1 /*
2  * Copyright (C) 2005 David Brownell
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  */
18 
19 #ifndef __LINUX_SPI_H
20 #define __LINUX_SPI_H
21 
22 #include <linux/device.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/slab.h>
25 #include <linux/kthread.h>
26 
27 /*
28  * INTERFACES between SPI master-side drivers and SPI infrastructure.
29  * (There's no SPI slave support for Linux yet...)
30  */
31 extern struct bus_type spi_bus_type;
32 
33 /**
34  * struct spi_device - Master side proxy for an SPI slave device
35  * @dev: Driver model representation of the device.
36  * @master: SPI controller used with the device.
37  * @max_speed_hz: Maximum clock rate to be used with this chip
38  *	(on this board); may be changed by the device's driver.
39  *	The spi_transfer.speed_hz can override this for each transfer.
40  * @chip_select: Chipselect, distinguishing chips handled by @master.
41  * @mode: The spi mode defines how data is clocked out and in.
42  *	This may be changed by the device's driver.
43  *	The "active low" default for chipselect mode can be overridden
44  *	(by specifying SPI_CS_HIGH) as can the "MSB first" default for
45  *	each word in a transfer (by specifying SPI_LSB_FIRST).
46  * @bits_per_word: Data transfers involve one or more words; word sizes
47  *	like eight or 12 bits are common.  In-memory wordsizes are
48  *	powers of two bytes (e.g. 20 bit samples use 32 bits).
49  *	This may be changed by the device's driver, or left at the
50  *	default (0) indicating protocol words are eight bit bytes.
51  *	The spi_transfer.bits_per_word can override this for each transfer.
52  * @irq: Negative, or the number passed to request_irq() to receive
53  *	interrupts from this device.
54  * @controller_state: Controller's runtime state
55  * @controller_data: Board-specific definitions for controller, such as
56  *	FIFO initialization parameters; from board_info.controller_data
57  * @modalias: Name of the driver to use with this device, or an alias
58  *	for that name.  This appears in the sysfs "modalias" attribute
59  *	for driver coldplugging, and in uevents used for hotplugging
60  *
61  * A @spi_device is used to interchange data between an SPI slave
62  * (usually a discrete chip) and CPU memory.
63  *
64  * In @dev, the platform_data is used to hold information about this
65  * device that's meaningful to the device's protocol driver, but not
66  * to its controller.  One example might be an identifier for a chip
67  * variant with slightly different functionality; another might be
68  * information about how this particular board wires the chip's pins.
69  */
70 struct spi_device {
71 	struct device		dev;
72 	struct spi_master	*master;
73 	u32			max_speed_hz;
74 	u8			chip_select;
75 	u8			mode;
76 #define	SPI_CPHA	0x01			/* clock phase */
77 #define	SPI_CPOL	0x02			/* clock polarity */
78 #define	SPI_MODE_0	(0|0)			/* (original MicroWire) */
79 #define	SPI_MODE_1	(0|SPI_CPHA)
80 #define	SPI_MODE_2	(SPI_CPOL|0)
81 #define	SPI_MODE_3	(SPI_CPOL|SPI_CPHA)
82 #define	SPI_CS_HIGH	0x04			/* chipselect active high? */
83 #define	SPI_LSB_FIRST	0x08			/* per-word bits-on-wire */
84 #define	SPI_3WIRE	0x10			/* SI/SO signals shared */
85 #define	SPI_LOOP	0x20			/* loopback mode */
86 #define	SPI_NO_CS	0x40			/* 1 dev/bus, no chipselect */
87 #define	SPI_READY	0x80			/* slave pulls low to pause */
88 	u8			bits_per_word;
89 	int			irq;
90 	void			*controller_state;
91 	void			*controller_data;
92 	char			modalias[SPI_NAME_SIZE];
93 
94 	/*
95 	 * likely need more hooks for more protocol options affecting how
96 	 * the controller talks to each chip, like:
97 	 *  - memory packing (12 bit samples into low bits, others zeroed)
98 	 *  - priority
99 	 *  - drop chipselect after each word
100 	 *  - chipselect delays
101 	 *  - ...
102 	 */
103 };
104 
to_spi_device(struct device * dev)105 static inline struct spi_device *to_spi_device(struct device *dev)
106 {
107 	return dev ? container_of(dev, struct spi_device, dev) : NULL;
108 }
109 
110 /* most drivers won't need to care about device refcounting */
spi_dev_get(struct spi_device * spi)111 static inline struct spi_device *spi_dev_get(struct spi_device *spi)
112 {
113 	return (spi && get_device(&spi->dev)) ? spi : NULL;
114 }
115 
spi_dev_put(struct spi_device * spi)116 static inline void spi_dev_put(struct spi_device *spi)
117 {
118 	if (spi)
119 		put_device(&spi->dev);
120 }
121 
122 /* ctldata is for the bus_master driver's runtime state */
spi_get_ctldata(struct spi_device * spi)123 static inline void *spi_get_ctldata(struct spi_device *spi)
124 {
125 	return spi->controller_state;
126 }
127 
spi_set_ctldata(struct spi_device * spi,void * state)128 static inline void spi_set_ctldata(struct spi_device *spi, void *state)
129 {
130 	spi->controller_state = state;
131 }
132 
133 /* device driver data */
134 
spi_set_drvdata(struct spi_device * spi,void * data)135 static inline void spi_set_drvdata(struct spi_device *spi, void *data)
136 {
137 	dev_set_drvdata(&spi->dev, data);
138 }
139 
spi_get_drvdata(struct spi_device * spi)140 static inline void *spi_get_drvdata(struct spi_device *spi)
141 {
142 	return dev_get_drvdata(&spi->dev);
143 }
144 
145 struct spi_message;
146 
147 
148 
149 /**
150  * struct spi_driver - Host side "protocol" driver
151  * @id_table: List of SPI devices supported by this driver
152  * @probe: Binds this driver to the spi device.  Drivers can verify
153  *	that the device is actually present, and may need to configure
154  *	characteristics (such as bits_per_word) which weren't needed for
155  *	the initial configuration done during system setup.
156  * @remove: Unbinds this driver from the spi device
157  * @shutdown: Standard shutdown callback used during system state
158  *	transitions such as powerdown/halt and kexec
159  * @suspend: Standard suspend callback used during system state transitions
160  * @resume: Standard resume callback used during system state transitions
161  * @driver: SPI device drivers should initialize the name and owner
162  *	field of this structure.
163  *
164  * This represents the kind of device driver that uses SPI messages to
165  * interact with the hardware at the other end of a SPI link.  It's called
166  * a "protocol" driver because it works through messages rather than talking
167  * directly to SPI hardware (which is what the underlying SPI controller
168  * driver does to pass those messages).  These protocols are defined in the
169  * specification for the device(s) supported by the driver.
170  *
171  * As a rule, those device protocols represent the lowest level interface
172  * supported by a driver, and it will support upper level interfaces too.
173  * Examples of such upper levels include frameworks like MTD, networking,
174  * MMC, RTC, filesystem character device nodes, and hardware monitoring.
175  */
176 struct spi_driver {
177 	const struct spi_device_id *id_table;
178 	int			(*probe)(struct spi_device *spi);
179 	int			(*remove)(struct spi_device *spi);
180 	void			(*shutdown)(struct spi_device *spi);
181 	int			(*suspend)(struct spi_device *spi, pm_message_t mesg);
182 	int			(*resume)(struct spi_device *spi);
183 	struct device_driver	driver;
184 };
185 
to_spi_driver(struct device_driver * drv)186 static inline struct spi_driver *to_spi_driver(struct device_driver *drv)
187 {
188 	return drv ? container_of(drv, struct spi_driver, driver) : NULL;
189 }
190 
191 extern int spi_register_driver(struct spi_driver *sdrv);
192 
193 /**
194  * spi_unregister_driver - reverse effect of spi_register_driver
195  * @sdrv: the driver to unregister
196  * Context: can sleep
197  */
spi_unregister_driver(struct spi_driver * sdrv)198 static inline void spi_unregister_driver(struct spi_driver *sdrv)
199 {
200 	if (sdrv)
201 		driver_unregister(&sdrv->driver);
202 }
203 
204 /**
205  * module_spi_driver() - Helper macro for registering a SPI driver
206  * @__spi_driver: spi_driver struct
207  *
208  * Helper macro for SPI drivers which do not do anything special in module
209  * init/exit. This eliminates a lot of boilerplate. Each module may only
210  * use this macro once, and calling it replaces module_init() and module_exit()
211  */
212 #define module_spi_driver(__spi_driver) \
213 	module_driver(__spi_driver, spi_register_driver, \
214 			spi_unregister_driver)
215 
216 /**
217  * struct spi_master - interface to SPI master controller
218  * @dev: device interface to this driver
219  * @list: link with the global spi_master list
220  * @bus_num: board-specific (and often SOC-specific) identifier for a
221  *	given SPI controller.
222  * @num_chipselect: chipselects are used to distinguish individual
223  *	SPI slaves, and are numbered from zero to num_chipselects.
224  *	each slave has a chipselect signal, but it's common that not
225  *	every chipselect is connected to a slave.
226  * @dma_alignment: SPI controller constraint on DMA buffers alignment.
227  * @mode_bits: flags understood by this controller driver
228  * @flags: other constraints relevant to this driver
229  * @bus_lock_spinlock: spinlock for SPI bus locking
230  * @bus_lock_mutex: mutex for SPI bus locking
231  * @bus_lock_flag: indicates that the SPI bus is locked for exclusive use
232  * @setup: updates the device mode and clocking records used by a
233  *	device's SPI controller; protocol code may call this.  This
234  *	must fail if an unrecognized or unsupported mode is requested.
235  *	It's always safe to call this unless transfers are pending on
236  *	the device whose settings are being modified.
237  * @transfer: adds a message to the controller's transfer queue.
238  * @cleanup: frees controller-specific state
239  * @queued: whether this master is providing an internal message queue
240  * @kworker: thread struct for message pump
241  * @kworker_task: pointer to task for message pump kworker thread
242  * @pump_messages: work struct for scheduling work to the message pump
243  * @queue_lock: spinlock to syncronise access to message queue
244  * @queue: message queue
245  * @cur_msg: the currently in-flight message
246  * @busy: message pump is busy
247  * @running: message pump is running
248  * @rt: whether this queue is set to run as a realtime task
249  * @prepare_transfer_hardware: a message will soon arrive from the queue
250  *	so the subsystem requests the driver to prepare the transfer hardware
251  *	by issuing this call
252  * @transfer_one_message: the subsystem calls the driver to transfer a single
253  *	message while queuing transfers that arrive in the meantime. When the
254  *	driver is finished with this message, it must call
255  *	spi_finalize_current_message() so the subsystem can issue the next
256  *	transfer
257  * @unprepare_transfer_hardware: there are currently no more messages on the
258  *	queue so the subsystem notifies the driver that it may relax the
259  *	hardware by issuing this call
260  *
261  * Each SPI master controller can communicate with one or more @spi_device
262  * children.  These make a small bus, sharing MOSI, MISO and SCK signals
263  * but not chip select signals.  Each device may be configured to use a
264  * different clock rate, since those shared signals are ignored unless
265  * the chip is selected.
266  *
267  * The driver for an SPI controller manages access to those devices through
268  * a queue of spi_message transactions, copying data between CPU memory and
269  * an SPI slave device.  For each such message it queues, it calls the
270  * message's completion function when the transaction completes.
271  */
272 struct spi_master {
273 	struct device	dev;
274 
275 	struct list_head list;
276 
277 	/* other than negative (== assign one dynamically), bus_num is fully
278 	 * board-specific.  usually that simplifies to being SOC-specific.
279 	 * example:  one SOC has three SPI controllers, numbered 0..2,
280 	 * and one board's schematics might show it using SPI-2.  software
281 	 * would normally use bus_num=2 for that controller.
282 	 */
283 	s16			bus_num;
284 
285 	/* chipselects will be integral to many controllers; some others
286 	 * might use board-specific GPIOs.
287 	 */
288 	u16			num_chipselect;
289 
290 	/* some SPI controllers pose alignment requirements on DMAable
291 	 * buffers; let protocol drivers know about these requirements.
292 	 */
293 	u16			dma_alignment;
294 
295 	/* spi_device.mode flags understood by this controller driver */
296 	u16			mode_bits;
297 
298 	/* other constraints relevant to this driver */
299 	u16			flags;
300 #define SPI_MASTER_HALF_DUPLEX	BIT(0)		/* can't do full duplex */
301 #define SPI_MASTER_NO_RX	BIT(1)		/* can't do buffer read */
302 #define SPI_MASTER_NO_TX	BIT(2)		/* can't do buffer write */
303 
304 	/* lock and mutex for SPI bus locking */
305 	spinlock_t		bus_lock_spinlock;
306 	struct mutex		bus_lock_mutex;
307 
308 	/* flag indicating that the SPI bus is locked for exclusive use */
309 	bool			bus_lock_flag;
310 
311 	/* Setup mode and clock, etc (spi driver may call many times).
312 	 *
313 	 * IMPORTANT:  this may be called when transfers to another
314 	 * device are active.  DO NOT UPDATE SHARED REGISTERS in ways
315 	 * which could break those transfers.
316 	 */
317 	int			(*setup)(struct spi_device *spi);
318 
319 	/* bidirectional bulk transfers
320 	 *
321 	 * + The transfer() method may not sleep; its main role is
322 	 *   just to add the message to the queue.
323 	 * + For now there's no remove-from-queue operation, or
324 	 *   any other request management
325 	 * + To a given spi_device, message queueing is pure fifo
326 	 *
327 	 * + The master's main job is to process its message queue,
328 	 *   selecting a chip then transferring data
329 	 * + If there are multiple spi_device children, the i/o queue
330 	 *   arbitration algorithm is unspecified (round robin, fifo,
331 	 *   priority, reservations, preemption, etc)
332 	 *
333 	 * + Chipselect stays active during the entire message
334 	 *   (unless modified by spi_transfer.cs_change != 0).
335 	 * + The message transfers use clock and SPI mode parameters
336 	 *   previously established by setup() for this device
337 	 */
338 	int			(*transfer)(struct spi_device *spi,
339 						struct spi_message *mesg);
340 
341 	/* called on release() to free memory provided by spi_master */
342 	void			(*cleanup)(struct spi_device *spi);
343 
344 	/*
345 	 * These hooks are for drivers that want to use the generic
346 	 * master transfer queueing mechanism. If these are used, the
347 	 * transfer() function above must NOT be specified by the driver.
348 	 * Over time we expect SPI drivers to be phased over to this API.
349 	 */
350 	bool				queued;
351 	struct kthread_worker		kworker;
352 	struct task_struct		*kworker_task;
353 	struct kthread_work		pump_messages;
354 	spinlock_t			queue_lock;
355 	struct list_head		queue;
356 	struct spi_message		*cur_msg;
357 	bool				busy;
358 	bool				running;
359 	bool				rt;
360 
361 	int (*prepare_transfer_hardware)(struct spi_master *master);
362 	int (*transfer_one_message)(struct spi_master *master,
363 				    struct spi_message *mesg);
364 	int (*unprepare_transfer_hardware)(struct spi_master *master);
365 };
366 
spi_master_get_devdata(struct spi_master * master)367 static inline void *spi_master_get_devdata(struct spi_master *master)
368 {
369 	return dev_get_drvdata(&master->dev);
370 }
371 
spi_master_set_devdata(struct spi_master * master,void * data)372 static inline void spi_master_set_devdata(struct spi_master *master, void *data)
373 {
374 	dev_set_drvdata(&master->dev, data);
375 }
376 
spi_master_get(struct spi_master * master)377 static inline struct spi_master *spi_master_get(struct spi_master *master)
378 {
379 	if (!master || !get_device(&master->dev))
380 		return NULL;
381 	return master;
382 }
383 
spi_master_put(struct spi_master * master)384 static inline void spi_master_put(struct spi_master *master)
385 {
386 	if (master)
387 		put_device(&master->dev);
388 }
389 
390 /* PM calls that need to be issued by the driver */
391 extern int spi_master_suspend(struct spi_master *master);
392 extern int spi_master_resume(struct spi_master *master);
393 
394 /* Calls the driver make to interact with the message queue */
395 extern struct spi_message *spi_get_next_queued_message(struct spi_master *master);
396 extern void spi_finalize_current_message(struct spi_master *master);
397 
398 /* the spi driver core manages memory for the spi_master classdev */
399 extern struct spi_master *
400 spi_alloc_master(struct device *host, unsigned size);
401 
402 extern int spi_register_master(struct spi_master *master);
403 extern void spi_unregister_master(struct spi_master *master);
404 
405 extern struct spi_master *spi_busnum_to_master(u16 busnum);
406 
407 /*---------------------------------------------------------------------------*/
408 
409 /*
410  * I/O INTERFACE between SPI controller and protocol drivers
411  *
412  * Protocol drivers use a queue of spi_messages, each transferring data
413  * between the controller and memory buffers.
414  *
415  * The spi_messages themselves consist of a series of read+write transfer
416  * segments.  Those segments always read the same number of bits as they
417  * write; but one or the other is easily ignored by passing a null buffer
418  * pointer.  (This is unlike most types of I/O API, because SPI hardware
419  * is full duplex.)
420  *
421  * NOTE:  Allocation of spi_transfer and spi_message memory is entirely
422  * up to the protocol driver, which guarantees the integrity of both (as
423  * well as the data buffers) for as long as the message is queued.
424  */
425 
426 /**
427  * struct spi_transfer - a read/write buffer pair
428  * @tx_buf: data to be written (dma-safe memory), or NULL
429  * @rx_buf: data to be read (dma-safe memory), or NULL
430  * @tx_dma: DMA address of tx_buf, if @spi_message.is_dma_mapped
431  * @rx_dma: DMA address of rx_buf, if @spi_message.is_dma_mapped
432  * @len: size of rx and tx buffers (in bytes)
433  * @speed_hz: Select a speed other than the device default for this
434  *      transfer. If 0 the default (from @spi_device) is used.
435  * @bits_per_word: select a bits_per_word other than the device default
436  *      for this transfer. If 0 the default (from @spi_device) is used.
437  * @cs_change: affects chipselect after this transfer completes
438  * @delay_usecs: microseconds to delay after this transfer before
439  *	(optionally) changing the chipselect status, then starting
440  *	the next transfer or completing this @spi_message.
441  * @transfer_list: transfers are sequenced through @spi_message.transfers
442  *
443  * SPI transfers always write the same number of bytes as they read.
444  * Protocol drivers should always provide @rx_buf and/or @tx_buf.
445  * In some cases, they may also want to provide DMA addresses for
446  * the data being transferred; that may reduce overhead, when the
447  * underlying driver uses dma.
448  *
449  * If the transmit buffer is null, zeroes will be shifted out
450  * while filling @rx_buf.  If the receive buffer is null, the data
451  * shifted in will be discarded.  Only "len" bytes shift out (or in).
452  * It's an error to try to shift out a partial word.  (For example, by
453  * shifting out three bytes with word size of sixteen or twenty bits;
454  * the former uses two bytes per word, the latter uses four bytes.)
455  *
456  * In-memory data values are always in native CPU byte order, translated
457  * from the wire byte order (big-endian except with SPI_LSB_FIRST).  So
458  * for example when bits_per_word is sixteen, buffers are 2N bytes long
459  * (@len = 2N) and hold N sixteen bit words in CPU byte order.
460  *
461  * When the word size of the SPI transfer is not a power-of-two multiple
462  * of eight bits, those in-memory words include extra bits.  In-memory
463  * words are always seen by protocol drivers as right-justified, so the
464  * undefined (rx) or unused (tx) bits are always the most significant bits.
465  *
466  * All SPI transfers start with the relevant chipselect active.  Normally
467  * it stays selected until after the last transfer in a message.  Drivers
468  * can affect the chipselect signal using cs_change.
469  *
470  * (i) If the transfer isn't the last one in the message, this flag is
471  * used to make the chipselect briefly go inactive in the middle of the
472  * message.  Toggling chipselect in this way may be needed to terminate
473  * a chip command, letting a single spi_message perform all of group of
474  * chip transactions together.
475  *
476  * (ii) When the transfer is the last one in the message, the chip may
477  * stay selected until the next transfer.  On multi-device SPI busses
478  * with nothing blocking messages going to other devices, this is just
479  * a performance hint; starting a message to another device deselects
480  * this one.  But in other cases, this can be used to ensure correctness.
481  * Some devices need protocol transactions to be built from a series of
482  * spi_message submissions, where the content of one message is determined
483  * by the results of previous messages and where the whole transaction
484  * ends when the chipselect goes intactive.
485  *
486  * The code that submits an spi_message (and its spi_transfers)
487  * to the lower layers is responsible for managing its memory.
488  * Zero-initialize every field you don't set up explicitly, to
489  * insulate against future API updates.  After you submit a message
490  * and its transfers, ignore them until its completion callback.
491  */
492 struct spi_transfer {
493 	/* it's ok if tx_buf == rx_buf (right?)
494 	 * for MicroWire, one buffer must be null
495 	 * buffers must work with dma_*map_single() calls, unless
496 	 *   spi_message.is_dma_mapped reports a pre-existing mapping
497 	 */
498 	const void	*tx_buf;
499 	void		*rx_buf;
500 	unsigned	len;
501 
502 	dma_addr_t	tx_dma;
503 	dma_addr_t	rx_dma;
504 
505 	unsigned	cs_change:1;
506 	u8		bits_per_word;
507 	u16		delay_usecs;
508 	u32		speed_hz;
509 
510 	struct list_head transfer_list;
511 };
512 
513 /**
514  * struct spi_message - one multi-segment SPI transaction
515  * @transfers: list of transfer segments in this transaction
516  * @spi: SPI device to which the transaction is queued
517  * @is_dma_mapped: if true, the caller provided both dma and cpu virtual
518  *	addresses for each transfer buffer
519  * @complete: called to report transaction completions
520  * @context: the argument to complete() when it's called
521  * @actual_length: the total number of bytes that were transferred in all
522  *	successful segments
523  * @status: zero for success, else negative errno
524  * @queue: for use by whichever driver currently owns the message
525  * @state: for use by whichever driver currently owns the message
526  *
527  * A @spi_message is used to execute an atomic sequence of data transfers,
528  * each represented by a struct spi_transfer.  The sequence is "atomic"
529  * in the sense that no other spi_message may use that SPI bus until that
530  * sequence completes.  On some systems, many such sequences can execute as
531  * as single programmed DMA transfer.  On all systems, these messages are
532  * queued, and might complete after transactions to other devices.  Messages
533  * sent to a given spi_device are alway executed in FIFO order.
534  *
535  * The code that submits an spi_message (and its spi_transfers)
536  * to the lower layers is responsible for managing its memory.
537  * Zero-initialize every field you don't set up explicitly, to
538  * insulate against future API updates.  After you submit a message
539  * and its transfers, ignore them until its completion callback.
540  */
541 struct spi_message {
542 	struct list_head	transfers;
543 
544 	struct spi_device	*spi;
545 
546 	unsigned		is_dma_mapped:1;
547 
548 	/* REVISIT:  we might want a flag affecting the behavior of the
549 	 * last transfer ... allowing things like "read 16 bit length L"
550 	 * immediately followed by "read L bytes".  Basically imposing
551 	 * a specific message scheduling algorithm.
552 	 *
553 	 * Some controller drivers (message-at-a-time queue processing)
554 	 * could provide that as their default scheduling algorithm.  But
555 	 * others (with multi-message pipelines) could need a flag to
556 	 * tell them about such special cases.
557 	 */
558 
559 	/* completion is reported through a callback */
560 	void			(*complete)(void *context);
561 	void			*context;
562 	unsigned		actual_length;
563 	int			status;
564 
565 	/* for optional use by whatever driver currently owns the
566 	 * spi_message ...  between calls to spi_async and then later
567 	 * complete(), that's the spi_master controller driver.
568 	 */
569 	struct list_head	queue;
570 	void			*state;
571 };
572 
spi_message_init(struct spi_message * m)573 static inline void spi_message_init(struct spi_message *m)
574 {
575 	memset(m, 0, sizeof *m);
576 	INIT_LIST_HEAD(&m->transfers);
577 }
578 
579 static inline void
spi_message_add_tail(struct spi_transfer * t,struct spi_message * m)580 spi_message_add_tail(struct spi_transfer *t, struct spi_message *m)
581 {
582 	list_add_tail(&t->transfer_list, &m->transfers);
583 }
584 
585 static inline void
spi_transfer_del(struct spi_transfer * t)586 spi_transfer_del(struct spi_transfer *t)
587 {
588 	list_del(&t->transfer_list);
589 }
590 
591 /* It's fine to embed message and transaction structures in other data
592  * structures so long as you don't free them while they're in use.
593  */
594 
spi_message_alloc(unsigned ntrans,gfp_t flags)595 static inline struct spi_message *spi_message_alloc(unsigned ntrans, gfp_t flags)
596 {
597 	struct spi_message *m;
598 
599 	m = kzalloc(sizeof(struct spi_message)
600 			+ ntrans * sizeof(struct spi_transfer),
601 			flags);
602 	if (m) {
603 		unsigned i;
604 		struct spi_transfer *t = (struct spi_transfer *)(m + 1);
605 
606 		INIT_LIST_HEAD(&m->transfers);
607 		for (i = 0; i < ntrans; i++, t++)
608 			spi_message_add_tail(t, m);
609 	}
610 	return m;
611 }
612 
spi_message_free(struct spi_message * m)613 static inline void spi_message_free(struct spi_message *m)
614 {
615 	kfree(m);
616 }
617 
618 extern int spi_setup(struct spi_device *spi);
619 extern int spi_async(struct spi_device *spi, struct spi_message *message);
620 extern int spi_async_locked(struct spi_device *spi,
621 			    struct spi_message *message);
622 
623 /*---------------------------------------------------------------------------*/
624 
625 /* All these synchronous SPI transfer routines are utilities layered
626  * over the core async transfer primitive.  Here, "synchronous" means
627  * they will sleep uninterruptibly until the async transfer completes.
628  */
629 
630 extern int spi_sync(struct spi_device *spi, struct spi_message *message);
631 extern int spi_sync_locked(struct spi_device *spi, struct spi_message *message);
632 extern int spi_bus_lock(struct spi_master *master);
633 extern int spi_bus_unlock(struct spi_master *master);
634 
635 /**
636  * spi_write - SPI synchronous write
637  * @spi: device to which data will be written
638  * @buf: data buffer
639  * @len: data buffer size
640  * Context: can sleep
641  *
642  * This writes the buffer and returns zero or a negative error code.
643  * Callable only from contexts that can sleep.
644  */
645 static inline int
spi_write(struct spi_device * spi,const void * buf,size_t len)646 spi_write(struct spi_device *spi, const void *buf, size_t len)
647 {
648 	struct spi_transfer	t = {
649 			.tx_buf		= buf,
650 			.len		= len,
651 		};
652 	struct spi_message	m;
653 
654 	spi_message_init(&m);
655 	spi_message_add_tail(&t, &m);
656 	return spi_sync(spi, &m);
657 }
658 
659 /**
660  * spi_read - SPI synchronous read
661  * @spi: device from which data will be read
662  * @buf: data buffer
663  * @len: data buffer size
664  * Context: can sleep
665  *
666  * This reads the buffer and returns zero or a negative error code.
667  * Callable only from contexts that can sleep.
668  */
669 static inline int
spi_read(struct spi_device * spi,void * buf,size_t len)670 spi_read(struct spi_device *spi, void *buf, size_t len)
671 {
672 	struct spi_transfer	t = {
673 			.rx_buf		= buf,
674 			.len		= len,
675 		};
676 	struct spi_message	m;
677 
678 	spi_message_init(&m);
679 	spi_message_add_tail(&t, &m);
680 	return spi_sync(spi, &m);
681 }
682 
683 /* this copies txbuf and rxbuf data; for small transfers only! */
684 extern int spi_write_then_read(struct spi_device *spi,
685 		const void *txbuf, unsigned n_tx,
686 		void *rxbuf, unsigned n_rx);
687 
688 /**
689  * spi_w8r8 - SPI synchronous 8 bit write followed by 8 bit read
690  * @spi: device with which data will be exchanged
691  * @cmd: command to be written before data is read back
692  * Context: can sleep
693  *
694  * This returns the (unsigned) eight bit number returned by the
695  * device, or else a negative error code.  Callable only from
696  * contexts that can sleep.
697  */
spi_w8r8(struct spi_device * spi,u8 cmd)698 static inline ssize_t spi_w8r8(struct spi_device *spi, u8 cmd)
699 {
700 	ssize_t			status;
701 	u8			result;
702 
703 	status = spi_write_then_read(spi, &cmd, 1, &result, 1);
704 
705 	/* return negative errno or unsigned value */
706 	return (status < 0) ? status : result;
707 }
708 
709 /**
710  * spi_w8r16 - SPI synchronous 8 bit write followed by 16 bit read
711  * @spi: device with which data will be exchanged
712  * @cmd: command to be written before data is read back
713  * Context: can sleep
714  *
715  * This returns the (unsigned) sixteen bit number returned by the
716  * device, or else a negative error code.  Callable only from
717  * contexts that can sleep.
718  *
719  * The number is returned in wire-order, which is at least sometimes
720  * big-endian.
721  */
spi_w8r16(struct spi_device * spi,u8 cmd)722 static inline ssize_t spi_w8r16(struct spi_device *spi, u8 cmd)
723 {
724 	ssize_t			status;
725 	u16			result;
726 
727 	status = spi_write_then_read(spi, &cmd, 1, (u8 *) &result, 2);
728 
729 	/* return negative errno or unsigned value */
730 	return (status < 0) ? status : result;
731 }
732 
733 /*---------------------------------------------------------------------------*/
734 
735 /*
736  * INTERFACE between board init code and SPI infrastructure.
737  *
738  * No SPI driver ever sees these SPI device table segments, but
739  * it's how the SPI core (or adapters that get hotplugged) grows
740  * the driver model tree.
741  *
742  * As a rule, SPI devices can't be probed.  Instead, board init code
743  * provides a table listing the devices which are present, with enough
744  * information to bind and set up the device's driver.  There's basic
745  * support for nonstatic configurations too; enough to handle adding
746  * parport adapters, or microcontrollers acting as USB-to-SPI bridges.
747  */
748 
749 /**
750  * struct spi_board_info - board-specific template for a SPI device
751  * @modalias: Initializes spi_device.modalias; identifies the driver.
752  * @platform_data: Initializes spi_device.platform_data; the particular
753  *	data stored there is driver-specific.
754  * @controller_data: Initializes spi_device.controller_data; some
755  *	controllers need hints about hardware setup, e.g. for DMA.
756  * @irq: Initializes spi_device.irq; depends on how the board is wired.
757  * @max_speed_hz: Initializes spi_device.max_speed_hz; based on limits
758  *	from the chip datasheet and board-specific signal quality issues.
759  * @bus_num: Identifies which spi_master parents the spi_device; unused
760  *	by spi_new_device(), and otherwise depends on board wiring.
761  * @chip_select: Initializes spi_device.chip_select; depends on how
762  *	the board is wired.
763  * @mode: Initializes spi_device.mode; based on the chip datasheet, board
764  *	wiring (some devices support both 3WIRE and standard modes), and
765  *	possibly presence of an inverter in the chipselect path.
766  *
767  * When adding new SPI devices to the device tree, these structures serve
768  * as a partial device template.  They hold information which can't always
769  * be determined by drivers.  Information that probe() can establish (such
770  * as the default transfer wordsize) is not included here.
771  *
772  * These structures are used in two places.  Their primary role is to
773  * be stored in tables of board-specific device descriptors, which are
774  * declared early in board initialization and then used (much later) to
775  * populate a controller's device tree after the that controller's driver
776  * initializes.  A secondary (and atypical) role is as a parameter to
777  * spi_new_device() call, which happens after those controller drivers
778  * are active in some dynamic board configuration models.
779  */
780 struct spi_board_info {
781 	/* the device name and module name are coupled, like platform_bus;
782 	 * "modalias" is normally the driver name.
783 	 *
784 	 * platform_data goes to spi_device.dev.platform_data,
785 	 * controller_data goes to spi_device.controller_data,
786 	 * irq is copied too
787 	 */
788 	char		modalias[SPI_NAME_SIZE];
789 	const void	*platform_data;
790 	void		*controller_data;
791 	int		irq;
792 
793 	/* slower signaling on noisy or low voltage boards */
794 	u32		max_speed_hz;
795 
796 
797 	/* bus_num is board specific and matches the bus_num of some
798 	 * spi_master that will probably be registered later.
799 	 *
800 	 * chip_select reflects how this chip is wired to that master;
801 	 * it's less than num_chipselect.
802 	 */
803 	u16		bus_num;
804 	u16		chip_select;
805 
806 	/* mode becomes spi_device.mode, and is essential for chips
807 	 * where the default of SPI_CS_HIGH = 0 is wrong.
808 	 */
809 	u8		mode;
810 
811 	/* ... may need additional spi_device chip config data here.
812 	 * avoid stuff protocol drivers can set; but include stuff
813 	 * needed to behave without being bound to a driver:
814 	 *  - quirks like clock rate mattering when not selected
815 	 */
816 };
817 
818 #ifdef	CONFIG_SPI
819 extern int
820 spi_register_board_info(struct spi_board_info const *info, unsigned n);
821 #else
822 /* board init code may ignore whether SPI is configured or not */
823 static inline int
spi_register_board_info(struct spi_board_info const * info,unsigned n)824 spi_register_board_info(struct spi_board_info const *info, unsigned n)
825 	{ return 0; }
826 #endif
827 
828 
829 /* If you're hotplugging an adapter with devices (parport, usb, etc)
830  * use spi_new_device() to describe each device.  You can also call
831  * spi_unregister_device() to start making that device vanish, but
832  * normally that would be handled by spi_unregister_master().
833  *
834  * You can also use spi_alloc_device() and spi_add_device() to use a two
835  * stage registration sequence for each spi_device.  This gives the caller
836  * some more control over the spi_device structure before it is registered,
837  * but requires that caller to initialize fields that would otherwise
838  * be defined using the board info.
839  */
840 extern struct spi_device *
841 spi_alloc_device(struct spi_master *master);
842 
843 extern int
844 spi_add_device(struct spi_device *spi);
845 
846 extern struct spi_device *
847 spi_new_device(struct spi_master *, struct spi_board_info *);
848 
849 static inline void
spi_unregister_device(struct spi_device * spi)850 spi_unregister_device(struct spi_device *spi)
851 {
852 	if (spi)
853 		device_unregister(&spi->dev);
854 }
855 
856 extern const struct spi_device_id *
857 spi_get_device_id(const struct spi_device *sdev);
858 
859 #endif /* __LINUX_SPI_H */
860