1 /*
2  * Copyright (C) 2011
3  * Boaz Harrosh <bharrosh@panasas.com>
4  *
5  * This file is part of the objects raid engine (ore).
6  *
7  * It is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as published
9  * by the Free Software Foundation.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with "ore". If not, write to the Free Software Foundation, Inc:
13  *	"Free Software Foundation <info@fsf.org>"
14  */
15 
16 #include <linux/gfp.h>
17 #include <linux/async_tx.h>
18 
19 #include "ore_raid.h"
20 
21 #undef ORE_DBGMSG2
22 #define ORE_DBGMSG2 ORE_DBGMSG
23 
_raid_page_alloc(void)24 struct page *_raid_page_alloc(void)
25 {
26 	return alloc_page(GFP_KERNEL);
27 }
28 
_raid_page_free(struct page * p)29 void _raid_page_free(struct page *p)
30 {
31 	__free_page(p);
32 }
33 
34 /* This struct is forward declare in ore_io_state, but is private to here.
35  * It is put on ios->sp2d for RAID5/6 writes only. See _gen_xor_unit.
36  *
37  * __stripe_pages_2d is a 2d array of pages, and it is also a corner turn.
38  * Ascending page index access is sp2d(p-minor, c-major). But storage is
39  * sp2d[p-minor][c-major], so it can be properlly presented to the async-xor
40  * API.
41  */
42 struct __stripe_pages_2d {
43 	/* Cache some hot path repeated calculations */
44 	unsigned parity;
45 	unsigned data_devs;
46 	unsigned pages_in_unit;
47 
48 	bool needed ;
49 
50 	/* Array size is pages_in_unit (layout->stripe_unit / PAGE_SIZE) */
51 	struct __1_page_stripe {
52 		bool alloc;
53 		unsigned write_count;
54 		struct async_submit_ctl submit;
55 		struct dma_async_tx_descriptor *tx;
56 
57 		/* The size of this array is data_devs + parity */
58 		struct page **pages;
59 		struct page **scribble;
60 		/* bool array, size of this array is data_devs */
61 		char *page_is_read;
62 	} _1p_stripes[];
63 };
64 
65 /* This can get bigger then a page. So support multiple page allocations
66  * _sp2d_free should be called even if _sp2d_alloc fails (by returning
67  * none-zero).
68  */
_sp2d_alloc(unsigned pages_in_unit,unsigned group_width,unsigned parity,struct __stripe_pages_2d ** psp2d)69 static int _sp2d_alloc(unsigned pages_in_unit, unsigned group_width,
70 		       unsigned parity, struct __stripe_pages_2d **psp2d)
71 {
72 	struct __stripe_pages_2d *sp2d;
73 	unsigned data_devs = group_width - parity;
74 	struct _alloc_all_bytes {
75 		struct __alloc_stripe_pages_2d {
76 			struct __stripe_pages_2d sp2d;
77 			struct __1_page_stripe _1p_stripes[pages_in_unit];
78 		} __asp2d;
79 		struct __alloc_1p_arrays {
80 			struct page *pages[group_width];
81 			struct page *scribble[group_width];
82 			char page_is_read[data_devs];
83 		} __a1pa[pages_in_unit];
84 	} *_aab;
85 	struct __alloc_1p_arrays *__a1pa;
86 	struct __alloc_1p_arrays *__a1pa_end;
87 	const unsigned sizeof__a1pa = sizeof(_aab->__a1pa[0]);
88 	unsigned num_a1pa, alloc_size, i;
89 
90 	/* FIXME: check these numbers in ore_verify_layout */
91 	BUG_ON(sizeof(_aab->__asp2d) > PAGE_SIZE);
92 	BUG_ON(sizeof__a1pa > PAGE_SIZE);
93 
94 	if (sizeof(*_aab) > PAGE_SIZE) {
95 		num_a1pa = (PAGE_SIZE - sizeof(_aab->__asp2d)) / sizeof__a1pa;
96 		alloc_size = sizeof(_aab->__asp2d) + sizeof__a1pa * num_a1pa;
97 	} else {
98 		num_a1pa = pages_in_unit;
99 		alloc_size = sizeof(*_aab);
100 	}
101 
102 	_aab = kzalloc(alloc_size, GFP_KERNEL);
103 	if (unlikely(!_aab)) {
104 		ORE_DBGMSG("!! Failed to alloc sp2d size=%d\n", alloc_size);
105 		return -ENOMEM;
106 	}
107 
108 	sp2d = &_aab->__asp2d.sp2d;
109 	*psp2d = sp2d; /* From here Just call _sp2d_free */
110 
111 	__a1pa = _aab->__a1pa;
112 	__a1pa_end = __a1pa + num_a1pa;
113 
114 	for (i = 0; i < pages_in_unit; ++i) {
115 		if (unlikely(__a1pa >= __a1pa_end)) {
116 			num_a1pa = min_t(unsigned, PAGE_SIZE / sizeof__a1pa,
117 							pages_in_unit - i);
118 
119 			__a1pa = kzalloc(num_a1pa * sizeof__a1pa, GFP_KERNEL);
120 			if (unlikely(!__a1pa)) {
121 				ORE_DBGMSG("!! Failed to _alloc_1p_arrays=%d\n",
122 					   num_a1pa);
123 				return -ENOMEM;
124 			}
125 			__a1pa_end = __a1pa + num_a1pa;
126 			/* First *pages is marked for kfree of the buffer */
127 			sp2d->_1p_stripes[i].alloc = true;
128 		}
129 
130 		sp2d->_1p_stripes[i].pages = __a1pa->pages;
131 		sp2d->_1p_stripes[i].scribble = __a1pa->scribble ;
132 		sp2d->_1p_stripes[i].page_is_read = __a1pa->page_is_read;
133 		++__a1pa;
134 	}
135 
136 	sp2d->parity = parity;
137 	sp2d->data_devs = data_devs;
138 	sp2d->pages_in_unit = pages_in_unit;
139 	return 0;
140 }
141 
_sp2d_reset(struct __stripe_pages_2d * sp2d,const struct _ore_r4w_op * r4w,void * priv)142 static void _sp2d_reset(struct __stripe_pages_2d *sp2d,
143 			const struct _ore_r4w_op *r4w, void *priv)
144 {
145 	unsigned data_devs = sp2d->data_devs;
146 	unsigned group_width = data_devs + sp2d->parity;
147 	unsigned p;
148 
149 	if (!sp2d->needed)
150 		return;
151 
152 	for (p = 0; p < sp2d->pages_in_unit; p++) {
153 		struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p];
154 
155 		if (_1ps->write_count < group_width) {
156 			unsigned c;
157 
158 			for (c = 0; c < data_devs; c++)
159 				if (_1ps->page_is_read[c]) {
160 					struct page *page = _1ps->pages[c];
161 
162 					r4w->put_page(priv, page);
163 					_1ps->page_is_read[c] = false;
164 				}
165 		}
166 
167 		memset(_1ps->pages, 0, group_width * sizeof(*_1ps->pages));
168 		_1ps->write_count = 0;
169 		_1ps->tx = NULL;
170 	}
171 
172 	sp2d->needed = false;
173 }
174 
_sp2d_free(struct __stripe_pages_2d * sp2d)175 static void _sp2d_free(struct __stripe_pages_2d *sp2d)
176 {
177 	unsigned i;
178 
179 	if (!sp2d)
180 		return;
181 
182 	for (i = 0; i < sp2d->pages_in_unit; ++i) {
183 		if (sp2d->_1p_stripes[i].alloc)
184 			kfree(sp2d->_1p_stripes[i].pages);
185 	}
186 
187 	kfree(sp2d);
188 }
189 
_sp2d_min_pg(struct __stripe_pages_2d * sp2d)190 static unsigned _sp2d_min_pg(struct __stripe_pages_2d *sp2d)
191 {
192 	unsigned p;
193 
194 	for (p = 0; p < sp2d->pages_in_unit; p++) {
195 		struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p];
196 
197 		if (_1ps->write_count)
198 			return p;
199 	}
200 
201 	return ~0;
202 }
203 
_sp2d_max_pg(struct __stripe_pages_2d * sp2d)204 static unsigned _sp2d_max_pg(struct __stripe_pages_2d *sp2d)
205 {
206 	unsigned p;
207 
208 	for (p = sp2d->pages_in_unit - 1; p >= 0; --p) {
209 		struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p];
210 
211 		if (_1ps->write_count)
212 			return p;
213 	}
214 
215 	return ~0;
216 }
217 
_gen_xor_unit(struct __stripe_pages_2d * sp2d)218 static void _gen_xor_unit(struct __stripe_pages_2d *sp2d)
219 {
220 	unsigned p;
221 	for (p = 0; p < sp2d->pages_in_unit; p++) {
222 		struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p];
223 
224 		if (!_1ps->write_count)
225 			continue;
226 
227 		init_async_submit(&_1ps->submit,
228 			ASYNC_TX_XOR_ZERO_DST | ASYNC_TX_ACK,
229 			NULL,
230 			NULL, NULL,
231 			(addr_conv_t *)_1ps->scribble);
232 
233 		/* TODO: raid6 */
234 		_1ps->tx = async_xor(_1ps->pages[sp2d->data_devs], _1ps->pages,
235 				     0, sp2d->data_devs, PAGE_SIZE,
236 				     &_1ps->submit);
237 	}
238 
239 	for (p = 0; p < sp2d->pages_in_unit; p++) {
240 		struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p];
241 		/* NOTE: We wait for HW synchronously (I don't have such HW
242 		 * to test with.) Is parallelism needed with today's multi
243 		 * cores?
244 		 */
245 		async_tx_issue_pending(_1ps->tx);
246 	}
247 }
248 
_ore_add_stripe_page(struct __stripe_pages_2d * sp2d,struct ore_striping_info * si,struct page * page)249 void _ore_add_stripe_page(struct __stripe_pages_2d *sp2d,
250 		       struct ore_striping_info *si, struct page *page)
251 {
252 	struct __1_page_stripe *_1ps;
253 
254 	sp2d->needed = true;
255 
256 	_1ps = &sp2d->_1p_stripes[si->cur_pg];
257 	_1ps->pages[si->cur_comp] = page;
258 	++_1ps->write_count;
259 
260 	si->cur_pg = (si->cur_pg + 1) % sp2d->pages_in_unit;
261 	/* si->cur_comp is advanced outside at main loop */
262 }
263 
_ore_add_sg_seg(struct ore_per_dev_state * per_dev,unsigned cur_len,bool not_last)264 void _ore_add_sg_seg(struct ore_per_dev_state *per_dev, unsigned cur_len,
265 		     bool not_last)
266 {
267 	struct osd_sg_entry *sge;
268 
269 	ORE_DBGMSG("dev=%d cur_len=0x%x not_last=%d cur_sg=%d "
270 		     "offset=0x%llx length=0x%x last_sgs_total=0x%x\n",
271 		     per_dev->dev, cur_len, not_last, per_dev->cur_sg,
272 		     _LLU(per_dev->offset), per_dev->length,
273 		     per_dev->last_sgs_total);
274 
275 	if (!per_dev->cur_sg) {
276 		sge = per_dev->sglist;
277 
278 		/* First time we prepare two entries */
279 		if (per_dev->length) {
280 			++per_dev->cur_sg;
281 			sge->offset = per_dev->offset;
282 			sge->len = per_dev->length;
283 		} else {
284 			/* Here the parity is the first unit of this object.
285 			 * This happens every time we reach a parity device on
286 			 * the same stripe as the per_dev->offset. We need to
287 			 * just skip this unit.
288 			 */
289 			per_dev->offset += cur_len;
290 			return;
291 		}
292 	} else {
293 		/* finalize the last one */
294 		sge = &per_dev->sglist[per_dev->cur_sg - 1];
295 		sge->len = per_dev->length - per_dev->last_sgs_total;
296 	}
297 
298 	if (not_last) {
299 		/* Partly prepare the next one */
300 		struct osd_sg_entry *next_sge = sge + 1;
301 
302 		++per_dev->cur_sg;
303 		next_sge->offset = sge->offset + sge->len + cur_len;
304 		/* Save cur len so we know how mutch was added next time */
305 		per_dev->last_sgs_total = per_dev->length;
306 		next_sge->len = 0;
307 	} else if (!sge->len) {
308 		/* Optimize for when the last unit is a parity */
309 		--per_dev->cur_sg;
310 	}
311 }
312 
_alloc_read_4_write(struct ore_io_state * ios)313 static int _alloc_read_4_write(struct ore_io_state *ios)
314 {
315 	struct ore_layout *layout = ios->layout;
316 	int ret;
317 	/* We want to only read those pages not in cache so worst case
318 	 * is a stripe populated with every other page
319 	 */
320 	unsigned sgs_per_dev = ios->sp2d->pages_in_unit + 2;
321 
322 	ret = _ore_get_io_state(layout, ios->oc,
323 				layout->group_width * layout->mirrors_p1,
324 				sgs_per_dev, 0, &ios->ios_read_4_write);
325 	return ret;
326 }
327 
328 /* @si contains info of the to-be-inserted page. Update of @si should be
329  * maintained by caller. Specificaly si->dev, si->obj_offset, ...
330  */
_add_to_r4w(struct ore_io_state * ios,struct ore_striping_info * si,struct page * page,unsigned pg_len)331 static int _add_to_r4w(struct ore_io_state *ios, struct ore_striping_info *si,
332 		       struct page *page, unsigned pg_len)
333 {
334 	struct request_queue *q;
335 	struct ore_per_dev_state *per_dev;
336 	struct ore_io_state *read_ios;
337 	unsigned first_dev = si->dev - (si->dev %
338 			  (ios->layout->group_width * ios->layout->mirrors_p1));
339 	unsigned comp = si->dev - first_dev;
340 	unsigned added_len;
341 
342 	if (!ios->ios_read_4_write) {
343 		int ret = _alloc_read_4_write(ios);
344 
345 		if (unlikely(ret))
346 			return ret;
347 	}
348 
349 	read_ios = ios->ios_read_4_write;
350 	read_ios->numdevs = ios->layout->group_width * ios->layout->mirrors_p1;
351 
352 	per_dev = &read_ios->per_dev[comp];
353 	if (!per_dev->length) {
354 		per_dev->bio = bio_kmalloc(GFP_KERNEL,
355 					   ios->sp2d->pages_in_unit);
356 		if (unlikely(!per_dev->bio)) {
357 			ORE_DBGMSG("Failed to allocate BIO size=%u\n",
358 				     ios->sp2d->pages_in_unit);
359 			return -ENOMEM;
360 		}
361 		per_dev->offset = si->obj_offset;
362 		per_dev->dev = si->dev;
363 	} else if (si->obj_offset != (per_dev->offset + per_dev->length)) {
364 		u64 gap = si->obj_offset - (per_dev->offset + per_dev->length);
365 
366 		_ore_add_sg_seg(per_dev, gap, true);
367 	}
368 	q = osd_request_queue(ore_comp_dev(read_ios->oc, per_dev->dev));
369 	added_len = bio_add_pc_page(q, per_dev->bio, page, pg_len,
370 				    si->obj_offset % PAGE_SIZE);
371 	if (unlikely(added_len != pg_len)) {
372 		ORE_DBGMSG("Failed to bio_add_pc_page bi_vcnt=%d\n",
373 			      per_dev->bio->bi_vcnt);
374 		return -ENOMEM;
375 	}
376 
377 	per_dev->length += pg_len;
378 	return 0;
379 }
380 
381 /* read the beginning of an unaligned first page */
_add_to_r4w_first_page(struct ore_io_state * ios,struct page * page)382 static int _add_to_r4w_first_page(struct ore_io_state *ios, struct page *page)
383 {
384 	struct ore_striping_info si;
385 	unsigned pg_len;
386 
387 	ore_calc_stripe_info(ios->layout, ios->offset, 0, &si);
388 
389 	pg_len = si.obj_offset % PAGE_SIZE;
390 	si.obj_offset -= pg_len;
391 
392 	ORE_DBGMSG("offset=0x%llx len=0x%x index=0x%lx dev=%x\n",
393 		   _LLU(si.obj_offset), pg_len, page->index, si.dev);
394 
395 	return _add_to_r4w(ios, &si, page, pg_len);
396 }
397 
398 /* read the end of an incomplete last page */
_add_to_r4w_last_page(struct ore_io_state * ios,u64 * offset)399 static int _add_to_r4w_last_page(struct ore_io_state *ios, u64 *offset)
400 {
401 	struct ore_striping_info si;
402 	struct page *page;
403 	unsigned pg_len, p, c;
404 
405 	ore_calc_stripe_info(ios->layout, *offset, 0, &si);
406 
407 	p = si.unit_off / PAGE_SIZE;
408 	c = _dev_order(ios->layout->group_width * ios->layout->mirrors_p1,
409 		       ios->layout->mirrors_p1, si.par_dev, si.dev);
410 	page = ios->sp2d->_1p_stripes[p].pages[c];
411 
412 	pg_len = PAGE_SIZE - (si.unit_off % PAGE_SIZE);
413 	*offset += pg_len;
414 
415 	ORE_DBGMSG("p=%d, c=%d next-offset=0x%llx len=0x%x dev=%x par_dev=%d\n",
416 		   p, c, _LLU(*offset), pg_len, si.dev, si.par_dev);
417 
418 	BUG_ON(!page);
419 
420 	return _add_to_r4w(ios, &si, page, pg_len);
421 }
422 
_mark_read4write_pages_uptodate(struct ore_io_state * ios,int ret)423 static void _mark_read4write_pages_uptodate(struct ore_io_state *ios, int ret)
424 {
425 	struct bio_vec *bv;
426 	unsigned i, d;
427 
428 	/* loop on all devices all pages */
429 	for (d = 0; d < ios->numdevs; d++) {
430 		struct bio *bio = ios->per_dev[d].bio;
431 
432 		if (!bio)
433 			continue;
434 
435 		__bio_for_each_segment(bv, bio, i, 0) {
436 			struct page *page = bv->bv_page;
437 
438 			SetPageUptodate(page);
439 			if (PageError(page))
440 				ClearPageError(page);
441 		}
442 	}
443 }
444 
445 /* read_4_write is hacked to read the start of the first stripe and/or
446  * the end of the last stripe. If needed, with an sg-gap at each device/page.
447  * It is assumed to be called after the to_be_written pages of the first stripe
448  * are populating ios->sp2d[][]
449  *
450  * NOTE: We call ios->r4w->lock_fn for all pages needed for parity calculations
451  * These pages are held at sp2d[p].pages[c] but with
452  * sp2d[p].page_is_read[c] = true. At _sp2d_reset these pages are
453  * ios->r4w->lock_fn(). The ios->r4w->lock_fn might signal that the page is
454  * @uptodate=true, so we don't need to read it, only unlock, after IO.
455  *
456  * TODO: The read_4_write should calc a need_to_read_pages_count, if bigger then
457  * to-be-written count, we should consider the xor-in-place mode.
458  * need_to_read_pages_count is the actual number of pages not present in cache.
459  * maybe "devs_in_group - ios->sp2d[p].write_count" is a good enough
460  * approximation? In this mode the read pages are put in the empty places of
461  * ios->sp2d[p][*], xor is calculated the same way. These pages are
462  * allocated/freed and don't go through cache
463  */
_read_4_write_first_stripe(struct ore_io_state * ios)464 static int _read_4_write_first_stripe(struct ore_io_state *ios)
465 {
466 	struct ore_striping_info read_si;
467 	struct __stripe_pages_2d *sp2d = ios->sp2d;
468 	u64 offset = ios->si.first_stripe_start;
469 	unsigned c, p, min_p = sp2d->pages_in_unit, max_p = -1;
470 
471 	if (offset == ios->offset) /* Go to start collect $200 */
472 		goto read_last_stripe;
473 
474 	min_p = _sp2d_min_pg(sp2d);
475 	max_p = _sp2d_max_pg(sp2d);
476 
477 	ORE_DBGMSG("stripe_start=0x%llx ios->offset=0x%llx min_p=%d max_p=%d\n",
478 		   offset, ios->offset, min_p, max_p);
479 
480 	for (c = 0; ; c++) {
481 		ore_calc_stripe_info(ios->layout, offset, 0, &read_si);
482 		read_si.obj_offset += min_p * PAGE_SIZE;
483 		offset += min_p * PAGE_SIZE;
484 		for (p = min_p; p <= max_p; p++) {
485 			struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p];
486 			struct page **pp = &_1ps->pages[c];
487 			bool uptodate;
488 
489 			if (*pp) {
490 				if (ios->offset % PAGE_SIZE)
491 					/* Read the remainder of the page */
492 					_add_to_r4w_first_page(ios, *pp);
493 				/* to-be-written pages start here */
494 				goto read_last_stripe;
495 			}
496 
497 			*pp = ios->r4w->get_page(ios->private, offset,
498 						 &uptodate);
499 			if (unlikely(!*pp))
500 				return -ENOMEM;
501 
502 			if (!uptodate)
503 				_add_to_r4w(ios, &read_si, *pp, PAGE_SIZE);
504 
505 			/* Mark read-pages to be cache_released */
506 			_1ps->page_is_read[c] = true;
507 			read_si.obj_offset += PAGE_SIZE;
508 			offset += PAGE_SIZE;
509 		}
510 		offset += (sp2d->pages_in_unit - p) * PAGE_SIZE;
511 	}
512 
513 read_last_stripe:
514 	return 0;
515 }
516 
_read_4_write_last_stripe(struct ore_io_state * ios)517 static int _read_4_write_last_stripe(struct ore_io_state *ios)
518 {
519 	struct ore_striping_info read_si;
520 	struct __stripe_pages_2d *sp2d = ios->sp2d;
521 	u64 offset;
522 	u64 last_stripe_end;
523 	unsigned bytes_in_stripe = ios->si.bytes_in_stripe;
524 	unsigned c, p, min_p = sp2d->pages_in_unit, max_p = -1;
525 
526 	offset = ios->offset + ios->length;
527 	if (offset % PAGE_SIZE)
528 		_add_to_r4w_last_page(ios, &offset);
529 		/* offset will be aligned to next page */
530 
531 	last_stripe_end = div_u64(offset + bytes_in_stripe - 1, bytes_in_stripe)
532 				 * bytes_in_stripe;
533 	if (offset == last_stripe_end) /* Optimize for the aligned case */
534 		goto read_it;
535 
536 	ore_calc_stripe_info(ios->layout, offset, 0, &read_si);
537 	p = read_si.unit_off / PAGE_SIZE;
538 	c = _dev_order(ios->layout->group_width * ios->layout->mirrors_p1,
539 		       ios->layout->mirrors_p1, read_si.par_dev, read_si.dev);
540 
541 	if (min_p == sp2d->pages_in_unit) {
542 		/* Didn't do it yet */
543 		min_p = _sp2d_min_pg(sp2d);
544 		max_p = _sp2d_max_pg(sp2d);
545 	}
546 
547 	ORE_DBGMSG("offset=0x%llx stripe_end=0x%llx min_p=%d max_p=%d\n",
548 		   offset, last_stripe_end, min_p, max_p);
549 
550 	while (offset < last_stripe_end) {
551 		struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p];
552 
553 		if ((min_p <= p) && (p <= max_p)) {
554 			struct page *page;
555 			bool uptodate;
556 
557 			BUG_ON(_1ps->pages[c]);
558 			page = ios->r4w->get_page(ios->private, offset,
559 						  &uptodate);
560 			if (unlikely(!page))
561 				return -ENOMEM;
562 
563 			_1ps->pages[c] = page;
564 			/* Mark read-pages to be cache_released */
565 			_1ps->page_is_read[c] = true;
566 			if (!uptodate)
567 				_add_to_r4w(ios, &read_si, page, PAGE_SIZE);
568 		}
569 
570 		offset += PAGE_SIZE;
571 		if (p == (sp2d->pages_in_unit - 1)) {
572 			++c;
573 			p = 0;
574 			ore_calc_stripe_info(ios->layout, offset, 0, &read_si);
575 		} else {
576 			read_si.obj_offset += PAGE_SIZE;
577 			++p;
578 		}
579 	}
580 
581 read_it:
582 	return 0;
583 }
584 
_read_4_write_execute(struct ore_io_state * ios)585 static int _read_4_write_execute(struct ore_io_state *ios)
586 {
587 	struct ore_io_state *ios_read;
588 	unsigned i;
589 	int ret;
590 
591 	ios_read = ios->ios_read_4_write;
592 	if (!ios_read)
593 		return 0;
594 
595 	/* FIXME: Ugly to signal _sbi_read_mirror that we have bio(s). Change
596 	 * to check for per_dev->bio
597 	 */
598 	ios_read->pages = ios->pages;
599 
600 	/* Now read these devices */
601 	for (i = 0; i < ios_read->numdevs; i += ios_read->layout->mirrors_p1) {
602 		ret = _ore_read_mirror(ios_read, i);
603 		if (unlikely(ret))
604 			return ret;
605 	}
606 
607 	ret = ore_io_execute(ios_read); /* Synchronus execution */
608 	if (unlikely(ret)) {
609 		ORE_DBGMSG("!! ore_io_execute => %d\n", ret);
610 		return ret;
611 	}
612 
613 	_mark_read4write_pages_uptodate(ios_read, ret);
614 	ore_put_io_state(ios_read);
615 	ios->ios_read_4_write = NULL; /* Might need a reuse at last stripe */
616 	return 0;
617 }
618 
619 /* In writes @cur_len means length left. .i.e cur_len==0 is the last parity U */
_ore_add_parity_unit(struct ore_io_state * ios,struct ore_striping_info * si,struct ore_per_dev_state * per_dev,unsigned cur_len)620 int _ore_add_parity_unit(struct ore_io_state *ios,
621 			    struct ore_striping_info *si,
622 			    struct ore_per_dev_state *per_dev,
623 			    unsigned cur_len)
624 {
625 	if (ios->reading) {
626 		if (per_dev->cur_sg >= ios->sgs_per_dev) {
627 			ORE_DBGMSG("cur_sg(%d) >= sgs_per_dev(%d)\n" ,
628 				per_dev->cur_sg, ios->sgs_per_dev);
629 			return -ENOMEM;
630 		}
631 		_ore_add_sg_seg(per_dev, cur_len, true);
632 	} else {
633 		struct __stripe_pages_2d *sp2d = ios->sp2d;
634 		struct page **pages = ios->parity_pages + ios->cur_par_page;
635 		unsigned num_pages;
636 		unsigned array_start = 0;
637 		unsigned i;
638 		int ret;
639 
640 		si->cur_pg = _sp2d_min_pg(sp2d);
641 		num_pages  = _sp2d_max_pg(sp2d) + 1 - si->cur_pg;
642 
643 		if (!cur_len) /* If last stripe operate on parity comp */
644 			si->cur_comp = sp2d->data_devs;
645 
646 		if (!per_dev->length) {
647 			per_dev->offset += si->cur_pg * PAGE_SIZE;
648 			/* If first stripe, Read in all read4write pages
649 			 * (if needed) before we calculate the first parity.
650 			 */
651 			_read_4_write_first_stripe(ios);
652 		}
653 		if (!cur_len) /* If last stripe r4w pages of last stripe */
654 			_read_4_write_last_stripe(ios);
655 		_read_4_write_execute(ios);
656 
657 		for (i = 0; i < num_pages; i++) {
658 			pages[i] = _raid_page_alloc();
659 			if (unlikely(!pages[i]))
660 				return -ENOMEM;
661 
662 			++(ios->cur_par_page);
663 		}
664 
665 		BUG_ON(si->cur_comp != sp2d->data_devs);
666 		BUG_ON(si->cur_pg + num_pages > sp2d->pages_in_unit);
667 
668 		ret = _ore_add_stripe_unit(ios,  &array_start, 0, pages,
669 					   per_dev, num_pages * PAGE_SIZE);
670 		if (unlikely(ret))
671 			return ret;
672 
673 		/* TODO: raid6 if (last_parity_dev) */
674 		_gen_xor_unit(sp2d);
675 		_sp2d_reset(sp2d, ios->r4w, ios->private);
676 	}
677 	return 0;
678 }
679 
_ore_post_alloc_raid_stuff(struct ore_io_state * ios)680 int _ore_post_alloc_raid_stuff(struct ore_io_state *ios)
681 {
682 	if (ios->parity_pages) {
683 		struct ore_layout *layout = ios->layout;
684 		unsigned pages_in_unit = layout->stripe_unit / PAGE_SIZE;
685 
686 		if (_sp2d_alloc(pages_in_unit, layout->group_width,
687 				layout->parity, &ios->sp2d)) {
688 			return -ENOMEM;
689 		}
690 	}
691 	return 0;
692 }
693 
_ore_free_raid_stuff(struct ore_io_state * ios)694 void _ore_free_raid_stuff(struct ore_io_state *ios)
695 {
696 	if (ios->sp2d) { /* writing and raid */
697 		unsigned i;
698 
699 		for (i = 0; i < ios->cur_par_page; i++) {
700 			struct page *page = ios->parity_pages[i];
701 
702 			if (page)
703 				_raid_page_free(page);
704 		}
705 		if (ios->extra_part_alloc)
706 			kfree(ios->parity_pages);
707 		/* If IO returned an error pages might need unlocking */
708 		_sp2d_reset(ios->sp2d, ios->r4w, ios->private);
709 		_sp2d_free(ios->sp2d);
710 	} else {
711 		/* Will only be set if raid reading && sglist is big */
712 		if (ios->extra_part_alloc)
713 			kfree(ios->per_dev[0].sglist);
714 	}
715 	if (ios->ios_read_4_write)
716 		ore_put_io_state(ios->ios_read_4_write);
717 }
718