1 /*
2  * Virtual Memory Map support
3  *
4  * (C) 2007 sgi. Christoph Lameter.
5  *
6  * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn,
7  * virt_to_page, page_address() to be implemented as a base offset
8  * calculation without memory access.
9  *
10  * However, virtual mappings need a page table and TLBs. Many Linux
11  * architectures already map their physical space using 1-1 mappings
12  * via TLBs. For those arches the virtual memory map is essentially
13  * for free if we use the same page size as the 1-1 mappings. In that
14  * case the overhead consists of a few additional pages that are
15  * allocated to create a view of memory for vmemmap.
16  *
17  * The architecture is expected to provide a vmemmap_populate() function
18  * to instantiate the mapping.
19  */
20 #include <linux/mm.h>
21 #include <linux/mmzone.h>
22 #include <linux/bootmem.h>
23 #include <linux/highmem.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
26 #include <linux/vmalloc.h>
27 #include <linux/sched.h>
28 #include <asm/dma.h>
29 #include <asm/pgalloc.h>
30 #include <asm/pgtable.h>
31 
32 /*
33  * Allocate a block of memory to be used to back the virtual memory map
34  * or to back the page tables that are used to create the mapping.
35  * Uses the main allocators if they are available, else bootmem.
36  */
37 
__earlyonly_bootmem_alloc(int node,unsigned long size,unsigned long align,unsigned long goal)38 static void * __init_refok __earlyonly_bootmem_alloc(int node,
39 				unsigned long size,
40 				unsigned long align,
41 				unsigned long goal)
42 {
43 	return __alloc_bootmem_node_high(NODE_DATA(node), size, align, goal);
44 }
45 
46 static void *vmemmap_buf;
47 static void *vmemmap_buf_end;
48 
vmemmap_alloc_block(unsigned long size,int node)49 void * __meminit vmemmap_alloc_block(unsigned long size, int node)
50 {
51 	/* If the main allocator is up use that, fallback to bootmem. */
52 	if (slab_is_available()) {
53 		struct page *page;
54 
55 		if (node_state(node, N_HIGH_MEMORY))
56 			page = alloc_pages_node(node,
57 				GFP_KERNEL | __GFP_ZERO, get_order(size));
58 		else
59 			page = alloc_pages(GFP_KERNEL | __GFP_ZERO,
60 				get_order(size));
61 		if (page)
62 			return page_address(page);
63 		return NULL;
64 	} else
65 		return __earlyonly_bootmem_alloc(node, size, size,
66 				__pa(MAX_DMA_ADDRESS));
67 }
68 
69 /* need to make sure size is all the same during early stage */
vmemmap_alloc_block_buf(unsigned long size,int node)70 void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node)
71 {
72 	void *ptr;
73 
74 	if (!vmemmap_buf)
75 		return vmemmap_alloc_block(size, node);
76 
77 	/* take the from buf */
78 	ptr = (void *)ALIGN((unsigned long)vmemmap_buf, size);
79 	if (ptr + size > vmemmap_buf_end)
80 		return vmemmap_alloc_block(size, node);
81 
82 	vmemmap_buf = ptr + size;
83 
84 	return ptr;
85 }
86 
vmemmap_verify(pte_t * pte,int node,unsigned long start,unsigned long end)87 void __meminit vmemmap_verify(pte_t *pte, int node,
88 				unsigned long start, unsigned long end)
89 {
90 	unsigned long pfn = pte_pfn(*pte);
91 	int actual_node = early_pfn_to_nid(pfn);
92 
93 	if (node_distance(actual_node, node) > LOCAL_DISTANCE)
94 		printk(KERN_WARNING "[%lx-%lx] potential offnode "
95 			"page_structs\n", start, end - 1);
96 }
97 
vmemmap_pte_populate(pmd_t * pmd,unsigned long addr,int node)98 pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node)
99 {
100 	pte_t *pte = pte_offset_kernel(pmd, addr);
101 	if (pte_none(*pte)) {
102 		pte_t entry;
103 		void *p = vmemmap_alloc_block_buf(PAGE_SIZE, node);
104 		if (!p)
105 			return NULL;
106 		entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
107 		set_pte_at(&init_mm, addr, pte, entry);
108 	}
109 	return pte;
110 }
111 
vmemmap_pmd_populate(pud_t * pud,unsigned long addr,int node)112 pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node)
113 {
114 	pmd_t *pmd = pmd_offset(pud, addr);
115 	if (pmd_none(*pmd)) {
116 		void *p = vmemmap_alloc_block(PAGE_SIZE, node);
117 		if (!p)
118 			return NULL;
119 		pmd_populate_kernel(&init_mm, pmd, p);
120 	}
121 	return pmd;
122 }
123 
vmemmap_pud_populate(pgd_t * pgd,unsigned long addr,int node)124 pud_t * __meminit vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node)
125 {
126 	pud_t *pud = pud_offset(pgd, addr);
127 	if (pud_none(*pud)) {
128 		void *p = vmemmap_alloc_block(PAGE_SIZE, node);
129 		if (!p)
130 			return NULL;
131 		pud_populate(&init_mm, pud, p);
132 	}
133 	return pud;
134 }
135 
vmemmap_pgd_populate(unsigned long addr,int node)136 pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node)
137 {
138 	pgd_t *pgd = pgd_offset_k(addr);
139 	if (pgd_none(*pgd)) {
140 		void *p = vmemmap_alloc_block(PAGE_SIZE, node);
141 		if (!p)
142 			return NULL;
143 		pgd_populate(&init_mm, pgd, p);
144 	}
145 	return pgd;
146 }
147 
vmemmap_populate_basepages(struct page * start_page,unsigned long size,int node)148 int __meminit vmemmap_populate_basepages(struct page *start_page,
149 						unsigned long size, int node)
150 {
151 	unsigned long addr = (unsigned long)start_page;
152 	unsigned long end = (unsigned long)(start_page + size);
153 	pgd_t *pgd;
154 	pud_t *pud;
155 	pmd_t *pmd;
156 	pte_t *pte;
157 
158 	for (; addr < end; addr += PAGE_SIZE) {
159 		pgd = vmemmap_pgd_populate(addr, node);
160 		if (!pgd)
161 			return -ENOMEM;
162 		pud = vmemmap_pud_populate(pgd, addr, node);
163 		if (!pud)
164 			return -ENOMEM;
165 		pmd = vmemmap_pmd_populate(pud, addr, node);
166 		if (!pmd)
167 			return -ENOMEM;
168 		pte = vmemmap_pte_populate(pmd, addr, node);
169 		if (!pte)
170 			return -ENOMEM;
171 		vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
172 	}
173 
174 	return 0;
175 }
176 
sparse_mem_map_populate(unsigned long pnum,int nid)177 struct page * __meminit sparse_mem_map_populate(unsigned long pnum, int nid)
178 {
179 	struct page *map = pfn_to_page(pnum * PAGES_PER_SECTION);
180 	int error = vmemmap_populate(map, PAGES_PER_SECTION, nid);
181 	if (error)
182 		return NULL;
183 
184 	return map;
185 }
186 
sparse_mem_maps_populate_node(struct page ** map_map,unsigned long pnum_begin,unsigned long pnum_end,unsigned long map_count,int nodeid)187 void __init sparse_mem_maps_populate_node(struct page **map_map,
188 					  unsigned long pnum_begin,
189 					  unsigned long pnum_end,
190 					  unsigned long map_count, int nodeid)
191 {
192 	unsigned long pnum;
193 	unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
194 	void *vmemmap_buf_start;
195 
196 	size = ALIGN(size, PMD_SIZE);
197 	vmemmap_buf_start = __earlyonly_bootmem_alloc(nodeid, size * map_count,
198 			 PMD_SIZE, __pa(MAX_DMA_ADDRESS));
199 
200 	if (vmemmap_buf_start) {
201 		vmemmap_buf = vmemmap_buf_start;
202 		vmemmap_buf_end = vmemmap_buf_start + size * map_count;
203 	}
204 
205 	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
206 		struct mem_section *ms;
207 
208 		if (!present_section_nr(pnum))
209 			continue;
210 
211 		map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
212 		if (map_map[pnum])
213 			continue;
214 		ms = __nr_to_section(pnum);
215 		printk(KERN_ERR "%s: sparsemem memory map backing failed "
216 			"some memory will not be available.\n", __func__);
217 		ms->section_mem_map = 0;
218 	}
219 
220 	if (vmemmap_buf_start) {
221 		/* need to free left buf */
222 		free_bootmem(__pa(vmemmap_buf), vmemmap_buf_end - vmemmap_buf);
223 		vmemmap_buf = NULL;
224 		vmemmap_buf_end = NULL;
225 	}
226 }
227