1 /*
2  *  linux/fs/ext4/indirect.c
3  *
4  *  from
5  *
6  *  linux/fs/ext4/inode.c
7  *
8  * Copyright (C) 1992, 1993, 1994, 1995
9  * Remy Card (card@masi.ibp.fr)
10  * Laboratoire MASI - Institut Blaise Pascal
11  * Universite Pierre et Marie Curie (Paris VI)
12  *
13  *  from
14  *
15  *  linux/fs/minix/inode.c
16  *
17  *  Copyright (C) 1991, 1992  Linus Torvalds
18  *
19  *  Goal-directed block allocation by Stephen Tweedie
20  *	(sct@redhat.com), 1993, 1998
21  */
22 
23 #include "ext4_jbd2.h"
24 #include "truncate.h"
25 
26 #include <trace/events/ext4.h>
27 
28 typedef struct {
29 	__le32	*p;
30 	__le32	key;
31 	struct buffer_head *bh;
32 } Indirect;
33 
add_chain(Indirect * p,struct buffer_head * bh,__le32 * v)34 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
35 {
36 	p->key = *(p->p = v);
37 	p->bh = bh;
38 }
39 
40 /**
41  *	ext4_block_to_path - parse the block number into array of offsets
42  *	@inode: inode in question (we are only interested in its superblock)
43  *	@i_block: block number to be parsed
44  *	@offsets: array to store the offsets in
45  *	@boundary: set this non-zero if the referred-to block is likely to be
46  *	       followed (on disk) by an indirect block.
47  *
48  *	To store the locations of file's data ext4 uses a data structure common
49  *	for UNIX filesystems - tree of pointers anchored in the inode, with
50  *	data blocks at leaves and indirect blocks in intermediate nodes.
51  *	This function translates the block number into path in that tree -
52  *	return value is the path length and @offsets[n] is the offset of
53  *	pointer to (n+1)th node in the nth one. If @block is out of range
54  *	(negative or too large) warning is printed and zero returned.
55  *
56  *	Note: function doesn't find node addresses, so no IO is needed. All
57  *	we need to know is the capacity of indirect blocks (taken from the
58  *	inode->i_sb).
59  */
60 
61 /*
62  * Portability note: the last comparison (check that we fit into triple
63  * indirect block) is spelled differently, because otherwise on an
64  * architecture with 32-bit longs and 8Kb pages we might get into trouble
65  * if our filesystem had 8Kb blocks. We might use long long, but that would
66  * kill us on x86. Oh, well, at least the sign propagation does not matter -
67  * i_block would have to be negative in the very beginning, so we would not
68  * get there at all.
69  */
70 
ext4_block_to_path(struct inode * inode,ext4_lblk_t i_block,ext4_lblk_t offsets[4],int * boundary)71 static int ext4_block_to_path(struct inode *inode,
72 			      ext4_lblk_t i_block,
73 			      ext4_lblk_t offsets[4], int *boundary)
74 {
75 	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
76 	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
77 	const long direct_blocks = EXT4_NDIR_BLOCKS,
78 		indirect_blocks = ptrs,
79 		double_blocks = (1 << (ptrs_bits * 2));
80 	int n = 0;
81 	int final = 0;
82 
83 	if (i_block < direct_blocks) {
84 		offsets[n++] = i_block;
85 		final = direct_blocks;
86 	} else if ((i_block -= direct_blocks) < indirect_blocks) {
87 		offsets[n++] = EXT4_IND_BLOCK;
88 		offsets[n++] = i_block;
89 		final = ptrs;
90 	} else if ((i_block -= indirect_blocks) < double_blocks) {
91 		offsets[n++] = EXT4_DIND_BLOCK;
92 		offsets[n++] = i_block >> ptrs_bits;
93 		offsets[n++] = i_block & (ptrs - 1);
94 		final = ptrs;
95 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
96 		offsets[n++] = EXT4_TIND_BLOCK;
97 		offsets[n++] = i_block >> (ptrs_bits * 2);
98 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
99 		offsets[n++] = i_block & (ptrs - 1);
100 		final = ptrs;
101 	} else {
102 		ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
103 			     i_block + direct_blocks +
104 			     indirect_blocks + double_blocks, inode->i_ino);
105 	}
106 	if (boundary)
107 		*boundary = final - 1 - (i_block & (ptrs - 1));
108 	return n;
109 }
110 
111 /**
112  *	ext4_get_branch - read the chain of indirect blocks leading to data
113  *	@inode: inode in question
114  *	@depth: depth of the chain (1 - direct pointer, etc.)
115  *	@offsets: offsets of pointers in inode/indirect blocks
116  *	@chain: place to store the result
117  *	@err: here we store the error value
118  *
119  *	Function fills the array of triples <key, p, bh> and returns %NULL
120  *	if everything went OK or the pointer to the last filled triple
121  *	(incomplete one) otherwise. Upon the return chain[i].key contains
122  *	the number of (i+1)-th block in the chain (as it is stored in memory,
123  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
124  *	number (it points into struct inode for i==0 and into the bh->b_data
125  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
126  *	block for i>0 and NULL for i==0. In other words, it holds the block
127  *	numbers of the chain, addresses they were taken from (and where we can
128  *	verify that chain did not change) and buffer_heads hosting these
129  *	numbers.
130  *
131  *	Function stops when it stumbles upon zero pointer (absent block)
132  *		(pointer to last triple returned, *@err == 0)
133  *	or when it gets an IO error reading an indirect block
134  *		(ditto, *@err == -EIO)
135  *	or when it reads all @depth-1 indirect blocks successfully and finds
136  *	the whole chain, all way to the data (returns %NULL, *err == 0).
137  *
138  *      Need to be called with
139  *      down_read(&EXT4_I(inode)->i_data_sem)
140  */
ext4_get_branch(struct inode * inode,int depth,ext4_lblk_t * offsets,Indirect chain[4],int * err)141 static Indirect *ext4_get_branch(struct inode *inode, int depth,
142 				 ext4_lblk_t  *offsets,
143 				 Indirect chain[4], int *err)
144 {
145 	struct super_block *sb = inode->i_sb;
146 	Indirect *p = chain;
147 	struct buffer_head *bh;
148 	int ret = -EIO;
149 
150 	*err = 0;
151 	/* i_data is not going away, no lock needed */
152 	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
153 	if (!p->key)
154 		goto no_block;
155 	while (--depth) {
156 		bh = sb_getblk(sb, le32_to_cpu(p->key));
157 		if (unlikely(!bh)) {
158 			ret = -ENOMEM;
159 			goto failure;
160 		}
161 
162 		if (!bh_uptodate_or_lock(bh)) {
163 			if (bh_submit_read(bh) < 0) {
164 				put_bh(bh);
165 				goto failure;
166 			}
167 			/* validate block references */
168 			if (ext4_check_indirect_blockref(inode, bh)) {
169 				put_bh(bh);
170 				goto failure;
171 			}
172 		}
173 
174 		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
175 		/* Reader: end */
176 		if (!p->key)
177 			goto no_block;
178 	}
179 	return NULL;
180 
181 failure:
182 	*err = ret;
183 no_block:
184 	return p;
185 }
186 
187 /**
188  *	ext4_find_near - find a place for allocation with sufficient locality
189  *	@inode: owner
190  *	@ind: descriptor of indirect block.
191  *
192  *	This function returns the preferred place for block allocation.
193  *	It is used when heuristic for sequential allocation fails.
194  *	Rules are:
195  *	  + if there is a block to the left of our position - allocate near it.
196  *	  + if pointer will live in indirect block - allocate near that block.
197  *	  + if pointer will live in inode - allocate in the same
198  *	    cylinder group.
199  *
200  * In the latter case we colour the starting block by the callers PID to
201  * prevent it from clashing with concurrent allocations for a different inode
202  * in the same block group.   The PID is used here so that functionally related
203  * files will be close-by on-disk.
204  *
205  *	Caller must make sure that @ind is valid and will stay that way.
206  */
ext4_find_near(struct inode * inode,Indirect * ind)207 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
208 {
209 	struct ext4_inode_info *ei = EXT4_I(inode);
210 	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
211 	__le32 *p;
212 
213 	/* Try to find previous block */
214 	for (p = ind->p - 1; p >= start; p--) {
215 		if (*p)
216 			return le32_to_cpu(*p);
217 	}
218 
219 	/* No such thing, so let's try location of indirect block */
220 	if (ind->bh)
221 		return ind->bh->b_blocknr;
222 
223 	/*
224 	 * It is going to be referred to from the inode itself? OK, just put it
225 	 * into the same cylinder group then.
226 	 */
227 	return ext4_inode_to_goal_block(inode);
228 }
229 
230 /**
231  *	ext4_find_goal - find a preferred place for allocation.
232  *	@inode: owner
233  *	@block:  block we want
234  *	@partial: pointer to the last triple within a chain
235  *
236  *	Normally this function find the preferred place for block allocation,
237  *	returns it.
238  *	Because this is only used for non-extent files, we limit the block nr
239  *	to 32 bits.
240  */
ext4_find_goal(struct inode * inode,ext4_lblk_t block,Indirect * partial)241 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
242 				   Indirect *partial)
243 {
244 	ext4_fsblk_t goal;
245 
246 	/*
247 	 * XXX need to get goal block from mballoc's data structures
248 	 */
249 
250 	goal = ext4_find_near(inode, partial);
251 	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
252 	return goal;
253 }
254 
255 /**
256  *	ext4_blks_to_allocate - Look up the block map and count the number
257  *	of direct blocks need to be allocated for the given branch.
258  *
259  *	@branch: chain of indirect blocks
260  *	@k: number of blocks need for indirect blocks
261  *	@blks: number of data blocks to be mapped.
262  *	@blocks_to_boundary:  the offset in the indirect block
263  *
264  *	return the total number of blocks to be allocate, including the
265  *	direct and indirect blocks.
266  */
ext4_blks_to_allocate(Indirect * branch,int k,unsigned int blks,int blocks_to_boundary)267 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
268 				 int blocks_to_boundary)
269 {
270 	unsigned int count = 0;
271 
272 	/*
273 	 * Simple case, [t,d]Indirect block(s) has not allocated yet
274 	 * then it's clear blocks on that path have not allocated
275 	 */
276 	if (k > 0) {
277 		/* right now we don't handle cross boundary allocation */
278 		if (blks < blocks_to_boundary + 1)
279 			count += blks;
280 		else
281 			count += blocks_to_boundary + 1;
282 		return count;
283 	}
284 
285 	count++;
286 	while (count < blks && count <= blocks_to_boundary &&
287 		le32_to_cpu(*(branch[0].p + count)) == 0) {
288 		count++;
289 	}
290 	return count;
291 }
292 
293 /**
294  *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
295  *	@handle: handle for this transaction
296  *	@inode: inode which needs allocated blocks
297  *	@iblock: the logical block to start allocated at
298  *	@goal: preferred physical block of allocation
299  *	@indirect_blks: the number of blocks need to allocate for indirect
300  *			blocks
301  *	@blks: number of desired blocks
302  *	@new_blocks: on return it will store the new block numbers for
303  *	the indirect blocks(if needed) and the first direct block,
304  *	@err: on return it will store the error code
305  *
306  *	This function will return the number of blocks allocated as
307  *	requested by the passed-in parameters.
308  */
ext4_alloc_blocks(handle_t * handle,struct inode * inode,ext4_lblk_t iblock,ext4_fsblk_t goal,int indirect_blks,int blks,ext4_fsblk_t new_blocks[4],int * err)309 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
310 			     ext4_lblk_t iblock, ext4_fsblk_t goal,
311 			     int indirect_blks, int blks,
312 			     ext4_fsblk_t new_blocks[4], int *err)
313 {
314 	struct ext4_allocation_request ar;
315 	int target, i;
316 	unsigned long count = 0, blk_allocated = 0;
317 	int index = 0;
318 	ext4_fsblk_t current_block = 0;
319 	int ret = 0;
320 
321 	/*
322 	 * Here we try to allocate the requested multiple blocks at once,
323 	 * on a best-effort basis.
324 	 * To build a branch, we should allocate blocks for
325 	 * the indirect blocks(if not allocated yet), and at least
326 	 * the first direct block of this branch.  That's the
327 	 * minimum number of blocks need to allocate(required)
328 	 */
329 	/* first we try to allocate the indirect blocks */
330 	target = indirect_blks;
331 	while (target > 0) {
332 		count = target;
333 		/* allocating blocks for indirect blocks and direct blocks */
334 		current_block = ext4_new_meta_blocks(handle, inode, goal,
335 						     0, &count, err);
336 		if (*err)
337 			goto failed_out;
338 
339 		if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
340 			EXT4_ERROR_INODE(inode,
341 					 "current_block %llu + count %lu > %d!",
342 					 current_block, count,
343 					 EXT4_MAX_BLOCK_FILE_PHYS);
344 			*err = -EIO;
345 			goto failed_out;
346 		}
347 
348 		target -= count;
349 		/* allocate blocks for indirect blocks */
350 		while (index < indirect_blks && count) {
351 			new_blocks[index++] = current_block++;
352 			count--;
353 		}
354 		if (count > 0) {
355 			/*
356 			 * save the new block number
357 			 * for the first direct block
358 			 */
359 			new_blocks[index] = current_block;
360 			printk(KERN_INFO "%s returned more blocks than "
361 						"requested\n", __func__);
362 			WARN_ON(1);
363 			break;
364 		}
365 	}
366 
367 	target = blks - count ;
368 	blk_allocated = count;
369 	if (!target)
370 		goto allocated;
371 	/* Now allocate data blocks */
372 	memset(&ar, 0, sizeof(ar));
373 	ar.inode = inode;
374 	ar.goal = goal;
375 	ar.len = target;
376 	ar.logical = iblock;
377 	if (S_ISREG(inode->i_mode))
378 		/* enable in-core preallocation only for regular files */
379 		ar.flags = EXT4_MB_HINT_DATA;
380 
381 	current_block = ext4_mb_new_blocks(handle, &ar, err);
382 	if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
383 		EXT4_ERROR_INODE(inode,
384 				 "current_block %llu + ar.len %d > %d!",
385 				 current_block, ar.len,
386 				 EXT4_MAX_BLOCK_FILE_PHYS);
387 		*err = -EIO;
388 		goto failed_out;
389 	}
390 
391 	if (*err && (target == blks)) {
392 		/*
393 		 * if the allocation failed and we didn't allocate
394 		 * any blocks before
395 		 */
396 		goto failed_out;
397 	}
398 	if (!*err) {
399 		if (target == blks) {
400 			/*
401 			 * save the new block number
402 			 * for the first direct block
403 			 */
404 			new_blocks[index] = current_block;
405 		}
406 		blk_allocated += ar.len;
407 	}
408 allocated:
409 	/* total number of blocks allocated for direct blocks */
410 	ret = blk_allocated;
411 	*err = 0;
412 	return ret;
413 failed_out:
414 	for (i = 0; i < index; i++)
415 		ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
416 	return ret;
417 }
418 
419 /**
420  *	ext4_alloc_branch - allocate and set up a chain of blocks.
421  *	@handle: handle for this transaction
422  *	@inode: owner
423  *	@indirect_blks: number of allocated indirect blocks
424  *	@blks: number of allocated direct blocks
425  *	@goal: preferred place for allocation
426  *	@offsets: offsets (in the blocks) to store the pointers to next.
427  *	@branch: place to store the chain in.
428  *
429  *	This function allocates blocks, zeroes out all but the last one,
430  *	links them into chain and (if we are synchronous) writes them to disk.
431  *	In other words, it prepares a branch that can be spliced onto the
432  *	inode. It stores the information about that chain in the branch[], in
433  *	the same format as ext4_get_branch() would do. We are calling it after
434  *	we had read the existing part of chain and partial points to the last
435  *	triple of that (one with zero ->key). Upon the exit we have the same
436  *	picture as after the successful ext4_get_block(), except that in one
437  *	place chain is disconnected - *branch->p is still zero (we did not
438  *	set the last link), but branch->key contains the number that should
439  *	be placed into *branch->p to fill that gap.
440  *
441  *	If allocation fails we free all blocks we've allocated (and forget
442  *	their buffer_heads) and return the error value the from failed
443  *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
444  *	as described above and return 0.
445  */
ext4_alloc_branch(handle_t * handle,struct inode * inode,ext4_lblk_t iblock,int indirect_blks,int * blks,ext4_fsblk_t goal,ext4_lblk_t * offsets,Indirect * branch)446 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
447 			     ext4_lblk_t iblock, int indirect_blks,
448 			     int *blks, ext4_fsblk_t goal,
449 			     ext4_lblk_t *offsets, Indirect *branch)
450 {
451 	int blocksize = inode->i_sb->s_blocksize;
452 	int i, n = 0;
453 	int err = 0;
454 	struct buffer_head *bh;
455 	int num;
456 	ext4_fsblk_t new_blocks[4];
457 	ext4_fsblk_t current_block;
458 
459 	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
460 				*blks, new_blocks, &err);
461 	if (err)
462 		return err;
463 
464 	branch[0].key = cpu_to_le32(new_blocks[0]);
465 	/*
466 	 * metadata blocks and data blocks are allocated.
467 	 */
468 	for (n = 1; n <= indirect_blks;  n++) {
469 		/*
470 		 * Get buffer_head for parent block, zero it out
471 		 * and set the pointer to new one, then send
472 		 * parent to disk.
473 		 */
474 		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
475 		if (unlikely(!bh)) {
476 			err = -ENOMEM;
477 			goto failed;
478 		}
479 
480 		branch[n].bh = bh;
481 		lock_buffer(bh);
482 		BUFFER_TRACE(bh, "call get_create_access");
483 		err = ext4_journal_get_create_access(handle, bh);
484 		if (err) {
485 			/* Don't brelse(bh) here; it's done in
486 			 * ext4_journal_forget() below */
487 			unlock_buffer(bh);
488 			goto failed;
489 		}
490 
491 		memset(bh->b_data, 0, blocksize);
492 		branch[n].p = (__le32 *) bh->b_data + offsets[n];
493 		branch[n].key = cpu_to_le32(new_blocks[n]);
494 		*branch[n].p = branch[n].key;
495 		if (n == indirect_blks) {
496 			current_block = new_blocks[n];
497 			/*
498 			 * End of chain, update the last new metablock of
499 			 * the chain to point to the new allocated
500 			 * data blocks numbers
501 			 */
502 			for (i = 1; i < num; i++)
503 				*(branch[n].p + i) = cpu_to_le32(++current_block);
504 		}
505 		BUFFER_TRACE(bh, "marking uptodate");
506 		set_buffer_uptodate(bh);
507 		unlock_buffer(bh);
508 
509 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
510 		err = ext4_handle_dirty_metadata(handle, inode, bh);
511 		if (err)
512 			goto failed;
513 	}
514 	*blks = num;
515 	return err;
516 failed:
517 	/* Allocation failed, free what we already allocated */
518 	ext4_free_blocks(handle, inode, NULL, new_blocks[0], 1, 0);
519 	for (i = 1; i <= n ; i++) {
520 		/*
521 		 * branch[i].bh is newly allocated, so there is no
522 		 * need to revoke the block, which is why we don't
523 		 * need to set EXT4_FREE_BLOCKS_METADATA.
524 		 */
525 		ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1,
526 				 EXT4_FREE_BLOCKS_FORGET);
527 	}
528 	for (i = n+1; i < indirect_blks; i++)
529 		ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
530 
531 	ext4_free_blocks(handle, inode, NULL, new_blocks[i], num, 0);
532 
533 	return err;
534 }
535 
536 /**
537  * ext4_splice_branch - splice the allocated branch onto inode.
538  * @handle: handle for this transaction
539  * @inode: owner
540  * @block: (logical) number of block we are adding
541  * @chain: chain of indirect blocks (with a missing link - see
542  *	ext4_alloc_branch)
543  * @where: location of missing link
544  * @num:   number of indirect blocks we are adding
545  * @blks:  number of direct blocks we are adding
546  *
547  * This function fills the missing link and does all housekeeping needed in
548  * inode (->i_blocks, etc.). In case of success we end up with the full
549  * chain to new block and return 0.
550  */
ext4_splice_branch(handle_t * handle,struct inode * inode,ext4_lblk_t block,Indirect * where,int num,int blks)551 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
552 			      ext4_lblk_t block, Indirect *where, int num,
553 			      int blks)
554 {
555 	int i;
556 	int err = 0;
557 	ext4_fsblk_t current_block;
558 
559 	/*
560 	 * If we're splicing into a [td]indirect block (as opposed to the
561 	 * inode) then we need to get write access to the [td]indirect block
562 	 * before the splice.
563 	 */
564 	if (where->bh) {
565 		BUFFER_TRACE(where->bh, "get_write_access");
566 		err = ext4_journal_get_write_access(handle, where->bh);
567 		if (err)
568 			goto err_out;
569 	}
570 	/* That's it */
571 
572 	*where->p = where->key;
573 
574 	/*
575 	 * Update the host buffer_head or inode to point to more just allocated
576 	 * direct blocks blocks
577 	 */
578 	if (num == 0 && blks > 1) {
579 		current_block = le32_to_cpu(where->key) + 1;
580 		for (i = 1; i < blks; i++)
581 			*(where->p + i) = cpu_to_le32(current_block++);
582 	}
583 
584 	/* We are done with atomic stuff, now do the rest of housekeeping */
585 	/* had we spliced it onto indirect block? */
586 	if (where->bh) {
587 		/*
588 		 * If we spliced it onto an indirect block, we haven't
589 		 * altered the inode.  Note however that if it is being spliced
590 		 * onto an indirect block at the very end of the file (the
591 		 * file is growing) then we *will* alter the inode to reflect
592 		 * the new i_size.  But that is not done here - it is done in
593 		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
594 		 */
595 		jbd_debug(5, "splicing indirect only\n");
596 		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
597 		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
598 		if (err)
599 			goto err_out;
600 	} else {
601 		/*
602 		 * OK, we spliced it into the inode itself on a direct block.
603 		 */
604 		ext4_mark_inode_dirty(handle, inode);
605 		jbd_debug(5, "splicing direct\n");
606 	}
607 	return err;
608 
609 err_out:
610 	for (i = 1; i <= num; i++) {
611 		/*
612 		 * branch[i].bh is newly allocated, so there is no
613 		 * need to revoke the block, which is why we don't
614 		 * need to set EXT4_FREE_BLOCKS_METADATA.
615 		 */
616 		ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
617 				 EXT4_FREE_BLOCKS_FORGET);
618 	}
619 	ext4_free_blocks(handle, inode, NULL, le32_to_cpu(where[num].key),
620 			 blks, 0);
621 
622 	return err;
623 }
624 
625 /*
626  * The ext4_ind_map_blocks() function handles non-extents inodes
627  * (i.e., using the traditional indirect/double-indirect i_blocks
628  * scheme) for ext4_map_blocks().
629  *
630  * Allocation strategy is simple: if we have to allocate something, we will
631  * have to go the whole way to leaf. So let's do it before attaching anything
632  * to tree, set linkage between the newborn blocks, write them if sync is
633  * required, recheck the path, free and repeat if check fails, otherwise
634  * set the last missing link (that will protect us from any truncate-generated
635  * removals - all blocks on the path are immune now) and possibly force the
636  * write on the parent block.
637  * That has a nice additional property: no special recovery from the failed
638  * allocations is needed - we simply release blocks and do not touch anything
639  * reachable from inode.
640  *
641  * `handle' can be NULL if create == 0.
642  *
643  * return > 0, # of blocks mapped or allocated.
644  * return = 0, if plain lookup failed.
645  * return < 0, error case.
646  *
647  * The ext4_ind_get_blocks() function should be called with
648  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
649  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
650  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
651  * blocks.
652  */
ext4_ind_map_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int flags)653 int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
654 			struct ext4_map_blocks *map,
655 			int flags)
656 {
657 	int err = -EIO;
658 	ext4_lblk_t offsets[4];
659 	Indirect chain[4];
660 	Indirect *partial;
661 	ext4_fsblk_t goal;
662 	int indirect_blks;
663 	int blocks_to_boundary = 0;
664 	int depth;
665 	int count = 0;
666 	ext4_fsblk_t first_block = 0;
667 
668 	trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
669 	J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
670 	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
671 	depth = ext4_block_to_path(inode, map->m_lblk, offsets,
672 				   &blocks_to_boundary);
673 
674 	if (depth == 0)
675 		goto out;
676 
677 	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
678 
679 	/* Simplest case - block found, no allocation needed */
680 	if (!partial) {
681 		first_block = le32_to_cpu(chain[depth - 1].key);
682 		count++;
683 		/*map more blocks*/
684 		while (count < map->m_len && count <= blocks_to_boundary) {
685 			ext4_fsblk_t blk;
686 
687 			blk = le32_to_cpu(*(chain[depth-1].p + count));
688 
689 			if (blk == first_block + count)
690 				count++;
691 			else
692 				break;
693 		}
694 		goto got_it;
695 	}
696 
697 	/* Next simple case - plain lookup or failed read of indirect block */
698 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
699 		goto cleanup;
700 
701 	/*
702 	 * Okay, we need to do block allocation.
703 	*/
704 	if (EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
705 				       EXT4_FEATURE_RO_COMPAT_BIGALLOC)) {
706 		EXT4_ERROR_INODE(inode, "Can't allocate blocks for "
707 				 "non-extent mapped inodes with bigalloc");
708 		return -ENOSPC;
709 	}
710 
711 	goal = ext4_find_goal(inode, map->m_lblk, partial);
712 
713 	/* the number of blocks need to allocate for [d,t]indirect blocks */
714 	indirect_blks = (chain + depth) - partial - 1;
715 
716 	/*
717 	 * Next look up the indirect map to count the totoal number of
718 	 * direct blocks to allocate for this branch.
719 	 */
720 	count = ext4_blks_to_allocate(partial, indirect_blks,
721 				      map->m_len, blocks_to_boundary);
722 	/*
723 	 * Block out ext4_truncate while we alter the tree
724 	 */
725 	err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
726 				&count, goal,
727 				offsets + (partial - chain), partial);
728 
729 	/*
730 	 * The ext4_splice_branch call will free and forget any buffers
731 	 * on the new chain if there is a failure, but that risks using
732 	 * up transaction credits, especially for bitmaps where the
733 	 * credits cannot be returned.  Can we handle this somehow?  We
734 	 * may need to return -EAGAIN upwards in the worst case.  --sct
735 	 */
736 	if (!err)
737 		err = ext4_splice_branch(handle, inode, map->m_lblk,
738 					 partial, indirect_blks, count);
739 	if (err)
740 		goto cleanup;
741 
742 	map->m_flags |= EXT4_MAP_NEW;
743 
744 	ext4_update_inode_fsync_trans(handle, inode, 1);
745 got_it:
746 	map->m_flags |= EXT4_MAP_MAPPED;
747 	map->m_pblk = le32_to_cpu(chain[depth-1].key);
748 	map->m_len = count;
749 	if (count > blocks_to_boundary)
750 		map->m_flags |= EXT4_MAP_BOUNDARY;
751 	err = count;
752 	/* Clean up and exit */
753 	partial = chain + depth - 1;	/* the whole chain */
754 cleanup:
755 	while (partial > chain) {
756 		BUFFER_TRACE(partial->bh, "call brelse");
757 		brelse(partial->bh);
758 		partial--;
759 	}
760 out:
761 	trace_ext4_ind_map_blocks_exit(inode, map->m_lblk,
762 				map->m_pblk, map->m_len, err);
763 	return err;
764 }
765 
766 /*
767  * O_DIRECT for ext3 (or indirect map) based files
768  *
769  * If the O_DIRECT write will extend the file then add this inode to the
770  * orphan list.  So recovery will truncate it back to the original size
771  * if the machine crashes during the write.
772  *
773  * If the O_DIRECT write is intantiating holes inside i_size and the machine
774  * crashes then stale disk data _may_ be exposed inside the file. But current
775  * VFS code falls back into buffered path in that case so we are safe.
776  */
ext4_ind_direct_IO(int rw,struct kiocb * iocb,const struct iovec * iov,loff_t offset,unsigned long nr_segs)777 ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
778 			   const struct iovec *iov, loff_t offset,
779 			   unsigned long nr_segs)
780 {
781 	struct file *file = iocb->ki_filp;
782 	struct inode *inode = file->f_mapping->host;
783 	struct ext4_inode_info *ei = EXT4_I(inode);
784 	handle_t *handle;
785 	ssize_t ret;
786 	int orphan = 0;
787 	size_t count = iov_length(iov, nr_segs);
788 	int retries = 0;
789 
790 	if (rw == WRITE) {
791 		loff_t final_size = offset + count;
792 
793 		if (final_size > inode->i_size) {
794 			/* Credits for sb + inode write */
795 			handle = ext4_journal_start(inode, 2);
796 			if (IS_ERR(handle)) {
797 				ret = PTR_ERR(handle);
798 				goto out;
799 			}
800 			ret = ext4_orphan_add(handle, inode);
801 			if (ret) {
802 				ext4_journal_stop(handle);
803 				goto out;
804 			}
805 			orphan = 1;
806 			ei->i_disksize = inode->i_size;
807 			ext4_journal_stop(handle);
808 		}
809 	}
810 
811 retry:
812 	if (rw == READ && ext4_should_dioread_nolock(inode)) {
813 		if (unlikely(!list_empty(&ei->i_completed_io_list))) {
814 			mutex_lock(&inode->i_mutex);
815 			ext4_flush_completed_IO(inode);
816 			mutex_unlock(&inode->i_mutex);
817 		}
818 		ret = __blockdev_direct_IO(rw, iocb, inode,
819 				 inode->i_sb->s_bdev, iov,
820 				 offset, nr_segs,
821 				 ext4_get_block, NULL, NULL, 0);
822 	} else {
823 		ret = blockdev_direct_IO(rw, iocb, inode, iov,
824 				 offset, nr_segs, ext4_get_block);
825 
826 		if (unlikely((rw & WRITE) && ret < 0)) {
827 			loff_t isize = i_size_read(inode);
828 			loff_t end = offset + iov_length(iov, nr_segs);
829 
830 			if (end > isize)
831 				ext4_truncate_failed_write(inode);
832 		}
833 	}
834 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
835 		goto retry;
836 
837 	if (orphan) {
838 		int err;
839 
840 		/* Credits for sb + inode write */
841 		handle = ext4_journal_start(inode, 2);
842 		if (IS_ERR(handle)) {
843 			/* This is really bad luck. We've written the data
844 			 * but cannot extend i_size. Bail out and pretend
845 			 * the write failed... */
846 			ret = PTR_ERR(handle);
847 			if (inode->i_nlink)
848 				ext4_orphan_del(NULL, inode);
849 
850 			goto out;
851 		}
852 		if (inode->i_nlink)
853 			ext4_orphan_del(handle, inode);
854 		if (ret > 0) {
855 			loff_t end = offset + ret;
856 			if (end > inode->i_size) {
857 				ei->i_disksize = end;
858 				i_size_write(inode, end);
859 				/*
860 				 * We're going to return a positive `ret'
861 				 * here due to non-zero-length I/O, so there's
862 				 * no way of reporting error returns from
863 				 * ext4_mark_inode_dirty() to userspace.  So
864 				 * ignore it.
865 				 */
866 				ext4_mark_inode_dirty(handle, inode);
867 			}
868 		}
869 		err = ext4_journal_stop(handle);
870 		if (ret == 0)
871 			ret = err;
872 	}
873 out:
874 	return ret;
875 }
876 
877 /*
878  * Calculate the number of metadata blocks need to reserve
879  * to allocate a new block at @lblocks for non extent file based file
880  */
ext4_ind_calc_metadata_amount(struct inode * inode,sector_t lblock)881 int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock)
882 {
883 	struct ext4_inode_info *ei = EXT4_I(inode);
884 	sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
885 	int blk_bits;
886 
887 	if (lblock < EXT4_NDIR_BLOCKS)
888 		return 0;
889 
890 	lblock -= EXT4_NDIR_BLOCKS;
891 
892 	if (ei->i_da_metadata_calc_len &&
893 	    (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
894 		ei->i_da_metadata_calc_len++;
895 		return 0;
896 	}
897 	ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
898 	ei->i_da_metadata_calc_len = 1;
899 	blk_bits = order_base_2(lblock);
900 	return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
901 }
902 
ext4_ind_trans_blocks(struct inode * inode,int nrblocks,int chunk)903 int ext4_ind_trans_blocks(struct inode *inode, int nrblocks, int chunk)
904 {
905 	int indirects;
906 
907 	/* if nrblocks are contiguous */
908 	if (chunk) {
909 		/*
910 		 * With N contiguous data blocks, we need at most
911 		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
912 		 * 2 dindirect blocks, and 1 tindirect block
913 		 */
914 		return DIV_ROUND_UP(nrblocks,
915 				    EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
916 	}
917 	/*
918 	 * if nrblocks are not contiguous, worse case, each block touch
919 	 * a indirect block, and each indirect block touch a double indirect
920 	 * block, plus a triple indirect block
921 	 */
922 	indirects = nrblocks * 2 + 1;
923 	return indirects;
924 }
925 
926 /*
927  * Truncate transactions can be complex and absolutely huge.  So we need to
928  * be able to restart the transaction at a conventient checkpoint to make
929  * sure we don't overflow the journal.
930  *
931  * start_transaction gets us a new handle for a truncate transaction,
932  * and extend_transaction tries to extend the existing one a bit.  If
933  * extend fails, we need to propagate the failure up and restart the
934  * transaction in the top-level truncate loop. --sct
935  */
start_transaction(struct inode * inode)936 static handle_t *start_transaction(struct inode *inode)
937 {
938 	handle_t *result;
939 
940 	result = ext4_journal_start(inode, ext4_blocks_for_truncate(inode));
941 	if (!IS_ERR(result))
942 		return result;
943 
944 	ext4_std_error(inode->i_sb, PTR_ERR(result));
945 	return result;
946 }
947 
948 /*
949  * Try to extend this transaction for the purposes of truncation.
950  *
951  * Returns 0 if we managed to create more room.  If we can't create more
952  * room, and the transaction must be restarted we return 1.
953  */
try_to_extend_transaction(handle_t * handle,struct inode * inode)954 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
955 {
956 	if (!ext4_handle_valid(handle))
957 		return 0;
958 	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
959 		return 0;
960 	if (!ext4_journal_extend(handle, ext4_blocks_for_truncate(inode)))
961 		return 0;
962 	return 1;
963 }
964 
965 /*
966  * Probably it should be a library function... search for first non-zero word
967  * or memcmp with zero_page, whatever is better for particular architecture.
968  * Linus?
969  */
all_zeroes(__le32 * p,__le32 * q)970 static inline int all_zeroes(__le32 *p, __le32 *q)
971 {
972 	while (p < q)
973 		if (*p++)
974 			return 0;
975 	return 1;
976 }
977 
978 /**
979  *	ext4_find_shared - find the indirect blocks for partial truncation.
980  *	@inode:	  inode in question
981  *	@depth:	  depth of the affected branch
982  *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
983  *	@chain:	  place to store the pointers to partial indirect blocks
984  *	@top:	  place to the (detached) top of branch
985  *
986  *	This is a helper function used by ext4_truncate().
987  *
988  *	When we do truncate() we may have to clean the ends of several
989  *	indirect blocks but leave the blocks themselves alive. Block is
990  *	partially truncated if some data below the new i_size is referred
991  *	from it (and it is on the path to the first completely truncated
992  *	data block, indeed).  We have to free the top of that path along
993  *	with everything to the right of the path. Since no allocation
994  *	past the truncation point is possible until ext4_truncate()
995  *	finishes, we may safely do the latter, but top of branch may
996  *	require special attention - pageout below the truncation point
997  *	might try to populate it.
998  *
999  *	We atomically detach the top of branch from the tree, store the
1000  *	block number of its root in *@top, pointers to buffer_heads of
1001  *	partially truncated blocks - in @chain[].bh and pointers to
1002  *	their last elements that should not be removed - in
1003  *	@chain[].p. Return value is the pointer to last filled element
1004  *	of @chain.
1005  *
1006  *	The work left to caller to do the actual freeing of subtrees:
1007  *		a) free the subtree starting from *@top
1008  *		b) free the subtrees whose roots are stored in
1009  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
1010  *		c) free the subtrees growing from the inode past the @chain[0].
1011  *			(no partially truncated stuff there).  */
1012 
ext4_find_shared(struct inode * inode,int depth,ext4_lblk_t offsets[4],Indirect chain[4],__le32 * top)1013 static Indirect *ext4_find_shared(struct inode *inode, int depth,
1014 				  ext4_lblk_t offsets[4], Indirect chain[4],
1015 				  __le32 *top)
1016 {
1017 	Indirect *partial, *p;
1018 	int k, err;
1019 
1020 	*top = 0;
1021 	/* Make k index the deepest non-null offset + 1 */
1022 	for (k = depth; k > 1 && !offsets[k-1]; k--)
1023 		;
1024 	partial = ext4_get_branch(inode, k, offsets, chain, &err);
1025 	/* Writer: pointers */
1026 	if (!partial)
1027 		partial = chain + k-1;
1028 	/*
1029 	 * If the branch acquired continuation since we've looked at it -
1030 	 * fine, it should all survive and (new) top doesn't belong to us.
1031 	 */
1032 	if (!partial->key && *partial->p)
1033 		/* Writer: end */
1034 		goto no_top;
1035 	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
1036 		;
1037 	/*
1038 	 * OK, we've found the last block that must survive. The rest of our
1039 	 * branch should be detached before unlocking. However, if that rest
1040 	 * of branch is all ours and does not grow immediately from the inode
1041 	 * it's easier to cheat and just decrement partial->p.
1042 	 */
1043 	if (p == chain + k - 1 && p > chain) {
1044 		p->p--;
1045 	} else {
1046 		*top = *p->p;
1047 		/* Nope, don't do this in ext4.  Must leave the tree intact */
1048 #if 0
1049 		*p->p = 0;
1050 #endif
1051 	}
1052 	/* Writer: end */
1053 
1054 	while (partial > p) {
1055 		brelse(partial->bh);
1056 		partial--;
1057 	}
1058 no_top:
1059 	return partial;
1060 }
1061 
1062 /*
1063  * Zero a number of block pointers in either an inode or an indirect block.
1064  * If we restart the transaction we must again get write access to the
1065  * indirect block for further modification.
1066  *
1067  * We release `count' blocks on disk, but (last - first) may be greater
1068  * than `count' because there can be holes in there.
1069  *
1070  * Return 0 on success, 1 on invalid block range
1071  * and < 0 on fatal error.
1072  */
ext4_clear_blocks(handle_t * handle,struct inode * inode,struct buffer_head * bh,ext4_fsblk_t block_to_free,unsigned long count,__le32 * first,__le32 * last)1073 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
1074 			     struct buffer_head *bh,
1075 			     ext4_fsblk_t block_to_free,
1076 			     unsigned long count, __le32 *first,
1077 			     __le32 *last)
1078 {
1079 	__le32 *p;
1080 	int	flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
1081 	int	err;
1082 
1083 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1084 		flags |= EXT4_FREE_BLOCKS_METADATA;
1085 
1086 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
1087 				   count)) {
1088 		EXT4_ERROR_INODE(inode, "attempt to clear invalid "
1089 				 "blocks %llu len %lu",
1090 				 (unsigned long long) block_to_free, count);
1091 		return 1;
1092 	}
1093 
1094 	if (try_to_extend_transaction(handle, inode)) {
1095 		if (bh) {
1096 			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1097 			err = ext4_handle_dirty_metadata(handle, inode, bh);
1098 			if (unlikely(err))
1099 				goto out_err;
1100 		}
1101 		err = ext4_mark_inode_dirty(handle, inode);
1102 		if (unlikely(err))
1103 			goto out_err;
1104 		err = ext4_truncate_restart_trans(handle, inode,
1105 					ext4_blocks_for_truncate(inode));
1106 		if (unlikely(err))
1107 			goto out_err;
1108 		if (bh) {
1109 			BUFFER_TRACE(bh, "retaking write access");
1110 			err = ext4_journal_get_write_access(handle, bh);
1111 			if (unlikely(err))
1112 				goto out_err;
1113 		}
1114 	}
1115 
1116 	for (p = first; p < last; p++)
1117 		*p = 0;
1118 
1119 	ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
1120 	return 0;
1121 out_err:
1122 	ext4_std_error(inode->i_sb, err);
1123 	return err;
1124 }
1125 
1126 /**
1127  * ext4_free_data - free a list of data blocks
1128  * @handle:	handle for this transaction
1129  * @inode:	inode we are dealing with
1130  * @this_bh:	indirect buffer_head which contains *@first and *@last
1131  * @first:	array of block numbers
1132  * @last:	points immediately past the end of array
1133  *
1134  * We are freeing all blocks referred from that array (numbers are stored as
1135  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
1136  *
1137  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
1138  * blocks are contiguous then releasing them at one time will only affect one
1139  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
1140  * actually use a lot of journal space.
1141  *
1142  * @this_bh will be %NULL if @first and @last point into the inode's direct
1143  * block pointers.
1144  */
ext4_free_data(handle_t * handle,struct inode * inode,struct buffer_head * this_bh,__le32 * first,__le32 * last)1145 static void ext4_free_data(handle_t *handle, struct inode *inode,
1146 			   struct buffer_head *this_bh,
1147 			   __le32 *first, __le32 *last)
1148 {
1149 	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
1150 	unsigned long count = 0;	    /* Number of blocks in the run */
1151 	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
1152 					       corresponding to
1153 					       block_to_free */
1154 	ext4_fsblk_t nr;		    /* Current block # */
1155 	__le32 *p;			    /* Pointer into inode/ind
1156 					       for current block */
1157 	int err = 0;
1158 
1159 	if (this_bh) {				/* For indirect block */
1160 		BUFFER_TRACE(this_bh, "get_write_access");
1161 		err = ext4_journal_get_write_access(handle, this_bh);
1162 		/* Important: if we can't update the indirect pointers
1163 		 * to the blocks, we can't free them. */
1164 		if (err)
1165 			return;
1166 	}
1167 
1168 	for (p = first; p < last; p++) {
1169 		nr = le32_to_cpu(*p);
1170 		if (nr) {
1171 			/* accumulate blocks to free if they're contiguous */
1172 			if (count == 0) {
1173 				block_to_free = nr;
1174 				block_to_free_p = p;
1175 				count = 1;
1176 			} else if (nr == block_to_free + count) {
1177 				count++;
1178 			} else {
1179 				err = ext4_clear_blocks(handle, inode, this_bh,
1180 						        block_to_free, count,
1181 						        block_to_free_p, p);
1182 				if (err)
1183 					break;
1184 				block_to_free = nr;
1185 				block_to_free_p = p;
1186 				count = 1;
1187 			}
1188 		}
1189 	}
1190 
1191 	if (!err && count > 0)
1192 		err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
1193 					count, block_to_free_p, p);
1194 	if (err < 0)
1195 		/* fatal error */
1196 		return;
1197 
1198 	if (this_bh) {
1199 		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
1200 
1201 		/*
1202 		 * The buffer head should have an attached journal head at this
1203 		 * point. However, if the data is corrupted and an indirect
1204 		 * block pointed to itself, it would have been detached when
1205 		 * the block was cleared. Check for this instead of OOPSing.
1206 		 */
1207 		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
1208 			ext4_handle_dirty_metadata(handle, inode, this_bh);
1209 		else
1210 			EXT4_ERROR_INODE(inode,
1211 					 "circular indirect block detected at "
1212 					 "block %llu",
1213 				(unsigned long long) this_bh->b_blocknr);
1214 	}
1215 }
1216 
1217 /**
1218  *	ext4_free_branches - free an array of branches
1219  *	@handle: JBD handle for this transaction
1220  *	@inode:	inode we are dealing with
1221  *	@parent_bh: the buffer_head which contains *@first and *@last
1222  *	@first:	array of block numbers
1223  *	@last:	pointer immediately past the end of array
1224  *	@depth:	depth of the branches to free
1225  *
1226  *	We are freeing all blocks referred from these branches (numbers are
1227  *	stored as little-endian 32-bit) and updating @inode->i_blocks
1228  *	appropriately.
1229  */
ext4_free_branches(handle_t * handle,struct inode * inode,struct buffer_head * parent_bh,__le32 * first,__le32 * last,int depth)1230 static void ext4_free_branches(handle_t *handle, struct inode *inode,
1231 			       struct buffer_head *parent_bh,
1232 			       __le32 *first, __le32 *last, int depth)
1233 {
1234 	ext4_fsblk_t nr;
1235 	__le32 *p;
1236 
1237 	if (ext4_handle_is_aborted(handle))
1238 		return;
1239 
1240 	if (depth--) {
1241 		struct buffer_head *bh;
1242 		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1243 		p = last;
1244 		while (--p >= first) {
1245 			nr = le32_to_cpu(*p);
1246 			if (!nr)
1247 				continue;		/* A hole */
1248 
1249 			if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
1250 						   nr, 1)) {
1251 				EXT4_ERROR_INODE(inode,
1252 						 "invalid indirect mapped "
1253 						 "block %lu (level %d)",
1254 						 (unsigned long) nr, depth);
1255 				break;
1256 			}
1257 
1258 			/* Go read the buffer for the next level down */
1259 			bh = sb_bread(inode->i_sb, nr);
1260 
1261 			/*
1262 			 * A read failure? Report error and clear slot
1263 			 * (should be rare).
1264 			 */
1265 			if (!bh) {
1266 				EXT4_ERROR_INODE_BLOCK(inode, nr,
1267 						       "Read failure");
1268 				continue;
1269 			}
1270 
1271 			/* This zaps the entire block.  Bottom up. */
1272 			BUFFER_TRACE(bh, "free child branches");
1273 			ext4_free_branches(handle, inode, bh,
1274 					(__le32 *) bh->b_data,
1275 					(__le32 *) bh->b_data + addr_per_block,
1276 					depth);
1277 			brelse(bh);
1278 
1279 			/*
1280 			 * Everything below this this pointer has been
1281 			 * released.  Now let this top-of-subtree go.
1282 			 *
1283 			 * We want the freeing of this indirect block to be
1284 			 * atomic in the journal with the updating of the
1285 			 * bitmap block which owns it.  So make some room in
1286 			 * the journal.
1287 			 *
1288 			 * We zero the parent pointer *after* freeing its
1289 			 * pointee in the bitmaps, so if extend_transaction()
1290 			 * for some reason fails to put the bitmap changes and
1291 			 * the release into the same transaction, recovery
1292 			 * will merely complain about releasing a free block,
1293 			 * rather than leaking blocks.
1294 			 */
1295 			if (ext4_handle_is_aborted(handle))
1296 				return;
1297 			if (try_to_extend_transaction(handle, inode)) {
1298 				ext4_mark_inode_dirty(handle, inode);
1299 				ext4_truncate_restart_trans(handle, inode,
1300 					    ext4_blocks_for_truncate(inode));
1301 			}
1302 
1303 			/*
1304 			 * The forget flag here is critical because if
1305 			 * we are journaling (and not doing data
1306 			 * journaling), we have to make sure a revoke
1307 			 * record is written to prevent the journal
1308 			 * replay from overwriting the (former)
1309 			 * indirect block if it gets reallocated as a
1310 			 * data block.  This must happen in the same
1311 			 * transaction where the data blocks are
1312 			 * actually freed.
1313 			 */
1314 			ext4_free_blocks(handle, inode, NULL, nr, 1,
1315 					 EXT4_FREE_BLOCKS_METADATA|
1316 					 EXT4_FREE_BLOCKS_FORGET);
1317 
1318 			if (parent_bh) {
1319 				/*
1320 				 * The block which we have just freed is
1321 				 * pointed to by an indirect block: journal it
1322 				 */
1323 				BUFFER_TRACE(parent_bh, "get_write_access");
1324 				if (!ext4_journal_get_write_access(handle,
1325 								   parent_bh)){
1326 					*p = 0;
1327 					BUFFER_TRACE(parent_bh,
1328 					"call ext4_handle_dirty_metadata");
1329 					ext4_handle_dirty_metadata(handle,
1330 								   inode,
1331 								   parent_bh);
1332 				}
1333 			}
1334 		}
1335 	} else {
1336 		/* We have reached the bottom of the tree. */
1337 		BUFFER_TRACE(parent_bh, "free data blocks");
1338 		ext4_free_data(handle, inode, parent_bh, first, last);
1339 	}
1340 }
1341 
ext4_ind_truncate(struct inode * inode)1342 void ext4_ind_truncate(struct inode *inode)
1343 {
1344 	handle_t *handle;
1345 	struct ext4_inode_info *ei = EXT4_I(inode);
1346 	__le32 *i_data = ei->i_data;
1347 	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1348 	struct address_space *mapping = inode->i_mapping;
1349 	ext4_lblk_t offsets[4];
1350 	Indirect chain[4];
1351 	Indirect *partial;
1352 	__le32 nr = 0;
1353 	int n = 0;
1354 	ext4_lblk_t last_block, max_block;
1355 	loff_t page_len;
1356 	unsigned blocksize = inode->i_sb->s_blocksize;
1357 	int err;
1358 
1359 	handle = start_transaction(inode);
1360 	if (IS_ERR(handle))
1361 		return;		/* AKPM: return what? */
1362 
1363 	last_block = (inode->i_size + blocksize-1)
1364 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1365 	max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1366 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1367 
1368 	if (inode->i_size % PAGE_CACHE_SIZE != 0) {
1369 		page_len = PAGE_CACHE_SIZE -
1370 			(inode->i_size & (PAGE_CACHE_SIZE - 1));
1371 
1372 		err = ext4_discard_partial_page_buffers(handle,
1373 			mapping, inode->i_size, page_len, 0);
1374 
1375 		if (err)
1376 			goto out_stop;
1377 	}
1378 
1379 	if (last_block != max_block) {
1380 		n = ext4_block_to_path(inode, last_block, offsets, NULL);
1381 		if (n == 0)
1382 			goto out_stop;	/* error */
1383 	}
1384 
1385 	/*
1386 	 * OK.  This truncate is going to happen.  We add the inode to the
1387 	 * orphan list, so that if this truncate spans multiple transactions,
1388 	 * and we crash, we will resume the truncate when the filesystem
1389 	 * recovers.  It also marks the inode dirty, to catch the new size.
1390 	 *
1391 	 * Implication: the file must always be in a sane, consistent
1392 	 * truncatable state while each transaction commits.
1393 	 */
1394 	if (ext4_orphan_add(handle, inode))
1395 		goto out_stop;
1396 
1397 	/*
1398 	 * From here we block out all ext4_get_block() callers who want to
1399 	 * modify the block allocation tree.
1400 	 */
1401 	down_write(&ei->i_data_sem);
1402 
1403 	ext4_discard_preallocations(inode);
1404 
1405 	/*
1406 	 * The orphan list entry will now protect us from any crash which
1407 	 * occurs before the truncate completes, so it is now safe to propagate
1408 	 * the new, shorter inode size (held for now in i_size) into the
1409 	 * on-disk inode. We do this via i_disksize, which is the value which
1410 	 * ext4 *really* writes onto the disk inode.
1411 	 */
1412 	ei->i_disksize = inode->i_size;
1413 
1414 	if (last_block == max_block) {
1415 		/*
1416 		 * It is unnecessary to free any data blocks if last_block is
1417 		 * equal to the indirect block limit.
1418 		 */
1419 		goto out_unlock;
1420 	} else if (n == 1) {		/* direct blocks */
1421 		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
1422 			       i_data + EXT4_NDIR_BLOCKS);
1423 		goto do_indirects;
1424 	}
1425 
1426 	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1427 	/* Kill the top of shared branch (not detached) */
1428 	if (nr) {
1429 		if (partial == chain) {
1430 			/* Shared branch grows from the inode */
1431 			ext4_free_branches(handle, inode, NULL,
1432 					   &nr, &nr+1, (chain+n-1) - partial);
1433 			*partial->p = 0;
1434 			/*
1435 			 * We mark the inode dirty prior to restart,
1436 			 * and prior to stop.  No need for it here.
1437 			 */
1438 		} else {
1439 			/* Shared branch grows from an indirect block */
1440 			BUFFER_TRACE(partial->bh, "get_write_access");
1441 			ext4_free_branches(handle, inode, partial->bh,
1442 					partial->p,
1443 					partial->p+1, (chain+n-1) - partial);
1444 		}
1445 	}
1446 	/* Clear the ends of indirect blocks on the shared branch */
1447 	while (partial > chain) {
1448 		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
1449 				   (__le32*)partial->bh->b_data+addr_per_block,
1450 				   (chain+n-1) - partial);
1451 		BUFFER_TRACE(partial->bh, "call brelse");
1452 		brelse(partial->bh);
1453 		partial--;
1454 	}
1455 do_indirects:
1456 	/* Kill the remaining (whole) subtrees */
1457 	switch (offsets[0]) {
1458 	default:
1459 		nr = i_data[EXT4_IND_BLOCK];
1460 		if (nr) {
1461 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1462 			i_data[EXT4_IND_BLOCK] = 0;
1463 		}
1464 	case EXT4_IND_BLOCK:
1465 		nr = i_data[EXT4_DIND_BLOCK];
1466 		if (nr) {
1467 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1468 			i_data[EXT4_DIND_BLOCK] = 0;
1469 		}
1470 	case EXT4_DIND_BLOCK:
1471 		nr = i_data[EXT4_TIND_BLOCK];
1472 		if (nr) {
1473 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1474 			i_data[EXT4_TIND_BLOCK] = 0;
1475 		}
1476 	case EXT4_TIND_BLOCK:
1477 		;
1478 	}
1479 
1480 out_unlock:
1481 	up_write(&ei->i_data_sem);
1482 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
1483 	ext4_mark_inode_dirty(handle, inode);
1484 
1485 	/*
1486 	 * In a multi-transaction truncate, we only make the final transaction
1487 	 * synchronous
1488 	 */
1489 	if (IS_SYNC(inode))
1490 		ext4_handle_sync(handle);
1491 out_stop:
1492 	/*
1493 	 * If this was a simple ftruncate(), and the file will remain alive
1494 	 * then we need to clear up the orphan record which we created above.
1495 	 * However, if this was a real unlink then we were called by
1496 	 * ext4_delete_inode(), and we allow that function to clean up the
1497 	 * orphan info for us.
1498 	 */
1499 	if (inode->i_nlink)
1500 		ext4_orphan_del(handle, inode);
1501 
1502 	ext4_journal_stop(handle);
1503 	trace_ext4_truncate_exit(inode);
1504 }
1505 
1506