1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/net_tstamp.h>
136 #include <linux/static_key.h>
137 #include <net/flow_keys.h>
138
139 #include "net-sysfs.h"
140
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
143
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146
147 /*
148 * The list of packet types we will receive (as opposed to discard)
149 * and the routines to invoke.
150 *
151 * Why 16. Because with 16 the only overlap we get on a hash of the
152 * low nibble of the protocol value is RARP/SNAP/X.25.
153 *
154 * NOTE: That is no longer true with the addition of VLAN tags. Not
155 * sure which should go first, but I bet it won't make much
156 * difference if we are running VLANs. The good news is that
157 * this protocol won't be in the list unless compiled in, so
158 * the average user (w/out VLANs) will not be adversely affected.
159 * --BLG
160 *
161 * 0800 IP
162 * 8100 802.1Q VLAN
163 * 0001 802.3
164 * 0002 AX.25
165 * 0004 802.2
166 * 8035 RARP
167 * 0005 SNAP
168 * 0805 X.25
169 * 0806 ARP
170 * 8137 IPX
171 * 0009 Localtalk
172 * 86DD IPv6
173 */
174
175 #define PTYPE_HASH_SIZE (16)
176 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
177
178 static DEFINE_SPINLOCK(ptype_lock);
179 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
180 static struct list_head ptype_all __read_mostly; /* Taps */
181
182 /*
183 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
184 * semaphore.
185 *
186 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
187 *
188 * Writers must hold the rtnl semaphore while they loop through the
189 * dev_base_head list, and hold dev_base_lock for writing when they do the
190 * actual updates. This allows pure readers to access the list even
191 * while a writer is preparing to update it.
192 *
193 * To put it another way, dev_base_lock is held for writing only to
194 * protect against pure readers; the rtnl semaphore provides the
195 * protection against other writers.
196 *
197 * See, for example usages, register_netdevice() and
198 * unregister_netdevice(), which must be called with the rtnl
199 * semaphore held.
200 */
201 DEFINE_RWLOCK(dev_base_lock);
202 EXPORT_SYMBOL(dev_base_lock);
203
dev_base_seq_inc(struct net * net)204 static inline void dev_base_seq_inc(struct net *net)
205 {
206 while (++net->dev_base_seq == 0);
207 }
208
dev_name_hash(struct net * net,const char * name)209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
212 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 }
214
dev_index_hash(struct net * net,int ifindex)215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 {
217 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 }
219
rps_lock(struct softnet_data * sd)220 static inline void rps_lock(struct softnet_data *sd)
221 {
222 #ifdef CONFIG_RPS
223 spin_lock(&sd->input_pkt_queue.lock);
224 #endif
225 }
226
rps_unlock(struct softnet_data * sd)227 static inline void rps_unlock(struct softnet_data *sd)
228 {
229 #ifdef CONFIG_RPS
230 spin_unlock(&sd->input_pkt_queue.lock);
231 #endif
232 }
233
234 /* Device list insertion */
list_netdevice(struct net_device * dev)235 static int list_netdevice(struct net_device *dev)
236 {
237 struct net *net = dev_net(dev);
238
239 ASSERT_RTNL();
240
241 write_lock_bh(&dev_base_lock);
242 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
243 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
244 hlist_add_head_rcu(&dev->index_hlist,
245 dev_index_hash(net, dev->ifindex));
246 write_unlock_bh(&dev_base_lock);
247
248 dev_base_seq_inc(net);
249
250 return 0;
251 }
252
253 /* Device list removal
254 * caller must respect a RCU grace period before freeing/reusing dev
255 */
unlist_netdevice(struct net_device * dev)256 static void unlist_netdevice(struct net_device *dev)
257 {
258 ASSERT_RTNL();
259
260 /* Unlink dev from the device chain */
261 write_lock_bh(&dev_base_lock);
262 list_del_rcu(&dev->dev_list);
263 hlist_del_rcu(&dev->name_hlist);
264 hlist_del_rcu(&dev->index_hlist);
265 write_unlock_bh(&dev_base_lock);
266
267 dev_base_seq_inc(dev_net(dev));
268 }
269
270 /*
271 * Our notifier list
272 */
273
274 static RAW_NOTIFIER_HEAD(netdev_chain);
275
276 /*
277 * Device drivers call our routines to queue packets here. We empty the
278 * queue in the local softnet handler.
279 */
280
281 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
282 EXPORT_PER_CPU_SYMBOL(softnet_data);
283
284 #ifdef CONFIG_LOCKDEP
285 /*
286 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
287 * according to dev->type
288 */
289 static const unsigned short netdev_lock_type[] =
290 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
291 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
292 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
293 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
294 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
295 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
296 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
297 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
298 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
299 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
300 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
301 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
302 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
303 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
304 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
305 ARPHRD_VOID, ARPHRD_NONE};
306
307 static const char *const netdev_lock_name[] =
308 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
309 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
310 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
311 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
312 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
313 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
314 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
315 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
316 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
317 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
318 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
319 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
320 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
321 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
322 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
323 "_xmit_VOID", "_xmit_NONE"};
324
325 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
326 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
327
netdev_lock_pos(unsigned short dev_type)328 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
329 {
330 int i;
331
332 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
333 if (netdev_lock_type[i] == dev_type)
334 return i;
335 /* the last key is used by default */
336 return ARRAY_SIZE(netdev_lock_type) - 1;
337 }
338
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)339 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
340 unsigned short dev_type)
341 {
342 int i;
343
344 i = netdev_lock_pos(dev_type);
345 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
346 netdev_lock_name[i]);
347 }
348
netdev_set_addr_lockdep_class(struct net_device * dev)349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
350 {
351 int i;
352
353 i = netdev_lock_pos(dev->type);
354 lockdep_set_class_and_name(&dev->addr_list_lock,
355 &netdev_addr_lock_key[i],
356 netdev_lock_name[i]);
357 }
358 #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)359 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
360 unsigned short dev_type)
361 {
362 }
netdev_set_addr_lockdep_class(struct net_device * dev)363 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
364 {
365 }
366 #endif
367
368 /*******************************************************************************
369
370 Protocol management and registration routines
371
372 *******************************************************************************/
373
374 /*
375 * Add a protocol ID to the list. Now that the input handler is
376 * smarter we can dispense with all the messy stuff that used to be
377 * here.
378 *
379 * BEWARE!!! Protocol handlers, mangling input packets,
380 * MUST BE last in hash buckets and checking protocol handlers
381 * MUST start from promiscuous ptype_all chain in net_bh.
382 * It is true now, do not change it.
383 * Explanation follows: if protocol handler, mangling packet, will
384 * be the first on list, it is not able to sense, that packet
385 * is cloned and should be copied-on-write, so that it will
386 * change it and subsequent readers will get broken packet.
387 * --ANK (980803)
388 */
389
ptype_head(const struct packet_type * pt)390 static inline struct list_head *ptype_head(const struct packet_type *pt)
391 {
392 if (pt->type == htons(ETH_P_ALL))
393 return &ptype_all;
394 else
395 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
396 }
397
398 /**
399 * dev_add_pack - add packet handler
400 * @pt: packet type declaration
401 *
402 * Add a protocol handler to the networking stack. The passed &packet_type
403 * is linked into kernel lists and may not be freed until it has been
404 * removed from the kernel lists.
405 *
406 * This call does not sleep therefore it can not
407 * guarantee all CPU's that are in middle of receiving packets
408 * will see the new packet type (until the next received packet).
409 */
410
dev_add_pack(struct packet_type * pt)411 void dev_add_pack(struct packet_type *pt)
412 {
413 struct list_head *head = ptype_head(pt);
414
415 spin_lock(&ptype_lock);
416 list_add_rcu(&pt->list, head);
417 spin_unlock(&ptype_lock);
418 }
419 EXPORT_SYMBOL(dev_add_pack);
420
421 /**
422 * __dev_remove_pack - remove packet handler
423 * @pt: packet type declaration
424 *
425 * Remove a protocol handler that was previously added to the kernel
426 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
427 * from the kernel lists and can be freed or reused once this function
428 * returns.
429 *
430 * The packet type might still be in use by receivers
431 * and must not be freed until after all the CPU's have gone
432 * through a quiescent state.
433 */
__dev_remove_pack(struct packet_type * pt)434 void __dev_remove_pack(struct packet_type *pt)
435 {
436 struct list_head *head = ptype_head(pt);
437 struct packet_type *pt1;
438
439 spin_lock(&ptype_lock);
440
441 list_for_each_entry(pt1, head, list) {
442 if (pt == pt1) {
443 list_del_rcu(&pt->list);
444 goto out;
445 }
446 }
447
448 pr_warn("dev_remove_pack: %p not found\n", pt);
449 out:
450 spin_unlock(&ptype_lock);
451 }
452 EXPORT_SYMBOL(__dev_remove_pack);
453
454 /**
455 * dev_remove_pack - remove packet handler
456 * @pt: packet type declaration
457 *
458 * Remove a protocol handler that was previously added to the kernel
459 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
460 * from the kernel lists and can be freed or reused once this function
461 * returns.
462 *
463 * This call sleeps to guarantee that no CPU is looking at the packet
464 * type after return.
465 */
dev_remove_pack(struct packet_type * pt)466 void dev_remove_pack(struct packet_type *pt)
467 {
468 __dev_remove_pack(pt);
469
470 synchronize_net();
471 }
472 EXPORT_SYMBOL(dev_remove_pack);
473
474 /******************************************************************************
475
476 Device Boot-time Settings Routines
477
478 *******************************************************************************/
479
480 /* Boot time configuration table */
481 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
482
483 /**
484 * netdev_boot_setup_add - add new setup entry
485 * @name: name of the device
486 * @map: configured settings for the device
487 *
488 * Adds new setup entry to the dev_boot_setup list. The function
489 * returns 0 on error and 1 on success. This is a generic routine to
490 * all netdevices.
491 */
netdev_boot_setup_add(char * name,struct ifmap * map)492 static int netdev_boot_setup_add(char *name, struct ifmap *map)
493 {
494 struct netdev_boot_setup *s;
495 int i;
496
497 s = dev_boot_setup;
498 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
499 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
500 memset(s[i].name, 0, sizeof(s[i].name));
501 strlcpy(s[i].name, name, IFNAMSIZ);
502 memcpy(&s[i].map, map, sizeof(s[i].map));
503 break;
504 }
505 }
506
507 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
508 }
509
510 /**
511 * netdev_boot_setup_check - check boot time settings
512 * @dev: the netdevice
513 *
514 * Check boot time settings for the device.
515 * The found settings are set for the device to be used
516 * later in the device probing.
517 * Returns 0 if no settings found, 1 if they are.
518 */
netdev_boot_setup_check(struct net_device * dev)519 int netdev_boot_setup_check(struct net_device *dev)
520 {
521 struct netdev_boot_setup *s = dev_boot_setup;
522 int i;
523
524 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
525 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
526 !strcmp(dev->name, s[i].name)) {
527 dev->irq = s[i].map.irq;
528 dev->base_addr = s[i].map.base_addr;
529 dev->mem_start = s[i].map.mem_start;
530 dev->mem_end = s[i].map.mem_end;
531 return 1;
532 }
533 }
534 return 0;
535 }
536 EXPORT_SYMBOL(netdev_boot_setup_check);
537
538
539 /**
540 * netdev_boot_base - get address from boot time settings
541 * @prefix: prefix for network device
542 * @unit: id for network device
543 *
544 * Check boot time settings for the base address of device.
545 * The found settings are set for the device to be used
546 * later in the device probing.
547 * Returns 0 if no settings found.
548 */
netdev_boot_base(const char * prefix,int unit)549 unsigned long netdev_boot_base(const char *prefix, int unit)
550 {
551 const struct netdev_boot_setup *s = dev_boot_setup;
552 char name[IFNAMSIZ];
553 int i;
554
555 sprintf(name, "%s%d", prefix, unit);
556
557 /*
558 * If device already registered then return base of 1
559 * to indicate not to probe for this interface
560 */
561 if (__dev_get_by_name(&init_net, name))
562 return 1;
563
564 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
565 if (!strcmp(name, s[i].name))
566 return s[i].map.base_addr;
567 return 0;
568 }
569
570 /*
571 * Saves at boot time configured settings for any netdevice.
572 */
netdev_boot_setup(char * str)573 int __init netdev_boot_setup(char *str)
574 {
575 int ints[5];
576 struct ifmap map;
577
578 str = get_options(str, ARRAY_SIZE(ints), ints);
579 if (!str || !*str)
580 return 0;
581
582 /* Save settings */
583 memset(&map, 0, sizeof(map));
584 if (ints[0] > 0)
585 map.irq = ints[1];
586 if (ints[0] > 1)
587 map.base_addr = ints[2];
588 if (ints[0] > 2)
589 map.mem_start = ints[3];
590 if (ints[0] > 3)
591 map.mem_end = ints[4];
592
593 /* Add new entry to the list */
594 return netdev_boot_setup_add(str, &map);
595 }
596
597 __setup("netdev=", netdev_boot_setup);
598
599 /*******************************************************************************
600
601 Device Interface Subroutines
602
603 *******************************************************************************/
604
605 /**
606 * __dev_get_by_name - find a device by its name
607 * @net: the applicable net namespace
608 * @name: name to find
609 *
610 * Find an interface by name. Must be called under RTNL semaphore
611 * or @dev_base_lock. If the name is found a pointer to the device
612 * is returned. If the name is not found then %NULL is returned. The
613 * reference counters are not incremented so the caller must be
614 * careful with locks.
615 */
616
__dev_get_by_name(struct net * net,const char * name)617 struct net_device *__dev_get_by_name(struct net *net, const char *name)
618 {
619 struct hlist_node *p;
620 struct net_device *dev;
621 struct hlist_head *head = dev_name_hash(net, name);
622
623 hlist_for_each_entry(dev, p, head, name_hlist)
624 if (!strncmp(dev->name, name, IFNAMSIZ))
625 return dev;
626
627 return NULL;
628 }
629 EXPORT_SYMBOL(__dev_get_by_name);
630
631 /**
632 * dev_get_by_name_rcu - find a device by its name
633 * @net: the applicable net namespace
634 * @name: name to find
635 *
636 * Find an interface by name.
637 * If the name is found a pointer to the device is returned.
638 * If the name is not found then %NULL is returned.
639 * The reference counters are not incremented so the caller must be
640 * careful with locks. The caller must hold RCU lock.
641 */
642
dev_get_by_name_rcu(struct net * net,const char * name)643 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
644 {
645 struct hlist_node *p;
646 struct net_device *dev;
647 struct hlist_head *head = dev_name_hash(net, name);
648
649 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
650 if (!strncmp(dev->name, name, IFNAMSIZ))
651 return dev;
652
653 return NULL;
654 }
655 EXPORT_SYMBOL(dev_get_by_name_rcu);
656
657 /**
658 * dev_get_by_name - find a device by its name
659 * @net: the applicable net namespace
660 * @name: name to find
661 *
662 * Find an interface by name. This can be called from any
663 * context and does its own locking. The returned handle has
664 * the usage count incremented and the caller must use dev_put() to
665 * release it when it is no longer needed. %NULL is returned if no
666 * matching device is found.
667 */
668
dev_get_by_name(struct net * net,const char * name)669 struct net_device *dev_get_by_name(struct net *net, const char *name)
670 {
671 struct net_device *dev;
672
673 rcu_read_lock();
674 dev = dev_get_by_name_rcu(net, name);
675 if (dev)
676 dev_hold(dev);
677 rcu_read_unlock();
678 return dev;
679 }
680 EXPORT_SYMBOL(dev_get_by_name);
681
682 /**
683 * __dev_get_by_index - find a device by its ifindex
684 * @net: the applicable net namespace
685 * @ifindex: index of device
686 *
687 * Search for an interface by index. Returns %NULL if the device
688 * is not found or a pointer to the device. The device has not
689 * had its reference counter increased so the caller must be careful
690 * about locking. The caller must hold either the RTNL semaphore
691 * or @dev_base_lock.
692 */
693
__dev_get_by_index(struct net * net,int ifindex)694 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
695 {
696 struct hlist_node *p;
697 struct net_device *dev;
698 struct hlist_head *head = dev_index_hash(net, ifindex);
699
700 hlist_for_each_entry(dev, p, head, index_hlist)
701 if (dev->ifindex == ifindex)
702 return dev;
703
704 return NULL;
705 }
706 EXPORT_SYMBOL(__dev_get_by_index);
707
708 /**
709 * dev_get_by_index_rcu - find a device by its ifindex
710 * @net: the applicable net namespace
711 * @ifindex: index of device
712 *
713 * Search for an interface by index. Returns %NULL if the device
714 * is not found or a pointer to the device. The device has not
715 * had its reference counter increased so the caller must be careful
716 * about locking. The caller must hold RCU lock.
717 */
718
dev_get_by_index_rcu(struct net * net,int ifindex)719 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
720 {
721 struct hlist_node *p;
722 struct net_device *dev;
723 struct hlist_head *head = dev_index_hash(net, ifindex);
724
725 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
726 if (dev->ifindex == ifindex)
727 return dev;
728
729 return NULL;
730 }
731 EXPORT_SYMBOL(dev_get_by_index_rcu);
732
733
734 /**
735 * dev_get_by_index - find a device by its ifindex
736 * @net: the applicable net namespace
737 * @ifindex: index of device
738 *
739 * Search for an interface by index. Returns NULL if the device
740 * is not found or a pointer to the device. The device returned has
741 * had a reference added and the pointer is safe until the user calls
742 * dev_put to indicate they have finished with it.
743 */
744
dev_get_by_index(struct net * net,int ifindex)745 struct net_device *dev_get_by_index(struct net *net, int ifindex)
746 {
747 struct net_device *dev;
748
749 rcu_read_lock();
750 dev = dev_get_by_index_rcu(net, ifindex);
751 if (dev)
752 dev_hold(dev);
753 rcu_read_unlock();
754 return dev;
755 }
756 EXPORT_SYMBOL(dev_get_by_index);
757
758 /**
759 * dev_getbyhwaddr_rcu - find a device by its hardware address
760 * @net: the applicable net namespace
761 * @type: media type of device
762 * @ha: hardware address
763 *
764 * Search for an interface by MAC address. Returns NULL if the device
765 * is not found or a pointer to the device.
766 * The caller must hold RCU or RTNL.
767 * The returned device has not had its ref count increased
768 * and the caller must therefore be careful about locking
769 *
770 */
771
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)772 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
773 const char *ha)
774 {
775 struct net_device *dev;
776
777 for_each_netdev_rcu(net, dev)
778 if (dev->type == type &&
779 !memcmp(dev->dev_addr, ha, dev->addr_len))
780 return dev;
781
782 return NULL;
783 }
784 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
785
__dev_getfirstbyhwtype(struct net * net,unsigned short type)786 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
787 {
788 struct net_device *dev;
789
790 ASSERT_RTNL();
791 for_each_netdev(net, dev)
792 if (dev->type == type)
793 return dev;
794
795 return NULL;
796 }
797 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
798
dev_getfirstbyhwtype(struct net * net,unsigned short type)799 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
800 {
801 struct net_device *dev, *ret = NULL;
802
803 rcu_read_lock();
804 for_each_netdev_rcu(net, dev)
805 if (dev->type == type) {
806 dev_hold(dev);
807 ret = dev;
808 break;
809 }
810 rcu_read_unlock();
811 return ret;
812 }
813 EXPORT_SYMBOL(dev_getfirstbyhwtype);
814
815 /**
816 * dev_get_by_flags_rcu - find any device with given flags
817 * @net: the applicable net namespace
818 * @if_flags: IFF_* values
819 * @mask: bitmask of bits in if_flags to check
820 *
821 * Search for any interface with the given flags. Returns NULL if a device
822 * is not found or a pointer to the device. Must be called inside
823 * rcu_read_lock(), and result refcount is unchanged.
824 */
825
dev_get_by_flags_rcu(struct net * net,unsigned short if_flags,unsigned short mask)826 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
827 unsigned short mask)
828 {
829 struct net_device *dev, *ret;
830
831 ret = NULL;
832 for_each_netdev_rcu(net, dev) {
833 if (((dev->flags ^ if_flags) & mask) == 0) {
834 ret = dev;
835 break;
836 }
837 }
838 return ret;
839 }
840 EXPORT_SYMBOL(dev_get_by_flags_rcu);
841
842 /**
843 * dev_valid_name - check if name is okay for network device
844 * @name: name string
845 *
846 * Network device names need to be valid file names to
847 * to allow sysfs to work. We also disallow any kind of
848 * whitespace.
849 */
dev_valid_name(const char * name)850 bool dev_valid_name(const char *name)
851 {
852 if (*name == '\0')
853 return false;
854 if (strlen(name) >= IFNAMSIZ)
855 return false;
856 if (!strcmp(name, ".") || !strcmp(name, ".."))
857 return false;
858
859 while (*name) {
860 if (*name == '/' || isspace(*name))
861 return false;
862 name++;
863 }
864 return true;
865 }
866 EXPORT_SYMBOL(dev_valid_name);
867
868 /**
869 * __dev_alloc_name - allocate a name for a device
870 * @net: network namespace to allocate the device name in
871 * @name: name format string
872 * @buf: scratch buffer and result name string
873 *
874 * Passed a format string - eg "lt%d" it will try and find a suitable
875 * id. It scans list of devices to build up a free map, then chooses
876 * the first empty slot. The caller must hold the dev_base or rtnl lock
877 * while allocating the name and adding the device in order to avoid
878 * duplicates.
879 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
880 * Returns the number of the unit assigned or a negative errno code.
881 */
882
__dev_alloc_name(struct net * net,const char * name,char * buf)883 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
884 {
885 int i = 0;
886 const char *p;
887 const int max_netdevices = 8*PAGE_SIZE;
888 unsigned long *inuse;
889 struct net_device *d;
890
891 p = strnchr(name, IFNAMSIZ-1, '%');
892 if (p) {
893 /*
894 * Verify the string as this thing may have come from
895 * the user. There must be either one "%d" and no other "%"
896 * characters.
897 */
898 if (p[1] != 'd' || strchr(p + 2, '%'))
899 return -EINVAL;
900
901 /* Use one page as a bit array of possible slots */
902 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
903 if (!inuse)
904 return -ENOMEM;
905
906 for_each_netdev(net, d) {
907 if (!sscanf(d->name, name, &i))
908 continue;
909 if (i < 0 || i >= max_netdevices)
910 continue;
911
912 /* avoid cases where sscanf is not exact inverse of printf */
913 snprintf(buf, IFNAMSIZ, name, i);
914 if (!strncmp(buf, d->name, IFNAMSIZ))
915 set_bit(i, inuse);
916 }
917
918 i = find_first_zero_bit(inuse, max_netdevices);
919 free_page((unsigned long) inuse);
920 }
921
922 if (buf != name)
923 snprintf(buf, IFNAMSIZ, name, i);
924 if (!__dev_get_by_name(net, buf))
925 return i;
926
927 /* It is possible to run out of possible slots
928 * when the name is long and there isn't enough space left
929 * for the digits, or if all bits are used.
930 */
931 return -ENFILE;
932 }
933
934 /**
935 * dev_alloc_name - allocate a name for a device
936 * @dev: device
937 * @name: name format string
938 *
939 * Passed a format string - eg "lt%d" it will try and find a suitable
940 * id. It scans list of devices to build up a free map, then chooses
941 * the first empty slot. The caller must hold the dev_base or rtnl lock
942 * while allocating the name and adding the device in order to avoid
943 * duplicates.
944 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
945 * Returns the number of the unit assigned or a negative errno code.
946 */
947
dev_alloc_name(struct net_device * dev,const char * name)948 int dev_alloc_name(struct net_device *dev, const char *name)
949 {
950 char buf[IFNAMSIZ];
951 struct net *net;
952 int ret;
953
954 BUG_ON(!dev_net(dev));
955 net = dev_net(dev);
956 ret = __dev_alloc_name(net, name, buf);
957 if (ret >= 0)
958 strlcpy(dev->name, buf, IFNAMSIZ);
959 return ret;
960 }
961 EXPORT_SYMBOL(dev_alloc_name);
962
dev_get_valid_name(struct net_device * dev,const char * name)963 static int dev_get_valid_name(struct net_device *dev, const char *name)
964 {
965 struct net *net;
966
967 BUG_ON(!dev_net(dev));
968 net = dev_net(dev);
969
970 if (!dev_valid_name(name))
971 return -EINVAL;
972
973 if (strchr(name, '%'))
974 return dev_alloc_name(dev, name);
975 else if (__dev_get_by_name(net, name))
976 return -EEXIST;
977 else if (dev->name != name)
978 strlcpy(dev->name, name, IFNAMSIZ);
979
980 return 0;
981 }
982
983 /**
984 * dev_change_name - change name of a device
985 * @dev: device
986 * @newname: name (or format string) must be at least IFNAMSIZ
987 *
988 * Change name of a device, can pass format strings "eth%d".
989 * for wildcarding.
990 */
dev_change_name(struct net_device * dev,const char * newname)991 int dev_change_name(struct net_device *dev, const char *newname)
992 {
993 char oldname[IFNAMSIZ];
994 int err = 0;
995 int ret;
996 struct net *net;
997
998 ASSERT_RTNL();
999 BUG_ON(!dev_net(dev));
1000
1001 net = dev_net(dev);
1002 if (dev->flags & IFF_UP)
1003 return -EBUSY;
1004
1005 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1006 return 0;
1007
1008 memcpy(oldname, dev->name, IFNAMSIZ);
1009
1010 err = dev_get_valid_name(dev, newname);
1011 if (err < 0)
1012 return err;
1013
1014 rollback:
1015 ret = device_rename(&dev->dev, dev->name);
1016 if (ret) {
1017 memcpy(dev->name, oldname, IFNAMSIZ);
1018 return ret;
1019 }
1020
1021 write_lock_bh(&dev_base_lock);
1022 hlist_del_rcu(&dev->name_hlist);
1023 write_unlock_bh(&dev_base_lock);
1024
1025 synchronize_rcu();
1026
1027 write_lock_bh(&dev_base_lock);
1028 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1029 write_unlock_bh(&dev_base_lock);
1030
1031 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1032 ret = notifier_to_errno(ret);
1033
1034 if (ret) {
1035 /* err >= 0 after dev_alloc_name() or stores the first errno */
1036 if (err >= 0) {
1037 err = ret;
1038 memcpy(dev->name, oldname, IFNAMSIZ);
1039 goto rollback;
1040 } else {
1041 pr_err("%s: name change rollback failed: %d\n",
1042 dev->name, ret);
1043 }
1044 }
1045
1046 return err;
1047 }
1048
1049 /**
1050 * dev_set_alias - change ifalias of a device
1051 * @dev: device
1052 * @alias: name up to IFALIASZ
1053 * @len: limit of bytes to copy from info
1054 *
1055 * Set ifalias for a device,
1056 */
dev_set_alias(struct net_device * dev,const char * alias,size_t len)1057 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1058 {
1059 char *new_ifalias;
1060
1061 ASSERT_RTNL();
1062
1063 if (len >= IFALIASZ)
1064 return -EINVAL;
1065
1066 if (!len) {
1067 if (dev->ifalias) {
1068 kfree(dev->ifalias);
1069 dev->ifalias = NULL;
1070 }
1071 return 0;
1072 }
1073
1074 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1075 if (!new_ifalias)
1076 return -ENOMEM;
1077 dev->ifalias = new_ifalias;
1078
1079 strlcpy(dev->ifalias, alias, len+1);
1080 return len;
1081 }
1082
1083
1084 /**
1085 * netdev_features_change - device changes features
1086 * @dev: device to cause notification
1087 *
1088 * Called to indicate a device has changed features.
1089 */
netdev_features_change(struct net_device * dev)1090 void netdev_features_change(struct net_device *dev)
1091 {
1092 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1093 }
1094 EXPORT_SYMBOL(netdev_features_change);
1095
1096 /**
1097 * netdev_state_change - device changes state
1098 * @dev: device to cause notification
1099 *
1100 * Called to indicate a device has changed state. This function calls
1101 * the notifier chains for netdev_chain and sends a NEWLINK message
1102 * to the routing socket.
1103 */
netdev_state_change(struct net_device * dev)1104 void netdev_state_change(struct net_device *dev)
1105 {
1106 if (dev->flags & IFF_UP) {
1107 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1108 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1109 }
1110 }
1111 EXPORT_SYMBOL(netdev_state_change);
1112
netdev_bonding_change(struct net_device * dev,unsigned long event)1113 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1114 {
1115 return call_netdevice_notifiers(event, dev);
1116 }
1117 EXPORT_SYMBOL(netdev_bonding_change);
1118
1119 /**
1120 * dev_load - load a network module
1121 * @net: the applicable net namespace
1122 * @name: name of interface
1123 *
1124 * If a network interface is not present and the process has suitable
1125 * privileges this function loads the module. If module loading is not
1126 * available in this kernel then it becomes a nop.
1127 */
1128
dev_load(struct net * net,const char * name)1129 void dev_load(struct net *net, const char *name)
1130 {
1131 struct net_device *dev;
1132 int no_module;
1133
1134 rcu_read_lock();
1135 dev = dev_get_by_name_rcu(net, name);
1136 rcu_read_unlock();
1137
1138 no_module = !dev;
1139 if (no_module && capable(CAP_NET_ADMIN))
1140 no_module = request_module("netdev-%s", name);
1141 if (no_module && capable(CAP_SYS_MODULE)) {
1142 if (!request_module("%s", name))
1143 pr_err("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s instead.\n",
1144 name);
1145 }
1146 }
1147 EXPORT_SYMBOL(dev_load);
1148
__dev_open(struct net_device * dev)1149 static int __dev_open(struct net_device *dev)
1150 {
1151 const struct net_device_ops *ops = dev->netdev_ops;
1152 int ret;
1153
1154 ASSERT_RTNL();
1155
1156 if (!netif_device_present(dev))
1157 return -ENODEV;
1158
1159 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1160 ret = notifier_to_errno(ret);
1161 if (ret)
1162 return ret;
1163
1164 set_bit(__LINK_STATE_START, &dev->state);
1165
1166 if (ops->ndo_validate_addr)
1167 ret = ops->ndo_validate_addr(dev);
1168
1169 if (!ret && ops->ndo_open)
1170 ret = ops->ndo_open(dev);
1171
1172 if (ret)
1173 clear_bit(__LINK_STATE_START, &dev->state);
1174 else {
1175 dev->flags |= IFF_UP;
1176 net_dmaengine_get();
1177 dev_set_rx_mode(dev);
1178 dev_activate(dev);
1179 add_device_randomness(dev->dev_addr, dev->addr_len);
1180 }
1181
1182 return ret;
1183 }
1184
1185 /**
1186 * dev_open - prepare an interface for use.
1187 * @dev: device to open
1188 *
1189 * Takes a device from down to up state. The device's private open
1190 * function is invoked and then the multicast lists are loaded. Finally
1191 * the device is moved into the up state and a %NETDEV_UP message is
1192 * sent to the netdev notifier chain.
1193 *
1194 * Calling this function on an active interface is a nop. On a failure
1195 * a negative errno code is returned.
1196 */
dev_open(struct net_device * dev)1197 int dev_open(struct net_device *dev)
1198 {
1199 int ret;
1200
1201 if (dev->flags & IFF_UP)
1202 return 0;
1203
1204 ret = __dev_open(dev);
1205 if (ret < 0)
1206 return ret;
1207
1208 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1209 call_netdevice_notifiers(NETDEV_UP, dev);
1210
1211 return ret;
1212 }
1213 EXPORT_SYMBOL(dev_open);
1214
__dev_close_many(struct list_head * head)1215 static int __dev_close_many(struct list_head *head)
1216 {
1217 struct net_device *dev;
1218
1219 ASSERT_RTNL();
1220 might_sleep();
1221
1222 list_for_each_entry(dev, head, unreg_list) {
1223 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1224
1225 clear_bit(__LINK_STATE_START, &dev->state);
1226
1227 /* Synchronize to scheduled poll. We cannot touch poll list, it
1228 * can be even on different cpu. So just clear netif_running().
1229 *
1230 * dev->stop() will invoke napi_disable() on all of it's
1231 * napi_struct instances on this device.
1232 */
1233 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1234 }
1235
1236 dev_deactivate_many(head);
1237
1238 list_for_each_entry(dev, head, unreg_list) {
1239 const struct net_device_ops *ops = dev->netdev_ops;
1240
1241 /*
1242 * Call the device specific close. This cannot fail.
1243 * Only if device is UP
1244 *
1245 * We allow it to be called even after a DETACH hot-plug
1246 * event.
1247 */
1248 if (ops->ndo_stop)
1249 ops->ndo_stop(dev);
1250
1251 dev->flags &= ~IFF_UP;
1252 net_dmaengine_put();
1253 }
1254
1255 return 0;
1256 }
1257
__dev_close(struct net_device * dev)1258 static int __dev_close(struct net_device *dev)
1259 {
1260 int retval;
1261 LIST_HEAD(single);
1262
1263 list_add(&dev->unreg_list, &single);
1264 retval = __dev_close_many(&single);
1265 list_del(&single);
1266 return retval;
1267 }
1268
dev_close_many(struct list_head * head)1269 static int dev_close_many(struct list_head *head)
1270 {
1271 struct net_device *dev, *tmp;
1272 LIST_HEAD(tmp_list);
1273
1274 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1275 if (!(dev->flags & IFF_UP))
1276 list_move(&dev->unreg_list, &tmp_list);
1277
1278 __dev_close_many(head);
1279
1280 list_for_each_entry(dev, head, unreg_list) {
1281 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1282 call_netdevice_notifiers(NETDEV_DOWN, dev);
1283 }
1284
1285 /* rollback_registered_many needs the complete original list */
1286 list_splice(&tmp_list, head);
1287 return 0;
1288 }
1289
1290 /**
1291 * dev_close - shutdown an interface.
1292 * @dev: device to shutdown
1293 *
1294 * This function moves an active device into down state. A
1295 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1296 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1297 * chain.
1298 */
dev_close(struct net_device * dev)1299 int dev_close(struct net_device *dev)
1300 {
1301 if (dev->flags & IFF_UP) {
1302 LIST_HEAD(single);
1303
1304 list_add(&dev->unreg_list, &single);
1305 dev_close_many(&single);
1306 list_del(&single);
1307 }
1308 return 0;
1309 }
1310 EXPORT_SYMBOL(dev_close);
1311
1312
1313 /**
1314 * dev_disable_lro - disable Large Receive Offload on a device
1315 * @dev: device
1316 *
1317 * Disable Large Receive Offload (LRO) on a net device. Must be
1318 * called under RTNL. This is needed if received packets may be
1319 * forwarded to another interface.
1320 */
dev_disable_lro(struct net_device * dev)1321 void dev_disable_lro(struct net_device *dev)
1322 {
1323 /*
1324 * If we're trying to disable lro on a vlan device
1325 * use the underlying physical device instead
1326 */
1327 if (is_vlan_dev(dev))
1328 dev = vlan_dev_real_dev(dev);
1329
1330 dev->wanted_features &= ~NETIF_F_LRO;
1331 netdev_update_features(dev);
1332
1333 if (unlikely(dev->features & NETIF_F_LRO))
1334 netdev_WARN(dev, "failed to disable LRO!\n");
1335 }
1336 EXPORT_SYMBOL(dev_disable_lro);
1337
1338
1339 static int dev_boot_phase = 1;
1340
1341 /**
1342 * register_netdevice_notifier - register a network notifier block
1343 * @nb: notifier
1344 *
1345 * Register a notifier to be called when network device events occur.
1346 * The notifier passed is linked into the kernel structures and must
1347 * not be reused until it has been unregistered. A negative errno code
1348 * is returned on a failure.
1349 *
1350 * When registered all registration and up events are replayed
1351 * to the new notifier to allow device to have a race free
1352 * view of the network device list.
1353 */
1354
register_netdevice_notifier(struct notifier_block * nb)1355 int register_netdevice_notifier(struct notifier_block *nb)
1356 {
1357 struct net_device *dev;
1358 struct net_device *last;
1359 struct net *net;
1360 int err;
1361
1362 rtnl_lock();
1363 err = raw_notifier_chain_register(&netdev_chain, nb);
1364 if (err)
1365 goto unlock;
1366 if (dev_boot_phase)
1367 goto unlock;
1368 for_each_net(net) {
1369 for_each_netdev(net, dev) {
1370 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1371 err = notifier_to_errno(err);
1372 if (err)
1373 goto rollback;
1374
1375 if (!(dev->flags & IFF_UP))
1376 continue;
1377
1378 nb->notifier_call(nb, NETDEV_UP, dev);
1379 }
1380 }
1381
1382 unlock:
1383 rtnl_unlock();
1384 return err;
1385
1386 rollback:
1387 last = dev;
1388 for_each_net(net) {
1389 for_each_netdev(net, dev) {
1390 if (dev == last)
1391 goto outroll;
1392
1393 if (dev->flags & IFF_UP) {
1394 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1395 nb->notifier_call(nb, NETDEV_DOWN, dev);
1396 }
1397 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1398 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1399 }
1400 }
1401
1402 outroll:
1403 raw_notifier_chain_unregister(&netdev_chain, nb);
1404 goto unlock;
1405 }
1406 EXPORT_SYMBOL(register_netdevice_notifier);
1407
1408 /**
1409 * unregister_netdevice_notifier - unregister a network notifier block
1410 * @nb: notifier
1411 *
1412 * Unregister a notifier previously registered by
1413 * register_netdevice_notifier(). The notifier is unlinked into the
1414 * kernel structures and may then be reused. A negative errno code
1415 * is returned on a failure.
1416 *
1417 * After unregistering unregister and down device events are synthesized
1418 * for all devices on the device list to the removed notifier to remove
1419 * the need for special case cleanup code.
1420 */
1421
unregister_netdevice_notifier(struct notifier_block * nb)1422 int unregister_netdevice_notifier(struct notifier_block *nb)
1423 {
1424 struct net_device *dev;
1425 struct net *net;
1426 int err;
1427
1428 rtnl_lock();
1429 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1430 if (err)
1431 goto unlock;
1432
1433 for_each_net(net) {
1434 for_each_netdev(net, dev) {
1435 if (dev->flags & IFF_UP) {
1436 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1437 nb->notifier_call(nb, NETDEV_DOWN, dev);
1438 }
1439 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1440 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1441 }
1442 }
1443 unlock:
1444 rtnl_unlock();
1445 return err;
1446 }
1447 EXPORT_SYMBOL(unregister_netdevice_notifier);
1448
1449 /**
1450 * call_netdevice_notifiers - call all network notifier blocks
1451 * @val: value passed unmodified to notifier function
1452 * @dev: net_device pointer passed unmodified to notifier function
1453 *
1454 * Call all network notifier blocks. Parameters and return value
1455 * are as for raw_notifier_call_chain().
1456 */
1457
call_netdevice_notifiers(unsigned long val,struct net_device * dev)1458 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1459 {
1460 ASSERT_RTNL();
1461 return raw_notifier_call_chain(&netdev_chain, val, dev);
1462 }
1463 EXPORT_SYMBOL(call_netdevice_notifiers);
1464
1465 static struct static_key netstamp_needed __read_mostly;
1466 #ifdef HAVE_JUMP_LABEL
1467 /* We are not allowed to call static_key_slow_dec() from irq context
1468 * If net_disable_timestamp() is called from irq context, defer the
1469 * static_key_slow_dec() calls.
1470 */
1471 static atomic_t netstamp_needed_deferred;
1472 #endif
1473
net_enable_timestamp(void)1474 void net_enable_timestamp(void)
1475 {
1476 #ifdef HAVE_JUMP_LABEL
1477 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1478
1479 if (deferred) {
1480 while (--deferred)
1481 static_key_slow_dec(&netstamp_needed);
1482 return;
1483 }
1484 #endif
1485 static_key_slow_inc(&netstamp_needed);
1486 }
1487 EXPORT_SYMBOL(net_enable_timestamp);
1488
net_disable_timestamp(void)1489 void net_disable_timestamp(void)
1490 {
1491 #ifdef HAVE_JUMP_LABEL
1492 if (in_interrupt()) {
1493 atomic_inc(&netstamp_needed_deferred);
1494 return;
1495 }
1496 #endif
1497 static_key_slow_dec(&netstamp_needed);
1498 }
1499 EXPORT_SYMBOL(net_disable_timestamp);
1500
net_timestamp_set(struct sk_buff * skb)1501 static inline void net_timestamp_set(struct sk_buff *skb)
1502 {
1503 skb->tstamp.tv64 = 0;
1504 if (static_key_false(&netstamp_needed))
1505 __net_timestamp(skb);
1506 }
1507
1508 #define net_timestamp_check(COND, SKB) \
1509 if (static_key_false(&netstamp_needed)) { \
1510 if ((COND) && !(SKB)->tstamp.tv64) \
1511 __net_timestamp(SKB); \
1512 } \
1513
net_hwtstamp_validate(struct ifreq * ifr)1514 static int net_hwtstamp_validate(struct ifreq *ifr)
1515 {
1516 struct hwtstamp_config cfg;
1517 enum hwtstamp_tx_types tx_type;
1518 enum hwtstamp_rx_filters rx_filter;
1519 int tx_type_valid = 0;
1520 int rx_filter_valid = 0;
1521
1522 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1523 return -EFAULT;
1524
1525 if (cfg.flags) /* reserved for future extensions */
1526 return -EINVAL;
1527
1528 tx_type = cfg.tx_type;
1529 rx_filter = cfg.rx_filter;
1530
1531 switch (tx_type) {
1532 case HWTSTAMP_TX_OFF:
1533 case HWTSTAMP_TX_ON:
1534 case HWTSTAMP_TX_ONESTEP_SYNC:
1535 tx_type_valid = 1;
1536 break;
1537 }
1538
1539 switch (rx_filter) {
1540 case HWTSTAMP_FILTER_NONE:
1541 case HWTSTAMP_FILTER_ALL:
1542 case HWTSTAMP_FILTER_SOME:
1543 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1544 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1545 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1546 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1547 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1548 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1549 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1550 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1551 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1552 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1553 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1554 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1555 rx_filter_valid = 1;
1556 break;
1557 }
1558
1559 if (!tx_type_valid || !rx_filter_valid)
1560 return -ERANGE;
1561
1562 return 0;
1563 }
1564
is_skb_forwardable(struct net_device * dev,struct sk_buff * skb)1565 static inline bool is_skb_forwardable(struct net_device *dev,
1566 struct sk_buff *skb)
1567 {
1568 unsigned int len;
1569
1570 if (!(dev->flags & IFF_UP))
1571 return false;
1572
1573 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1574 if (skb->len <= len)
1575 return true;
1576
1577 /* if TSO is enabled, we don't care about the length as the packet
1578 * could be forwarded without being segmented before
1579 */
1580 if (skb_is_gso(skb))
1581 return true;
1582
1583 return false;
1584 }
1585
1586 /**
1587 * dev_forward_skb - loopback an skb to another netif
1588 *
1589 * @dev: destination network device
1590 * @skb: buffer to forward
1591 *
1592 * return values:
1593 * NET_RX_SUCCESS (no congestion)
1594 * NET_RX_DROP (packet was dropped, but freed)
1595 *
1596 * dev_forward_skb can be used for injecting an skb from the
1597 * start_xmit function of one device into the receive queue
1598 * of another device.
1599 *
1600 * The receiving device may be in another namespace, so
1601 * we have to clear all information in the skb that could
1602 * impact namespace isolation.
1603 */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)1604 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1605 {
1606 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1607 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1608 atomic_long_inc(&dev->rx_dropped);
1609 kfree_skb(skb);
1610 return NET_RX_DROP;
1611 }
1612 }
1613
1614 skb_orphan(skb);
1615 nf_reset(skb);
1616
1617 if (unlikely(!is_skb_forwardable(dev, skb))) {
1618 atomic_long_inc(&dev->rx_dropped);
1619 kfree_skb(skb);
1620 return NET_RX_DROP;
1621 }
1622 skb->skb_iif = 0;
1623 skb->dev = dev;
1624 skb_dst_drop(skb);
1625 skb->tstamp.tv64 = 0;
1626 skb->pkt_type = PACKET_HOST;
1627 skb->protocol = eth_type_trans(skb, dev);
1628 skb->mark = 0;
1629 secpath_reset(skb);
1630 nf_reset(skb);
1631 nf_reset_trace(skb);
1632 return netif_rx(skb);
1633 }
1634 EXPORT_SYMBOL_GPL(dev_forward_skb);
1635
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)1636 static inline int deliver_skb(struct sk_buff *skb,
1637 struct packet_type *pt_prev,
1638 struct net_device *orig_dev)
1639 {
1640 atomic_inc(&skb->users);
1641 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1642 }
1643
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)1644 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1645 {
1646 if (!ptype->af_packet_priv || !skb->sk)
1647 return false;
1648
1649 if (ptype->id_match)
1650 return ptype->id_match(ptype, skb->sk);
1651 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1652 return true;
1653
1654 return false;
1655 }
1656
1657 /*
1658 * Support routine. Sends outgoing frames to any network
1659 * taps currently in use.
1660 */
1661
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)1662 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1663 {
1664 struct packet_type *ptype;
1665 struct sk_buff *skb2 = NULL;
1666 struct packet_type *pt_prev = NULL;
1667
1668 rcu_read_lock();
1669 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1670 /* Never send packets back to the socket
1671 * they originated from - MvS (miquels@drinkel.ow.org)
1672 */
1673 if ((ptype->dev == dev || !ptype->dev) &&
1674 (!skb_loop_sk(ptype, skb))) {
1675 if (pt_prev) {
1676 deliver_skb(skb2, pt_prev, skb->dev);
1677 pt_prev = ptype;
1678 continue;
1679 }
1680
1681 skb2 = skb_clone(skb, GFP_ATOMIC);
1682 if (!skb2)
1683 break;
1684
1685 net_timestamp_set(skb2);
1686
1687 /* skb->nh should be correctly
1688 set by sender, so that the second statement is
1689 just protection against buggy protocols.
1690 */
1691 skb_reset_mac_header(skb2);
1692
1693 if (skb_network_header(skb2) < skb2->data ||
1694 skb2->network_header > skb2->tail) {
1695 if (net_ratelimit())
1696 pr_crit("protocol %04x is buggy, dev %s\n",
1697 ntohs(skb2->protocol),
1698 dev->name);
1699 skb_reset_network_header(skb2);
1700 }
1701
1702 skb2->transport_header = skb2->network_header;
1703 skb2->pkt_type = PACKET_OUTGOING;
1704 pt_prev = ptype;
1705 }
1706 }
1707 if (pt_prev)
1708 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1709 rcu_read_unlock();
1710 }
1711
1712 /* netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1713 * @dev: Network device
1714 * @txq: number of queues available
1715 *
1716 * If real_num_tx_queues is changed the tc mappings may no longer be
1717 * valid. To resolve this verify the tc mapping remains valid and if
1718 * not NULL the mapping. With no priorities mapping to this
1719 * offset/count pair it will no longer be used. In the worst case TC0
1720 * is invalid nothing can be done so disable priority mappings. If is
1721 * expected that drivers will fix this mapping if they can before
1722 * calling netif_set_real_num_tx_queues.
1723 */
netif_setup_tc(struct net_device * dev,unsigned int txq)1724 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1725 {
1726 int i;
1727 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1728
1729 /* If TC0 is invalidated disable TC mapping */
1730 if (tc->offset + tc->count > txq) {
1731 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1732 dev->num_tc = 0;
1733 return;
1734 }
1735
1736 /* Invalidated prio to tc mappings set to TC0 */
1737 for (i = 1; i < TC_BITMASK + 1; i++) {
1738 int q = netdev_get_prio_tc_map(dev, i);
1739
1740 tc = &dev->tc_to_txq[q];
1741 if (tc->offset + tc->count > txq) {
1742 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1743 i, q);
1744 netdev_set_prio_tc_map(dev, i, 0);
1745 }
1746 }
1747 }
1748
1749 /*
1750 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1751 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1752 */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)1753 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1754 {
1755 int rc;
1756
1757 if (txq < 1 || txq > dev->num_tx_queues)
1758 return -EINVAL;
1759
1760 if (dev->reg_state == NETREG_REGISTERED ||
1761 dev->reg_state == NETREG_UNREGISTERING) {
1762 ASSERT_RTNL();
1763
1764 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1765 txq);
1766 if (rc)
1767 return rc;
1768
1769 if (dev->num_tc)
1770 netif_setup_tc(dev, txq);
1771
1772 if (txq < dev->real_num_tx_queues)
1773 qdisc_reset_all_tx_gt(dev, txq);
1774 }
1775
1776 dev->real_num_tx_queues = txq;
1777 return 0;
1778 }
1779 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1780
1781 #ifdef CONFIG_RPS
1782 /**
1783 * netif_set_real_num_rx_queues - set actual number of RX queues used
1784 * @dev: Network device
1785 * @rxq: Actual number of RX queues
1786 *
1787 * This must be called either with the rtnl_lock held or before
1788 * registration of the net device. Returns 0 on success, or a
1789 * negative error code. If called before registration, it always
1790 * succeeds.
1791 */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)1792 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1793 {
1794 int rc;
1795
1796 if (rxq < 1 || rxq > dev->num_rx_queues)
1797 return -EINVAL;
1798
1799 if (dev->reg_state == NETREG_REGISTERED) {
1800 ASSERT_RTNL();
1801
1802 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1803 rxq);
1804 if (rc)
1805 return rc;
1806 }
1807
1808 dev->real_num_rx_queues = rxq;
1809 return 0;
1810 }
1811 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1812 #endif
1813
__netif_reschedule(struct Qdisc * q)1814 static inline void __netif_reschedule(struct Qdisc *q)
1815 {
1816 struct softnet_data *sd;
1817 unsigned long flags;
1818
1819 local_irq_save(flags);
1820 sd = &__get_cpu_var(softnet_data);
1821 q->next_sched = NULL;
1822 *sd->output_queue_tailp = q;
1823 sd->output_queue_tailp = &q->next_sched;
1824 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1825 local_irq_restore(flags);
1826 }
1827
__netif_schedule(struct Qdisc * q)1828 void __netif_schedule(struct Qdisc *q)
1829 {
1830 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1831 __netif_reschedule(q);
1832 }
1833 EXPORT_SYMBOL(__netif_schedule);
1834
dev_kfree_skb_irq(struct sk_buff * skb)1835 void dev_kfree_skb_irq(struct sk_buff *skb)
1836 {
1837 if (atomic_dec_and_test(&skb->users)) {
1838 struct softnet_data *sd;
1839 unsigned long flags;
1840
1841 local_irq_save(flags);
1842 sd = &__get_cpu_var(softnet_data);
1843 skb->next = sd->completion_queue;
1844 sd->completion_queue = skb;
1845 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1846 local_irq_restore(flags);
1847 }
1848 }
1849 EXPORT_SYMBOL(dev_kfree_skb_irq);
1850
dev_kfree_skb_any(struct sk_buff * skb)1851 void dev_kfree_skb_any(struct sk_buff *skb)
1852 {
1853 if (in_irq() || irqs_disabled())
1854 dev_kfree_skb_irq(skb);
1855 else
1856 dev_kfree_skb(skb);
1857 }
1858 EXPORT_SYMBOL(dev_kfree_skb_any);
1859
1860
1861 /**
1862 * netif_device_detach - mark device as removed
1863 * @dev: network device
1864 *
1865 * Mark device as removed from system and therefore no longer available.
1866 */
netif_device_detach(struct net_device * dev)1867 void netif_device_detach(struct net_device *dev)
1868 {
1869 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1870 netif_running(dev)) {
1871 netif_tx_stop_all_queues(dev);
1872 }
1873 }
1874 EXPORT_SYMBOL(netif_device_detach);
1875
1876 /**
1877 * netif_device_attach - mark device as attached
1878 * @dev: network device
1879 *
1880 * Mark device as attached from system and restart if needed.
1881 */
netif_device_attach(struct net_device * dev)1882 void netif_device_attach(struct net_device *dev)
1883 {
1884 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1885 netif_running(dev)) {
1886 netif_tx_wake_all_queues(dev);
1887 __netdev_watchdog_up(dev);
1888 }
1889 }
1890 EXPORT_SYMBOL(netif_device_attach);
1891
skb_warn_bad_offload(const struct sk_buff * skb)1892 static void skb_warn_bad_offload(const struct sk_buff *skb)
1893 {
1894 static const netdev_features_t null_features = 0;
1895 struct net_device *dev = skb->dev;
1896 const char *driver = "";
1897
1898 if (!net_ratelimit())
1899 return;
1900
1901 if (dev && dev->dev.parent)
1902 driver = dev_driver_string(dev->dev.parent);
1903
1904 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
1905 "gso_type=%d ip_summed=%d\n",
1906 driver, dev ? &dev->features : &null_features,
1907 skb->sk ? &skb->sk->sk_route_caps : &null_features,
1908 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
1909 skb_shinfo(skb)->gso_type, skb->ip_summed);
1910 }
1911
1912 /*
1913 * Invalidate hardware checksum when packet is to be mangled, and
1914 * complete checksum manually on outgoing path.
1915 */
skb_checksum_help(struct sk_buff * skb)1916 int skb_checksum_help(struct sk_buff *skb)
1917 {
1918 __wsum csum;
1919 int ret = 0, offset;
1920
1921 if (skb->ip_summed == CHECKSUM_COMPLETE)
1922 goto out_set_summed;
1923
1924 if (unlikely(skb_shinfo(skb)->gso_size)) {
1925 skb_warn_bad_offload(skb);
1926 return -EINVAL;
1927 }
1928
1929 offset = skb_checksum_start_offset(skb);
1930 BUG_ON(offset >= skb_headlen(skb));
1931 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1932
1933 offset += skb->csum_offset;
1934 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1935
1936 if (skb_cloned(skb) &&
1937 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1938 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1939 if (ret)
1940 goto out;
1941 }
1942
1943 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1944 out_set_summed:
1945 skb->ip_summed = CHECKSUM_NONE;
1946 out:
1947 return ret;
1948 }
1949 EXPORT_SYMBOL(skb_checksum_help);
1950
1951 /**
1952 * skb_gso_segment - Perform segmentation on skb.
1953 * @skb: buffer to segment
1954 * @features: features for the output path (see dev->features)
1955 *
1956 * This function segments the given skb and returns a list of segments.
1957 *
1958 * It may return NULL if the skb requires no segmentation. This is
1959 * only possible when GSO is used for verifying header integrity.
1960 */
skb_gso_segment(struct sk_buff * skb,netdev_features_t features)1961 struct sk_buff *skb_gso_segment(struct sk_buff *skb,
1962 netdev_features_t features)
1963 {
1964 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1965 struct packet_type *ptype;
1966 __be16 type = skb->protocol;
1967 int vlan_depth = ETH_HLEN;
1968 int err;
1969
1970 while (type == htons(ETH_P_8021Q)) {
1971 struct vlan_hdr *vh;
1972
1973 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1974 return ERR_PTR(-EINVAL);
1975
1976 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1977 type = vh->h_vlan_encapsulated_proto;
1978 vlan_depth += VLAN_HLEN;
1979 }
1980
1981 skb_reset_mac_header(skb);
1982 skb->mac_len = skb->network_header - skb->mac_header;
1983 __skb_pull(skb, skb->mac_len);
1984
1985 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1986 skb_warn_bad_offload(skb);
1987
1988 if (skb_header_cloned(skb) &&
1989 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1990 return ERR_PTR(err);
1991 }
1992
1993 rcu_read_lock();
1994 list_for_each_entry_rcu(ptype,
1995 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1996 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1997 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1998 err = ptype->gso_send_check(skb);
1999 segs = ERR_PTR(err);
2000 if (err || skb_gso_ok(skb, features))
2001 break;
2002 __skb_push(skb, (skb->data -
2003 skb_network_header(skb)));
2004 }
2005 segs = ptype->gso_segment(skb, features);
2006 break;
2007 }
2008 }
2009 rcu_read_unlock();
2010
2011 __skb_push(skb, skb->data - skb_mac_header(skb));
2012
2013 return segs;
2014 }
2015 EXPORT_SYMBOL(skb_gso_segment);
2016
2017 /* Take action when hardware reception checksum errors are detected. */
2018 #ifdef CONFIG_BUG
netdev_rx_csum_fault(struct net_device * dev)2019 void netdev_rx_csum_fault(struct net_device *dev)
2020 {
2021 if (net_ratelimit()) {
2022 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2023 dump_stack();
2024 }
2025 }
2026 EXPORT_SYMBOL(netdev_rx_csum_fault);
2027 #endif
2028
2029 /* Actually, we should eliminate this check as soon as we know, that:
2030 * 1. IOMMU is present and allows to map all the memory.
2031 * 2. No high memory really exists on this machine.
2032 */
2033
illegal_highdma(struct net_device * dev,struct sk_buff * skb)2034 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2035 {
2036 #ifdef CONFIG_HIGHMEM
2037 int i;
2038 if (!(dev->features & NETIF_F_HIGHDMA)) {
2039 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2040 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2041 if (PageHighMem(skb_frag_page(frag)))
2042 return 1;
2043 }
2044 }
2045
2046 if (PCI_DMA_BUS_IS_PHYS) {
2047 struct device *pdev = dev->dev.parent;
2048
2049 if (!pdev)
2050 return 0;
2051 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2052 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2053 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2054 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2055 return 1;
2056 }
2057 }
2058 #endif
2059 return 0;
2060 }
2061
2062 struct dev_gso_cb {
2063 void (*destructor)(struct sk_buff *skb);
2064 };
2065
2066 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2067
dev_gso_skb_destructor(struct sk_buff * skb)2068 static void dev_gso_skb_destructor(struct sk_buff *skb)
2069 {
2070 struct dev_gso_cb *cb;
2071
2072 do {
2073 struct sk_buff *nskb = skb->next;
2074
2075 skb->next = nskb->next;
2076 nskb->next = NULL;
2077 kfree_skb(nskb);
2078 } while (skb->next);
2079
2080 cb = DEV_GSO_CB(skb);
2081 if (cb->destructor)
2082 cb->destructor(skb);
2083 }
2084
2085 /**
2086 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2087 * @skb: buffer to segment
2088 * @features: device features as applicable to this skb
2089 *
2090 * This function segments the given skb and stores the list of segments
2091 * in skb->next.
2092 */
dev_gso_segment(struct sk_buff * skb,netdev_features_t features)2093 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2094 {
2095 struct sk_buff *segs;
2096
2097 segs = skb_gso_segment(skb, features);
2098
2099 /* Verifying header integrity only. */
2100 if (!segs)
2101 return 0;
2102
2103 if (IS_ERR(segs))
2104 return PTR_ERR(segs);
2105
2106 skb->next = segs;
2107 DEV_GSO_CB(skb)->destructor = skb->destructor;
2108 skb->destructor = dev_gso_skb_destructor;
2109
2110 return 0;
2111 }
2112
can_checksum_protocol(netdev_features_t features,__be16 protocol)2113 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2114 {
2115 return ((features & NETIF_F_GEN_CSUM) ||
2116 ((features & NETIF_F_V4_CSUM) &&
2117 protocol == htons(ETH_P_IP)) ||
2118 ((features & NETIF_F_V6_CSUM) &&
2119 protocol == htons(ETH_P_IPV6)) ||
2120 ((features & NETIF_F_FCOE_CRC) &&
2121 protocol == htons(ETH_P_FCOE)));
2122 }
2123
harmonize_features(struct sk_buff * skb,__be16 protocol,netdev_features_t features)2124 static netdev_features_t harmonize_features(struct sk_buff *skb,
2125 __be16 protocol, netdev_features_t features)
2126 {
2127 if (skb->ip_summed != CHECKSUM_NONE &&
2128 !can_checksum_protocol(features, protocol)) {
2129 features &= ~NETIF_F_ALL_CSUM;
2130 features &= ~NETIF_F_SG;
2131 } else if (illegal_highdma(skb->dev, skb)) {
2132 features &= ~NETIF_F_SG;
2133 }
2134
2135 return features;
2136 }
2137
netif_skb_features(struct sk_buff * skb)2138 netdev_features_t netif_skb_features(struct sk_buff *skb)
2139 {
2140 __be16 protocol = skb->protocol;
2141 netdev_features_t features = skb->dev->features;
2142
2143 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2144 features &= ~NETIF_F_GSO_MASK;
2145
2146 if (protocol == htons(ETH_P_8021Q)) {
2147 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2148 protocol = veh->h_vlan_encapsulated_proto;
2149 } else if (!vlan_tx_tag_present(skb)) {
2150 return harmonize_features(skb, protocol, features);
2151 }
2152
2153 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2154
2155 if (protocol != htons(ETH_P_8021Q)) {
2156 return harmonize_features(skb, protocol, features);
2157 } else {
2158 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2159 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2160 return harmonize_features(skb, protocol, features);
2161 }
2162 }
2163 EXPORT_SYMBOL(netif_skb_features);
2164
2165 /*
2166 * Returns true if either:
2167 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2168 * 2. skb is fragmented and the device does not support SG, or if
2169 * at least one of fragments is in highmem and device does not
2170 * support DMA from it.
2171 */
skb_needs_linearize(struct sk_buff * skb,netdev_features_t features)2172 static inline int skb_needs_linearize(struct sk_buff *skb,
2173 netdev_features_t features)
2174 {
2175 return skb_is_nonlinear(skb) &&
2176 ((skb_has_frag_list(skb) &&
2177 !(features & NETIF_F_FRAGLIST)) ||
2178 (skb_shinfo(skb)->nr_frags &&
2179 !(features & NETIF_F_SG)));
2180 }
2181
dev_hard_start_xmit(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq)2182 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2183 struct netdev_queue *txq)
2184 {
2185 const struct net_device_ops *ops = dev->netdev_ops;
2186 int rc = NETDEV_TX_OK;
2187 unsigned int skb_len;
2188
2189 if (likely(!skb->next)) {
2190 netdev_features_t features;
2191
2192 /*
2193 * If device doesn't need skb->dst, release it right now while
2194 * its hot in this cpu cache
2195 */
2196 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2197 skb_dst_drop(skb);
2198
2199 if (!list_empty(&ptype_all))
2200 dev_queue_xmit_nit(skb, dev);
2201
2202 features = netif_skb_features(skb);
2203
2204 if (vlan_tx_tag_present(skb) &&
2205 !(features & NETIF_F_HW_VLAN_TX)) {
2206 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2207 if (unlikely(!skb))
2208 goto out;
2209
2210 skb->vlan_tci = 0;
2211 }
2212
2213 if (netif_needs_gso(skb, features)) {
2214 if (unlikely(dev_gso_segment(skb, features)))
2215 goto out_kfree_skb;
2216 if (skb->next)
2217 goto gso;
2218 } else {
2219 if (skb_needs_linearize(skb, features) &&
2220 __skb_linearize(skb))
2221 goto out_kfree_skb;
2222
2223 /* If packet is not checksummed and device does not
2224 * support checksumming for this protocol, complete
2225 * checksumming here.
2226 */
2227 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2228 skb_set_transport_header(skb,
2229 skb_checksum_start_offset(skb));
2230 if (!(features & NETIF_F_ALL_CSUM) &&
2231 skb_checksum_help(skb))
2232 goto out_kfree_skb;
2233 }
2234 }
2235
2236 skb_len = skb->len;
2237 rc = ops->ndo_start_xmit(skb, dev);
2238 trace_net_dev_xmit(skb, rc, dev, skb_len);
2239 if (rc == NETDEV_TX_OK)
2240 txq_trans_update(txq);
2241 return rc;
2242 }
2243
2244 gso:
2245 do {
2246 struct sk_buff *nskb = skb->next;
2247
2248 skb->next = nskb->next;
2249 nskb->next = NULL;
2250
2251 /*
2252 * If device doesn't need nskb->dst, release it right now while
2253 * its hot in this cpu cache
2254 */
2255 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2256 skb_dst_drop(nskb);
2257
2258 skb_len = nskb->len;
2259 rc = ops->ndo_start_xmit(nskb, dev);
2260 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2261 if (unlikely(rc != NETDEV_TX_OK)) {
2262 if (rc & ~NETDEV_TX_MASK)
2263 goto out_kfree_gso_skb;
2264 nskb->next = skb->next;
2265 skb->next = nskb;
2266 return rc;
2267 }
2268 txq_trans_update(txq);
2269 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2270 return NETDEV_TX_BUSY;
2271 } while (skb->next);
2272
2273 out_kfree_gso_skb:
2274 if (likely(skb->next == NULL))
2275 skb->destructor = DEV_GSO_CB(skb)->destructor;
2276 out_kfree_skb:
2277 kfree_skb(skb);
2278 out:
2279 return rc;
2280 }
2281
2282 static u32 hashrnd __read_mostly;
2283
2284 /*
2285 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2286 * to be used as a distribution range.
2287 */
__skb_tx_hash(const struct net_device * dev,const struct sk_buff * skb,unsigned int num_tx_queues)2288 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2289 unsigned int num_tx_queues)
2290 {
2291 u32 hash;
2292 u16 qoffset = 0;
2293 u16 qcount = num_tx_queues;
2294
2295 if (skb_rx_queue_recorded(skb)) {
2296 hash = skb_get_rx_queue(skb);
2297 while (unlikely(hash >= num_tx_queues))
2298 hash -= num_tx_queues;
2299 return hash;
2300 }
2301
2302 if (dev->num_tc) {
2303 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2304 qoffset = dev->tc_to_txq[tc].offset;
2305 qcount = dev->tc_to_txq[tc].count;
2306 }
2307
2308 if (skb->sk && skb->sk->sk_hash)
2309 hash = skb->sk->sk_hash;
2310 else
2311 hash = (__force u16) skb->protocol;
2312 hash = jhash_1word(hash, hashrnd);
2313
2314 return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2315 }
2316 EXPORT_SYMBOL(__skb_tx_hash);
2317
dev_cap_txqueue(struct net_device * dev,u16 queue_index)2318 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2319 {
2320 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2321 if (net_ratelimit()) {
2322 pr_warn("%s selects TX queue %d, but real number of TX queues is %d\n",
2323 dev->name, queue_index,
2324 dev->real_num_tx_queues);
2325 }
2326 return 0;
2327 }
2328 return queue_index;
2329 }
2330
get_xps_queue(struct net_device * dev,struct sk_buff * skb)2331 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2332 {
2333 #ifdef CONFIG_XPS
2334 struct xps_dev_maps *dev_maps;
2335 struct xps_map *map;
2336 int queue_index = -1;
2337
2338 rcu_read_lock();
2339 dev_maps = rcu_dereference(dev->xps_maps);
2340 if (dev_maps) {
2341 map = rcu_dereference(
2342 dev_maps->cpu_map[raw_smp_processor_id()]);
2343 if (map) {
2344 if (map->len == 1)
2345 queue_index = map->queues[0];
2346 else {
2347 u32 hash;
2348 if (skb->sk && skb->sk->sk_hash)
2349 hash = skb->sk->sk_hash;
2350 else
2351 hash = (__force u16) skb->protocol ^
2352 skb->rxhash;
2353 hash = jhash_1word(hash, hashrnd);
2354 queue_index = map->queues[
2355 ((u64)hash * map->len) >> 32];
2356 }
2357 if (unlikely(queue_index >= dev->real_num_tx_queues))
2358 queue_index = -1;
2359 }
2360 }
2361 rcu_read_unlock();
2362
2363 return queue_index;
2364 #else
2365 return -1;
2366 #endif
2367 }
2368
dev_pick_tx(struct net_device * dev,struct sk_buff * skb)2369 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2370 struct sk_buff *skb)
2371 {
2372 int queue_index;
2373 const struct net_device_ops *ops = dev->netdev_ops;
2374
2375 if (dev->real_num_tx_queues == 1)
2376 queue_index = 0;
2377 else if (ops->ndo_select_queue) {
2378 queue_index = ops->ndo_select_queue(dev, skb);
2379 queue_index = dev_cap_txqueue(dev, queue_index);
2380 } else {
2381 struct sock *sk = skb->sk;
2382 queue_index = sk_tx_queue_get(sk);
2383
2384 if (queue_index < 0 || skb->ooo_okay ||
2385 queue_index >= dev->real_num_tx_queues) {
2386 int old_index = queue_index;
2387
2388 queue_index = get_xps_queue(dev, skb);
2389 if (queue_index < 0)
2390 queue_index = skb_tx_hash(dev, skb);
2391
2392 if (queue_index != old_index && sk) {
2393 struct dst_entry *dst =
2394 rcu_dereference_check(sk->sk_dst_cache, 1);
2395
2396 if (dst && skb_dst(skb) == dst)
2397 sk_tx_queue_set(sk, queue_index);
2398 }
2399 }
2400 }
2401
2402 skb_set_queue_mapping(skb, queue_index);
2403 return netdev_get_tx_queue(dev, queue_index);
2404 }
2405
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)2406 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2407 struct net_device *dev,
2408 struct netdev_queue *txq)
2409 {
2410 spinlock_t *root_lock = qdisc_lock(q);
2411 bool contended;
2412 int rc;
2413
2414 qdisc_skb_cb(skb)->pkt_len = skb->len;
2415 qdisc_calculate_pkt_len(skb, q);
2416 /*
2417 * Heuristic to force contended enqueues to serialize on a
2418 * separate lock before trying to get qdisc main lock.
2419 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2420 * and dequeue packets faster.
2421 */
2422 contended = qdisc_is_running(q);
2423 if (unlikely(contended))
2424 spin_lock(&q->busylock);
2425
2426 spin_lock(root_lock);
2427 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2428 kfree_skb(skb);
2429 rc = NET_XMIT_DROP;
2430 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2431 qdisc_run_begin(q)) {
2432 /*
2433 * This is a work-conserving queue; there are no old skbs
2434 * waiting to be sent out; and the qdisc is not running -
2435 * xmit the skb directly.
2436 */
2437 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2438 skb_dst_force(skb);
2439
2440 qdisc_bstats_update(q, skb);
2441
2442 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2443 if (unlikely(contended)) {
2444 spin_unlock(&q->busylock);
2445 contended = false;
2446 }
2447 __qdisc_run(q);
2448 } else
2449 qdisc_run_end(q);
2450
2451 rc = NET_XMIT_SUCCESS;
2452 } else {
2453 skb_dst_force(skb);
2454 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2455 if (qdisc_run_begin(q)) {
2456 if (unlikely(contended)) {
2457 spin_unlock(&q->busylock);
2458 contended = false;
2459 }
2460 __qdisc_run(q);
2461 }
2462 }
2463 spin_unlock(root_lock);
2464 if (unlikely(contended))
2465 spin_unlock(&q->busylock);
2466 return rc;
2467 }
2468
2469 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
skb_update_prio(struct sk_buff * skb)2470 static void skb_update_prio(struct sk_buff *skb)
2471 {
2472 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2473
2474 if ((!skb->priority) && (skb->sk) && map)
2475 skb->priority = map->priomap[skb->sk->sk_cgrp_prioidx];
2476 }
2477 #else
2478 #define skb_update_prio(skb)
2479 #endif
2480
2481 static DEFINE_PER_CPU(int, xmit_recursion);
2482 #define RECURSION_LIMIT 10
2483
2484 /**
2485 * dev_queue_xmit - transmit a buffer
2486 * @skb: buffer to transmit
2487 *
2488 * Queue a buffer for transmission to a network device. The caller must
2489 * have set the device and priority and built the buffer before calling
2490 * this function. The function can be called from an interrupt.
2491 *
2492 * A negative errno code is returned on a failure. A success does not
2493 * guarantee the frame will be transmitted as it may be dropped due
2494 * to congestion or traffic shaping.
2495 *
2496 * -----------------------------------------------------------------------------------
2497 * I notice this method can also return errors from the queue disciplines,
2498 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2499 * be positive.
2500 *
2501 * Regardless of the return value, the skb is consumed, so it is currently
2502 * difficult to retry a send to this method. (You can bump the ref count
2503 * before sending to hold a reference for retry if you are careful.)
2504 *
2505 * When calling this method, interrupts MUST be enabled. This is because
2506 * the BH enable code must have IRQs enabled so that it will not deadlock.
2507 * --BLG
2508 */
dev_queue_xmit(struct sk_buff * skb)2509 int dev_queue_xmit(struct sk_buff *skb)
2510 {
2511 struct net_device *dev = skb->dev;
2512 struct netdev_queue *txq;
2513 struct Qdisc *q;
2514 int rc = -ENOMEM;
2515
2516 /* Disable soft irqs for various locks below. Also
2517 * stops preemption for RCU.
2518 */
2519 rcu_read_lock_bh();
2520
2521 skb_update_prio(skb);
2522
2523 txq = dev_pick_tx(dev, skb);
2524 q = rcu_dereference_bh(txq->qdisc);
2525
2526 #ifdef CONFIG_NET_CLS_ACT
2527 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2528 #endif
2529 trace_net_dev_queue(skb);
2530 if (q->enqueue) {
2531 rc = __dev_xmit_skb(skb, q, dev, txq);
2532 goto out;
2533 }
2534
2535 /* The device has no queue. Common case for software devices:
2536 loopback, all the sorts of tunnels...
2537
2538 Really, it is unlikely that netif_tx_lock protection is necessary
2539 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2540 counters.)
2541 However, it is possible, that they rely on protection
2542 made by us here.
2543
2544 Check this and shot the lock. It is not prone from deadlocks.
2545 Either shot noqueue qdisc, it is even simpler 8)
2546 */
2547 if (dev->flags & IFF_UP) {
2548 int cpu = smp_processor_id(); /* ok because BHs are off */
2549
2550 if (txq->xmit_lock_owner != cpu) {
2551
2552 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2553 goto recursion_alert;
2554
2555 HARD_TX_LOCK(dev, txq, cpu);
2556
2557 if (!netif_xmit_stopped(txq)) {
2558 __this_cpu_inc(xmit_recursion);
2559 rc = dev_hard_start_xmit(skb, dev, txq);
2560 __this_cpu_dec(xmit_recursion);
2561 if (dev_xmit_complete(rc)) {
2562 HARD_TX_UNLOCK(dev, txq);
2563 goto out;
2564 }
2565 }
2566 HARD_TX_UNLOCK(dev, txq);
2567 if (net_ratelimit())
2568 pr_crit("Virtual device %s asks to queue packet!\n",
2569 dev->name);
2570 } else {
2571 /* Recursion is detected! It is possible,
2572 * unfortunately
2573 */
2574 recursion_alert:
2575 if (net_ratelimit())
2576 pr_crit("Dead loop on virtual device %s, fix it urgently!\n",
2577 dev->name);
2578 }
2579 }
2580
2581 rc = -ENETDOWN;
2582 rcu_read_unlock_bh();
2583
2584 kfree_skb(skb);
2585 return rc;
2586 out:
2587 rcu_read_unlock_bh();
2588 return rc;
2589 }
2590 EXPORT_SYMBOL(dev_queue_xmit);
2591
2592
2593 /*=======================================================================
2594 Receiver routines
2595 =======================================================================*/
2596
2597 int netdev_max_backlog __read_mostly = 1000;
2598 int netdev_tstamp_prequeue __read_mostly = 1;
2599 int netdev_budget __read_mostly = 300;
2600 int weight_p __read_mostly = 64; /* old backlog weight */
2601
2602 /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)2603 static inline void ____napi_schedule(struct softnet_data *sd,
2604 struct napi_struct *napi)
2605 {
2606 list_add_tail(&napi->poll_list, &sd->poll_list);
2607 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2608 }
2609
2610 /*
2611 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2612 * and src/dst port numbers. Sets rxhash in skb to non-zero hash value
2613 * on success, zero indicates no valid hash. Also, sets l4_rxhash in skb
2614 * if hash is a canonical 4-tuple hash over transport ports.
2615 */
__skb_get_rxhash(struct sk_buff * skb)2616 void __skb_get_rxhash(struct sk_buff *skb)
2617 {
2618 struct flow_keys keys;
2619 u32 hash;
2620
2621 if (!skb_flow_dissect(skb, &keys))
2622 return;
2623
2624 if (keys.ports)
2625 skb->l4_rxhash = 1;
2626
2627 /* get a consistent hash (same value on both flow directions) */
2628 if (((__force u32)keys.dst < (__force u32)keys.src) ||
2629 (((__force u32)keys.dst == (__force u32)keys.src) &&
2630 ((__force u16)keys.port16[1] < (__force u16)keys.port16[0]))) {
2631 swap(keys.dst, keys.src);
2632 swap(keys.port16[0], keys.port16[1]);
2633 }
2634
2635 hash = jhash_3words((__force u32)keys.dst,
2636 (__force u32)keys.src,
2637 (__force u32)keys.ports, hashrnd);
2638 if (!hash)
2639 hash = 1;
2640
2641 skb->rxhash = hash;
2642 }
2643 EXPORT_SYMBOL(__skb_get_rxhash);
2644
2645 #ifdef CONFIG_RPS
2646
2647 /* One global table that all flow-based protocols share. */
2648 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2649 EXPORT_SYMBOL(rps_sock_flow_table);
2650
2651 struct static_key rps_needed __read_mostly;
2652
2653 static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu)2654 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2655 struct rps_dev_flow *rflow, u16 next_cpu)
2656 {
2657 if (next_cpu != RPS_NO_CPU) {
2658 #ifdef CONFIG_RFS_ACCEL
2659 struct netdev_rx_queue *rxqueue;
2660 struct rps_dev_flow_table *flow_table;
2661 struct rps_dev_flow *old_rflow;
2662 u32 flow_id;
2663 u16 rxq_index;
2664 int rc;
2665
2666 /* Should we steer this flow to a different hardware queue? */
2667 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2668 !(dev->features & NETIF_F_NTUPLE))
2669 goto out;
2670 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2671 if (rxq_index == skb_get_rx_queue(skb))
2672 goto out;
2673
2674 rxqueue = dev->_rx + rxq_index;
2675 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2676 if (!flow_table)
2677 goto out;
2678 flow_id = skb->rxhash & flow_table->mask;
2679 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2680 rxq_index, flow_id);
2681 if (rc < 0)
2682 goto out;
2683 old_rflow = rflow;
2684 rflow = &flow_table->flows[flow_id];
2685 rflow->filter = rc;
2686 if (old_rflow->filter == rflow->filter)
2687 old_rflow->filter = RPS_NO_FILTER;
2688 out:
2689 #endif
2690 rflow->last_qtail =
2691 per_cpu(softnet_data, next_cpu).input_queue_head;
2692 }
2693
2694 rflow->cpu = next_cpu;
2695 return rflow;
2696 }
2697
2698 /*
2699 * get_rps_cpu is called from netif_receive_skb and returns the target
2700 * CPU from the RPS map of the receiving queue for a given skb.
2701 * rcu_read_lock must be held on entry.
2702 */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)2703 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2704 struct rps_dev_flow **rflowp)
2705 {
2706 struct netdev_rx_queue *rxqueue;
2707 struct rps_map *map;
2708 struct rps_dev_flow_table *flow_table;
2709 struct rps_sock_flow_table *sock_flow_table;
2710 int cpu = -1;
2711 u16 tcpu;
2712
2713 if (skb_rx_queue_recorded(skb)) {
2714 u16 index = skb_get_rx_queue(skb);
2715 if (unlikely(index >= dev->real_num_rx_queues)) {
2716 WARN_ONCE(dev->real_num_rx_queues > 1,
2717 "%s received packet on queue %u, but number "
2718 "of RX queues is %u\n",
2719 dev->name, index, dev->real_num_rx_queues);
2720 goto done;
2721 }
2722 rxqueue = dev->_rx + index;
2723 } else
2724 rxqueue = dev->_rx;
2725
2726 map = rcu_dereference(rxqueue->rps_map);
2727 if (map) {
2728 if (map->len == 1 &&
2729 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2730 tcpu = map->cpus[0];
2731 if (cpu_online(tcpu))
2732 cpu = tcpu;
2733 goto done;
2734 }
2735 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2736 goto done;
2737 }
2738
2739 skb_reset_network_header(skb);
2740 if (!skb_get_rxhash(skb))
2741 goto done;
2742
2743 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2744 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2745 if (flow_table && sock_flow_table) {
2746 u16 next_cpu;
2747 struct rps_dev_flow *rflow;
2748
2749 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2750 tcpu = rflow->cpu;
2751
2752 next_cpu = sock_flow_table->ents[skb->rxhash &
2753 sock_flow_table->mask];
2754
2755 /*
2756 * If the desired CPU (where last recvmsg was done) is
2757 * different from current CPU (one in the rx-queue flow
2758 * table entry), switch if one of the following holds:
2759 * - Current CPU is unset (equal to RPS_NO_CPU).
2760 * - Current CPU is offline.
2761 * - The current CPU's queue tail has advanced beyond the
2762 * last packet that was enqueued using this table entry.
2763 * This guarantees that all previous packets for the flow
2764 * have been dequeued, thus preserving in order delivery.
2765 */
2766 if (unlikely(tcpu != next_cpu) &&
2767 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2768 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2769 rflow->last_qtail)) >= 0)) {
2770 tcpu = next_cpu;
2771 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2772 }
2773
2774 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2775 *rflowp = rflow;
2776 cpu = tcpu;
2777 goto done;
2778 }
2779 }
2780
2781 if (map) {
2782 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2783
2784 if (cpu_online(tcpu)) {
2785 cpu = tcpu;
2786 goto done;
2787 }
2788 }
2789
2790 done:
2791 return cpu;
2792 }
2793
2794 #ifdef CONFIG_RFS_ACCEL
2795
2796 /**
2797 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2798 * @dev: Device on which the filter was set
2799 * @rxq_index: RX queue index
2800 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2801 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2802 *
2803 * Drivers that implement ndo_rx_flow_steer() should periodically call
2804 * this function for each installed filter and remove the filters for
2805 * which it returns %true.
2806 */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)2807 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2808 u32 flow_id, u16 filter_id)
2809 {
2810 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2811 struct rps_dev_flow_table *flow_table;
2812 struct rps_dev_flow *rflow;
2813 bool expire = true;
2814 int cpu;
2815
2816 rcu_read_lock();
2817 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2818 if (flow_table && flow_id <= flow_table->mask) {
2819 rflow = &flow_table->flows[flow_id];
2820 cpu = ACCESS_ONCE(rflow->cpu);
2821 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2822 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2823 rflow->last_qtail) <
2824 (int)(10 * flow_table->mask)))
2825 expire = false;
2826 }
2827 rcu_read_unlock();
2828 return expire;
2829 }
2830 EXPORT_SYMBOL(rps_may_expire_flow);
2831
2832 #endif /* CONFIG_RFS_ACCEL */
2833
2834 /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)2835 static void rps_trigger_softirq(void *data)
2836 {
2837 struct softnet_data *sd = data;
2838
2839 ____napi_schedule(sd, &sd->backlog);
2840 sd->received_rps++;
2841 }
2842
2843 #endif /* CONFIG_RPS */
2844
2845 /*
2846 * Check if this softnet_data structure is another cpu one
2847 * If yes, queue it to our IPI list and return 1
2848 * If no, return 0
2849 */
rps_ipi_queued(struct softnet_data * sd)2850 static int rps_ipi_queued(struct softnet_data *sd)
2851 {
2852 #ifdef CONFIG_RPS
2853 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2854
2855 if (sd != mysd) {
2856 sd->rps_ipi_next = mysd->rps_ipi_list;
2857 mysd->rps_ipi_list = sd;
2858
2859 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2860 return 1;
2861 }
2862 #endif /* CONFIG_RPS */
2863 return 0;
2864 }
2865
2866 /*
2867 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2868 * queue (may be a remote CPU queue).
2869 */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)2870 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2871 unsigned int *qtail)
2872 {
2873 struct softnet_data *sd;
2874 unsigned long flags;
2875
2876 sd = &per_cpu(softnet_data, cpu);
2877
2878 local_irq_save(flags);
2879
2880 rps_lock(sd);
2881 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2882 if (skb_queue_len(&sd->input_pkt_queue)) {
2883 enqueue:
2884 __skb_queue_tail(&sd->input_pkt_queue, skb);
2885 input_queue_tail_incr_save(sd, qtail);
2886 rps_unlock(sd);
2887 local_irq_restore(flags);
2888 return NET_RX_SUCCESS;
2889 }
2890
2891 /* Schedule NAPI for backlog device
2892 * We can use non atomic operation since we own the queue lock
2893 */
2894 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2895 if (!rps_ipi_queued(sd))
2896 ____napi_schedule(sd, &sd->backlog);
2897 }
2898 goto enqueue;
2899 }
2900
2901 sd->dropped++;
2902 rps_unlock(sd);
2903
2904 local_irq_restore(flags);
2905
2906 atomic_long_inc(&skb->dev->rx_dropped);
2907 kfree_skb(skb);
2908 return NET_RX_DROP;
2909 }
2910
2911 /**
2912 * netif_rx - post buffer to the network code
2913 * @skb: buffer to post
2914 *
2915 * This function receives a packet from a device driver and queues it for
2916 * the upper (protocol) levels to process. It always succeeds. The buffer
2917 * may be dropped during processing for congestion control or by the
2918 * protocol layers.
2919 *
2920 * return values:
2921 * NET_RX_SUCCESS (no congestion)
2922 * NET_RX_DROP (packet was dropped)
2923 *
2924 */
2925
netif_rx(struct sk_buff * skb)2926 int netif_rx(struct sk_buff *skb)
2927 {
2928 int ret;
2929
2930 /* if netpoll wants it, pretend we never saw it */
2931 if (netpoll_rx(skb))
2932 return NET_RX_DROP;
2933
2934 net_timestamp_check(netdev_tstamp_prequeue, skb);
2935
2936 trace_netif_rx(skb);
2937 #ifdef CONFIG_RPS
2938 if (static_key_false(&rps_needed)) {
2939 struct rps_dev_flow voidflow, *rflow = &voidflow;
2940 int cpu;
2941
2942 preempt_disable();
2943 rcu_read_lock();
2944
2945 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2946 if (cpu < 0)
2947 cpu = smp_processor_id();
2948
2949 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2950
2951 rcu_read_unlock();
2952 preempt_enable();
2953 } else
2954 #endif
2955 {
2956 unsigned int qtail;
2957 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2958 put_cpu();
2959 }
2960 return ret;
2961 }
2962 EXPORT_SYMBOL(netif_rx);
2963
netif_rx_ni(struct sk_buff * skb)2964 int netif_rx_ni(struct sk_buff *skb)
2965 {
2966 int err;
2967
2968 preempt_disable();
2969 err = netif_rx(skb);
2970 if (local_softirq_pending())
2971 do_softirq();
2972 preempt_enable();
2973
2974 return err;
2975 }
2976 EXPORT_SYMBOL(netif_rx_ni);
2977
net_tx_action(struct softirq_action * h)2978 static void net_tx_action(struct softirq_action *h)
2979 {
2980 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2981
2982 if (sd->completion_queue) {
2983 struct sk_buff *clist;
2984
2985 local_irq_disable();
2986 clist = sd->completion_queue;
2987 sd->completion_queue = NULL;
2988 local_irq_enable();
2989
2990 while (clist) {
2991 struct sk_buff *skb = clist;
2992 clist = clist->next;
2993
2994 WARN_ON(atomic_read(&skb->users));
2995 trace_kfree_skb(skb, net_tx_action);
2996 __kfree_skb(skb);
2997 }
2998 }
2999
3000 if (sd->output_queue) {
3001 struct Qdisc *head;
3002
3003 local_irq_disable();
3004 head = sd->output_queue;
3005 sd->output_queue = NULL;
3006 sd->output_queue_tailp = &sd->output_queue;
3007 local_irq_enable();
3008
3009 while (head) {
3010 struct Qdisc *q = head;
3011 spinlock_t *root_lock;
3012
3013 head = head->next_sched;
3014
3015 root_lock = qdisc_lock(q);
3016 if (spin_trylock(root_lock)) {
3017 smp_mb__before_clear_bit();
3018 clear_bit(__QDISC_STATE_SCHED,
3019 &q->state);
3020 qdisc_run(q);
3021 spin_unlock(root_lock);
3022 } else {
3023 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3024 &q->state)) {
3025 __netif_reschedule(q);
3026 } else {
3027 smp_mb__before_clear_bit();
3028 clear_bit(__QDISC_STATE_SCHED,
3029 &q->state);
3030 }
3031 }
3032 }
3033 }
3034 }
3035
3036 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3037 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3038 /* This hook is defined here for ATM LANE */
3039 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3040 unsigned char *addr) __read_mostly;
3041 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3042 #endif
3043
3044 #ifdef CONFIG_NET_CLS_ACT
3045 /* TODO: Maybe we should just force sch_ingress to be compiled in
3046 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3047 * a compare and 2 stores extra right now if we dont have it on
3048 * but have CONFIG_NET_CLS_ACT
3049 * NOTE: This doesn't stop any functionality; if you dont have
3050 * the ingress scheduler, you just can't add policies on ingress.
3051 *
3052 */
ing_filter(struct sk_buff * skb,struct netdev_queue * rxq)3053 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3054 {
3055 struct net_device *dev = skb->dev;
3056 u32 ttl = G_TC_RTTL(skb->tc_verd);
3057 int result = TC_ACT_OK;
3058 struct Qdisc *q;
3059
3060 if (unlikely(MAX_RED_LOOP < ttl++)) {
3061 if (net_ratelimit())
3062 pr_warn("Redir loop detected Dropping packet (%d->%d)\n",
3063 skb->skb_iif, dev->ifindex);
3064 return TC_ACT_SHOT;
3065 }
3066
3067 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3068 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3069
3070 q = rxq->qdisc;
3071 if (q != &noop_qdisc) {
3072 spin_lock(qdisc_lock(q));
3073 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3074 result = qdisc_enqueue_root(skb, q);
3075 spin_unlock(qdisc_lock(q));
3076 }
3077
3078 return result;
3079 }
3080
handle_ing(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)3081 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3082 struct packet_type **pt_prev,
3083 int *ret, struct net_device *orig_dev)
3084 {
3085 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3086
3087 if (!rxq || rxq->qdisc == &noop_qdisc)
3088 goto out;
3089
3090 if (*pt_prev) {
3091 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3092 *pt_prev = NULL;
3093 }
3094
3095 switch (ing_filter(skb, rxq)) {
3096 case TC_ACT_SHOT:
3097 case TC_ACT_STOLEN:
3098 kfree_skb(skb);
3099 return NULL;
3100 }
3101
3102 out:
3103 skb->tc_verd = 0;
3104 return skb;
3105 }
3106 #endif
3107
3108 /**
3109 * netdev_rx_handler_register - register receive handler
3110 * @dev: device to register a handler for
3111 * @rx_handler: receive handler to register
3112 * @rx_handler_data: data pointer that is used by rx handler
3113 *
3114 * Register a receive hander for a device. This handler will then be
3115 * called from __netif_receive_skb. A negative errno code is returned
3116 * on a failure.
3117 *
3118 * The caller must hold the rtnl_mutex.
3119 *
3120 * For a general description of rx_handler, see enum rx_handler_result.
3121 */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)3122 int netdev_rx_handler_register(struct net_device *dev,
3123 rx_handler_func_t *rx_handler,
3124 void *rx_handler_data)
3125 {
3126 ASSERT_RTNL();
3127
3128 if (dev->rx_handler)
3129 return -EBUSY;
3130
3131 /* Note: rx_handler_data must be set before rx_handler */
3132 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3133 rcu_assign_pointer(dev->rx_handler, rx_handler);
3134
3135 return 0;
3136 }
3137 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3138
3139 /**
3140 * netdev_rx_handler_unregister - unregister receive handler
3141 * @dev: device to unregister a handler from
3142 *
3143 * Unregister a receive hander from a device.
3144 *
3145 * The caller must hold the rtnl_mutex.
3146 */
netdev_rx_handler_unregister(struct net_device * dev)3147 void netdev_rx_handler_unregister(struct net_device *dev)
3148 {
3149
3150 ASSERT_RTNL();
3151 RCU_INIT_POINTER(dev->rx_handler, NULL);
3152 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3153 * section has a guarantee to see a non NULL rx_handler_data
3154 * as well.
3155 */
3156 synchronize_net();
3157 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3158 }
3159 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3160
__netif_receive_skb(struct sk_buff * skb)3161 static int __netif_receive_skb(struct sk_buff *skb)
3162 {
3163 struct packet_type *ptype, *pt_prev;
3164 rx_handler_func_t *rx_handler;
3165 struct net_device *orig_dev;
3166 struct net_device *null_or_dev;
3167 bool deliver_exact = false;
3168 int ret = NET_RX_DROP;
3169 __be16 type;
3170
3171 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3172
3173 trace_netif_receive_skb(skb);
3174
3175 /* if we've gotten here through NAPI, check netpoll */
3176 if (netpoll_receive_skb(skb))
3177 return NET_RX_DROP;
3178
3179 if (!skb->skb_iif)
3180 skb->skb_iif = skb->dev->ifindex;
3181 orig_dev = skb->dev;
3182
3183 skb_reset_network_header(skb);
3184 skb_reset_transport_header(skb);
3185 skb_reset_mac_len(skb);
3186
3187 pt_prev = NULL;
3188
3189 rcu_read_lock();
3190
3191 another_round:
3192
3193 __this_cpu_inc(softnet_data.processed);
3194
3195 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3196 skb = vlan_untag(skb);
3197 if (unlikely(!skb))
3198 goto out;
3199 }
3200
3201 #ifdef CONFIG_NET_CLS_ACT
3202 if (skb->tc_verd & TC_NCLS) {
3203 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3204 goto ncls;
3205 }
3206 #endif
3207
3208 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3209 if (!ptype->dev || ptype->dev == skb->dev) {
3210 if (pt_prev)
3211 ret = deliver_skb(skb, pt_prev, orig_dev);
3212 pt_prev = ptype;
3213 }
3214 }
3215
3216 #ifdef CONFIG_NET_CLS_ACT
3217 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3218 if (!skb)
3219 goto out;
3220 ncls:
3221 #endif
3222
3223 if (vlan_tx_tag_present(skb)) {
3224 if (pt_prev) {
3225 ret = deliver_skb(skb, pt_prev, orig_dev);
3226 pt_prev = NULL;
3227 }
3228 if (vlan_do_receive(&skb))
3229 goto another_round;
3230 else if (unlikely(!skb))
3231 goto out;
3232 }
3233
3234 rx_handler = rcu_dereference(skb->dev->rx_handler);
3235 if (rx_handler) {
3236 if (pt_prev) {
3237 ret = deliver_skb(skb, pt_prev, orig_dev);
3238 pt_prev = NULL;
3239 }
3240 switch (rx_handler(&skb)) {
3241 case RX_HANDLER_CONSUMED:
3242 ret = NET_RX_SUCCESS;
3243 goto out;
3244 case RX_HANDLER_ANOTHER:
3245 goto another_round;
3246 case RX_HANDLER_EXACT:
3247 deliver_exact = true;
3248 case RX_HANDLER_PASS:
3249 break;
3250 default:
3251 BUG();
3252 }
3253 }
3254
3255 if (vlan_tx_nonzero_tag_present(skb))
3256 skb->pkt_type = PACKET_OTHERHOST;
3257
3258 /* deliver only exact match when indicated */
3259 null_or_dev = deliver_exact ? skb->dev : NULL;
3260
3261 type = skb->protocol;
3262 list_for_each_entry_rcu(ptype,
3263 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3264 if (ptype->type == type &&
3265 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3266 ptype->dev == orig_dev)) {
3267 if (pt_prev)
3268 ret = deliver_skb(skb, pt_prev, orig_dev);
3269 pt_prev = ptype;
3270 }
3271 }
3272
3273 if (pt_prev) {
3274 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3275 } else {
3276 atomic_long_inc(&skb->dev->rx_dropped);
3277 kfree_skb(skb);
3278 /* Jamal, now you will not able to escape explaining
3279 * me how you were going to use this. :-)
3280 */
3281 ret = NET_RX_DROP;
3282 }
3283
3284 out:
3285 rcu_read_unlock();
3286 return ret;
3287 }
3288
3289 /**
3290 * netif_receive_skb - process receive buffer from network
3291 * @skb: buffer to process
3292 *
3293 * netif_receive_skb() is the main receive data processing function.
3294 * It always succeeds. The buffer may be dropped during processing
3295 * for congestion control or by the protocol layers.
3296 *
3297 * This function may only be called from softirq context and interrupts
3298 * should be enabled.
3299 *
3300 * Return values (usually ignored):
3301 * NET_RX_SUCCESS: no congestion
3302 * NET_RX_DROP: packet was dropped
3303 */
netif_receive_skb(struct sk_buff * skb)3304 int netif_receive_skb(struct sk_buff *skb)
3305 {
3306 net_timestamp_check(netdev_tstamp_prequeue, skb);
3307
3308 if (skb_defer_rx_timestamp(skb))
3309 return NET_RX_SUCCESS;
3310
3311 #ifdef CONFIG_RPS
3312 if (static_key_false(&rps_needed)) {
3313 struct rps_dev_flow voidflow, *rflow = &voidflow;
3314 int cpu, ret;
3315
3316 rcu_read_lock();
3317
3318 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3319
3320 if (cpu >= 0) {
3321 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3322 rcu_read_unlock();
3323 return ret;
3324 }
3325 rcu_read_unlock();
3326 }
3327 #endif
3328 return __netif_receive_skb(skb);
3329 }
3330 EXPORT_SYMBOL(netif_receive_skb);
3331
3332 /* Network device is going away, flush any packets still pending
3333 * Called with irqs disabled.
3334 */
flush_backlog(void * arg)3335 static void flush_backlog(void *arg)
3336 {
3337 struct net_device *dev = arg;
3338 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3339 struct sk_buff *skb, *tmp;
3340
3341 rps_lock(sd);
3342 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3343 if (skb->dev == dev) {
3344 __skb_unlink(skb, &sd->input_pkt_queue);
3345 kfree_skb(skb);
3346 input_queue_head_incr(sd);
3347 }
3348 }
3349 rps_unlock(sd);
3350
3351 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3352 if (skb->dev == dev) {
3353 __skb_unlink(skb, &sd->process_queue);
3354 kfree_skb(skb);
3355 input_queue_head_incr(sd);
3356 }
3357 }
3358 }
3359
napi_gro_complete(struct sk_buff * skb)3360 static int napi_gro_complete(struct sk_buff *skb)
3361 {
3362 struct packet_type *ptype;
3363 __be16 type = skb->protocol;
3364 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3365 int err = -ENOENT;
3366
3367 if (NAPI_GRO_CB(skb)->count == 1) {
3368 skb_shinfo(skb)->gso_size = 0;
3369 goto out;
3370 }
3371
3372 rcu_read_lock();
3373 list_for_each_entry_rcu(ptype, head, list) {
3374 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3375 continue;
3376
3377 err = ptype->gro_complete(skb);
3378 break;
3379 }
3380 rcu_read_unlock();
3381
3382 if (err) {
3383 WARN_ON(&ptype->list == head);
3384 kfree_skb(skb);
3385 return NET_RX_SUCCESS;
3386 }
3387
3388 out:
3389 return netif_receive_skb(skb);
3390 }
3391
napi_gro_flush(struct napi_struct * napi)3392 inline void napi_gro_flush(struct napi_struct *napi)
3393 {
3394 struct sk_buff *skb, *next;
3395
3396 for (skb = napi->gro_list; skb; skb = next) {
3397 next = skb->next;
3398 skb->next = NULL;
3399 napi_gro_complete(skb);
3400 }
3401
3402 napi->gro_count = 0;
3403 napi->gro_list = NULL;
3404 }
3405 EXPORT_SYMBOL(napi_gro_flush);
3406
dev_gro_receive(struct napi_struct * napi,struct sk_buff * skb)3407 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3408 {
3409 struct sk_buff **pp = NULL;
3410 struct packet_type *ptype;
3411 __be16 type = skb->protocol;
3412 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3413 int same_flow;
3414 int mac_len;
3415 enum gro_result ret;
3416
3417 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3418 goto normal;
3419
3420 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3421 goto normal;
3422
3423 rcu_read_lock();
3424 list_for_each_entry_rcu(ptype, head, list) {
3425 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3426 continue;
3427
3428 skb_set_network_header(skb, skb_gro_offset(skb));
3429 mac_len = skb->network_header - skb->mac_header;
3430 skb->mac_len = mac_len;
3431 NAPI_GRO_CB(skb)->same_flow = 0;
3432 NAPI_GRO_CB(skb)->flush = 0;
3433 NAPI_GRO_CB(skb)->free = 0;
3434
3435 pp = ptype->gro_receive(&napi->gro_list, skb);
3436 break;
3437 }
3438 rcu_read_unlock();
3439
3440 if (&ptype->list == head)
3441 goto normal;
3442
3443 same_flow = NAPI_GRO_CB(skb)->same_flow;
3444 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3445
3446 if (pp) {
3447 struct sk_buff *nskb = *pp;
3448
3449 *pp = nskb->next;
3450 nskb->next = NULL;
3451 napi_gro_complete(nskb);
3452 napi->gro_count--;
3453 }
3454
3455 if (same_flow)
3456 goto ok;
3457
3458 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3459 goto normal;
3460
3461 napi->gro_count++;
3462 NAPI_GRO_CB(skb)->count = 1;
3463 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3464 skb->next = napi->gro_list;
3465 napi->gro_list = skb;
3466 ret = GRO_HELD;
3467
3468 pull:
3469 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3470 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3471
3472 BUG_ON(skb->end - skb->tail < grow);
3473
3474 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3475
3476 skb->tail += grow;
3477 skb->data_len -= grow;
3478
3479 skb_shinfo(skb)->frags[0].page_offset += grow;
3480 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3481
3482 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3483 skb_frag_unref(skb, 0);
3484 memmove(skb_shinfo(skb)->frags,
3485 skb_shinfo(skb)->frags + 1,
3486 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3487 }
3488 }
3489
3490 ok:
3491 return ret;
3492
3493 normal:
3494 ret = GRO_NORMAL;
3495 goto pull;
3496 }
3497 EXPORT_SYMBOL(dev_gro_receive);
3498
3499 static inline gro_result_t
__napi_gro_receive(struct napi_struct * napi,struct sk_buff * skb)3500 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3501 {
3502 struct sk_buff *p;
3503 unsigned int maclen = skb->dev->hard_header_len;
3504
3505 for (p = napi->gro_list; p; p = p->next) {
3506 unsigned long diffs;
3507
3508 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3509 diffs |= p->vlan_tci ^ skb->vlan_tci;
3510 if (maclen == ETH_HLEN)
3511 diffs |= compare_ether_header(skb_mac_header(p),
3512 skb_gro_mac_header(skb));
3513 else if (!diffs)
3514 diffs = memcmp(skb_mac_header(p),
3515 skb_gro_mac_header(skb),
3516 maclen);
3517 NAPI_GRO_CB(p)->same_flow = !diffs;
3518 NAPI_GRO_CB(p)->flush = 0;
3519 }
3520
3521 return dev_gro_receive(napi, skb);
3522 }
3523
napi_skb_finish(gro_result_t ret,struct sk_buff * skb)3524 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3525 {
3526 switch (ret) {
3527 case GRO_NORMAL:
3528 if (netif_receive_skb(skb))
3529 ret = GRO_DROP;
3530 break;
3531
3532 case GRO_DROP:
3533 case GRO_MERGED_FREE:
3534 kfree_skb(skb);
3535 break;
3536
3537 case GRO_HELD:
3538 case GRO_MERGED:
3539 break;
3540 }
3541
3542 return ret;
3543 }
3544 EXPORT_SYMBOL(napi_skb_finish);
3545
skb_gro_reset_offset(struct sk_buff * skb)3546 void skb_gro_reset_offset(struct sk_buff *skb)
3547 {
3548 NAPI_GRO_CB(skb)->data_offset = 0;
3549 NAPI_GRO_CB(skb)->frag0 = NULL;
3550 NAPI_GRO_CB(skb)->frag0_len = 0;
3551
3552 if (skb->mac_header == skb->tail &&
3553 !PageHighMem(skb_frag_page(&skb_shinfo(skb)->frags[0]))) {
3554 NAPI_GRO_CB(skb)->frag0 =
3555 skb_frag_address(&skb_shinfo(skb)->frags[0]);
3556 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(&skb_shinfo(skb)->frags[0]);
3557 }
3558 }
3559 EXPORT_SYMBOL(skb_gro_reset_offset);
3560
napi_gro_receive(struct napi_struct * napi,struct sk_buff * skb)3561 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3562 {
3563 skb_gro_reset_offset(skb);
3564
3565 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3566 }
3567 EXPORT_SYMBOL(napi_gro_receive);
3568
napi_reuse_skb(struct napi_struct * napi,struct sk_buff * skb)3569 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3570 {
3571 __skb_pull(skb, skb_headlen(skb));
3572 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
3573 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3574 skb->vlan_tci = 0;
3575 skb->dev = napi->dev;
3576 skb->skb_iif = 0;
3577 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
3578
3579 napi->skb = skb;
3580 }
3581
napi_get_frags(struct napi_struct * napi)3582 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3583 {
3584 struct sk_buff *skb = napi->skb;
3585
3586 if (!skb) {
3587 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3588 if (skb)
3589 napi->skb = skb;
3590 }
3591 return skb;
3592 }
3593 EXPORT_SYMBOL(napi_get_frags);
3594
napi_frags_finish(struct napi_struct * napi,struct sk_buff * skb,gro_result_t ret)3595 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3596 gro_result_t ret)
3597 {
3598 switch (ret) {
3599 case GRO_NORMAL:
3600 case GRO_HELD:
3601 skb->protocol = eth_type_trans(skb, skb->dev);
3602
3603 if (ret == GRO_HELD)
3604 skb_gro_pull(skb, -ETH_HLEN);
3605 else if (netif_receive_skb(skb))
3606 ret = GRO_DROP;
3607 break;
3608
3609 case GRO_DROP:
3610 case GRO_MERGED_FREE:
3611 napi_reuse_skb(napi, skb);
3612 break;
3613
3614 case GRO_MERGED:
3615 break;
3616 }
3617
3618 return ret;
3619 }
3620 EXPORT_SYMBOL(napi_frags_finish);
3621
napi_frags_skb(struct napi_struct * napi)3622 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3623 {
3624 struct sk_buff *skb = napi->skb;
3625 struct ethhdr *eth;
3626 unsigned int hlen;
3627 unsigned int off;
3628
3629 napi->skb = NULL;
3630
3631 skb_reset_mac_header(skb);
3632 skb_gro_reset_offset(skb);
3633
3634 off = skb_gro_offset(skb);
3635 hlen = off + sizeof(*eth);
3636 eth = skb_gro_header_fast(skb, off);
3637 if (skb_gro_header_hard(skb, hlen)) {
3638 eth = skb_gro_header_slow(skb, hlen, off);
3639 if (unlikely(!eth)) {
3640 napi_reuse_skb(napi, skb);
3641 skb = NULL;
3642 goto out;
3643 }
3644 }
3645
3646 skb_gro_pull(skb, sizeof(*eth));
3647
3648 /*
3649 * This works because the only protocols we care about don't require
3650 * special handling. We'll fix it up properly at the end.
3651 */
3652 skb->protocol = eth->h_proto;
3653
3654 out:
3655 return skb;
3656 }
3657 EXPORT_SYMBOL(napi_frags_skb);
3658
napi_gro_frags(struct napi_struct * napi)3659 gro_result_t napi_gro_frags(struct napi_struct *napi)
3660 {
3661 struct sk_buff *skb = napi_frags_skb(napi);
3662
3663 if (!skb)
3664 return GRO_DROP;
3665
3666 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3667 }
3668 EXPORT_SYMBOL(napi_gro_frags);
3669
3670 /*
3671 * net_rps_action sends any pending IPI's for rps.
3672 * Note: called with local irq disabled, but exits with local irq enabled.
3673 */
net_rps_action_and_irq_enable(struct softnet_data * sd)3674 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3675 {
3676 #ifdef CONFIG_RPS
3677 struct softnet_data *remsd = sd->rps_ipi_list;
3678
3679 if (remsd) {
3680 sd->rps_ipi_list = NULL;
3681
3682 local_irq_enable();
3683
3684 /* Send pending IPI's to kick RPS processing on remote cpus. */
3685 while (remsd) {
3686 struct softnet_data *next = remsd->rps_ipi_next;
3687
3688 if (cpu_online(remsd->cpu))
3689 __smp_call_function_single(remsd->cpu,
3690 &remsd->csd, 0);
3691 remsd = next;
3692 }
3693 } else
3694 #endif
3695 local_irq_enable();
3696 }
3697
process_backlog(struct napi_struct * napi,int quota)3698 static int process_backlog(struct napi_struct *napi, int quota)
3699 {
3700 int work = 0;
3701 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3702
3703 #ifdef CONFIG_RPS
3704 /* Check if we have pending ipi, its better to send them now,
3705 * not waiting net_rx_action() end.
3706 */
3707 if (sd->rps_ipi_list) {
3708 local_irq_disable();
3709 net_rps_action_and_irq_enable(sd);
3710 }
3711 #endif
3712 napi->weight = weight_p;
3713 local_irq_disable();
3714 while (work < quota) {
3715 struct sk_buff *skb;
3716 unsigned int qlen;
3717
3718 while ((skb = __skb_dequeue(&sd->process_queue))) {
3719 local_irq_enable();
3720 __netif_receive_skb(skb);
3721 local_irq_disable();
3722 input_queue_head_incr(sd);
3723 if (++work >= quota) {
3724 local_irq_enable();
3725 return work;
3726 }
3727 }
3728
3729 rps_lock(sd);
3730 qlen = skb_queue_len(&sd->input_pkt_queue);
3731 if (qlen)
3732 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3733 &sd->process_queue);
3734
3735 if (qlen < quota - work) {
3736 /*
3737 * Inline a custom version of __napi_complete().
3738 * only current cpu owns and manipulates this napi,
3739 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3740 * we can use a plain write instead of clear_bit(),
3741 * and we dont need an smp_mb() memory barrier.
3742 */
3743 list_del(&napi->poll_list);
3744 napi->state = 0;
3745
3746 quota = work + qlen;
3747 }
3748 rps_unlock(sd);
3749 }
3750 local_irq_enable();
3751
3752 return work;
3753 }
3754
3755 /**
3756 * __napi_schedule - schedule for receive
3757 * @n: entry to schedule
3758 *
3759 * The entry's receive function will be scheduled to run
3760 */
__napi_schedule(struct napi_struct * n)3761 void __napi_schedule(struct napi_struct *n)
3762 {
3763 unsigned long flags;
3764
3765 local_irq_save(flags);
3766 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3767 local_irq_restore(flags);
3768 }
3769 EXPORT_SYMBOL(__napi_schedule);
3770
__napi_complete(struct napi_struct * n)3771 void __napi_complete(struct napi_struct *n)
3772 {
3773 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3774 BUG_ON(n->gro_list);
3775
3776 list_del(&n->poll_list);
3777 smp_mb__before_clear_bit();
3778 clear_bit(NAPI_STATE_SCHED, &n->state);
3779 }
3780 EXPORT_SYMBOL(__napi_complete);
3781
napi_complete(struct napi_struct * n)3782 void napi_complete(struct napi_struct *n)
3783 {
3784 unsigned long flags;
3785
3786 /*
3787 * don't let napi dequeue from the cpu poll list
3788 * just in case its running on a different cpu
3789 */
3790 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3791 return;
3792
3793 napi_gro_flush(n);
3794 local_irq_save(flags);
3795 __napi_complete(n);
3796 local_irq_restore(flags);
3797 }
3798 EXPORT_SYMBOL(napi_complete);
3799
netif_napi_add(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)3800 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3801 int (*poll)(struct napi_struct *, int), int weight)
3802 {
3803 INIT_LIST_HEAD(&napi->poll_list);
3804 napi->gro_count = 0;
3805 napi->gro_list = NULL;
3806 napi->skb = NULL;
3807 napi->poll = poll;
3808 napi->weight = weight;
3809 list_add(&napi->dev_list, &dev->napi_list);
3810 napi->dev = dev;
3811 #ifdef CONFIG_NETPOLL
3812 spin_lock_init(&napi->poll_lock);
3813 napi->poll_owner = -1;
3814 #endif
3815 set_bit(NAPI_STATE_SCHED, &napi->state);
3816 }
3817 EXPORT_SYMBOL(netif_napi_add);
3818
netif_napi_del(struct napi_struct * napi)3819 void netif_napi_del(struct napi_struct *napi)
3820 {
3821 struct sk_buff *skb, *next;
3822
3823 list_del_init(&napi->dev_list);
3824 napi_free_frags(napi);
3825
3826 for (skb = napi->gro_list; skb; skb = next) {
3827 next = skb->next;
3828 skb->next = NULL;
3829 kfree_skb(skb);
3830 }
3831
3832 napi->gro_list = NULL;
3833 napi->gro_count = 0;
3834 }
3835 EXPORT_SYMBOL(netif_napi_del);
3836
net_rx_action(struct softirq_action * h)3837 static void net_rx_action(struct softirq_action *h)
3838 {
3839 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3840 unsigned long time_limit = jiffies + 2;
3841 int budget = netdev_budget;
3842 void *have;
3843
3844 local_irq_disable();
3845
3846 while (!list_empty(&sd->poll_list)) {
3847 struct napi_struct *n;
3848 int work, weight;
3849
3850 /* If softirq window is exhuasted then punt.
3851 * Allow this to run for 2 jiffies since which will allow
3852 * an average latency of 1.5/HZ.
3853 */
3854 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3855 goto softnet_break;
3856
3857 local_irq_enable();
3858
3859 /* Even though interrupts have been re-enabled, this
3860 * access is safe because interrupts can only add new
3861 * entries to the tail of this list, and only ->poll()
3862 * calls can remove this head entry from the list.
3863 */
3864 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3865
3866 have = netpoll_poll_lock(n);
3867
3868 weight = n->weight;
3869
3870 /* This NAPI_STATE_SCHED test is for avoiding a race
3871 * with netpoll's poll_napi(). Only the entity which
3872 * obtains the lock and sees NAPI_STATE_SCHED set will
3873 * actually make the ->poll() call. Therefore we avoid
3874 * accidentally calling ->poll() when NAPI is not scheduled.
3875 */
3876 work = 0;
3877 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3878 work = n->poll(n, weight);
3879 trace_napi_poll(n);
3880 }
3881
3882 WARN_ON_ONCE(work > weight);
3883
3884 budget -= work;
3885
3886 local_irq_disable();
3887
3888 /* Drivers must not modify the NAPI state if they
3889 * consume the entire weight. In such cases this code
3890 * still "owns" the NAPI instance and therefore can
3891 * move the instance around on the list at-will.
3892 */
3893 if (unlikely(work == weight)) {
3894 if (unlikely(napi_disable_pending(n))) {
3895 local_irq_enable();
3896 napi_complete(n);
3897 local_irq_disable();
3898 } else
3899 list_move_tail(&n->poll_list, &sd->poll_list);
3900 }
3901
3902 netpoll_poll_unlock(have);
3903 }
3904 out:
3905 net_rps_action_and_irq_enable(sd);
3906
3907 #ifdef CONFIG_NET_DMA
3908 /*
3909 * There may not be any more sk_buffs coming right now, so push
3910 * any pending DMA copies to hardware
3911 */
3912 dma_issue_pending_all();
3913 #endif
3914
3915 return;
3916
3917 softnet_break:
3918 sd->time_squeeze++;
3919 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3920 goto out;
3921 }
3922
3923 static gifconf_func_t *gifconf_list[NPROTO];
3924
3925 /**
3926 * register_gifconf - register a SIOCGIF handler
3927 * @family: Address family
3928 * @gifconf: Function handler
3929 *
3930 * Register protocol dependent address dumping routines. The handler
3931 * that is passed must not be freed or reused until it has been replaced
3932 * by another handler.
3933 */
register_gifconf(unsigned int family,gifconf_func_t * gifconf)3934 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3935 {
3936 if (family >= NPROTO)
3937 return -EINVAL;
3938 gifconf_list[family] = gifconf;
3939 return 0;
3940 }
3941 EXPORT_SYMBOL(register_gifconf);
3942
3943
3944 /*
3945 * Map an interface index to its name (SIOCGIFNAME)
3946 */
3947
3948 /*
3949 * We need this ioctl for efficient implementation of the
3950 * if_indextoname() function required by the IPv6 API. Without
3951 * it, we would have to search all the interfaces to find a
3952 * match. --pb
3953 */
3954
dev_ifname(struct net * net,struct ifreq __user * arg)3955 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3956 {
3957 struct net_device *dev;
3958 struct ifreq ifr;
3959
3960 /*
3961 * Fetch the caller's info block.
3962 */
3963
3964 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3965 return -EFAULT;
3966
3967 rcu_read_lock();
3968 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3969 if (!dev) {
3970 rcu_read_unlock();
3971 return -ENODEV;
3972 }
3973
3974 strcpy(ifr.ifr_name, dev->name);
3975 rcu_read_unlock();
3976
3977 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3978 return -EFAULT;
3979 return 0;
3980 }
3981
3982 /*
3983 * Perform a SIOCGIFCONF call. This structure will change
3984 * size eventually, and there is nothing I can do about it.
3985 * Thus we will need a 'compatibility mode'.
3986 */
3987
dev_ifconf(struct net * net,char __user * arg)3988 static int dev_ifconf(struct net *net, char __user *arg)
3989 {
3990 struct ifconf ifc;
3991 struct net_device *dev;
3992 char __user *pos;
3993 int len;
3994 int total;
3995 int i;
3996
3997 /*
3998 * Fetch the caller's info block.
3999 */
4000
4001 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
4002 return -EFAULT;
4003
4004 pos = ifc.ifc_buf;
4005 len = ifc.ifc_len;
4006
4007 /*
4008 * Loop over the interfaces, and write an info block for each.
4009 */
4010
4011 total = 0;
4012 for_each_netdev(net, dev) {
4013 for (i = 0; i < NPROTO; i++) {
4014 if (gifconf_list[i]) {
4015 int done;
4016 if (!pos)
4017 done = gifconf_list[i](dev, NULL, 0);
4018 else
4019 done = gifconf_list[i](dev, pos + total,
4020 len - total);
4021 if (done < 0)
4022 return -EFAULT;
4023 total += done;
4024 }
4025 }
4026 }
4027
4028 /*
4029 * All done. Write the updated control block back to the caller.
4030 */
4031 ifc.ifc_len = total;
4032
4033 /*
4034 * Both BSD and Solaris return 0 here, so we do too.
4035 */
4036 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
4037 }
4038
4039 #ifdef CONFIG_PROC_FS
4040
4041 #define BUCKET_SPACE (32 - NETDEV_HASHBITS - 1)
4042
4043 #define get_bucket(x) ((x) >> BUCKET_SPACE)
4044 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1))
4045 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
4046
dev_from_same_bucket(struct seq_file * seq,loff_t * pos)4047 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq, loff_t *pos)
4048 {
4049 struct net *net = seq_file_net(seq);
4050 struct net_device *dev;
4051 struct hlist_node *p;
4052 struct hlist_head *h;
4053 unsigned int count = 0, offset = get_offset(*pos);
4054
4055 h = &net->dev_name_head[get_bucket(*pos)];
4056 hlist_for_each_entry_rcu(dev, p, h, name_hlist) {
4057 if (++count == offset)
4058 return dev;
4059 }
4060
4061 return NULL;
4062 }
4063
dev_from_bucket(struct seq_file * seq,loff_t * pos)4064 static inline struct net_device *dev_from_bucket(struct seq_file *seq, loff_t *pos)
4065 {
4066 struct net_device *dev;
4067 unsigned int bucket;
4068
4069 do {
4070 dev = dev_from_same_bucket(seq, pos);
4071 if (dev)
4072 return dev;
4073
4074 bucket = get_bucket(*pos) + 1;
4075 *pos = set_bucket_offset(bucket, 1);
4076 } while (bucket < NETDEV_HASHENTRIES);
4077
4078 return NULL;
4079 }
4080
4081 /*
4082 * This is invoked by the /proc filesystem handler to display a device
4083 * in detail.
4084 */
dev_seq_start(struct seq_file * seq,loff_t * pos)4085 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4086 __acquires(RCU)
4087 {
4088 rcu_read_lock();
4089 if (!*pos)
4090 return SEQ_START_TOKEN;
4091
4092 if (get_bucket(*pos) >= NETDEV_HASHENTRIES)
4093 return NULL;
4094
4095 return dev_from_bucket(seq, pos);
4096 }
4097
dev_seq_next(struct seq_file * seq,void * v,loff_t * pos)4098 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4099 {
4100 ++*pos;
4101 return dev_from_bucket(seq, pos);
4102 }
4103
dev_seq_stop(struct seq_file * seq,void * v)4104 void dev_seq_stop(struct seq_file *seq, void *v)
4105 __releases(RCU)
4106 {
4107 rcu_read_unlock();
4108 }
4109
dev_seq_printf_stats(struct seq_file * seq,struct net_device * dev)4110 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4111 {
4112 struct rtnl_link_stats64 temp;
4113 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4114
4115 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4116 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4117 dev->name, stats->rx_bytes, stats->rx_packets,
4118 stats->rx_errors,
4119 stats->rx_dropped + stats->rx_missed_errors,
4120 stats->rx_fifo_errors,
4121 stats->rx_length_errors + stats->rx_over_errors +
4122 stats->rx_crc_errors + stats->rx_frame_errors,
4123 stats->rx_compressed, stats->multicast,
4124 stats->tx_bytes, stats->tx_packets,
4125 stats->tx_errors, stats->tx_dropped,
4126 stats->tx_fifo_errors, stats->collisions,
4127 stats->tx_carrier_errors +
4128 stats->tx_aborted_errors +
4129 stats->tx_window_errors +
4130 stats->tx_heartbeat_errors,
4131 stats->tx_compressed);
4132 }
4133
4134 /*
4135 * Called from the PROCfs module. This now uses the new arbitrary sized
4136 * /proc/net interface to create /proc/net/dev
4137 */
dev_seq_show(struct seq_file * seq,void * v)4138 static int dev_seq_show(struct seq_file *seq, void *v)
4139 {
4140 if (v == SEQ_START_TOKEN)
4141 seq_puts(seq, "Inter-| Receive "
4142 " | Transmit\n"
4143 " face |bytes packets errs drop fifo frame "
4144 "compressed multicast|bytes packets errs "
4145 "drop fifo colls carrier compressed\n");
4146 else
4147 dev_seq_printf_stats(seq, v);
4148 return 0;
4149 }
4150
softnet_get_online(loff_t * pos)4151 static struct softnet_data *softnet_get_online(loff_t *pos)
4152 {
4153 struct softnet_data *sd = NULL;
4154
4155 while (*pos < nr_cpu_ids)
4156 if (cpu_online(*pos)) {
4157 sd = &per_cpu(softnet_data, *pos);
4158 break;
4159 } else
4160 ++*pos;
4161 return sd;
4162 }
4163
softnet_seq_start(struct seq_file * seq,loff_t * pos)4164 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4165 {
4166 return softnet_get_online(pos);
4167 }
4168
softnet_seq_next(struct seq_file * seq,void * v,loff_t * pos)4169 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4170 {
4171 ++*pos;
4172 return softnet_get_online(pos);
4173 }
4174
softnet_seq_stop(struct seq_file * seq,void * v)4175 static void softnet_seq_stop(struct seq_file *seq, void *v)
4176 {
4177 }
4178
softnet_seq_show(struct seq_file * seq,void * v)4179 static int softnet_seq_show(struct seq_file *seq, void *v)
4180 {
4181 struct softnet_data *sd = v;
4182
4183 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4184 sd->processed, sd->dropped, sd->time_squeeze, 0,
4185 0, 0, 0, 0, /* was fastroute */
4186 sd->cpu_collision, sd->received_rps);
4187 return 0;
4188 }
4189
4190 static const struct seq_operations dev_seq_ops = {
4191 .start = dev_seq_start,
4192 .next = dev_seq_next,
4193 .stop = dev_seq_stop,
4194 .show = dev_seq_show,
4195 };
4196
dev_seq_open(struct inode * inode,struct file * file)4197 static int dev_seq_open(struct inode *inode, struct file *file)
4198 {
4199 return seq_open_net(inode, file, &dev_seq_ops,
4200 sizeof(struct seq_net_private));
4201 }
4202
4203 static const struct file_operations dev_seq_fops = {
4204 .owner = THIS_MODULE,
4205 .open = dev_seq_open,
4206 .read = seq_read,
4207 .llseek = seq_lseek,
4208 .release = seq_release_net,
4209 };
4210
4211 static const struct seq_operations softnet_seq_ops = {
4212 .start = softnet_seq_start,
4213 .next = softnet_seq_next,
4214 .stop = softnet_seq_stop,
4215 .show = softnet_seq_show,
4216 };
4217
softnet_seq_open(struct inode * inode,struct file * file)4218 static int softnet_seq_open(struct inode *inode, struct file *file)
4219 {
4220 return seq_open(file, &softnet_seq_ops);
4221 }
4222
4223 static const struct file_operations softnet_seq_fops = {
4224 .owner = THIS_MODULE,
4225 .open = softnet_seq_open,
4226 .read = seq_read,
4227 .llseek = seq_lseek,
4228 .release = seq_release,
4229 };
4230
ptype_get_idx(loff_t pos)4231 static void *ptype_get_idx(loff_t pos)
4232 {
4233 struct packet_type *pt = NULL;
4234 loff_t i = 0;
4235 int t;
4236
4237 list_for_each_entry_rcu(pt, &ptype_all, list) {
4238 if (i == pos)
4239 return pt;
4240 ++i;
4241 }
4242
4243 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4244 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4245 if (i == pos)
4246 return pt;
4247 ++i;
4248 }
4249 }
4250 return NULL;
4251 }
4252
ptype_seq_start(struct seq_file * seq,loff_t * pos)4253 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4254 __acquires(RCU)
4255 {
4256 rcu_read_lock();
4257 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4258 }
4259
ptype_seq_next(struct seq_file * seq,void * v,loff_t * pos)4260 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4261 {
4262 struct packet_type *pt;
4263 struct list_head *nxt;
4264 int hash;
4265
4266 ++*pos;
4267 if (v == SEQ_START_TOKEN)
4268 return ptype_get_idx(0);
4269
4270 pt = v;
4271 nxt = pt->list.next;
4272 if (pt->type == htons(ETH_P_ALL)) {
4273 if (nxt != &ptype_all)
4274 goto found;
4275 hash = 0;
4276 nxt = ptype_base[0].next;
4277 } else
4278 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4279
4280 while (nxt == &ptype_base[hash]) {
4281 if (++hash >= PTYPE_HASH_SIZE)
4282 return NULL;
4283 nxt = ptype_base[hash].next;
4284 }
4285 found:
4286 return list_entry(nxt, struct packet_type, list);
4287 }
4288
ptype_seq_stop(struct seq_file * seq,void * v)4289 static void ptype_seq_stop(struct seq_file *seq, void *v)
4290 __releases(RCU)
4291 {
4292 rcu_read_unlock();
4293 }
4294
ptype_seq_show(struct seq_file * seq,void * v)4295 static int ptype_seq_show(struct seq_file *seq, void *v)
4296 {
4297 struct packet_type *pt = v;
4298
4299 if (v == SEQ_START_TOKEN)
4300 seq_puts(seq, "Type Device Function\n");
4301 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4302 if (pt->type == htons(ETH_P_ALL))
4303 seq_puts(seq, "ALL ");
4304 else
4305 seq_printf(seq, "%04x", ntohs(pt->type));
4306
4307 seq_printf(seq, " %-8s %pF\n",
4308 pt->dev ? pt->dev->name : "", pt->func);
4309 }
4310
4311 return 0;
4312 }
4313
4314 static const struct seq_operations ptype_seq_ops = {
4315 .start = ptype_seq_start,
4316 .next = ptype_seq_next,
4317 .stop = ptype_seq_stop,
4318 .show = ptype_seq_show,
4319 };
4320
ptype_seq_open(struct inode * inode,struct file * file)4321 static int ptype_seq_open(struct inode *inode, struct file *file)
4322 {
4323 return seq_open_net(inode, file, &ptype_seq_ops,
4324 sizeof(struct seq_net_private));
4325 }
4326
4327 static const struct file_operations ptype_seq_fops = {
4328 .owner = THIS_MODULE,
4329 .open = ptype_seq_open,
4330 .read = seq_read,
4331 .llseek = seq_lseek,
4332 .release = seq_release_net,
4333 };
4334
4335
dev_proc_net_init(struct net * net)4336 static int __net_init dev_proc_net_init(struct net *net)
4337 {
4338 int rc = -ENOMEM;
4339
4340 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4341 goto out;
4342 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4343 goto out_dev;
4344 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4345 goto out_softnet;
4346
4347 if (wext_proc_init(net))
4348 goto out_ptype;
4349 rc = 0;
4350 out:
4351 return rc;
4352 out_ptype:
4353 proc_net_remove(net, "ptype");
4354 out_softnet:
4355 proc_net_remove(net, "softnet_stat");
4356 out_dev:
4357 proc_net_remove(net, "dev");
4358 goto out;
4359 }
4360
dev_proc_net_exit(struct net * net)4361 static void __net_exit dev_proc_net_exit(struct net *net)
4362 {
4363 wext_proc_exit(net);
4364
4365 proc_net_remove(net, "ptype");
4366 proc_net_remove(net, "softnet_stat");
4367 proc_net_remove(net, "dev");
4368 }
4369
4370 static struct pernet_operations __net_initdata dev_proc_ops = {
4371 .init = dev_proc_net_init,
4372 .exit = dev_proc_net_exit,
4373 };
4374
dev_proc_init(void)4375 static int __init dev_proc_init(void)
4376 {
4377 return register_pernet_subsys(&dev_proc_ops);
4378 }
4379 #else
4380 #define dev_proc_init() 0
4381 #endif /* CONFIG_PROC_FS */
4382
4383
4384 /**
4385 * netdev_set_master - set up master pointer
4386 * @slave: slave device
4387 * @master: new master device
4388 *
4389 * Changes the master device of the slave. Pass %NULL to break the
4390 * bonding. The caller must hold the RTNL semaphore. On a failure
4391 * a negative errno code is returned. On success the reference counts
4392 * are adjusted and the function returns zero.
4393 */
netdev_set_master(struct net_device * slave,struct net_device * master)4394 int netdev_set_master(struct net_device *slave, struct net_device *master)
4395 {
4396 struct net_device *old = slave->master;
4397
4398 ASSERT_RTNL();
4399
4400 if (master) {
4401 if (old)
4402 return -EBUSY;
4403 dev_hold(master);
4404 }
4405
4406 slave->master = master;
4407
4408 if (old)
4409 dev_put(old);
4410 return 0;
4411 }
4412 EXPORT_SYMBOL(netdev_set_master);
4413
4414 /**
4415 * netdev_set_bond_master - set up bonding master/slave pair
4416 * @slave: slave device
4417 * @master: new master device
4418 *
4419 * Changes the master device of the slave. Pass %NULL to break the
4420 * bonding. The caller must hold the RTNL semaphore. On a failure
4421 * a negative errno code is returned. On success %RTM_NEWLINK is sent
4422 * to the routing socket and the function returns zero.
4423 */
netdev_set_bond_master(struct net_device * slave,struct net_device * master)4424 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4425 {
4426 int err;
4427
4428 ASSERT_RTNL();
4429
4430 err = netdev_set_master(slave, master);
4431 if (err)
4432 return err;
4433 if (master)
4434 slave->flags |= IFF_SLAVE;
4435 else
4436 slave->flags &= ~IFF_SLAVE;
4437
4438 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4439 return 0;
4440 }
4441 EXPORT_SYMBOL(netdev_set_bond_master);
4442
dev_change_rx_flags(struct net_device * dev,int flags)4443 static void dev_change_rx_flags(struct net_device *dev, int flags)
4444 {
4445 const struct net_device_ops *ops = dev->netdev_ops;
4446
4447 if (ops->ndo_change_rx_flags)
4448 ops->ndo_change_rx_flags(dev, flags);
4449 }
4450
__dev_set_promiscuity(struct net_device * dev,int inc)4451 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4452 {
4453 unsigned int old_flags = dev->flags;
4454 uid_t uid;
4455 gid_t gid;
4456
4457 ASSERT_RTNL();
4458
4459 dev->flags |= IFF_PROMISC;
4460 dev->promiscuity += inc;
4461 if (dev->promiscuity == 0) {
4462 /*
4463 * Avoid overflow.
4464 * If inc causes overflow, untouch promisc and return error.
4465 */
4466 if (inc < 0)
4467 dev->flags &= ~IFF_PROMISC;
4468 else {
4469 dev->promiscuity -= inc;
4470 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4471 dev->name);
4472 return -EOVERFLOW;
4473 }
4474 }
4475 if (dev->flags != old_flags) {
4476 pr_info("device %s %s promiscuous mode\n",
4477 dev->name,
4478 dev->flags & IFF_PROMISC ? "entered" : "left");
4479 if (audit_enabled) {
4480 current_uid_gid(&uid, &gid);
4481 audit_log(current->audit_context, GFP_ATOMIC,
4482 AUDIT_ANOM_PROMISCUOUS,
4483 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4484 dev->name, (dev->flags & IFF_PROMISC),
4485 (old_flags & IFF_PROMISC),
4486 audit_get_loginuid(current),
4487 uid, gid,
4488 audit_get_sessionid(current));
4489 }
4490
4491 dev_change_rx_flags(dev, IFF_PROMISC);
4492 }
4493 return 0;
4494 }
4495
4496 /**
4497 * dev_set_promiscuity - update promiscuity count on a device
4498 * @dev: device
4499 * @inc: modifier
4500 *
4501 * Add or remove promiscuity from a device. While the count in the device
4502 * remains above zero the interface remains promiscuous. Once it hits zero
4503 * the device reverts back to normal filtering operation. A negative inc
4504 * value is used to drop promiscuity on the device.
4505 * Return 0 if successful or a negative errno code on error.
4506 */
dev_set_promiscuity(struct net_device * dev,int inc)4507 int dev_set_promiscuity(struct net_device *dev, int inc)
4508 {
4509 unsigned int old_flags = dev->flags;
4510 int err;
4511
4512 err = __dev_set_promiscuity(dev, inc);
4513 if (err < 0)
4514 return err;
4515 if (dev->flags != old_flags)
4516 dev_set_rx_mode(dev);
4517 return err;
4518 }
4519 EXPORT_SYMBOL(dev_set_promiscuity);
4520
4521 /**
4522 * dev_set_allmulti - update allmulti count on a device
4523 * @dev: device
4524 * @inc: modifier
4525 *
4526 * Add or remove reception of all multicast frames to a device. While the
4527 * count in the device remains above zero the interface remains listening
4528 * to all interfaces. Once it hits zero the device reverts back to normal
4529 * filtering operation. A negative @inc value is used to drop the counter
4530 * when releasing a resource needing all multicasts.
4531 * Return 0 if successful or a negative errno code on error.
4532 */
4533
dev_set_allmulti(struct net_device * dev,int inc)4534 int dev_set_allmulti(struct net_device *dev, int inc)
4535 {
4536 unsigned int old_flags = dev->flags;
4537
4538 ASSERT_RTNL();
4539
4540 dev->flags |= IFF_ALLMULTI;
4541 dev->allmulti += inc;
4542 if (dev->allmulti == 0) {
4543 /*
4544 * Avoid overflow.
4545 * If inc causes overflow, untouch allmulti and return error.
4546 */
4547 if (inc < 0)
4548 dev->flags &= ~IFF_ALLMULTI;
4549 else {
4550 dev->allmulti -= inc;
4551 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4552 dev->name);
4553 return -EOVERFLOW;
4554 }
4555 }
4556 if (dev->flags ^ old_flags) {
4557 dev_change_rx_flags(dev, IFF_ALLMULTI);
4558 dev_set_rx_mode(dev);
4559 }
4560 return 0;
4561 }
4562 EXPORT_SYMBOL(dev_set_allmulti);
4563
4564 /*
4565 * Upload unicast and multicast address lists to device and
4566 * configure RX filtering. When the device doesn't support unicast
4567 * filtering it is put in promiscuous mode while unicast addresses
4568 * are present.
4569 */
__dev_set_rx_mode(struct net_device * dev)4570 void __dev_set_rx_mode(struct net_device *dev)
4571 {
4572 const struct net_device_ops *ops = dev->netdev_ops;
4573
4574 /* dev_open will call this function so the list will stay sane. */
4575 if (!(dev->flags&IFF_UP))
4576 return;
4577
4578 if (!netif_device_present(dev))
4579 return;
4580
4581 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4582 /* Unicast addresses changes may only happen under the rtnl,
4583 * therefore calling __dev_set_promiscuity here is safe.
4584 */
4585 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4586 __dev_set_promiscuity(dev, 1);
4587 dev->uc_promisc = true;
4588 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4589 __dev_set_promiscuity(dev, -1);
4590 dev->uc_promisc = false;
4591 }
4592 }
4593
4594 if (ops->ndo_set_rx_mode)
4595 ops->ndo_set_rx_mode(dev);
4596 }
4597
dev_set_rx_mode(struct net_device * dev)4598 void dev_set_rx_mode(struct net_device *dev)
4599 {
4600 netif_addr_lock_bh(dev);
4601 __dev_set_rx_mode(dev);
4602 netif_addr_unlock_bh(dev);
4603 }
4604
4605 /**
4606 * dev_get_flags - get flags reported to userspace
4607 * @dev: device
4608 *
4609 * Get the combination of flag bits exported through APIs to userspace.
4610 */
dev_get_flags(const struct net_device * dev)4611 unsigned dev_get_flags(const struct net_device *dev)
4612 {
4613 unsigned flags;
4614
4615 flags = (dev->flags & ~(IFF_PROMISC |
4616 IFF_ALLMULTI |
4617 IFF_RUNNING |
4618 IFF_LOWER_UP |
4619 IFF_DORMANT)) |
4620 (dev->gflags & (IFF_PROMISC |
4621 IFF_ALLMULTI));
4622
4623 if (netif_running(dev)) {
4624 if (netif_oper_up(dev))
4625 flags |= IFF_RUNNING;
4626 if (netif_carrier_ok(dev))
4627 flags |= IFF_LOWER_UP;
4628 if (netif_dormant(dev))
4629 flags |= IFF_DORMANT;
4630 }
4631
4632 return flags;
4633 }
4634 EXPORT_SYMBOL(dev_get_flags);
4635
__dev_change_flags(struct net_device * dev,unsigned int flags)4636 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4637 {
4638 unsigned int old_flags = dev->flags;
4639 int ret;
4640
4641 ASSERT_RTNL();
4642
4643 /*
4644 * Set the flags on our device.
4645 */
4646
4647 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4648 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4649 IFF_AUTOMEDIA)) |
4650 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4651 IFF_ALLMULTI));
4652
4653 /*
4654 * Load in the correct multicast list now the flags have changed.
4655 */
4656
4657 if ((old_flags ^ flags) & IFF_MULTICAST)
4658 dev_change_rx_flags(dev, IFF_MULTICAST);
4659
4660 dev_set_rx_mode(dev);
4661
4662 /*
4663 * Have we downed the interface. We handle IFF_UP ourselves
4664 * according to user attempts to set it, rather than blindly
4665 * setting it.
4666 */
4667
4668 ret = 0;
4669 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4670 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4671
4672 if (!ret)
4673 dev_set_rx_mode(dev);
4674 }
4675
4676 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4677 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4678
4679 dev->gflags ^= IFF_PROMISC;
4680 dev_set_promiscuity(dev, inc);
4681 }
4682
4683 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4684 is important. Some (broken) drivers set IFF_PROMISC, when
4685 IFF_ALLMULTI is requested not asking us and not reporting.
4686 */
4687 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4688 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4689
4690 dev->gflags ^= IFF_ALLMULTI;
4691 dev_set_allmulti(dev, inc);
4692 }
4693
4694 return ret;
4695 }
4696
__dev_notify_flags(struct net_device * dev,unsigned int old_flags)4697 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4698 {
4699 unsigned int changes = dev->flags ^ old_flags;
4700
4701 if (changes & IFF_UP) {
4702 if (dev->flags & IFF_UP)
4703 call_netdevice_notifiers(NETDEV_UP, dev);
4704 else
4705 call_netdevice_notifiers(NETDEV_DOWN, dev);
4706 }
4707
4708 if (dev->flags & IFF_UP &&
4709 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4710 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4711 }
4712
4713 /**
4714 * dev_change_flags - change device settings
4715 * @dev: device
4716 * @flags: device state flags
4717 *
4718 * Change settings on device based state flags. The flags are
4719 * in the userspace exported format.
4720 */
dev_change_flags(struct net_device * dev,unsigned int flags)4721 int dev_change_flags(struct net_device *dev, unsigned int flags)
4722 {
4723 int ret;
4724 unsigned int changes, old_flags = dev->flags;
4725
4726 ret = __dev_change_flags(dev, flags);
4727 if (ret < 0)
4728 return ret;
4729
4730 changes = old_flags ^ dev->flags;
4731 if (changes)
4732 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4733
4734 __dev_notify_flags(dev, old_flags);
4735 return ret;
4736 }
4737 EXPORT_SYMBOL(dev_change_flags);
4738
4739 /**
4740 * dev_set_mtu - Change maximum transfer unit
4741 * @dev: device
4742 * @new_mtu: new transfer unit
4743 *
4744 * Change the maximum transfer size of the network device.
4745 */
dev_set_mtu(struct net_device * dev,int new_mtu)4746 int dev_set_mtu(struct net_device *dev, int new_mtu)
4747 {
4748 const struct net_device_ops *ops = dev->netdev_ops;
4749 int err;
4750
4751 if (new_mtu == dev->mtu)
4752 return 0;
4753
4754 /* MTU must be positive. */
4755 if (new_mtu < 0)
4756 return -EINVAL;
4757
4758 if (!netif_device_present(dev))
4759 return -ENODEV;
4760
4761 err = 0;
4762 if (ops->ndo_change_mtu)
4763 err = ops->ndo_change_mtu(dev, new_mtu);
4764 else
4765 dev->mtu = new_mtu;
4766
4767 if (!err && dev->flags & IFF_UP)
4768 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4769 return err;
4770 }
4771 EXPORT_SYMBOL(dev_set_mtu);
4772
4773 /**
4774 * dev_set_group - Change group this device belongs to
4775 * @dev: device
4776 * @new_group: group this device should belong to
4777 */
dev_set_group(struct net_device * dev,int new_group)4778 void dev_set_group(struct net_device *dev, int new_group)
4779 {
4780 dev->group = new_group;
4781 }
4782 EXPORT_SYMBOL(dev_set_group);
4783
4784 /**
4785 * dev_set_mac_address - Change Media Access Control Address
4786 * @dev: device
4787 * @sa: new address
4788 *
4789 * Change the hardware (MAC) address of the device
4790 */
dev_set_mac_address(struct net_device * dev,struct sockaddr * sa)4791 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4792 {
4793 const struct net_device_ops *ops = dev->netdev_ops;
4794 int err;
4795
4796 if (!ops->ndo_set_mac_address)
4797 return -EOPNOTSUPP;
4798 if (sa->sa_family != dev->type)
4799 return -EINVAL;
4800 if (!netif_device_present(dev))
4801 return -ENODEV;
4802 err = ops->ndo_set_mac_address(dev, sa);
4803 if (!err)
4804 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4805 add_device_randomness(dev->dev_addr, dev->addr_len);
4806 return err;
4807 }
4808 EXPORT_SYMBOL(dev_set_mac_address);
4809
4810 /*
4811 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4812 */
dev_ifsioc_locked(struct net * net,struct ifreq * ifr,unsigned int cmd)4813 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4814 {
4815 int err;
4816 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4817
4818 if (!dev)
4819 return -ENODEV;
4820
4821 switch (cmd) {
4822 case SIOCGIFFLAGS: /* Get interface flags */
4823 ifr->ifr_flags = (short) dev_get_flags(dev);
4824 return 0;
4825
4826 case SIOCGIFMETRIC: /* Get the metric on the interface
4827 (currently unused) */
4828 ifr->ifr_metric = 0;
4829 return 0;
4830
4831 case SIOCGIFMTU: /* Get the MTU of a device */
4832 ifr->ifr_mtu = dev->mtu;
4833 return 0;
4834
4835 case SIOCGIFHWADDR:
4836 if (!dev->addr_len)
4837 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4838 else
4839 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4840 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4841 ifr->ifr_hwaddr.sa_family = dev->type;
4842 return 0;
4843
4844 case SIOCGIFSLAVE:
4845 err = -EINVAL;
4846 break;
4847
4848 case SIOCGIFMAP:
4849 ifr->ifr_map.mem_start = dev->mem_start;
4850 ifr->ifr_map.mem_end = dev->mem_end;
4851 ifr->ifr_map.base_addr = dev->base_addr;
4852 ifr->ifr_map.irq = dev->irq;
4853 ifr->ifr_map.dma = dev->dma;
4854 ifr->ifr_map.port = dev->if_port;
4855 return 0;
4856
4857 case SIOCGIFINDEX:
4858 ifr->ifr_ifindex = dev->ifindex;
4859 return 0;
4860
4861 case SIOCGIFTXQLEN:
4862 ifr->ifr_qlen = dev->tx_queue_len;
4863 return 0;
4864
4865 default:
4866 /* dev_ioctl() should ensure this case
4867 * is never reached
4868 */
4869 WARN_ON(1);
4870 err = -ENOTTY;
4871 break;
4872
4873 }
4874 return err;
4875 }
4876
4877 /*
4878 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4879 */
dev_ifsioc(struct net * net,struct ifreq * ifr,unsigned int cmd)4880 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4881 {
4882 int err;
4883 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4884 const struct net_device_ops *ops;
4885
4886 if (!dev)
4887 return -ENODEV;
4888
4889 ops = dev->netdev_ops;
4890
4891 switch (cmd) {
4892 case SIOCSIFFLAGS: /* Set interface flags */
4893 return dev_change_flags(dev, ifr->ifr_flags);
4894
4895 case SIOCSIFMETRIC: /* Set the metric on the interface
4896 (currently unused) */
4897 return -EOPNOTSUPP;
4898
4899 case SIOCSIFMTU: /* Set the MTU of a device */
4900 return dev_set_mtu(dev, ifr->ifr_mtu);
4901
4902 case SIOCSIFHWADDR:
4903 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4904
4905 case SIOCSIFHWBROADCAST:
4906 if (ifr->ifr_hwaddr.sa_family != dev->type)
4907 return -EINVAL;
4908 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4909 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4910 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4911 return 0;
4912
4913 case SIOCSIFMAP:
4914 if (ops->ndo_set_config) {
4915 if (!netif_device_present(dev))
4916 return -ENODEV;
4917 return ops->ndo_set_config(dev, &ifr->ifr_map);
4918 }
4919 return -EOPNOTSUPP;
4920
4921 case SIOCADDMULTI:
4922 if (!ops->ndo_set_rx_mode ||
4923 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4924 return -EINVAL;
4925 if (!netif_device_present(dev))
4926 return -ENODEV;
4927 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4928
4929 case SIOCDELMULTI:
4930 if (!ops->ndo_set_rx_mode ||
4931 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4932 return -EINVAL;
4933 if (!netif_device_present(dev))
4934 return -ENODEV;
4935 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4936
4937 case SIOCSIFTXQLEN:
4938 if (ifr->ifr_qlen < 0)
4939 return -EINVAL;
4940 dev->tx_queue_len = ifr->ifr_qlen;
4941 return 0;
4942
4943 case SIOCSIFNAME:
4944 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4945 return dev_change_name(dev, ifr->ifr_newname);
4946
4947 case SIOCSHWTSTAMP:
4948 err = net_hwtstamp_validate(ifr);
4949 if (err)
4950 return err;
4951 /* fall through */
4952
4953 /*
4954 * Unknown or private ioctl
4955 */
4956 default:
4957 if ((cmd >= SIOCDEVPRIVATE &&
4958 cmd <= SIOCDEVPRIVATE + 15) ||
4959 cmd == SIOCBONDENSLAVE ||
4960 cmd == SIOCBONDRELEASE ||
4961 cmd == SIOCBONDSETHWADDR ||
4962 cmd == SIOCBONDSLAVEINFOQUERY ||
4963 cmd == SIOCBONDINFOQUERY ||
4964 cmd == SIOCBONDCHANGEACTIVE ||
4965 cmd == SIOCGMIIPHY ||
4966 cmd == SIOCGMIIREG ||
4967 cmd == SIOCSMIIREG ||
4968 cmd == SIOCBRADDIF ||
4969 cmd == SIOCBRDELIF ||
4970 cmd == SIOCSHWTSTAMP ||
4971 cmd == SIOCWANDEV) {
4972 err = -EOPNOTSUPP;
4973 if (ops->ndo_do_ioctl) {
4974 if (netif_device_present(dev))
4975 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4976 else
4977 err = -ENODEV;
4978 }
4979 } else
4980 err = -EINVAL;
4981
4982 }
4983 return err;
4984 }
4985
4986 /*
4987 * This function handles all "interface"-type I/O control requests. The actual
4988 * 'doing' part of this is dev_ifsioc above.
4989 */
4990
4991 /**
4992 * dev_ioctl - network device ioctl
4993 * @net: the applicable net namespace
4994 * @cmd: command to issue
4995 * @arg: pointer to a struct ifreq in user space
4996 *
4997 * Issue ioctl functions to devices. This is normally called by the
4998 * user space syscall interfaces but can sometimes be useful for
4999 * other purposes. The return value is the return from the syscall if
5000 * positive or a negative errno code on error.
5001 */
5002
dev_ioctl(struct net * net,unsigned int cmd,void __user * arg)5003 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
5004 {
5005 struct ifreq ifr;
5006 int ret;
5007 char *colon;
5008
5009 /* One special case: SIOCGIFCONF takes ifconf argument
5010 and requires shared lock, because it sleeps writing
5011 to user space.
5012 */
5013
5014 if (cmd == SIOCGIFCONF) {
5015 rtnl_lock();
5016 ret = dev_ifconf(net, (char __user *) arg);
5017 rtnl_unlock();
5018 return ret;
5019 }
5020 if (cmd == SIOCGIFNAME)
5021 return dev_ifname(net, (struct ifreq __user *)arg);
5022
5023 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
5024 return -EFAULT;
5025
5026 ifr.ifr_name[IFNAMSIZ-1] = 0;
5027
5028 colon = strchr(ifr.ifr_name, ':');
5029 if (colon)
5030 *colon = 0;
5031
5032 /*
5033 * See which interface the caller is talking about.
5034 */
5035
5036 switch (cmd) {
5037 /*
5038 * These ioctl calls:
5039 * - can be done by all.
5040 * - atomic and do not require locking.
5041 * - return a value
5042 */
5043 case SIOCGIFFLAGS:
5044 case SIOCGIFMETRIC:
5045 case SIOCGIFMTU:
5046 case SIOCGIFHWADDR:
5047 case SIOCGIFSLAVE:
5048 case SIOCGIFMAP:
5049 case SIOCGIFINDEX:
5050 case SIOCGIFTXQLEN:
5051 dev_load(net, ifr.ifr_name);
5052 rcu_read_lock();
5053 ret = dev_ifsioc_locked(net, &ifr, cmd);
5054 rcu_read_unlock();
5055 if (!ret) {
5056 if (colon)
5057 *colon = ':';
5058 if (copy_to_user(arg, &ifr,
5059 sizeof(struct ifreq)))
5060 ret = -EFAULT;
5061 }
5062 return ret;
5063
5064 case SIOCETHTOOL:
5065 dev_load(net, ifr.ifr_name);
5066 rtnl_lock();
5067 ret = dev_ethtool(net, &ifr);
5068 rtnl_unlock();
5069 if (!ret) {
5070 if (colon)
5071 *colon = ':';
5072 if (copy_to_user(arg, &ifr,
5073 sizeof(struct ifreq)))
5074 ret = -EFAULT;
5075 }
5076 return ret;
5077
5078 /*
5079 * These ioctl calls:
5080 * - require superuser power.
5081 * - require strict serialization.
5082 * - return a value
5083 */
5084 case SIOCGMIIPHY:
5085 case SIOCGMIIREG:
5086 case SIOCSIFNAME:
5087 if (!capable(CAP_NET_ADMIN))
5088 return -EPERM;
5089 dev_load(net, ifr.ifr_name);
5090 rtnl_lock();
5091 ret = dev_ifsioc(net, &ifr, cmd);
5092 rtnl_unlock();
5093 if (!ret) {
5094 if (colon)
5095 *colon = ':';
5096 if (copy_to_user(arg, &ifr,
5097 sizeof(struct ifreq)))
5098 ret = -EFAULT;
5099 }
5100 return ret;
5101
5102 /*
5103 * These ioctl calls:
5104 * - require superuser power.
5105 * - require strict serialization.
5106 * - do not return a value
5107 */
5108 case SIOCSIFFLAGS:
5109 case SIOCSIFMETRIC:
5110 case SIOCSIFMTU:
5111 case SIOCSIFMAP:
5112 case SIOCSIFHWADDR:
5113 case SIOCSIFSLAVE:
5114 case SIOCADDMULTI:
5115 case SIOCDELMULTI:
5116 case SIOCSIFHWBROADCAST:
5117 case SIOCSIFTXQLEN:
5118 case SIOCSMIIREG:
5119 case SIOCBONDENSLAVE:
5120 case SIOCBONDRELEASE:
5121 case SIOCBONDSETHWADDR:
5122 case SIOCBONDCHANGEACTIVE:
5123 case SIOCBRADDIF:
5124 case SIOCBRDELIF:
5125 case SIOCSHWTSTAMP:
5126 if (!capable(CAP_NET_ADMIN))
5127 return -EPERM;
5128 /* fall through */
5129 case SIOCBONDSLAVEINFOQUERY:
5130 case SIOCBONDINFOQUERY:
5131 dev_load(net, ifr.ifr_name);
5132 rtnl_lock();
5133 ret = dev_ifsioc(net, &ifr, cmd);
5134 rtnl_unlock();
5135 return ret;
5136
5137 case SIOCGIFMEM:
5138 /* Get the per device memory space. We can add this but
5139 * currently do not support it */
5140 case SIOCSIFMEM:
5141 /* Set the per device memory buffer space.
5142 * Not applicable in our case */
5143 case SIOCSIFLINK:
5144 return -ENOTTY;
5145
5146 /*
5147 * Unknown or private ioctl.
5148 */
5149 default:
5150 if (cmd == SIOCWANDEV ||
5151 (cmd >= SIOCDEVPRIVATE &&
5152 cmd <= SIOCDEVPRIVATE + 15)) {
5153 dev_load(net, ifr.ifr_name);
5154 rtnl_lock();
5155 ret = dev_ifsioc(net, &ifr, cmd);
5156 rtnl_unlock();
5157 if (!ret && copy_to_user(arg, &ifr,
5158 sizeof(struct ifreq)))
5159 ret = -EFAULT;
5160 return ret;
5161 }
5162 /* Take care of Wireless Extensions */
5163 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5164 return wext_handle_ioctl(net, &ifr, cmd, arg);
5165 return -ENOTTY;
5166 }
5167 }
5168
5169
5170 /**
5171 * dev_new_index - allocate an ifindex
5172 * @net: the applicable net namespace
5173 *
5174 * Returns a suitable unique value for a new device interface
5175 * number. The caller must hold the rtnl semaphore or the
5176 * dev_base_lock to be sure it remains unique.
5177 */
dev_new_index(struct net * net)5178 static int dev_new_index(struct net *net)
5179 {
5180 static int ifindex;
5181 for (;;) {
5182 if (++ifindex <= 0)
5183 ifindex = 1;
5184 if (!__dev_get_by_index(net, ifindex))
5185 return ifindex;
5186 }
5187 }
5188
5189 /* Delayed registration/unregisteration */
5190 static LIST_HEAD(net_todo_list);
5191
net_set_todo(struct net_device * dev)5192 static void net_set_todo(struct net_device *dev)
5193 {
5194 list_add_tail(&dev->todo_list, &net_todo_list);
5195 }
5196
rollback_registered_many(struct list_head * head)5197 static void rollback_registered_many(struct list_head *head)
5198 {
5199 struct net_device *dev, *tmp;
5200
5201 BUG_ON(dev_boot_phase);
5202 ASSERT_RTNL();
5203
5204 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5205 /* Some devices call without registering
5206 * for initialization unwind. Remove those
5207 * devices and proceed with the remaining.
5208 */
5209 if (dev->reg_state == NETREG_UNINITIALIZED) {
5210 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5211 dev->name, dev);
5212
5213 WARN_ON(1);
5214 list_del(&dev->unreg_list);
5215 continue;
5216 }
5217 dev->dismantle = true;
5218 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5219 }
5220
5221 /* If device is running, close it first. */
5222 dev_close_many(head);
5223
5224 list_for_each_entry(dev, head, unreg_list) {
5225 /* And unlink it from device chain. */
5226 unlist_netdevice(dev);
5227
5228 dev->reg_state = NETREG_UNREGISTERING;
5229 }
5230
5231 synchronize_net();
5232
5233 list_for_each_entry(dev, head, unreg_list) {
5234 /* Shutdown queueing discipline. */
5235 dev_shutdown(dev);
5236
5237
5238 /* Notify protocols, that we are about to destroy
5239 this device. They should clean all the things.
5240 */
5241 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5242
5243 if (!dev->rtnl_link_ops ||
5244 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5245 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5246
5247 /*
5248 * Flush the unicast and multicast chains
5249 */
5250 dev_uc_flush(dev);
5251 dev_mc_flush(dev);
5252
5253 if (dev->netdev_ops->ndo_uninit)
5254 dev->netdev_ops->ndo_uninit(dev);
5255
5256 /* Notifier chain MUST detach us from master device. */
5257 WARN_ON(dev->master);
5258
5259 /* Remove entries from kobject tree */
5260 netdev_unregister_kobject(dev);
5261 }
5262
5263 /* Process any work delayed until the end of the batch */
5264 dev = list_first_entry(head, struct net_device, unreg_list);
5265 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5266
5267 synchronize_net();
5268
5269 list_for_each_entry(dev, head, unreg_list)
5270 dev_put(dev);
5271 }
5272
rollback_registered(struct net_device * dev)5273 static void rollback_registered(struct net_device *dev)
5274 {
5275 LIST_HEAD(single);
5276
5277 list_add(&dev->unreg_list, &single);
5278 rollback_registered_many(&single);
5279 list_del(&single);
5280 }
5281
netdev_fix_features(struct net_device * dev,netdev_features_t features)5282 static netdev_features_t netdev_fix_features(struct net_device *dev,
5283 netdev_features_t features)
5284 {
5285 /* Fix illegal checksum combinations */
5286 if ((features & NETIF_F_HW_CSUM) &&
5287 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5288 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5289 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5290 }
5291
5292 /* Fix illegal SG+CSUM combinations. */
5293 if ((features & NETIF_F_SG) &&
5294 !(features & NETIF_F_ALL_CSUM)) {
5295 netdev_dbg(dev,
5296 "Dropping NETIF_F_SG since no checksum feature.\n");
5297 features &= ~NETIF_F_SG;
5298 }
5299
5300 /* TSO requires that SG is present as well. */
5301 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5302 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5303 features &= ~NETIF_F_ALL_TSO;
5304 }
5305
5306 /* TSO ECN requires that TSO is present as well. */
5307 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5308 features &= ~NETIF_F_TSO_ECN;
5309
5310 /* Software GSO depends on SG. */
5311 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5312 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5313 features &= ~NETIF_F_GSO;
5314 }
5315
5316 /* UFO needs SG and checksumming */
5317 if (features & NETIF_F_UFO) {
5318 /* maybe split UFO into V4 and V6? */
5319 if (!((features & NETIF_F_GEN_CSUM) ||
5320 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5321 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5322 netdev_dbg(dev,
5323 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5324 features &= ~NETIF_F_UFO;
5325 }
5326
5327 if (!(features & NETIF_F_SG)) {
5328 netdev_dbg(dev,
5329 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5330 features &= ~NETIF_F_UFO;
5331 }
5332 }
5333
5334 return features;
5335 }
5336
__netdev_update_features(struct net_device * dev)5337 int __netdev_update_features(struct net_device *dev)
5338 {
5339 netdev_features_t features;
5340 int err = 0;
5341
5342 ASSERT_RTNL();
5343
5344 features = netdev_get_wanted_features(dev);
5345
5346 if (dev->netdev_ops->ndo_fix_features)
5347 features = dev->netdev_ops->ndo_fix_features(dev, features);
5348
5349 /* driver might be less strict about feature dependencies */
5350 features = netdev_fix_features(dev, features);
5351
5352 if (dev->features == features)
5353 return 0;
5354
5355 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5356 &dev->features, &features);
5357
5358 if (dev->netdev_ops->ndo_set_features)
5359 err = dev->netdev_ops->ndo_set_features(dev, features);
5360
5361 if (unlikely(err < 0)) {
5362 netdev_err(dev,
5363 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5364 err, &features, &dev->features);
5365 return -1;
5366 }
5367
5368 if (!err)
5369 dev->features = features;
5370
5371 return 1;
5372 }
5373
5374 /**
5375 * netdev_update_features - recalculate device features
5376 * @dev: the device to check
5377 *
5378 * Recalculate dev->features set and send notifications if it
5379 * has changed. Should be called after driver or hardware dependent
5380 * conditions might have changed that influence the features.
5381 */
netdev_update_features(struct net_device * dev)5382 void netdev_update_features(struct net_device *dev)
5383 {
5384 if (__netdev_update_features(dev))
5385 netdev_features_change(dev);
5386 }
5387 EXPORT_SYMBOL(netdev_update_features);
5388
5389 /**
5390 * netdev_change_features - recalculate device features
5391 * @dev: the device to check
5392 *
5393 * Recalculate dev->features set and send notifications even
5394 * if they have not changed. Should be called instead of
5395 * netdev_update_features() if also dev->vlan_features might
5396 * have changed to allow the changes to be propagated to stacked
5397 * VLAN devices.
5398 */
netdev_change_features(struct net_device * dev)5399 void netdev_change_features(struct net_device *dev)
5400 {
5401 __netdev_update_features(dev);
5402 netdev_features_change(dev);
5403 }
5404 EXPORT_SYMBOL(netdev_change_features);
5405
5406 /**
5407 * netif_stacked_transfer_operstate - transfer operstate
5408 * @rootdev: the root or lower level device to transfer state from
5409 * @dev: the device to transfer operstate to
5410 *
5411 * Transfer operational state from root to device. This is normally
5412 * called when a stacking relationship exists between the root
5413 * device and the device(a leaf device).
5414 */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)5415 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5416 struct net_device *dev)
5417 {
5418 if (rootdev->operstate == IF_OPER_DORMANT)
5419 netif_dormant_on(dev);
5420 else
5421 netif_dormant_off(dev);
5422
5423 if (netif_carrier_ok(rootdev)) {
5424 if (!netif_carrier_ok(dev))
5425 netif_carrier_on(dev);
5426 } else {
5427 if (netif_carrier_ok(dev))
5428 netif_carrier_off(dev);
5429 }
5430 }
5431 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5432
5433 #ifdef CONFIG_RPS
netif_alloc_rx_queues(struct net_device * dev)5434 static int netif_alloc_rx_queues(struct net_device *dev)
5435 {
5436 unsigned int i, count = dev->num_rx_queues;
5437 struct netdev_rx_queue *rx;
5438
5439 BUG_ON(count < 1);
5440
5441 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5442 if (!rx) {
5443 pr_err("netdev: Unable to allocate %u rx queues\n", count);
5444 return -ENOMEM;
5445 }
5446 dev->_rx = rx;
5447
5448 for (i = 0; i < count; i++)
5449 rx[i].dev = dev;
5450 return 0;
5451 }
5452 #endif
5453
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)5454 static void netdev_init_one_queue(struct net_device *dev,
5455 struct netdev_queue *queue, void *_unused)
5456 {
5457 /* Initialize queue lock */
5458 spin_lock_init(&queue->_xmit_lock);
5459 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5460 queue->xmit_lock_owner = -1;
5461 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5462 queue->dev = dev;
5463 #ifdef CONFIG_BQL
5464 dql_init(&queue->dql, HZ);
5465 #endif
5466 }
5467
netif_alloc_netdev_queues(struct net_device * dev)5468 static int netif_alloc_netdev_queues(struct net_device *dev)
5469 {
5470 unsigned int count = dev->num_tx_queues;
5471 struct netdev_queue *tx;
5472
5473 BUG_ON(count < 1);
5474
5475 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5476 if (!tx) {
5477 pr_err("netdev: Unable to allocate %u tx queues\n", count);
5478 return -ENOMEM;
5479 }
5480 dev->_tx = tx;
5481
5482 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5483 spin_lock_init(&dev->tx_global_lock);
5484
5485 return 0;
5486 }
5487
5488 /**
5489 * register_netdevice - register a network device
5490 * @dev: device to register
5491 *
5492 * Take a completed network device structure and add it to the kernel
5493 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5494 * chain. 0 is returned on success. A negative errno code is returned
5495 * on a failure to set up the device, or if the name is a duplicate.
5496 *
5497 * Callers must hold the rtnl semaphore. You may want
5498 * register_netdev() instead of this.
5499 *
5500 * BUGS:
5501 * The locking appears insufficient to guarantee two parallel registers
5502 * will not get the same name.
5503 */
5504
register_netdevice(struct net_device * dev)5505 int register_netdevice(struct net_device *dev)
5506 {
5507 int ret;
5508 struct net *net = dev_net(dev);
5509
5510 BUG_ON(dev_boot_phase);
5511 ASSERT_RTNL();
5512
5513 might_sleep();
5514
5515 /* When net_device's are persistent, this will be fatal. */
5516 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5517 BUG_ON(!net);
5518
5519 spin_lock_init(&dev->addr_list_lock);
5520 netdev_set_addr_lockdep_class(dev);
5521
5522 dev->iflink = -1;
5523
5524 ret = dev_get_valid_name(dev, dev->name);
5525 if (ret < 0)
5526 goto out;
5527
5528 /* Init, if this function is available */
5529 if (dev->netdev_ops->ndo_init) {
5530 ret = dev->netdev_ops->ndo_init(dev);
5531 if (ret) {
5532 if (ret > 0)
5533 ret = -EIO;
5534 goto out;
5535 }
5536 }
5537
5538 dev->ifindex = dev_new_index(net);
5539 if (dev->iflink == -1)
5540 dev->iflink = dev->ifindex;
5541
5542 /* Transfer changeable features to wanted_features and enable
5543 * software offloads (GSO and GRO).
5544 */
5545 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5546 dev->features |= NETIF_F_SOFT_FEATURES;
5547 dev->wanted_features = dev->features & dev->hw_features;
5548
5549 /* Turn on no cache copy if HW is doing checksum */
5550 if (!(dev->flags & IFF_LOOPBACK)) {
5551 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5552 if (dev->features & NETIF_F_ALL_CSUM) {
5553 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5554 dev->features |= NETIF_F_NOCACHE_COPY;
5555 }
5556 }
5557
5558 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5559 */
5560 dev->vlan_features |= NETIF_F_HIGHDMA;
5561
5562 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5563 ret = notifier_to_errno(ret);
5564 if (ret)
5565 goto err_uninit;
5566
5567 ret = netdev_register_kobject(dev);
5568 if (ret)
5569 goto err_uninit;
5570 dev->reg_state = NETREG_REGISTERED;
5571
5572 __netdev_update_features(dev);
5573
5574 /*
5575 * Default initial state at registry is that the
5576 * device is present.
5577 */
5578
5579 set_bit(__LINK_STATE_PRESENT, &dev->state);
5580
5581 dev_init_scheduler(dev);
5582 dev_hold(dev);
5583 list_netdevice(dev);
5584 add_device_randomness(dev->dev_addr, dev->addr_len);
5585
5586 /* Notify protocols, that a new device appeared. */
5587 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5588 ret = notifier_to_errno(ret);
5589 if (ret) {
5590 rollback_registered(dev);
5591 dev->reg_state = NETREG_UNREGISTERED;
5592 }
5593 /*
5594 * Prevent userspace races by waiting until the network
5595 * device is fully setup before sending notifications.
5596 */
5597 if (!dev->rtnl_link_ops ||
5598 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5599 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5600
5601 out:
5602 return ret;
5603
5604 err_uninit:
5605 if (dev->netdev_ops->ndo_uninit)
5606 dev->netdev_ops->ndo_uninit(dev);
5607 goto out;
5608 }
5609 EXPORT_SYMBOL(register_netdevice);
5610
5611 /**
5612 * init_dummy_netdev - init a dummy network device for NAPI
5613 * @dev: device to init
5614 *
5615 * This takes a network device structure and initialize the minimum
5616 * amount of fields so it can be used to schedule NAPI polls without
5617 * registering a full blown interface. This is to be used by drivers
5618 * that need to tie several hardware interfaces to a single NAPI
5619 * poll scheduler due to HW limitations.
5620 */
init_dummy_netdev(struct net_device * dev)5621 int init_dummy_netdev(struct net_device *dev)
5622 {
5623 /* Clear everything. Note we don't initialize spinlocks
5624 * are they aren't supposed to be taken by any of the
5625 * NAPI code and this dummy netdev is supposed to be
5626 * only ever used for NAPI polls
5627 */
5628 memset(dev, 0, sizeof(struct net_device));
5629
5630 /* make sure we BUG if trying to hit standard
5631 * register/unregister code path
5632 */
5633 dev->reg_state = NETREG_DUMMY;
5634
5635 /* NAPI wants this */
5636 INIT_LIST_HEAD(&dev->napi_list);
5637
5638 /* a dummy interface is started by default */
5639 set_bit(__LINK_STATE_PRESENT, &dev->state);
5640 set_bit(__LINK_STATE_START, &dev->state);
5641
5642 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5643 * because users of this 'device' dont need to change
5644 * its refcount.
5645 */
5646
5647 return 0;
5648 }
5649 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5650
5651
5652 /**
5653 * register_netdev - register a network device
5654 * @dev: device to register
5655 *
5656 * Take a completed network device structure and add it to the kernel
5657 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5658 * chain. 0 is returned on success. A negative errno code is returned
5659 * on a failure to set up the device, or if the name is a duplicate.
5660 *
5661 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5662 * and expands the device name if you passed a format string to
5663 * alloc_netdev.
5664 */
register_netdev(struct net_device * dev)5665 int register_netdev(struct net_device *dev)
5666 {
5667 int err;
5668
5669 rtnl_lock();
5670 err = register_netdevice(dev);
5671 rtnl_unlock();
5672 return err;
5673 }
5674 EXPORT_SYMBOL(register_netdev);
5675
netdev_refcnt_read(const struct net_device * dev)5676 int netdev_refcnt_read(const struct net_device *dev)
5677 {
5678 int i, refcnt = 0;
5679
5680 for_each_possible_cpu(i)
5681 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5682 return refcnt;
5683 }
5684 EXPORT_SYMBOL(netdev_refcnt_read);
5685
5686 /*
5687 * netdev_wait_allrefs - wait until all references are gone.
5688 *
5689 * This is called when unregistering network devices.
5690 *
5691 * Any protocol or device that holds a reference should register
5692 * for netdevice notification, and cleanup and put back the
5693 * reference if they receive an UNREGISTER event.
5694 * We can get stuck here if buggy protocols don't correctly
5695 * call dev_put.
5696 */
netdev_wait_allrefs(struct net_device * dev)5697 static void netdev_wait_allrefs(struct net_device *dev)
5698 {
5699 unsigned long rebroadcast_time, warning_time;
5700 int refcnt;
5701
5702 linkwatch_forget_dev(dev);
5703
5704 rebroadcast_time = warning_time = jiffies;
5705 refcnt = netdev_refcnt_read(dev);
5706
5707 while (refcnt != 0) {
5708 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5709 rtnl_lock();
5710
5711 /* Rebroadcast unregister notification */
5712 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5713 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5714 * should have already handle it the first time */
5715
5716 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5717 &dev->state)) {
5718 /* We must not have linkwatch events
5719 * pending on unregister. If this
5720 * happens, we simply run the queue
5721 * unscheduled, resulting in a noop
5722 * for this device.
5723 */
5724 linkwatch_run_queue();
5725 }
5726
5727 __rtnl_unlock();
5728
5729 rebroadcast_time = jiffies;
5730 }
5731
5732 msleep(250);
5733
5734 refcnt = netdev_refcnt_read(dev);
5735
5736 if (time_after(jiffies, warning_time + 10 * HZ)) {
5737 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5738 dev->name, refcnt);
5739 warning_time = jiffies;
5740 }
5741 }
5742 }
5743
5744 /* The sequence is:
5745 *
5746 * rtnl_lock();
5747 * ...
5748 * register_netdevice(x1);
5749 * register_netdevice(x2);
5750 * ...
5751 * unregister_netdevice(y1);
5752 * unregister_netdevice(y2);
5753 * ...
5754 * rtnl_unlock();
5755 * free_netdev(y1);
5756 * free_netdev(y2);
5757 *
5758 * We are invoked by rtnl_unlock().
5759 * This allows us to deal with problems:
5760 * 1) We can delete sysfs objects which invoke hotplug
5761 * without deadlocking with linkwatch via keventd.
5762 * 2) Since we run with the RTNL semaphore not held, we can sleep
5763 * safely in order to wait for the netdev refcnt to drop to zero.
5764 *
5765 * We must not return until all unregister events added during
5766 * the interval the lock was held have been completed.
5767 */
netdev_run_todo(void)5768 void netdev_run_todo(void)
5769 {
5770 struct list_head list;
5771
5772 /* Snapshot list, allow later requests */
5773 list_replace_init(&net_todo_list, &list);
5774
5775 __rtnl_unlock();
5776
5777 /* Wait for rcu callbacks to finish before attempting to drain
5778 * the device list. This usually avoids a 250ms wait.
5779 */
5780 if (!list_empty(&list))
5781 rcu_barrier();
5782
5783 while (!list_empty(&list)) {
5784 struct net_device *dev
5785 = list_first_entry(&list, struct net_device, todo_list);
5786 list_del(&dev->todo_list);
5787
5788 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5789 pr_err("network todo '%s' but state %d\n",
5790 dev->name, dev->reg_state);
5791 dump_stack();
5792 continue;
5793 }
5794
5795 dev->reg_state = NETREG_UNREGISTERED;
5796
5797 on_each_cpu(flush_backlog, dev, 1);
5798
5799 netdev_wait_allrefs(dev);
5800
5801 /* paranoia */
5802 BUG_ON(netdev_refcnt_read(dev));
5803 WARN_ON(rcu_access_pointer(dev->ip_ptr));
5804 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5805 WARN_ON(dev->dn_ptr);
5806
5807 if (dev->destructor)
5808 dev->destructor(dev);
5809
5810 /* Free network device */
5811 kobject_put(&dev->dev.kobj);
5812 }
5813 }
5814
5815 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5816 * fields in the same order, with only the type differing.
5817 */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)5818 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5819 const struct net_device_stats *netdev_stats)
5820 {
5821 #if BITS_PER_LONG == 64
5822 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5823 memcpy(stats64, netdev_stats, sizeof(*stats64));
5824 #else
5825 size_t i, n = sizeof(*stats64) / sizeof(u64);
5826 const unsigned long *src = (const unsigned long *)netdev_stats;
5827 u64 *dst = (u64 *)stats64;
5828
5829 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5830 sizeof(*stats64) / sizeof(u64));
5831 for (i = 0; i < n; i++)
5832 dst[i] = src[i];
5833 #endif
5834 }
5835 EXPORT_SYMBOL(netdev_stats_to_stats64);
5836
5837 /**
5838 * dev_get_stats - get network device statistics
5839 * @dev: device to get statistics from
5840 * @storage: place to store stats
5841 *
5842 * Get network statistics from device. Return @storage.
5843 * The device driver may provide its own method by setting
5844 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5845 * otherwise the internal statistics structure is used.
5846 */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)5847 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5848 struct rtnl_link_stats64 *storage)
5849 {
5850 const struct net_device_ops *ops = dev->netdev_ops;
5851
5852 if (ops->ndo_get_stats64) {
5853 memset(storage, 0, sizeof(*storage));
5854 ops->ndo_get_stats64(dev, storage);
5855 } else if (ops->ndo_get_stats) {
5856 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5857 } else {
5858 netdev_stats_to_stats64(storage, &dev->stats);
5859 }
5860 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5861 return storage;
5862 }
5863 EXPORT_SYMBOL(dev_get_stats);
5864
dev_ingress_queue_create(struct net_device * dev)5865 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5866 {
5867 struct netdev_queue *queue = dev_ingress_queue(dev);
5868
5869 #ifdef CONFIG_NET_CLS_ACT
5870 if (queue)
5871 return queue;
5872 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5873 if (!queue)
5874 return NULL;
5875 netdev_init_one_queue(dev, queue, NULL);
5876 queue->qdisc = &noop_qdisc;
5877 queue->qdisc_sleeping = &noop_qdisc;
5878 rcu_assign_pointer(dev->ingress_queue, queue);
5879 #endif
5880 return queue;
5881 }
5882
5883 /**
5884 * alloc_netdev_mqs - allocate network device
5885 * @sizeof_priv: size of private data to allocate space for
5886 * @name: device name format string
5887 * @setup: callback to initialize device
5888 * @txqs: the number of TX subqueues to allocate
5889 * @rxqs: the number of RX subqueues to allocate
5890 *
5891 * Allocates a struct net_device with private data area for driver use
5892 * and performs basic initialization. Also allocates subquue structs
5893 * for each queue on the device.
5894 */
alloc_netdev_mqs(int sizeof_priv,const char * name,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)5895 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5896 void (*setup)(struct net_device *),
5897 unsigned int txqs, unsigned int rxqs)
5898 {
5899 struct net_device *dev;
5900 size_t alloc_size;
5901 struct net_device *p;
5902
5903 BUG_ON(strlen(name) >= sizeof(dev->name));
5904
5905 if (txqs < 1) {
5906 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
5907 return NULL;
5908 }
5909
5910 #ifdef CONFIG_RPS
5911 if (rxqs < 1) {
5912 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
5913 return NULL;
5914 }
5915 #endif
5916
5917 alloc_size = sizeof(struct net_device);
5918 if (sizeof_priv) {
5919 /* ensure 32-byte alignment of private area */
5920 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5921 alloc_size += sizeof_priv;
5922 }
5923 /* ensure 32-byte alignment of whole construct */
5924 alloc_size += NETDEV_ALIGN - 1;
5925
5926 p = kzalloc(alloc_size, GFP_KERNEL);
5927 if (!p) {
5928 pr_err("alloc_netdev: Unable to allocate device\n");
5929 return NULL;
5930 }
5931
5932 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5933 dev->padded = (char *)dev - (char *)p;
5934
5935 dev->pcpu_refcnt = alloc_percpu(int);
5936 if (!dev->pcpu_refcnt)
5937 goto free_p;
5938
5939 if (dev_addr_init(dev))
5940 goto free_pcpu;
5941
5942 dev_mc_init(dev);
5943 dev_uc_init(dev);
5944
5945 dev_net_set(dev, &init_net);
5946
5947 dev->gso_max_size = GSO_MAX_SIZE;
5948 dev->gso_max_segs = GSO_MAX_SEGS;
5949
5950 INIT_LIST_HEAD(&dev->napi_list);
5951 INIT_LIST_HEAD(&dev->unreg_list);
5952 INIT_LIST_HEAD(&dev->link_watch_list);
5953 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5954 setup(dev);
5955
5956 dev->num_tx_queues = txqs;
5957 dev->real_num_tx_queues = txqs;
5958 if (netif_alloc_netdev_queues(dev))
5959 goto free_all;
5960
5961 #ifdef CONFIG_RPS
5962 dev->num_rx_queues = rxqs;
5963 dev->real_num_rx_queues = rxqs;
5964 if (netif_alloc_rx_queues(dev))
5965 goto free_all;
5966 #endif
5967
5968 strcpy(dev->name, name);
5969 dev->group = INIT_NETDEV_GROUP;
5970 return dev;
5971
5972 free_all:
5973 free_netdev(dev);
5974 return NULL;
5975
5976 free_pcpu:
5977 free_percpu(dev->pcpu_refcnt);
5978 kfree(dev->_tx);
5979 #ifdef CONFIG_RPS
5980 kfree(dev->_rx);
5981 #endif
5982
5983 free_p:
5984 kfree(p);
5985 return NULL;
5986 }
5987 EXPORT_SYMBOL(alloc_netdev_mqs);
5988
5989 /**
5990 * free_netdev - free network device
5991 * @dev: device
5992 *
5993 * This function does the last stage of destroying an allocated device
5994 * interface. The reference to the device object is released.
5995 * If this is the last reference then it will be freed.
5996 */
free_netdev(struct net_device * dev)5997 void free_netdev(struct net_device *dev)
5998 {
5999 struct napi_struct *p, *n;
6000
6001 release_net(dev_net(dev));
6002
6003 kfree(dev->_tx);
6004 #ifdef CONFIG_RPS
6005 kfree(dev->_rx);
6006 #endif
6007
6008 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6009
6010 /* Flush device addresses */
6011 dev_addr_flush(dev);
6012
6013 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6014 netif_napi_del(p);
6015
6016 free_percpu(dev->pcpu_refcnt);
6017 dev->pcpu_refcnt = NULL;
6018
6019 /* Compatibility with error handling in drivers */
6020 if (dev->reg_state == NETREG_UNINITIALIZED) {
6021 kfree((char *)dev - dev->padded);
6022 return;
6023 }
6024
6025 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6026 dev->reg_state = NETREG_RELEASED;
6027
6028 /* will free via device release */
6029 put_device(&dev->dev);
6030 }
6031 EXPORT_SYMBOL(free_netdev);
6032
6033 /**
6034 * synchronize_net - Synchronize with packet receive processing
6035 *
6036 * Wait for packets currently being received to be done.
6037 * Does not block later packets from starting.
6038 */
synchronize_net(void)6039 void synchronize_net(void)
6040 {
6041 might_sleep();
6042 if (rtnl_is_locked())
6043 synchronize_rcu_expedited();
6044 else
6045 synchronize_rcu();
6046 }
6047 EXPORT_SYMBOL(synchronize_net);
6048
6049 /**
6050 * unregister_netdevice_queue - remove device from the kernel
6051 * @dev: device
6052 * @head: list
6053 *
6054 * This function shuts down a device interface and removes it
6055 * from the kernel tables.
6056 * If head not NULL, device is queued to be unregistered later.
6057 *
6058 * Callers must hold the rtnl semaphore. You may want
6059 * unregister_netdev() instead of this.
6060 */
6061
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)6062 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6063 {
6064 ASSERT_RTNL();
6065
6066 if (head) {
6067 list_move_tail(&dev->unreg_list, head);
6068 } else {
6069 rollback_registered(dev);
6070 /* Finish processing unregister after unlock */
6071 net_set_todo(dev);
6072 }
6073 }
6074 EXPORT_SYMBOL(unregister_netdevice_queue);
6075
6076 /**
6077 * unregister_netdevice_many - unregister many devices
6078 * @head: list of devices
6079 */
unregister_netdevice_many(struct list_head * head)6080 void unregister_netdevice_many(struct list_head *head)
6081 {
6082 struct net_device *dev;
6083
6084 if (!list_empty(head)) {
6085 rollback_registered_many(head);
6086 list_for_each_entry(dev, head, unreg_list)
6087 net_set_todo(dev);
6088 }
6089 }
6090 EXPORT_SYMBOL(unregister_netdevice_many);
6091
6092 /**
6093 * unregister_netdev - remove device from the kernel
6094 * @dev: device
6095 *
6096 * This function shuts down a device interface and removes it
6097 * from the kernel tables.
6098 *
6099 * This is just a wrapper for unregister_netdevice that takes
6100 * the rtnl semaphore. In general you want to use this and not
6101 * unregister_netdevice.
6102 */
unregister_netdev(struct net_device * dev)6103 void unregister_netdev(struct net_device *dev)
6104 {
6105 rtnl_lock();
6106 unregister_netdevice(dev);
6107 rtnl_unlock();
6108 }
6109 EXPORT_SYMBOL(unregister_netdev);
6110
6111 /**
6112 * dev_change_net_namespace - move device to different nethost namespace
6113 * @dev: device
6114 * @net: network namespace
6115 * @pat: If not NULL name pattern to try if the current device name
6116 * is already taken in the destination network namespace.
6117 *
6118 * This function shuts down a device interface and moves it
6119 * to a new network namespace. On success 0 is returned, on
6120 * a failure a netagive errno code is returned.
6121 *
6122 * Callers must hold the rtnl semaphore.
6123 */
6124
dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat)6125 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6126 {
6127 int err;
6128
6129 ASSERT_RTNL();
6130
6131 /* Don't allow namespace local devices to be moved. */
6132 err = -EINVAL;
6133 if (dev->features & NETIF_F_NETNS_LOCAL)
6134 goto out;
6135
6136 /* Ensure the device has been registrered */
6137 err = -EINVAL;
6138 if (dev->reg_state != NETREG_REGISTERED)
6139 goto out;
6140
6141 /* Get out if there is nothing todo */
6142 err = 0;
6143 if (net_eq(dev_net(dev), net))
6144 goto out;
6145
6146 /* Pick the destination device name, and ensure
6147 * we can use it in the destination network namespace.
6148 */
6149 err = -EEXIST;
6150 if (__dev_get_by_name(net, dev->name)) {
6151 /* We get here if we can't use the current device name */
6152 if (!pat)
6153 goto out;
6154 if (dev_get_valid_name(dev, pat) < 0)
6155 goto out;
6156 }
6157
6158 /*
6159 * And now a mini version of register_netdevice unregister_netdevice.
6160 */
6161
6162 /* If device is running close it first. */
6163 dev_close(dev);
6164
6165 /* And unlink it from device chain */
6166 err = -ENODEV;
6167 unlist_netdevice(dev);
6168
6169 synchronize_net();
6170
6171 /* Shutdown queueing discipline. */
6172 dev_shutdown(dev);
6173
6174 /* Notify protocols, that we are about to destroy
6175 this device. They should clean all the things.
6176
6177 Note that dev->reg_state stays at NETREG_REGISTERED.
6178 This is wanted because this way 8021q and macvlan know
6179 the device is just moving and can keep their slaves up.
6180 */
6181 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6182 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
6183 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
6184
6185 /*
6186 * Flush the unicast and multicast chains
6187 */
6188 dev_uc_flush(dev);
6189 dev_mc_flush(dev);
6190
6191 /* Actually switch the network namespace */
6192 dev_net_set(dev, net);
6193
6194 /* If there is an ifindex conflict assign a new one */
6195 if (__dev_get_by_index(net, dev->ifindex)) {
6196 int iflink = (dev->iflink == dev->ifindex);
6197 dev->ifindex = dev_new_index(net);
6198 if (iflink)
6199 dev->iflink = dev->ifindex;
6200 }
6201
6202 /* Fixup kobjects */
6203 err = device_rename(&dev->dev, dev->name);
6204 WARN_ON(err);
6205
6206 /* Add the device back in the hashes */
6207 list_netdevice(dev);
6208
6209 /* Notify protocols, that a new device appeared. */
6210 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6211
6212 /*
6213 * Prevent userspace races by waiting until the network
6214 * device is fully setup before sending notifications.
6215 */
6216 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6217
6218 synchronize_net();
6219 err = 0;
6220 out:
6221 return err;
6222 }
6223 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6224
dev_cpu_callback(struct notifier_block * nfb,unsigned long action,void * ocpu)6225 static int dev_cpu_callback(struct notifier_block *nfb,
6226 unsigned long action,
6227 void *ocpu)
6228 {
6229 struct sk_buff **list_skb;
6230 struct sk_buff *skb;
6231 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6232 struct softnet_data *sd, *oldsd;
6233
6234 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6235 return NOTIFY_OK;
6236
6237 local_irq_disable();
6238 cpu = smp_processor_id();
6239 sd = &per_cpu(softnet_data, cpu);
6240 oldsd = &per_cpu(softnet_data, oldcpu);
6241
6242 /* Find end of our completion_queue. */
6243 list_skb = &sd->completion_queue;
6244 while (*list_skb)
6245 list_skb = &(*list_skb)->next;
6246 /* Append completion queue from offline CPU. */
6247 *list_skb = oldsd->completion_queue;
6248 oldsd->completion_queue = NULL;
6249
6250 /* Append output queue from offline CPU. */
6251 if (oldsd->output_queue) {
6252 *sd->output_queue_tailp = oldsd->output_queue;
6253 sd->output_queue_tailp = oldsd->output_queue_tailp;
6254 oldsd->output_queue = NULL;
6255 oldsd->output_queue_tailp = &oldsd->output_queue;
6256 }
6257 /* Append NAPI poll list from offline CPU. */
6258 if (!list_empty(&oldsd->poll_list)) {
6259 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6260 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6261 }
6262
6263 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6264 local_irq_enable();
6265
6266 /* Process offline CPU's input_pkt_queue */
6267 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6268 netif_rx(skb);
6269 input_queue_head_incr(oldsd);
6270 }
6271 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6272 netif_rx(skb);
6273 input_queue_head_incr(oldsd);
6274 }
6275
6276 return NOTIFY_OK;
6277 }
6278
6279
6280 /**
6281 * netdev_increment_features - increment feature set by one
6282 * @all: current feature set
6283 * @one: new feature set
6284 * @mask: mask feature set
6285 *
6286 * Computes a new feature set after adding a device with feature set
6287 * @one to the master device with current feature set @all. Will not
6288 * enable anything that is off in @mask. Returns the new feature set.
6289 */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)6290 netdev_features_t netdev_increment_features(netdev_features_t all,
6291 netdev_features_t one, netdev_features_t mask)
6292 {
6293 if (mask & NETIF_F_GEN_CSUM)
6294 mask |= NETIF_F_ALL_CSUM;
6295 mask |= NETIF_F_VLAN_CHALLENGED;
6296
6297 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6298 all &= one | ~NETIF_F_ALL_FOR_ALL;
6299
6300 /* If one device supports hw checksumming, set for all. */
6301 if (all & NETIF_F_GEN_CSUM)
6302 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6303
6304 return all;
6305 }
6306 EXPORT_SYMBOL(netdev_increment_features);
6307
netdev_create_hash(void)6308 static struct hlist_head *netdev_create_hash(void)
6309 {
6310 int i;
6311 struct hlist_head *hash;
6312
6313 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6314 if (hash != NULL)
6315 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6316 INIT_HLIST_HEAD(&hash[i]);
6317
6318 return hash;
6319 }
6320
6321 /* Initialize per network namespace state */
netdev_init(struct net * net)6322 static int __net_init netdev_init(struct net *net)
6323 {
6324 if (net != &init_net)
6325 INIT_LIST_HEAD(&net->dev_base_head);
6326
6327 net->dev_name_head = netdev_create_hash();
6328 if (net->dev_name_head == NULL)
6329 goto err_name;
6330
6331 net->dev_index_head = netdev_create_hash();
6332 if (net->dev_index_head == NULL)
6333 goto err_idx;
6334
6335 return 0;
6336
6337 err_idx:
6338 kfree(net->dev_name_head);
6339 err_name:
6340 return -ENOMEM;
6341 }
6342
6343 /**
6344 * netdev_drivername - network driver for the device
6345 * @dev: network device
6346 *
6347 * Determine network driver for device.
6348 */
netdev_drivername(const struct net_device * dev)6349 const char *netdev_drivername(const struct net_device *dev)
6350 {
6351 const struct device_driver *driver;
6352 const struct device *parent;
6353 const char *empty = "";
6354
6355 parent = dev->dev.parent;
6356 if (!parent)
6357 return empty;
6358
6359 driver = parent->driver;
6360 if (driver && driver->name)
6361 return driver->name;
6362 return empty;
6363 }
6364
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)6365 int __netdev_printk(const char *level, const struct net_device *dev,
6366 struct va_format *vaf)
6367 {
6368 int r;
6369
6370 if (dev && dev->dev.parent)
6371 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6372 netdev_name(dev), vaf);
6373 else if (dev)
6374 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6375 else
6376 r = printk("%s(NULL net_device): %pV", level, vaf);
6377
6378 return r;
6379 }
6380 EXPORT_SYMBOL(__netdev_printk);
6381
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)6382 int netdev_printk(const char *level, const struct net_device *dev,
6383 const char *format, ...)
6384 {
6385 struct va_format vaf;
6386 va_list args;
6387 int r;
6388
6389 va_start(args, format);
6390
6391 vaf.fmt = format;
6392 vaf.va = &args;
6393
6394 r = __netdev_printk(level, dev, &vaf);
6395 va_end(args);
6396
6397 return r;
6398 }
6399 EXPORT_SYMBOL(netdev_printk);
6400
6401 #define define_netdev_printk_level(func, level) \
6402 int func(const struct net_device *dev, const char *fmt, ...) \
6403 { \
6404 int r; \
6405 struct va_format vaf; \
6406 va_list args; \
6407 \
6408 va_start(args, fmt); \
6409 \
6410 vaf.fmt = fmt; \
6411 vaf.va = &args; \
6412 \
6413 r = __netdev_printk(level, dev, &vaf); \
6414 va_end(args); \
6415 \
6416 return r; \
6417 } \
6418 EXPORT_SYMBOL(func);
6419
6420 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6421 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6422 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6423 define_netdev_printk_level(netdev_err, KERN_ERR);
6424 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6425 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6426 define_netdev_printk_level(netdev_info, KERN_INFO);
6427
netdev_exit(struct net * net)6428 static void __net_exit netdev_exit(struct net *net)
6429 {
6430 kfree(net->dev_name_head);
6431 kfree(net->dev_index_head);
6432 }
6433
6434 static struct pernet_operations __net_initdata netdev_net_ops = {
6435 .init = netdev_init,
6436 .exit = netdev_exit,
6437 };
6438
default_device_exit(struct net * net)6439 static void __net_exit default_device_exit(struct net *net)
6440 {
6441 struct net_device *dev, *aux;
6442 /*
6443 * Push all migratable network devices back to the
6444 * initial network namespace
6445 */
6446 rtnl_lock();
6447 for_each_netdev_safe(net, dev, aux) {
6448 int err;
6449 char fb_name[IFNAMSIZ];
6450
6451 /* Ignore unmoveable devices (i.e. loopback) */
6452 if (dev->features & NETIF_F_NETNS_LOCAL)
6453 continue;
6454
6455 /* Leave virtual devices for the generic cleanup */
6456 if (dev->rtnl_link_ops)
6457 continue;
6458
6459 /* Push remaining network devices to init_net */
6460 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6461 err = dev_change_net_namespace(dev, &init_net, fb_name);
6462 if (err) {
6463 pr_emerg("%s: failed to move %s to init_net: %d\n",
6464 __func__, dev->name, err);
6465 BUG();
6466 }
6467 }
6468 rtnl_unlock();
6469 }
6470
default_device_exit_batch(struct list_head * net_list)6471 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6472 {
6473 /* At exit all network devices most be removed from a network
6474 * namespace. Do this in the reverse order of registration.
6475 * Do this across as many network namespaces as possible to
6476 * improve batching efficiency.
6477 */
6478 struct net_device *dev;
6479 struct net *net;
6480 LIST_HEAD(dev_kill_list);
6481
6482 rtnl_lock();
6483 list_for_each_entry(net, net_list, exit_list) {
6484 for_each_netdev_reverse(net, dev) {
6485 if (dev->rtnl_link_ops)
6486 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6487 else
6488 unregister_netdevice_queue(dev, &dev_kill_list);
6489 }
6490 }
6491 unregister_netdevice_many(&dev_kill_list);
6492 list_del(&dev_kill_list);
6493 rtnl_unlock();
6494 }
6495
6496 static struct pernet_operations __net_initdata default_device_ops = {
6497 .exit = default_device_exit,
6498 .exit_batch = default_device_exit_batch,
6499 };
6500
6501 /*
6502 * Initialize the DEV module. At boot time this walks the device list and
6503 * unhooks any devices that fail to initialise (normally hardware not
6504 * present) and leaves us with a valid list of present and active devices.
6505 *
6506 */
6507
6508 /*
6509 * This is called single threaded during boot, so no need
6510 * to take the rtnl semaphore.
6511 */
net_dev_init(void)6512 static int __init net_dev_init(void)
6513 {
6514 int i, rc = -ENOMEM;
6515
6516 BUG_ON(!dev_boot_phase);
6517
6518 if (dev_proc_init())
6519 goto out;
6520
6521 if (netdev_kobject_init())
6522 goto out;
6523
6524 INIT_LIST_HEAD(&ptype_all);
6525 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6526 INIT_LIST_HEAD(&ptype_base[i]);
6527
6528 if (register_pernet_subsys(&netdev_net_ops))
6529 goto out;
6530
6531 /*
6532 * Initialise the packet receive queues.
6533 */
6534
6535 for_each_possible_cpu(i) {
6536 struct softnet_data *sd = &per_cpu(softnet_data, i);
6537
6538 memset(sd, 0, sizeof(*sd));
6539 skb_queue_head_init(&sd->input_pkt_queue);
6540 skb_queue_head_init(&sd->process_queue);
6541 sd->completion_queue = NULL;
6542 INIT_LIST_HEAD(&sd->poll_list);
6543 sd->output_queue = NULL;
6544 sd->output_queue_tailp = &sd->output_queue;
6545 #ifdef CONFIG_RPS
6546 sd->csd.func = rps_trigger_softirq;
6547 sd->csd.info = sd;
6548 sd->csd.flags = 0;
6549 sd->cpu = i;
6550 #endif
6551
6552 sd->backlog.poll = process_backlog;
6553 sd->backlog.weight = weight_p;
6554 sd->backlog.gro_list = NULL;
6555 sd->backlog.gro_count = 0;
6556 }
6557
6558 dev_boot_phase = 0;
6559
6560 /* The loopback device is special if any other network devices
6561 * is present in a network namespace the loopback device must
6562 * be present. Since we now dynamically allocate and free the
6563 * loopback device ensure this invariant is maintained by
6564 * keeping the loopback device as the first device on the
6565 * list of network devices. Ensuring the loopback devices
6566 * is the first device that appears and the last network device
6567 * that disappears.
6568 */
6569 if (register_pernet_device(&loopback_net_ops))
6570 goto out;
6571
6572 if (register_pernet_device(&default_device_ops))
6573 goto out;
6574
6575 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6576 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6577
6578 hotcpu_notifier(dev_cpu_callback, 0);
6579 dst_init();
6580 dev_mcast_init();
6581 rc = 0;
6582 out:
6583 return rc;
6584 }
6585
6586 subsys_initcall(net_dev_init);
6587
initialize_hashrnd(void)6588 static int __init initialize_hashrnd(void)
6589 {
6590 get_random_bytes(&hashrnd, sizeof(hashrnd));
6591 return 0;
6592 }
6593
6594 late_initcall_sync(initialize_hashrnd);
6595
6596