1 /*
2  * mm/percpu-vm.c - vmalloc area based chunk allocation
3  *
4  * Copyright (C) 2010		SUSE Linux Products GmbH
5  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
6  *
7  * This file is released under the GPLv2.
8  *
9  * Chunks are mapped into vmalloc areas and populated page by page.
10  * This is the default chunk allocator.
11  */
12 
pcpu_chunk_page(struct pcpu_chunk * chunk,unsigned int cpu,int page_idx)13 static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
14 				    unsigned int cpu, int page_idx)
15 {
16 	/* must not be used on pre-mapped chunk */
17 	WARN_ON(chunk->immutable);
18 
19 	return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
20 }
21 
22 /**
23  * pcpu_get_pages_and_bitmap - get temp pages array and bitmap
24  * @chunk: chunk of interest
25  * @bitmapp: output parameter for bitmap
26  * @may_alloc: may allocate the array
27  *
28  * Returns pointer to array of pointers to struct page and bitmap,
29  * both of which can be indexed with pcpu_page_idx().  The returned
30  * array is cleared to zero and *@bitmapp is copied from
31  * @chunk->populated.  Note that there is only one array and bitmap
32  * and access exclusion is the caller's responsibility.
33  *
34  * CONTEXT:
35  * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc.
36  * Otherwise, don't care.
37  *
38  * RETURNS:
39  * Pointer to temp pages array on success, NULL on failure.
40  */
pcpu_get_pages_and_bitmap(struct pcpu_chunk * chunk,unsigned long ** bitmapp,bool may_alloc)41 static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk,
42 					       unsigned long **bitmapp,
43 					       bool may_alloc)
44 {
45 	static struct page **pages;
46 	static unsigned long *bitmap;
47 	size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]);
48 	size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) *
49 			     sizeof(unsigned long);
50 
51 	if (!pages || !bitmap) {
52 		if (may_alloc && !pages)
53 			pages = pcpu_mem_zalloc(pages_size);
54 		if (may_alloc && !bitmap)
55 			bitmap = pcpu_mem_zalloc(bitmap_size);
56 		if (!pages || !bitmap)
57 			return NULL;
58 	}
59 
60 	bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages);
61 
62 	*bitmapp = bitmap;
63 	return pages;
64 }
65 
66 /**
67  * pcpu_free_pages - free pages which were allocated for @chunk
68  * @chunk: chunk pages were allocated for
69  * @pages: array of pages to be freed, indexed by pcpu_page_idx()
70  * @populated: populated bitmap
71  * @page_start: page index of the first page to be freed
72  * @page_end: page index of the last page to be freed + 1
73  *
74  * Free pages [@page_start and @page_end) in @pages for all units.
75  * The pages were allocated for @chunk.
76  */
pcpu_free_pages(struct pcpu_chunk * chunk,struct page ** pages,unsigned long * populated,int page_start,int page_end)77 static void pcpu_free_pages(struct pcpu_chunk *chunk,
78 			    struct page **pages, unsigned long *populated,
79 			    int page_start, int page_end)
80 {
81 	unsigned int cpu;
82 	int i;
83 
84 	for_each_possible_cpu(cpu) {
85 		for (i = page_start; i < page_end; i++) {
86 			struct page *page = pages[pcpu_page_idx(cpu, i)];
87 
88 			if (page)
89 				__free_page(page);
90 		}
91 	}
92 }
93 
94 /**
95  * pcpu_alloc_pages - allocates pages for @chunk
96  * @chunk: target chunk
97  * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
98  * @populated: populated bitmap
99  * @page_start: page index of the first page to be allocated
100  * @page_end: page index of the last page to be allocated + 1
101  *
102  * Allocate pages [@page_start,@page_end) into @pages for all units.
103  * The allocation is for @chunk.  Percpu core doesn't care about the
104  * content of @pages and will pass it verbatim to pcpu_map_pages().
105  */
pcpu_alloc_pages(struct pcpu_chunk * chunk,struct page ** pages,unsigned long * populated,int page_start,int page_end)106 static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
107 			    struct page **pages, unsigned long *populated,
108 			    int page_start, int page_end)
109 {
110 	const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
111 	unsigned int cpu;
112 	int i;
113 
114 	for_each_possible_cpu(cpu) {
115 		for (i = page_start; i < page_end; i++) {
116 			struct page **pagep = &pages[pcpu_page_idx(cpu, i)];
117 
118 			*pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
119 			if (!*pagep) {
120 				pcpu_free_pages(chunk, pages, populated,
121 						page_start, page_end);
122 				return -ENOMEM;
123 			}
124 		}
125 	}
126 	return 0;
127 }
128 
129 /**
130  * pcpu_pre_unmap_flush - flush cache prior to unmapping
131  * @chunk: chunk the regions to be flushed belongs to
132  * @page_start: page index of the first page to be flushed
133  * @page_end: page index of the last page to be flushed + 1
134  *
135  * Pages in [@page_start,@page_end) of @chunk are about to be
136  * unmapped.  Flush cache.  As each flushing trial can be very
137  * expensive, issue flush on the whole region at once rather than
138  * doing it for each cpu.  This could be an overkill but is more
139  * scalable.
140  */
pcpu_pre_unmap_flush(struct pcpu_chunk * chunk,int page_start,int page_end)141 static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
142 				 int page_start, int page_end)
143 {
144 	flush_cache_vunmap(
145 		pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
146 		pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
147 }
148 
__pcpu_unmap_pages(unsigned long addr,int nr_pages)149 static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
150 {
151 	unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT);
152 }
153 
154 /**
155  * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
156  * @chunk: chunk of interest
157  * @pages: pages array which can be used to pass information to free
158  * @populated: populated bitmap
159  * @page_start: page index of the first page to unmap
160  * @page_end: page index of the last page to unmap + 1
161  *
162  * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
163  * Corresponding elements in @pages were cleared by the caller and can
164  * be used to carry information to pcpu_free_pages() which will be
165  * called after all unmaps are finished.  The caller should call
166  * proper pre/post flush functions.
167  */
pcpu_unmap_pages(struct pcpu_chunk * chunk,struct page ** pages,unsigned long * populated,int page_start,int page_end)168 static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
169 			     struct page **pages, unsigned long *populated,
170 			     int page_start, int page_end)
171 {
172 	unsigned int cpu;
173 	int i;
174 
175 	for_each_possible_cpu(cpu) {
176 		for (i = page_start; i < page_end; i++) {
177 			struct page *page;
178 
179 			page = pcpu_chunk_page(chunk, cpu, i);
180 			WARN_ON(!page);
181 			pages[pcpu_page_idx(cpu, i)] = page;
182 		}
183 		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
184 				   page_end - page_start);
185 	}
186 
187 	bitmap_clear(populated, page_start, page_end - page_start);
188 }
189 
190 /**
191  * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
192  * @chunk: pcpu_chunk the regions to be flushed belong to
193  * @page_start: page index of the first page to be flushed
194  * @page_end: page index of the last page to be flushed + 1
195  *
196  * Pages [@page_start,@page_end) of @chunk have been unmapped.  Flush
197  * TLB for the regions.  This can be skipped if the area is to be
198  * returned to vmalloc as vmalloc will handle TLB flushing lazily.
199  *
200  * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
201  * for the whole region.
202  */
pcpu_post_unmap_tlb_flush(struct pcpu_chunk * chunk,int page_start,int page_end)203 static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
204 				      int page_start, int page_end)
205 {
206 	flush_tlb_kernel_range(
207 		pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
208 		pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
209 }
210 
__pcpu_map_pages(unsigned long addr,struct page ** pages,int nr_pages)211 static int __pcpu_map_pages(unsigned long addr, struct page **pages,
212 			    int nr_pages)
213 {
214 	return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT,
215 					PAGE_KERNEL, pages);
216 }
217 
218 /**
219  * pcpu_map_pages - map pages into a pcpu_chunk
220  * @chunk: chunk of interest
221  * @pages: pages array containing pages to be mapped
222  * @populated: populated bitmap
223  * @page_start: page index of the first page to map
224  * @page_end: page index of the last page to map + 1
225  *
226  * For each cpu, map pages [@page_start,@page_end) into @chunk.  The
227  * caller is responsible for calling pcpu_post_map_flush() after all
228  * mappings are complete.
229  *
230  * This function is responsible for setting corresponding bits in
231  * @chunk->populated bitmap and whatever is necessary for reverse
232  * lookup (addr -> chunk).
233  */
pcpu_map_pages(struct pcpu_chunk * chunk,struct page ** pages,unsigned long * populated,int page_start,int page_end)234 static int pcpu_map_pages(struct pcpu_chunk *chunk,
235 			  struct page **pages, unsigned long *populated,
236 			  int page_start, int page_end)
237 {
238 	unsigned int cpu, tcpu;
239 	int i, err;
240 
241 	for_each_possible_cpu(cpu) {
242 		err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
243 				       &pages[pcpu_page_idx(cpu, page_start)],
244 				       page_end - page_start);
245 		if (err < 0)
246 			goto err;
247 	}
248 
249 	/* mapping successful, link chunk and mark populated */
250 	for (i = page_start; i < page_end; i++) {
251 		for_each_possible_cpu(cpu)
252 			pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
253 					    chunk);
254 		__set_bit(i, populated);
255 	}
256 
257 	return 0;
258 
259 err:
260 	for_each_possible_cpu(tcpu) {
261 		if (tcpu == cpu)
262 			break;
263 		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
264 				   page_end - page_start);
265 	}
266 	return err;
267 }
268 
269 /**
270  * pcpu_post_map_flush - flush cache after mapping
271  * @chunk: pcpu_chunk the regions to be flushed belong to
272  * @page_start: page index of the first page to be flushed
273  * @page_end: page index of the last page to be flushed + 1
274  *
275  * Pages [@page_start,@page_end) of @chunk have been mapped.  Flush
276  * cache.
277  *
278  * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
279  * for the whole region.
280  */
pcpu_post_map_flush(struct pcpu_chunk * chunk,int page_start,int page_end)281 static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
282 				int page_start, int page_end)
283 {
284 	flush_cache_vmap(
285 		pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
286 		pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
287 }
288 
289 /**
290  * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
291  * @chunk: chunk of interest
292  * @off: offset to the area to populate
293  * @size: size of the area to populate in bytes
294  *
295  * For each cpu, populate and map pages [@page_start,@page_end) into
296  * @chunk.  The area is cleared on return.
297  *
298  * CONTEXT:
299  * pcpu_alloc_mutex, does GFP_KERNEL allocation.
300  */
pcpu_populate_chunk(struct pcpu_chunk * chunk,int off,int size)301 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
302 {
303 	int page_start = PFN_DOWN(off);
304 	int page_end = PFN_UP(off + size);
305 	int free_end = page_start, unmap_end = page_start;
306 	struct page **pages;
307 	unsigned long *populated;
308 	unsigned int cpu;
309 	int rs, re, rc;
310 
311 	/* quick path, check whether all pages are already there */
312 	rs = page_start;
313 	pcpu_next_pop(chunk, &rs, &re, page_end);
314 	if (rs == page_start && re == page_end)
315 		goto clear;
316 
317 	/* need to allocate and map pages, this chunk can't be immutable */
318 	WARN_ON(chunk->immutable);
319 
320 	pages = pcpu_get_pages_and_bitmap(chunk, &populated, true);
321 	if (!pages)
322 		return -ENOMEM;
323 
324 	/* alloc and map */
325 	pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
326 		rc = pcpu_alloc_pages(chunk, pages, populated, rs, re);
327 		if (rc)
328 			goto err_free;
329 		free_end = re;
330 	}
331 
332 	pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
333 		rc = pcpu_map_pages(chunk, pages, populated, rs, re);
334 		if (rc)
335 			goto err_unmap;
336 		unmap_end = re;
337 	}
338 	pcpu_post_map_flush(chunk, page_start, page_end);
339 
340 	/* commit new bitmap */
341 	bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
342 clear:
343 	for_each_possible_cpu(cpu)
344 		memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
345 	return 0;
346 
347 err_unmap:
348 	pcpu_pre_unmap_flush(chunk, page_start, unmap_end);
349 	pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end)
350 		pcpu_unmap_pages(chunk, pages, populated, rs, re);
351 	pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end);
352 err_free:
353 	pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end)
354 		pcpu_free_pages(chunk, pages, populated, rs, re);
355 	return rc;
356 }
357 
358 /**
359  * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
360  * @chunk: chunk to depopulate
361  * @off: offset to the area to depopulate
362  * @size: size of the area to depopulate in bytes
363  * @flush: whether to flush cache and tlb or not
364  *
365  * For each cpu, depopulate and unmap pages [@page_start,@page_end)
366  * from @chunk.  If @flush is true, vcache is flushed before unmapping
367  * and tlb after.
368  *
369  * CONTEXT:
370  * pcpu_alloc_mutex.
371  */
pcpu_depopulate_chunk(struct pcpu_chunk * chunk,int off,int size)372 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size)
373 {
374 	int page_start = PFN_DOWN(off);
375 	int page_end = PFN_UP(off + size);
376 	struct page **pages;
377 	unsigned long *populated;
378 	int rs, re;
379 
380 	/* quick path, check whether it's empty already */
381 	rs = page_start;
382 	pcpu_next_unpop(chunk, &rs, &re, page_end);
383 	if (rs == page_start && re == page_end)
384 		return;
385 
386 	/* immutable chunks can't be depopulated */
387 	WARN_ON(chunk->immutable);
388 
389 	/*
390 	 * If control reaches here, there must have been at least one
391 	 * successful population attempt so the temp pages array must
392 	 * be available now.
393 	 */
394 	pages = pcpu_get_pages_and_bitmap(chunk, &populated, false);
395 	BUG_ON(!pages);
396 
397 	/* unmap and free */
398 	pcpu_pre_unmap_flush(chunk, page_start, page_end);
399 
400 	pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
401 		pcpu_unmap_pages(chunk, pages, populated, rs, re);
402 
403 	/* no need to flush tlb, vmalloc will handle it lazily */
404 
405 	pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
406 		pcpu_free_pages(chunk, pages, populated, rs, re);
407 
408 	/* commit new bitmap */
409 	bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
410 }
411 
pcpu_create_chunk(void)412 static struct pcpu_chunk *pcpu_create_chunk(void)
413 {
414 	struct pcpu_chunk *chunk;
415 	struct vm_struct **vms;
416 
417 	chunk = pcpu_alloc_chunk();
418 	if (!chunk)
419 		return NULL;
420 
421 	vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes,
422 				pcpu_nr_groups, pcpu_atom_size);
423 	if (!vms) {
424 		pcpu_free_chunk(chunk);
425 		return NULL;
426 	}
427 
428 	chunk->data = vms;
429 	chunk->base_addr = vms[0]->addr - pcpu_group_offsets[0];
430 	return chunk;
431 }
432 
pcpu_destroy_chunk(struct pcpu_chunk * chunk)433 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk)
434 {
435 	if (chunk && chunk->data)
436 		pcpu_free_vm_areas(chunk->data, pcpu_nr_groups);
437 	pcpu_free_chunk(chunk);
438 }
439 
pcpu_addr_to_page(void * addr)440 static struct page *pcpu_addr_to_page(void *addr)
441 {
442 	return vmalloc_to_page(addr);
443 }
444 
pcpu_verify_alloc_info(const struct pcpu_alloc_info * ai)445 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai)
446 {
447 	/* no extra restriction */
448 	return 0;
449 }
450