock();
2000 wq = rcu_dereference(sk->sk_wq);
2001 if (wq_has_sleeper(wq))
2002 wake_up_interruptible_poll(&wq->wait, POLLERR);
2003 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2004 rcu_read_unlock();
2005 }
2006
sock_def_readable(struct sock * sk,int len)2007 static void sock_def_readable(struct sock *sk, int len)
2008 {
2009 struct socket_wq *wq;
2010
2011 rcu_read_lock();
2012 wq = rcu_dereference(sk->sk_wq);
2013 if (wq_has_sleeper(wq))
2014 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2015 POLLRDNORM | POLLRDBAND);
2016 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2017 rcu_read_unlock();
2018 }
2019
sock_def_write_space(struct sock * sk)2020 static void sock_def_write_space(struct sock *sk)
2021 {
2022 struct socket_wq *wq;
2023
2024 rcu_read_lock();
2025
2026 /* Do not wake up a writer until he can make "significant"
2027 * progress. --DaveM
2028 */
2029 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2030 wq = rcu_dereference(sk->sk_wq);
2031 if (wq_has_sleeper(wq))
2032 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2033 POLLWRNORM | POLLWRBAND);
2034
2035 /* Should agree with poll, otherwise some programs break */
2036 if (sock_writeable(sk))
2037 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2038 }
2039
2040 rcu_read_unlock();
2041 }
2042
sock_def_destruct(struct sock * sk)2043 static void sock_def_destruct(struct sock *sk)
2044 {
2045 kfree(sk->sk_protinfo);
2046 }
2047
sk_send_sigurg(struct sock * sk)2048 void sk_send_sigurg(struct sock *sk)
2049 {
2050 if (sk->sk_socket && sk->sk_socket->file)
2051 if (send_sigurg(&sk->sk_socket->file->f_owner))
2052 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2053 }
2054 EXPORT_SYMBOL(sk_send_sigurg);
2055
sk_reset_timer(struct sock * sk,struct timer_list * timer,unsigned long expires)2056 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2057 unsigned long expires)
2058 {
2059 if (!mod_timer(timer, expires))
2060 sock_hold(sk);
2061 }
2062 EXPORT_SYMBOL(sk_reset_timer);
2063
sk_stop_timer(struct sock * sk,struct timer_list * timer)2064 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2065 {
2066 if (timer_pending(timer) && del_timer(timer))
2067 __sock_put(sk);
2068 }
2069 EXPORT_SYMBOL(sk_stop_timer);
2070
sock_init_data(struct socket * sock,struct sock * sk)2071 void sock_init_data(struct socket *sock, struct sock *sk)
2072 {
2073 skb_queue_head_init(&sk->sk_receive_queue);
2074 skb_queue_head_init(&sk->sk_write_queue);
2075 skb_queue_head_init(&sk->sk_error_queue);
2076 #ifdef CONFIG_NET_DMA
2077 skb_queue_head_init(&sk->sk_async_wait_queue);
2078 #endif
2079
2080 sk->sk_send_head = NULL;
2081
2082 init_timer(&sk->sk_timer);
2083
2084 sk->sk_allocation = GFP_KERNEL;
2085 sk->sk_rcvbuf = sysctl_rmem_default;
2086 sk->sk_sndbuf = sysctl_wmem_default;
2087 sk->sk_state = TCP_CLOSE;
2088 sk_set_socket(sk, sock);
2089
2090 sock_set_flag(sk, SOCK_ZAPPED);
2091
2092 if (sock) {
2093 sk->sk_type = sock->type;
2094 sk->sk_wq = sock->wq;
2095 sock->sk = sk;
2096 } else
2097 sk->sk_wq = NULL;
2098
2099 spin_lock_init(&sk->sk_dst_lock);
2100 rwlock_init(&sk->sk_callback_lock);
2101 lockdep_set_class_and_name(&sk->sk_callback_lock,
2102 af_callback_keys + sk->sk_family,
2103 af_family_clock_key_strings[sk->sk_family]);
2104
2105 sk->sk_state_change = sock_def_wakeup;
2106 sk->sk_data_ready = sock_def_readable;
2107 sk->sk_write_space = sock_def_write_space;
2108 sk->sk_error_report = sock_def_error_report;
2109 sk->sk_destruct = sock_def_destruct;
2110
2111 sk->sk_sndmsg_page = NULL;
2112 sk->sk_sndmsg_off = 0;
2113 sk->sk_peek_off = -1;
2114
2115 sk->sk_peer_pid = NULL;
2116 sk->sk_peer_cred = NULL;
2117 sk->sk_write_pending = 0;
2118 sk->sk_rcvlowat = 1;
2119 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
2120 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
2121
2122 sk->sk_stamp = ktime_set(-1L, 0);
2123
2124 /*
2125 * Before updating sk_refcnt, we must commit prior changes to memory
2126 * (Documentation/RCU/rculist_nulls.txt for details)
2127 */
2128 smp_wmb();
2129 atomic_set(&sk->sk_refcnt, 1);
2130 atomic_set(&sk->sk_drops, 0);
2131 }
2132 EXPORT_SYMBOL(sock_init_data);
2133
lock_sock_nested(struct sock * sk,int subclass)2134 void lock_sock_nested(struct sock *sk, int subclass)
2135 {
2136 might_sleep();
2137 spin_lock_bh(&sk->sk_lock.slock);
2138 if (sk->sk_lock.owned)
2139 __lock_sock(sk);
2140 sk->sk_lock.owned = 1;
2141 spin_unlock(&sk->sk_lock.slock);
2142 /*
2143 * The sk_lock has mutex_lock() semantics here:
2144 */
2145 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2146 local_bh_enable();
2147 }
2148 EXPORT_SYMBOL(lock_sock_nested);
2149
release_sock(struct sock * sk)2150 void release_sock(struct sock *sk)
2151 {
2152 /*
2153 * The sk_lock has mutex_unlock() semantics:
2154 */
2155 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2156
2157 spin_lock_bh(&sk->sk_lock.slock);
2158 if (sk->sk_backlog.tail)
2159 __release_sock(sk);
2160 sk->sk_lock.owned = 0;
2161 if (waitqueue_active(&sk->sk_lock.wq))
2162 wake_up(&sk->sk_lock.wq);
2163 spin_unlock_bh(&sk->sk_lock.slock);
2164 }
2165 EXPORT_SYMBOL(release_sock);
2166
2167 /**
2168 * lock_sock_fast - fast version of lock_sock
2169 * @sk: socket
2170 *
2171 * This version should be used for very small section, where process wont block
2172 * return false if fast path is taken
2173 * sk_lock.slock locked, owned = 0, BH disabled
2174 * return true if slow path is taken
2175 * sk_lock.slock unlocked, owned = 1, BH enabled
2176 */
lock_sock_fast(struct sock * sk)2177 bool lock_sock_fast(struct sock *sk)
2178 {
2179 might_sleep();
2180 spin_lock_bh(&sk->sk_lock.slock);
2181
2182 if (!sk->sk_lock.owned)
2183 /*
2184 * Note : We must disable BH
2185 */
2186 return false;
2187
2188 __lock_sock(sk);
2189 sk->sk_lock.owned = 1;
2190 spin_unlock(&sk->sk_lock.slock);
2191 /*
2192 * The sk_lock has mutex_lock() semantics here:
2193 */
2194 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2195 local_bh_enable();
2196 return true;
2197 }
2198 EXPORT_SYMBOL(lock_sock_fast);
2199
sock_get_timestamp(struct sock * sk,struct timeval __user * userstamp)2200 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2201 {
2202 struct timeval tv;
2203 if (!sock_flag(sk, SOCK_TIMESTAMP))
2204 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2205 tv = ktime_to_timeval(sk->sk_stamp);
2206 if (tv.tv_sec == -1)
2207 return -ENOENT;
2208 if (tv.tv_sec == 0) {
2209 sk->sk_stamp = ktime_get_real();
2210 tv = ktime_to_timeval(sk->sk_stamp);
2211 }
2212 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2213 }
2214 EXPORT_SYMBOL(sock_get_timestamp);
2215
sock_get_timestampns(struct sock * sk,struct timespec __user * userstamp)2216 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2217 {
2218 struct timespec ts;
2219 if (!sock_flag(sk, SOCK_TIMESTAMP))
2220 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2221 ts = ktime_to_timespec(sk->sk_stamp);
2222 if (ts.tv_sec == -1)
2223 return -ENOENT;
2224 if (ts.tv_sec == 0) {
2225 sk->sk_stamp = ktime_get_real();
2226 ts = ktime_to_timespec(sk->sk_stamp);
2227 }
2228 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2229 }
2230 EXPORT_SYMBOL(sock_get_timestampns);
2231
sock_enable_timestamp(struct sock * sk,int flag)2232 void sock_enable_timestamp(struct sock *sk, int flag)
2233 {
2234 if (!sock_flag(sk, flag)) {
2235 unsigned long previous_flags = sk->sk_flags;
2236
2237 sock_set_flag(sk, flag);
2238 /*
2239 * we just set one of the two flags which require net
2240 * time stamping, but time stamping might have been on
2241 * already because of the other one
2242 */
2243 if (!(previous_flags & SK_FLAGS_TIMESTAMP))
2244 net_enable_timestamp();
2245 }
2246 }
2247
2248 /*
2249 * Get a socket option on an socket.
2250 *
2251 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2252 * asynchronous errors should be reported by getsockopt. We assume
2253 * this means if you specify SO_ERROR (otherwise whats the point of it).
2254 */
sock_common_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)2255 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2256 char __user *optval, int __user *optlen)
2257 {
2258 struct sock *sk = sock->sk;
2259
2260 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2261 }
2262 EXPORT_SYMBOL(sock_common_getsockopt);
2263
2264 #ifdef CONFIG_COMPAT
compat_sock_common_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)2265 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2266 char __user *optval, int __user *optlen)
2267 {
2268 struct sock *sk = sock->sk;
2269
2270 if (sk->sk_prot->compat_getsockopt != NULL)
2271 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2272 optval, optlen);
2273 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2274 }
2275 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2276 #endif
2277
sock_common_recvmsg(struct kiocb * iocb,struct socket * sock,struct msghdr * msg,size_t size,int flags)2278 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2279 struct msghdr *msg, size_t size, int flags)
2280 {
2281 struct sock *sk = sock->sk;
2282 int addr_len = 0;
2283 int err;
2284
2285 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2286 flags & ~MSG_DONTWAIT, &addr_len);
2287 if (err >= 0)
2288 msg->msg_namelen = addr_len;
2289 return err;
2290 }
2291 EXPORT_SYMBOL(sock_common_recvmsg);
2292
2293 /*
2294 * Set socket options on an inet socket.
2295 */
sock_common_setsockopt(struct socket * sock,int level,int optname,char __user * optval,unsigned int optlen)2296 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2297 char __user *optval, unsigned int optlen)
2298 {
2299 struct sock *sk = sock->sk;
2300
2301 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2302 }
2303 EXPORT_SYMBOL(sock_common_setsockopt);
2304
2305 #ifdef CONFIG_COMPAT
compat_sock_common_setsockopt(struct socket * sock,int level,int optname,char __user * optval,unsigned int optlen)2306 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2307 char __user *optval, unsigned int optlen)
2308 {
2309 struct sock *sk = sock->sk;
2310
2311 if (sk->sk_prot->compat_setsockopt != NULL)
2312 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2313 optval, optlen);
2314 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2315 }
2316 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2317 #endif
2318
sk_common_release(struct sock * sk)2319 void sk_common_release(struct sock *sk)
2320 {
2321 if (sk->sk_prot->destroy)
2322 sk->sk_prot->destroy(sk);
2323
2324 /*
2325 * Observation: when sock_common_release is called, processes have
2326 * no access to socket. But net still has.
2327 * Step one, detach it from networking:
2328 *
2329 * A. Remove from hash tables.
2330 */
2331
2332 sk->sk_prot->unhash(sk);
2333
2334 /*
2335 * In this point socket cannot receive new packets, but it is possible
2336 * that some packets are in flight because some CPU runs receiver and
2337 * did hash table lookup before we unhashed socket. They will achieve
2338 * receive queue and will be purged by socket destructor.
2339 *
2340 * Also we still have packets pending on receive queue and probably,
2341 * our own packets waiting in device queues. sock_destroy will drain
2342 * receive queue, but transmitted packets will delay socket destruction
2343 * until the last reference will be released.
2344 */
2345
2346 sock_orphan(sk);
2347
2348 xfrm_sk_free_policy(sk);
2349
2350 sk_refcnt_debug_release(sk);
2351 sock_put(sk);
2352 }
2353 EXPORT_SYMBOL(sk_common_release);
2354
2355 #ifdef CONFIG_PROC_FS
2356 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2357 struct prot_inuse {
2358 int val[PROTO_INUSE_NR];
2359 };
2360
2361 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2362
2363 #ifdef CONFIG_NET_NS
sock_prot_inuse_add(struct net * net,struct proto * prot,int val)2364 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2365 {
2366 __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2367 }
2368 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2369
sock_prot_inuse_get(struct net * net,struct proto * prot)2370 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2371 {
2372 int cpu, idx = prot->inuse_idx;
2373 int res = 0;
2374
2375 for_each_possible_cpu(cpu)
2376 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2377
2378 return res >= 0 ? res : 0;
2379 }
2380 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2381
sock_inuse_init_net(struct net * net)2382 static int __net_init sock_inuse_init_net(struct net *net)
2383 {
2384 net->core.inuse = alloc_percpu(struct prot_inuse);
2385 return net->core.inuse ? 0 : -ENOMEM;
2386 }
2387
sock_inuse_exit_net(struct net * net)2388 static void __net_exit sock_inuse_exit_net(struct net *net)
2389 {
2390 free_percpu(net->core.inuse);
2391 }
2392
2393 static struct pernet_operations net_inuse_ops = {
2394 .init = sock_inuse_init_net,
2395 .exit = sock_inuse_exit_net,
2396 };
2397
net_inuse_init(void)2398 static __init int net_inuse_init(void)
2399 {
2400 if (register_pernet_subsys(&net_inuse_ops))
2401 panic("Cannot initialize net inuse counters");
2402
2403 return 0;
2404 }
2405
2406 core_initcall(net_inuse_init);
2407 #else
2408 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2409
sock_prot_inuse_add(struct net * net,struct proto * prot,int val)2410 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2411 {
2412 __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2413 }
2414 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2415
sock_prot_inuse_get(struct net * net,struct proto * prot)2416 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2417 {
2418 int cpu, idx = prot->inuse_idx;
2419 int res = 0;
2420
2421 for_each_possible_cpu(cpu)
2422 res += per_cpu(prot_inuse, cpu).val[idx];
2423
2424 return res >= 0 ? res : 0;
2425 }
2426 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2427 #endif
2428
assign_proto_idx(struct proto * prot)2429 static void assign_proto_idx(struct proto *prot)
2430 {
2431 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2432
2433 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2434 printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2435 return;
2436 }
2437
2438 set_bit(prot->inuse_idx, proto_inuse_idx);
2439 }
2440
release_proto_idx(struct proto * prot)2441 static void release_proto_idx(struct proto *prot)
2442 {
2443 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2444 clear_bit(prot->inuse_idx, proto_inuse_idx);
2445 }
2446 #else
assign_proto_idx(struct proto * prot)2447 static inline void assign_proto_idx(struct proto *prot)
2448 {
2449 }
2450
release_proto_idx(struct proto * prot)2451 static inline void release_proto_idx(struct proto *prot)
2452 {
2453 }
2454 #endif
2455
proto_register(struct proto * prot,int alloc_slab)2456 int proto_register(struct proto *prot, int alloc_slab)
2457 {
2458 if (alloc_slab) {
2459 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2460 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2461 NULL);
2462
2463 if (prot->slab == NULL) {
2464 printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2465 prot->name);
2466 goto out;
2467 }
2468
2469 if (prot->rsk_prot != NULL) {
2470 prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2471 if (prot->rsk_prot->slab_name == NULL)
2472 goto out_free_sock_slab;
2473
2474 prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2475 prot->rsk_prot->obj_size, 0,
2476 SLAB_HWCACHE_ALIGN, NULL);
2477
2478 if (prot->rsk_prot->slab == NULL) {
2479 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2480 prot->name);
2481 goto out_free_request_sock_slab_name;
2482 }
2483 }
2484
2485 if (prot->twsk_prot != NULL) {
2486 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2487
2488 if (prot->twsk_prot->twsk_slab_name == NULL)
2489 goto out_free_request_sock_slab;
2490
2491 prot->twsk_prot->twsk_slab =
2492 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2493 prot->twsk_prot->twsk_obj_size,
2494 0,
2495 SLAB_HWCACHE_ALIGN |
2496 prot->slab_flags,
2497 NULL);
2498 if (prot->twsk_prot->twsk_slab == NULL)
2499 goto out_free_timewait_sock_slab_name;
2500 }
2501 }
2502
2503 mutex_lock(&proto_list_mutex);
2504 list_add(&prot->node, &proto_list);
2505 assign_proto_idx(prot);
2506 mutex_unlock(&proto_list_mutex);
2507 return 0;
2508
2509 out_free_timewait_sock_slab_name:
2510 kfree(prot->twsk_prot->twsk_slab_name);
2511 out_free_request_sock_slab:
2512 if (prot->rsk_prot && prot->rsk_prot->slab) {
2513 kmem_cache_destroy(prot->rsk_prot->slab);
2514 prot->rsk_prot->slab = NULL;
2515 }
2516 out_free_request_sock_slab_name:
2517 if (prot->rsk_prot)
2518 kfree(prot->rsk_prot->slab_name);
2519 out_free_sock_slab:
2520 kmem_cache_destroy(prot->slab);
2521 prot->slab = NULL;
2522 out:
2523 return -ENOBUFS;
2524 }
2525 EXPORT_SYMBOL(proto_register);
2526
proto_unregister(struct proto * prot)2527 void proto_unregister(struct proto *prot)
2528 {
2529 mutex_lock(&proto_list_mutex);
2530 release_proto_idx(prot);
2531 list_del(&prot->node);
2532 mutex_unlock(&proto_list_mutex);
2533
2534 if (prot->slab != NULL) {
2535 kmem_cache_destroy(prot->slab);
2536 prot->slab = NULL;
2537 }
2538
2539 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2540 kmem_cache_destroy(prot->rsk_prot->slab);
2541 kfree(prot->rsk_prot->slab_name);
2542 prot->rsk_prot->slab = NULL;
2543 }
2544
2545 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2546 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2547 kfree(prot->twsk_prot->twsk_slab_name);
2548 prot->twsk_prot->twsk_slab = NULL;
2549 }
2550 }
2551 EXPORT_SYMBOL(proto_unregister);
2552
2553 #ifdef CONFIG_PROC_FS
proto_seq_start(struct seq_file * seq,loff_t * pos)2554 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2555 __acquires(proto_list_mutex)
2556 {
2557 mutex_lock(&proto_list_mutex);
2558 return seq_list_start_head(&proto_list, *pos);
2559 }
2560
proto_seq_next(struct seq_file * seq,void * v,loff_t * pos)2561 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2562 {
2563 return seq_list_next(v, &proto_list, pos);
2564 }
2565
proto_seq_stop(struct seq_file * seq,void * v)2566 static void proto_seq_stop(struct seq_file *seq, void *v)
2567 __releases(proto_list_mutex)
2568 {
2569 mutex_unlock(&proto_list_mutex);
2570 }
2571
proto_method_implemented(const void * method)2572 static char proto_method_implemented(const void *method)
2573 {
2574 return method == NULL ? 'n' : 'y';
2575 }
sock_prot_memory_allocated(struct proto * proto)2576 static long sock_prot_memory_allocated(struct proto *proto)
2577 {
2578 return proto->memory_allocated != NULL ? proto_memory_allocated(proto): -1L;
2579 }
2580
sock_prot_memory_pressure(struct proto * proto)2581 static char *sock_prot_memory_pressure(struct proto *proto)
2582 {
2583 return proto->memory_pressure != NULL ?
2584 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2585 }
2586
proto_seq_printf(struct seq_file * seq,struct proto * proto)2587 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2588 {
2589
2590 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
2591 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2592 proto->name,
2593 proto->obj_size,
2594 sock_prot_inuse_get(seq_file_net(seq), proto),
2595 sock_prot_memory_allocated(proto),
2596 sock_prot_memory_pressure(proto),
2597 proto->max_header,
2598 proto->slab == NULL ? "no" : "yes",
2599 module_name(proto->owner),
2600 proto_method_implemented(proto->close),
2601 proto_method_implemented(proto->connect),
2602 proto_method_implemented(proto->disconnect),
2603 proto_method_implemented(proto->accept),
2604 proto_method_implemented(proto->ioctl),
2605 proto_method_implemented(proto->init),
2606 proto_method_implemented(proto->destroy),
2607 proto_method_implemented(proto->shutdown),
2608 proto_method_implemented(proto->setsockopt),
2609 proto_method_implemented(proto->getsockopt),
2610 proto_method_implemented(proto->sendmsg),
2611 proto_method_implemented(proto->recvmsg),
2612 proto_method_implemented(proto->sendpage),
2613 proto_method_implemented(proto->bind),
2614 proto_method_implemented(proto->backlog_rcv),
2615 proto_method_implemented(proto->hash),
2616 proto_method_implemented(proto->unhash),
2617 proto_method_implemented(proto->get_port),
2618 proto_method_implemented(proto->enter_memory_pressure));
2619 }
2620
proto_seq_show(struct seq_file * seq,void * v)2621 static int proto_seq_show(struct seq_file *seq, void *v)
2622 {
2623 if (v == &proto_list)
2624 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2625 "protocol",
2626 "size",
2627 "sockets",
2628 "memory",
2629 "press",
2630 "maxhdr",
2631 "slab",
2632 "module",
2633 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2634 else
2635 proto_seq_printf(seq, list_entry(v, struct proto, node));
2636 return 0;
2637 }
2638
2639 static const struct seq_operations proto_seq_ops = {
2640 .start = proto_seq_start,
2641 .next = proto_seq_next,
2642 .stop = proto_seq_stop,
2643 .show = proto_seq_show,
2644 };
2645
proto_seq_open(struct inode * inode,struct file * file)2646 static int proto_seq_open(struct inode *inode, struct file *file)
2647 {
2648 return seq_open_net(inode, file, &proto_seq_ops,
2649 sizeof(struct seq_net_private));
2650 }
2651
2652 static const struct file_operations proto_seq_fops = {
2653 .owner = THIS_MODULE,
2654 .open = proto_seq_open,
2655 .read = seq_read,
2656 .llseek = seq_lseek,
2657 .release = seq_release_net,
2658 };
2659
proto_init_net(struct net * net)2660 static __net_init int proto_init_net(struct net *net)
2661 {
2662 if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2663 return -ENOMEM;
2664
2665 return 0;
2666 }
2667
proto_exit_net(struct net * net)2668 static __net_exit void proto_exit_net(struct net *net)
2669 {
2670 proc_net_remove(net, "protocols");
2671 }
2672
2673
2674 static __net_initdata struct pernet_operations proto_net_ops = {
2675 .init = proto_init_net,
2676 .exit = proto_exit_net,
2677 };
2678
proto_init(void)2679 static int __init proto_init(void)
2680 {
2681 return register_pernet_subsys(&proto_net_ops);
2682 }
2683
2684 subsys_initcall(proto_init);
2685
2686 #endif /* PROC_FS */
2687