1 #ifndef _LINUX_MMU_NOTIFIER_H
2 #define _LINUX_MMU_NOTIFIER_H
3 
4 #include <linux/list.h>
5 #include <linux/spinlock.h>
6 #include <linux/mm_types.h>
7 #include <linux/srcu.h>
8 
9 struct mmu_notifier;
10 struct mmu_notifier_ops;
11 
12 #ifdef CONFIG_MMU_NOTIFIER
13 
14 /*
15  * The mmu notifier_mm structure is allocated and installed in
16  * mm->mmu_notifier_mm inside the mm_take_all_locks() protected
17  * critical section and it's released only when mm_count reaches zero
18  * in mmdrop().
19  */
20 struct mmu_notifier_mm {
21 	/* all mmu notifiers registerd in this mm are queued in this list */
22 	struct hlist_head list;
23 	/* to serialize the list modifications and hlist_unhashed */
24 	spinlock_t lock;
25 };
26 
27 struct mmu_notifier_ops {
28 	/*
29 	 * Called either by mmu_notifier_unregister or when the mm is
30 	 * being destroyed by exit_mmap, always before all pages are
31 	 * freed. This can run concurrently with other mmu notifier
32 	 * methods (the ones invoked outside the mm context) and it
33 	 * should tear down all secondary mmu mappings and freeze the
34 	 * secondary mmu. If this method isn't implemented you've to
35 	 * be sure that nothing could possibly write to the pages
36 	 * through the secondary mmu by the time the last thread with
37 	 * tsk->mm == mm exits.
38 	 *
39 	 * As side note: the pages freed after ->release returns could
40 	 * be immediately reallocated by the gart at an alias physical
41 	 * address with a different cache model, so if ->release isn't
42 	 * implemented because all _software_ driven memory accesses
43 	 * through the secondary mmu are terminated by the time the
44 	 * last thread of this mm quits, you've also to be sure that
45 	 * speculative _hardware_ operations can't allocate dirty
46 	 * cachelines in the cpu that could not be snooped and made
47 	 * coherent with the other read and write operations happening
48 	 * through the gart alias address, so leading to memory
49 	 * corruption.
50 	 */
51 	void (*release)(struct mmu_notifier *mn,
52 			struct mm_struct *mm);
53 
54 	/*
55 	 * clear_flush_young is called after the VM is
56 	 * test-and-clearing the young/accessed bitflag in the
57 	 * pte. This way the VM will provide proper aging to the
58 	 * accesses to the page through the secondary MMUs and not
59 	 * only to the ones through the Linux pte.
60 	 */
61 	int (*clear_flush_young)(struct mmu_notifier *mn,
62 				 struct mm_struct *mm,
63 				 unsigned long address);
64 
65 	/*
66 	 * test_young is called to check the young/accessed bitflag in
67 	 * the secondary pte. This is used to know if the page is
68 	 * frequently used without actually clearing the flag or tearing
69 	 * down the secondary mapping on the page.
70 	 */
71 	int (*test_young)(struct mmu_notifier *mn,
72 			  struct mm_struct *mm,
73 			  unsigned long address);
74 
75 	/*
76 	 * change_pte is called in cases that pte mapping to page is changed:
77 	 * for example, when ksm remaps pte to point to a new shared page.
78 	 */
79 	void (*change_pte)(struct mmu_notifier *mn,
80 			   struct mm_struct *mm,
81 			   unsigned long address,
82 			   pte_t pte);
83 
84 	/*
85 	 * Before this is invoked any secondary MMU is still ok to
86 	 * read/write to the page previously pointed to by the Linux
87 	 * pte because the page hasn't been freed yet and it won't be
88 	 * freed until this returns. If required set_page_dirty has to
89 	 * be called internally to this method.
90 	 */
91 	void (*invalidate_page)(struct mmu_notifier *mn,
92 				struct mm_struct *mm,
93 				unsigned long address);
94 
95 	/*
96 	 * invalidate_range_start() and invalidate_range_end() must be
97 	 * paired and are called only when the mmap_sem and/or the
98 	 * locks protecting the reverse maps are held. The subsystem
99 	 * must guarantee that no additional references are taken to
100 	 * the pages in the range established between the call to
101 	 * invalidate_range_start() and the matching call to
102 	 * invalidate_range_end().
103 	 *
104 	 * Invalidation of multiple concurrent ranges may be
105 	 * optionally permitted by the driver. Either way the
106 	 * establishment of sptes is forbidden in the range passed to
107 	 * invalidate_range_begin/end for the whole duration of the
108 	 * invalidate_range_begin/end critical section.
109 	 *
110 	 * invalidate_range_start() is called when all pages in the
111 	 * range are still mapped and have at least a refcount of one.
112 	 *
113 	 * invalidate_range_end() is called when all pages in the
114 	 * range have been unmapped and the pages have been freed by
115 	 * the VM.
116 	 *
117 	 * The VM will remove the page table entries and potentially
118 	 * the page between invalidate_range_start() and
119 	 * invalidate_range_end(). If the page must not be freed
120 	 * because of pending I/O or other circumstances then the
121 	 * invalidate_range_start() callback (or the initial mapping
122 	 * by the driver) must make sure that the refcount is kept
123 	 * elevated.
124 	 *
125 	 * If the driver increases the refcount when the pages are
126 	 * initially mapped into an address space then either
127 	 * invalidate_range_start() or invalidate_range_end() may
128 	 * decrease the refcount. If the refcount is decreased on
129 	 * invalidate_range_start() then the VM can free pages as page
130 	 * table entries are removed.  If the refcount is only
131 	 * droppped on invalidate_range_end() then the driver itself
132 	 * will drop the last refcount but it must take care to flush
133 	 * any secondary tlb before doing the final free on the
134 	 * page. Pages will no longer be referenced by the linux
135 	 * address space but may still be referenced by sptes until
136 	 * the last refcount is dropped.
137 	 */
138 	void (*invalidate_range_start)(struct mmu_notifier *mn,
139 				       struct mm_struct *mm,
140 				       unsigned long start, unsigned long end);
141 	void (*invalidate_range_end)(struct mmu_notifier *mn,
142 				     struct mm_struct *mm,
143 				     unsigned long start, unsigned long end);
144 };
145 
146 /*
147  * The notifier chains are protected by mmap_sem and/or the reverse map
148  * semaphores. Notifier chains are only changed when all reverse maps and
149  * the mmap_sem locks are taken.
150  *
151  * Therefore notifier chains can only be traversed when either
152  *
153  * 1. mmap_sem is held.
154  * 2. One of the reverse map locks is held (i_mmap_mutex or anon_vma->mutex).
155  * 3. No other concurrent thread can access the list (release)
156  */
157 struct mmu_notifier {
158 	struct hlist_node hlist;
159 	const struct mmu_notifier_ops *ops;
160 };
161 
mm_has_notifiers(struct mm_struct * mm)162 static inline int mm_has_notifiers(struct mm_struct *mm)
163 {
164 	return unlikely(mm->mmu_notifier_mm);
165 }
166 
167 extern int mmu_notifier_register(struct mmu_notifier *mn,
168 				 struct mm_struct *mm);
169 extern int __mmu_notifier_register(struct mmu_notifier *mn,
170 				   struct mm_struct *mm);
171 extern void mmu_notifier_unregister(struct mmu_notifier *mn,
172 				    struct mm_struct *mm);
173 extern void __mmu_notifier_mm_destroy(struct mm_struct *mm);
174 extern void __mmu_notifier_release(struct mm_struct *mm);
175 extern int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
176 					  unsigned long address);
177 extern int __mmu_notifier_test_young(struct mm_struct *mm,
178 				     unsigned long address);
179 extern void __mmu_notifier_change_pte(struct mm_struct *mm,
180 				      unsigned long address, pte_t pte);
181 extern void __mmu_notifier_invalidate_page(struct mm_struct *mm,
182 					  unsigned long address);
183 extern void __mmu_notifier_invalidate_range_start(struct mm_struct *mm,
184 				  unsigned long start, unsigned long end);
185 extern void __mmu_notifier_invalidate_range_end(struct mm_struct *mm,
186 				  unsigned long start, unsigned long end);
187 
mmu_notifier_release(struct mm_struct * mm)188 static inline void mmu_notifier_release(struct mm_struct *mm)
189 {
190 	if (mm_has_notifiers(mm))
191 		__mmu_notifier_release(mm);
192 }
193 
mmu_notifier_clear_flush_young(struct mm_struct * mm,unsigned long address)194 static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
195 					  unsigned long address)
196 {
197 	if (mm_has_notifiers(mm))
198 		return __mmu_notifier_clear_flush_young(mm, address);
199 	return 0;
200 }
201 
mmu_notifier_test_young(struct mm_struct * mm,unsigned long address)202 static inline int mmu_notifier_test_young(struct mm_struct *mm,
203 					  unsigned long address)
204 {
205 	if (mm_has_notifiers(mm))
206 		return __mmu_notifier_test_young(mm, address);
207 	return 0;
208 }
209 
mmu_notifier_change_pte(struct mm_struct * mm,unsigned long address,pte_t pte)210 static inline void mmu_notifier_change_pte(struct mm_struct *mm,
211 					   unsigned long address, pte_t pte)
212 {
213 	if (mm_has_notifiers(mm))
214 		__mmu_notifier_change_pte(mm, address, pte);
215 }
216 
mmu_notifier_invalidate_page(struct mm_struct * mm,unsigned long address)217 static inline void mmu_notifier_invalidate_page(struct mm_struct *mm,
218 					  unsigned long address)
219 {
220 	if (mm_has_notifiers(mm))
221 		__mmu_notifier_invalidate_page(mm, address);
222 }
223 
mmu_notifier_invalidate_range_start(struct mm_struct * mm,unsigned long start,unsigned long end)224 static inline void mmu_notifier_invalidate_range_start(struct mm_struct *mm,
225 				  unsigned long start, unsigned long end)
226 {
227 	if (mm_has_notifiers(mm))
228 		__mmu_notifier_invalidate_range_start(mm, start, end);
229 }
230 
mmu_notifier_invalidate_range_end(struct mm_struct * mm,unsigned long start,unsigned long end)231 static inline void mmu_notifier_invalidate_range_end(struct mm_struct *mm,
232 				  unsigned long start, unsigned long end)
233 {
234 	if (mm_has_notifiers(mm))
235 		__mmu_notifier_invalidate_range_end(mm, start, end);
236 }
237 
mmu_notifier_mm_init(struct mm_struct * mm)238 static inline void mmu_notifier_mm_init(struct mm_struct *mm)
239 {
240 	mm->mmu_notifier_mm = NULL;
241 }
242 
mmu_notifier_mm_destroy(struct mm_struct * mm)243 static inline void mmu_notifier_mm_destroy(struct mm_struct *mm)
244 {
245 	if (mm_has_notifiers(mm))
246 		__mmu_notifier_mm_destroy(mm);
247 }
248 
249 /*
250  * These two macros will sometime replace ptep_clear_flush.
251  * ptep_clear_flush is implemented as macro itself, so this also is
252  * implemented as a macro until ptep_clear_flush will converted to an
253  * inline function, to diminish the risk of compilation failure. The
254  * invalidate_page method over time can be moved outside the PT lock
255  * and these two macros can be later removed.
256  */
257 #define ptep_clear_flush_notify(__vma, __address, __ptep)		\
258 ({									\
259 	pte_t __pte;							\
260 	struct vm_area_struct *___vma = __vma;				\
261 	unsigned long ___address = __address;				\
262 	__pte = ptep_clear_flush(___vma, ___address, __ptep);		\
263 	mmu_notifier_invalidate_page(___vma->vm_mm, ___address);	\
264 	__pte;								\
265 })
266 
267 #define pmdp_clear_flush_notify(__vma, __address, __pmdp)		\
268 ({									\
269 	pmd_t __pmd;							\
270 	struct vm_area_struct *___vma = __vma;				\
271 	unsigned long ___address = __address;				\
272 	VM_BUG_ON(__address & ~HPAGE_PMD_MASK);				\
273 	mmu_notifier_invalidate_range_start(___vma->vm_mm, ___address,	\
274 					    (__address)+HPAGE_PMD_SIZE);\
275 	__pmd = pmdp_clear_flush(___vma, ___address, __pmdp);		\
276 	mmu_notifier_invalidate_range_end(___vma->vm_mm, ___address,	\
277 					  (__address)+HPAGE_PMD_SIZE);	\
278 	__pmd;								\
279 })
280 
281 #define pmdp_splitting_flush_notify(__vma, __address, __pmdp)		\
282 ({									\
283 	struct vm_area_struct *___vma = __vma;				\
284 	unsigned long ___address = __address;				\
285 	VM_BUG_ON(__address & ~HPAGE_PMD_MASK);				\
286 	mmu_notifier_invalidate_range_start(___vma->vm_mm, ___address,	\
287 					    (__address)+HPAGE_PMD_SIZE);\
288 	pmdp_splitting_flush(___vma, ___address, __pmdp);		\
289 	mmu_notifier_invalidate_range_end(___vma->vm_mm, ___address,	\
290 					  (__address)+HPAGE_PMD_SIZE);	\
291 })
292 
293 #define ptep_clear_flush_young_notify(__vma, __address, __ptep)		\
294 ({									\
295 	int __young;							\
296 	struct vm_area_struct *___vma = __vma;				\
297 	unsigned long ___address = __address;				\
298 	__young = ptep_clear_flush_young(___vma, ___address, __ptep);	\
299 	__young |= mmu_notifier_clear_flush_young(___vma->vm_mm,	\
300 						  ___address);		\
301 	__young;							\
302 })
303 
304 #define pmdp_clear_flush_young_notify(__vma, __address, __pmdp)		\
305 ({									\
306 	int __young;							\
307 	struct vm_area_struct *___vma = __vma;				\
308 	unsigned long ___address = __address;				\
309 	__young = pmdp_clear_flush_young(___vma, ___address, __pmdp);	\
310 	__young |= mmu_notifier_clear_flush_young(___vma->vm_mm,	\
311 						  ___address);		\
312 	__young;							\
313 })
314 
315 #define set_pte_at_notify(__mm, __address, __ptep, __pte)		\
316 ({									\
317 	struct mm_struct *___mm = __mm;					\
318 	unsigned long ___address = __address;				\
319 	pte_t ___pte = __pte;						\
320 									\
321 	set_pte_at(___mm, ___address, __ptep, ___pte);			\
322 	mmu_notifier_change_pte(___mm, ___address, ___pte);		\
323 })
324 
325 #else /* CONFIG_MMU_NOTIFIER */
326 
mmu_notifier_release(struct mm_struct * mm)327 static inline void mmu_notifier_release(struct mm_struct *mm)
328 {
329 }
330 
mmu_notifier_clear_flush_young(struct mm_struct * mm,unsigned long address)331 static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
332 					  unsigned long address)
333 {
334 	return 0;
335 }
336 
mmu_notifier_test_young(struct mm_struct * mm,unsigned long address)337 static inline int mmu_notifier_test_young(struct mm_struct *mm,
338 					  unsigned long address)
339 {
340 	return 0;
341 }
342 
mmu_notifier_change_pte(struct mm_struct * mm,unsigned long address,pte_t pte)343 static inline void mmu_notifier_change_pte(struct mm_struct *mm,
344 					   unsigned long address, pte_t pte)
345 {
346 }
347 
mmu_notifier_invalidate_page(struct mm_struct * mm,unsigned long address)348 static inline void mmu_notifier_invalidate_page(struct mm_struct *mm,
349 					  unsigned long address)
350 {
351 }
352 
mmu_notifier_invalidate_range_start(struct mm_struct * mm,unsigned long start,unsigned long end)353 static inline void mmu_notifier_invalidate_range_start(struct mm_struct *mm,
354 				  unsigned long start, unsigned long end)
355 {
356 }
357 
mmu_notifier_invalidate_range_end(struct mm_struct * mm,unsigned long start,unsigned long end)358 static inline void mmu_notifier_invalidate_range_end(struct mm_struct *mm,
359 				  unsigned long start, unsigned long end)
360 {
361 }
362 
mmu_notifier_mm_init(struct mm_struct * mm)363 static inline void mmu_notifier_mm_init(struct mm_struct *mm)
364 {
365 }
366 
mmu_notifier_mm_destroy(struct mm_struct * mm)367 static inline void mmu_notifier_mm_destroy(struct mm_struct *mm)
368 {
369 }
370 
371 #define ptep_clear_flush_young_notify ptep_clear_flush_young
372 #define pmdp_clear_flush_young_notify pmdp_clear_flush_young
373 #define ptep_clear_flush_notify ptep_clear_flush
374 #define pmdp_clear_flush_notify pmdp_clear_flush
375 #define pmdp_splitting_flush_notify pmdp_splitting_flush
376 #define set_pte_at_notify set_pte_at
377 
378 #endif /* CONFIG_MMU_NOTIFIER */
379 
380 #endif /* _LINUX_MMU_NOTIFIER_H */
381