1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  * In-kernel key management code.  Includes functions to parse and
4  * write authentication token-related packets with the underlying
5  * file.
6  *
7  * Copyright (C) 2004-2006 International Business Machines Corp.
8  *   Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
9  *              Michael C. Thompson <mcthomps@us.ibm.com>
10  *              Trevor S. Highland <trevor.highland@gmail.com>
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation; either version 2 of the
15  * License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
25  * 02111-1307, USA.
26  */
27 
28 #include <linux/string.h>
29 #include <linux/syscalls.h>
30 #include <linux/pagemap.h>
31 #include <linux/key.h>
32 #include <linux/random.h>
33 #include <linux/crypto.h>
34 #include <linux/scatterlist.h>
35 #include <linux/slab.h>
36 #include "ecryptfs_kernel.h"
37 
38 /**
39  * request_key returned an error instead of a valid key address;
40  * determine the type of error, make appropriate log entries, and
41  * return an error code.
42  */
process_request_key_err(long err_code)43 static int process_request_key_err(long err_code)
44 {
45 	int rc = 0;
46 
47 	switch (err_code) {
48 	case -ENOKEY:
49 		ecryptfs_printk(KERN_WARNING, "No key\n");
50 		rc = -ENOENT;
51 		break;
52 	case -EKEYEXPIRED:
53 		ecryptfs_printk(KERN_WARNING, "Key expired\n");
54 		rc = -ETIME;
55 		break;
56 	case -EKEYREVOKED:
57 		ecryptfs_printk(KERN_WARNING, "Key revoked\n");
58 		rc = -EINVAL;
59 		break;
60 	default:
61 		ecryptfs_printk(KERN_WARNING, "Unknown error code: "
62 				"[0x%.16lx]\n", err_code);
63 		rc = -EINVAL;
64 	}
65 	return rc;
66 }
67 
process_find_global_auth_tok_for_sig_err(int err_code)68 static int process_find_global_auth_tok_for_sig_err(int err_code)
69 {
70 	int rc = err_code;
71 
72 	switch (err_code) {
73 	case -ENOENT:
74 		ecryptfs_printk(KERN_WARNING, "Missing auth tok\n");
75 		break;
76 	case -EINVAL:
77 		ecryptfs_printk(KERN_WARNING, "Invalid auth tok\n");
78 		break;
79 	default:
80 		rc = process_request_key_err(err_code);
81 		break;
82 	}
83 	return rc;
84 }
85 
86 /**
87  * ecryptfs_parse_packet_length
88  * @data: Pointer to memory containing length at offset
89  * @size: This function writes the decoded size to this memory
90  *        address; zero on error
91  * @length_size: The number of bytes occupied by the encoded length
92  *
93  * Returns zero on success; non-zero on error
94  */
ecryptfs_parse_packet_length(unsigned char * data,size_t * size,size_t * length_size)95 int ecryptfs_parse_packet_length(unsigned char *data, size_t *size,
96 				 size_t *length_size)
97 {
98 	int rc = 0;
99 
100 	(*length_size) = 0;
101 	(*size) = 0;
102 	if (data[0] < 192) {
103 		/* One-byte length */
104 		(*size) = (unsigned char)data[0];
105 		(*length_size) = 1;
106 	} else if (data[0] < 224) {
107 		/* Two-byte length */
108 		(*size) = (((unsigned char)(data[0]) - 192) * 256);
109 		(*size) += ((unsigned char)(data[1]) + 192);
110 		(*length_size) = 2;
111 	} else if (data[0] == 255) {
112 		/* If support is added, adjust ECRYPTFS_MAX_PKT_LEN_SIZE */
113 		ecryptfs_printk(KERN_ERR, "Five-byte packet length not "
114 				"supported\n");
115 		rc = -EINVAL;
116 		goto out;
117 	} else {
118 		ecryptfs_printk(KERN_ERR, "Error parsing packet length\n");
119 		rc = -EINVAL;
120 		goto out;
121 	}
122 out:
123 	return rc;
124 }
125 
126 /**
127  * ecryptfs_write_packet_length
128  * @dest: The byte array target into which to write the length. Must
129  *        have at least ECRYPTFS_MAX_PKT_LEN_SIZE bytes allocated.
130  * @size: The length to write.
131  * @packet_size_length: The number of bytes used to encode the packet
132  *                      length is written to this address.
133  *
134  * Returns zero on success; non-zero on error.
135  */
ecryptfs_write_packet_length(char * dest,size_t size,size_t * packet_size_length)136 int ecryptfs_write_packet_length(char *dest, size_t size,
137 				 size_t *packet_size_length)
138 {
139 	int rc = 0;
140 
141 	if (size < 192) {
142 		dest[0] = size;
143 		(*packet_size_length) = 1;
144 	} else if (size < 65536) {
145 		dest[0] = (((size - 192) / 256) + 192);
146 		dest[1] = ((size - 192) % 256);
147 		(*packet_size_length) = 2;
148 	} else {
149 		/* If support is added, adjust ECRYPTFS_MAX_PKT_LEN_SIZE */
150 		rc = -EINVAL;
151 		ecryptfs_printk(KERN_WARNING,
152 				"Unsupported packet size: [%zd]\n", size);
153 	}
154 	return rc;
155 }
156 
157 static int
write_tag_64_packet(char * signature,struct ecryptfs_session_key * session_key,char ** packet,size_t * packet_len)158 write_tag_64_packet(char *signature, struct ecryptfs_session_key *session_key,
159 		    char **packet, size_t *packet_len)
160 {
161 	size_t i = 0;
162 	size_t data_len;
163 	size_t packet_size_len;
164 	char *message;
165 	int rc;
166 
167 	/*
168 	 *              ***** TAG 64 Packet Format *****
169 	 *    | Content Type                       | 1 byte       |
170 	 *    | Key Identifier Size                | 1 or 2 bytes |
171 	 *    | Key Identifier                     | arbitrary    |
172 	 *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
173 	 *    | Encrypted File Encryption Key      | arbitrary    |
174 	 */
175 	data_len = (5 + ECRYPTFS_SIG_SIZE_HEX
176 		    + session_key->encrypted_key_size);
177 	*packet = kmalloc(data_len, GFP_KERNEL);
178 	message = *packet;
179 	if (!message) {
180 		ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
181 		rc = -ENOMEM;
182 		goto out;
183 	}
184 	message[i++] = ECRYPTFS_TAG_64_PACKET_TYPE;
185 	rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
186 					  &packet_size_len);
187 	if (rc) {
188 		ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
189 				"header; cannot generate packet length\n");
190 		goto out;
191 	}
192 	i += packet_size_len;
193 	memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
194 	i += ECRYPTFS_SIG_SIZE_HEX;
195 	rc = ecryptfs_write_packet_length(&message[i],
196 					  session_key->encrypted_key_size,
197 					  &packet_size_len);
198 	if (rc) {
199 		ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
200 				"header; cannot generate packet length\n");
201 		goto out;
202 	}
203 	i += packet_size_len;
204 	memcpy(&message[i], session_key->encrypted_key,
205 	       session_key->encrypted_key_size);
206 	i += session_key->encrypted_key_size;
207 	*packet_len = i;
208 out:
209 	return rc;
210 }
211 
212 static int
parse_tag_65_packet(struct ecryptfs_session_key * session_key,u8 * cipher_code,struct ecryptfs_message * msg)213 parse_tag_65_packet(struct ecryptfs_session_key *session_key, u8 *cipher_code,
214 		    struct ecryptfs_message *msg)
215 {
216 	size_t i = 0;
217 	char *data;
218 	size_t data_len;
219 	size_t m_size;
220 	size_t message_len;
221 	u16 checksum = 0;
222 	u16 expected_checksum = 0;
223 	int rc;
224 
225 	/*
226 	 *              ***** TAG 65 Packet Format *****
227 	 *         | Content Type             | 1 byte       |
228 	 *         | Status Indicator         | 1 byte       |
229 	 *         | File Encryption Key Size | 1 or 2 bytes |
230 	 *         | File Encryption Key      | arbitrary    |
231 	 */
232 	message_len = msg->data_len;
233 	data = msg->data;
234 	if (message_len < 4) {
235 		rc = -EIO;
236 		goto out;
237 	}
238 	if (data[i++] != ECRYPTFS_TAG_65_PACKET_TYPE) {
239 		ecryptfs_printk(KERN_ERR, "Type should be ECRYPTFS_TAG_65\n");
240 		rc = -EIO;
241 		goto out;
242 	}
243 	if (data[i++]) {
244 		ecryptfs_printk(KERN_ERR, "Status indicator has non-zero value "
245 				"[%d]\n", data[i-1]);
246 		rc = -EIO;
247 		goto out;
248 	}
249 	rc = ecryptfs_parse_packet_length(&data[i], &m_size, &data_len);
250 	if (rc) {
251 		ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
252 				"rc = [%d]\n", rc);
253 		goto out;
254 	}
255 	i += data_len;
256 	if (message_len < (i + m_size)) {
257 		ecryptfs_printk(KERN_ERR, "The message received from ecryptfsd "
258 				"is shorter than expected\n");
259 		rc = -EIO;
260 		goto out;
261 	}
262 	if (m_size < 3) {
263 		ecryptfs_printk(KERN_ERR,
264 				"The decrypted key is not long enough to "
265 				"include a cipher code and checksum\n");
266 		rc = -EIO;
267 		goto out;
268 	}
269 	*cipher_code = data[i++];
270 	/* The decrypted key includes 1 byte cipher code and 2 byte checksum */
271 	session_key->decrypted_key_size = m_size - 3;
272 	if (session_key->decrypted_key_size > ECRYPTFS_MAX_KEY_BYTES) {
273 		ecryptfs_printk(KERN_ERR, "key_size [%d] larger than "
274 				"the maximum key size [%d]\n",
275 				session_key->decrypted_key_size,
276 				ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
277 		rc = -EIO;
278 		goto out;
279 	}
280 	memcpy(session_key->decrypted_key, &data[i],
281 	       session_key->decrypted_key_size);
282 	i += session_key->decrypted_key_size;
283 	expected_checksum += (unsigned char)(data[i++]) << 8;
284 	expected_checksum += (unsigned char)(data[i++]);
285 	for (i = 0; i < session_key->decrypted_key_size; i++)
286 		checksum += session_key->decrypted_key[i];
287 	if (expected_checksum != checksum) {
288 		ecryptfs_printk(KERN_ERR, "Invalid checksum for file "
289 				"encryption  key; expected [%x]; calculated "
290 				"[%x]\n", expected_checksum, checksum);
291 		rc = -EIO;
292 	}
293 out:
294 	return rc;
295 }
296 
297 
298 static int
write_tag_66_packet(char * signature,u8 cipher_code,struct ecryptfs_crypt_stat * crypt_stat,char ** packet,size_t * packet_len)299 write_tag_66_packet(char *signature, u8 cipher_code,
300 		    struct ecryptfs_crypt_stat *crypt_stat, char **packet,
301 		    size_t *packet_len)
302 {
303 	size_t i = 0;
304 	size_t j;
305 	size_t data_len;
306 	size_t checksum = 0;
307 	size_t packet_size_len;
308 	char *message;
309 	int rc;
310 
311 	/*
312 	 *              ***** TAG 66 Packet Format *****
313 	 *         | Content Type             | 1 byte       |
314 	 *         | Key Identifier Size      | 1 or 2 bytes |
315 	 *         | Key Identifier           | arbitrary    |
316 	 *         | File Encryption Key Size | 1 or 2 bytes |
317 	 *         | File Encryption Key      | arbitrary    |
318 	 */
319 	data_len = (5 + ECRYPTFS_SIG_SIZE_HEX + crypt_stat->key_size);
320 	*packet = kmalloc(data_len, GFP_KERNEL);
321 	message = *packet;
322 	if (!message) {
323 		ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
324 		rc = -ENOMEM;
325 		goto out;
326 	}
327 	message[i++] = ECRYPTFS_TAG_66_PACKET_TYPE;
328 	rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
329 					  &packet_size_len);
330 	if (rc) {
331 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
332 				"header; cannot generate packet length\n");
333 		goto out;
334 	}
335 	i += packet_size_len;
336 	memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
337 	i += ECRYPTFS_SIG_SIZE_HEX;
338 	/* The encrypted key includes 1 byte cipher code and 2 byte checksum */
339 	rc = ecryptfs_write_packet_length(&message[i], crypt_stat->key_size + 3,
340 					  &packet_size_len);
341 	if (rc) {
342 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
343 				"header; cannot generate packet length\n");
344 		goto out;
345 	}
346 	i += packet_size_len;
347 	message[i++] = cipher_code;
348 	memcpy(&message[i], crypt_stat->key, crypt_stat->key_size);
349 	i += crypt_stat->key_size;
350 	for (j = 0; j < crypt_stat->key_size; j++)
351 		checksum += crypt_stat->key[j];
352 	message[i++] = (checksum / 256) % 256;
353 	message[i++] = (checksum % 256);
354 	*packet_len = i;
355 out:
356 	return rc;
357 }
358 
359 static int
parse_tag_67_packet(struct ecryptfs_key_record * key_rec,struct ecryptfs_message * msg)360 parse_tag_67_packet(struct ecryptfs_key_record *key_rec,
361 		    struct ecryptfs_message *msg)
362 {
363 	size_t i = 0;
364 	char *data;
365 	size_t data_len;
366 	size_t message_len;
367 	int rc;
368 
369 	/*
370 	 *              ***** TAG 65 Packet Format *****
371 	 *    | Content Type                       | 1 byte       |
372 	 *    | Status Indicator                   | 1 byte       |
373 	 *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
374 	 *    | Encrypted File Encryption Key      | arbitrary    |
375 	 */
376 	message_len = msg->data_len;
377 	data = msg->data;
378 	/* verify that everything through the encrypted FEK size is present */
379 	if (message_len < 4) {
380 		rc = -EIO;
381 		printk(KERN_ERR "%s: message_len is [%zd]; minimum acceptable "
382 		       "message length is [%d]\n", __func__, message_len, 4);
383 		goto out;
384 	}
385 	if (data[i++] != ECRYPTFS_TAG_67_PACKET_TYPE) {
386 		rc = -EIO;
387 		printk(KERN_ERR "%s: Type should be ECRYPTFS_TAG_67\n",
388 		       __func__);
389 		goto out;
390 	}
391 	if (data[i++]) {
392 		rc = -EIO;
393 		printk(KERN_ERR "%s: Status indicator has non zero "
394 		       "value [%d]\n", __func__, data[i-1]);
395 
396 		goto out;
397 	}
398 	rc = ecryptfs_parse_packet_length(&data[i], &key_rec->enc_key_size,
399 					  &data_len);
400 	if (rc) {
401 		ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
402 				"rc = [%d]\n", rc);
403 		goto out;
404 	}
405 	i += data_len;
406 	if (message_len < (i + key_rec->enc_key_size)) {
407 		rc = -EIO;
408 		printk(KERN_ERR "%s: message_len [%zd]; max len is [%zd]\n",
409 		       __func__, message_len, (i + key_rec->enc_key_size));
410 		goto out;
411 	}
412 	if (key_rec->enc_key_size > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
413 		rc = -EIO;
414 		printk(KERN_ERR "%s: Encrypted key_size [%zd] larger than "
415 		       "the maximum key size [%d]\n", __func__,
416 		       key_rec->enc_key_size,
417 		       ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
418 		goto out;
419 	}
420 	memcpy(key_rec->enc_key, &data[i], key_rec->enc_key_size);
421 out:
422 	return rc;
423 }
424 
425 /**
426  * ecryptfs_verify_version
427  * @version: The version number to confirm
428  *
429  * Returns zero on good version; non-zero otherwise
430  */
ecryptfs_verify_version(u16 version)431 static int ecryptfs_verify_version(u16 version)
432 {
433 	int rc = 0;
434 	unsigned char major;
435 	unsigned char minor;
436 
437 	major = ((version >> 8) & 0xFF);
438 	minor = (version & 0xFF);
439 	if (major != ECRYPTFS_VERSION_MAJOR) {
440 		ecryptfs_printk(KERN_ERR, "Major version number mismatch. "
441 				"Expected [%d]; got [%d]\n",
442 				ECRYPTFS_VERSION_MAJOR, major);
443 		rc = -EINVAL;
444 		goto out;
445 	}
446 	if (minor != ECRYPTFS_VERSION_MINOR) {
447 		ecryptfs_printk(KERN_ERR, "Minor version number mismatch. "
448 				"Expected [%d]; got [%d]\n",
449 				ECRYPTFS_VERSION_MINOR, minor);
450 		rc = -EINVAL;
451 		goto out;
452 	}
453 out:
454 	return rc;
455 }
456 
457 /**
458  * ecryptfs_verify_auth_tok_from_key
459  * @auth_tok_key: key containing the authentication token
460  * @auth_tok: authentication token
461  *
462  * Returns zero on valid auth tok; -EINVAL otherwise
463  */
464 static int
ecryptfs_verify_auth_tok_from_key(struct key * auth_tok_key,struct ecryptfs_auth_tok ** auth_tok)465 ecryptfs_verify_auth_tok_from_key(struct key *auth_tok_key,
466 				  struct ecryptfs_auth_tok **auth_tok)
467 {
468 	int rc = 0;
469 
470 	(*auth_tok) = ecryptfs_get_key_payload_data(auth_tok_key);
471 	if (ecryptfs_verify_version((*auth_tok)->version)) {
472 		printk(KERN_ERR "Data structure version mismatch. Userspace "
473 		       "tools must match eCryptfs kernel module with major "
474 		       "version [%d] and minor version [%d]\n",
475 		       ECRYPTFS_VERSION_MAJOR, ECRYPTFS_VERSION_MINOR);
476 		rc = -EINVAL;
477 		goto out;
478 	}
479 	if ((*auth_tok)->token_type != ECRYPTFS_PASSWORD
480 	    && (*auth_tok)->token_type != ECRYPTFS_PRIVATE_KEY) {
481 		printk(KERN_ERR "Invalid auth_tok structure "
482 		       "returned from key query\n");
483 		rc = -EINVAL;
484 		goto out;
485 	}
486 out:
487 	return rc;
488 }
489 
490 static int
ecryptfs_find_global_auth_tok_for_sig(struct key ** auth_tok_key,struct ecryptfs_auth_tok ** auth_tok,struct ecryptfs_mount_crypt_stat * mount_crypt_stat,char * sig)491 ecryptfs_find_global_auth_tok_for_sig(
492 	struct key **auth_tok_key,
493 	struct ecryptfs_auth_tok **auth_tok,
494 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat, char *sig)
495 {
496 	struct ecryptfs_global_auth_tok *walker;
497 	int rc = 0;
498 
499 	(*auth_tok_key) = NULL;
500 	(*auth_tok) = NULL;
501 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
502 	list_for_each_entry(walker,
503 			    &mount_crypt_stat->global_auth_tok_list,
504 			    mount_crypt_stat_list) {
505 		if (memcmp(walker->sig, sig, ECRYPTFS_SIG_SIZE_HEX))
506 			continue;
507 
508 		if (walker->flags & ECRYPTFS_AUTH_TOK_INVALID) {
509 			rc = -EINVAL;
510 			goto out;
511 		}
512 
513 		rc = key_validate(walker->global_auth_tok_key);
514 		if (rc) {
515 			if (rc == -EKEYEXPIRED)
516 				goto out;
517 			goto out_invalid_auth_tok;
518 		}
519 
520 		down_write(&(walker->global_auth_tok_key->sem));
521 		rc = ecryptfs_verify_auth_tok_from_key(
522 				walker->global_auth_tok_key, auth_tok);
523 		if (rc)
524 			goto out_invalid_auth_tok_unlock;
525 
526 		(*auth_tok_key) = walker->global_auth_tok_key;
527 		key_get(*auth_tok_key);
528 		goto out;
529 	}
530 	rc = -ENOENT;
531 	goto out;
532 out_invalid_auth_tok_unlock:
533 	up_write(&(walker->global_auth_tok_key->sem));
534 out_invalid_auth_tok:
535 	printk(KERN_WARNING "Invalidating auth tok with sig = [%s]\n", sig);
536 	walker->flags |= ECRYPTFS_AUTH_TOK_INVALID;
537 	key_put(walker->global_auth_tok_key);
538 	walker->global_auth_tok_key = NULL;
539 out:
540 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
541 	return rc;
542 }
543 
544 /**
545  * ecryptfs_find_auth_tok_for_sig
546  * @auth_tok: Set to the matching auth_tok; NULL if not found
547  * @crypt_stat: inode crypt_stat crypto context
548  * @sig: Sig of auth_tok to find
549  *
550  * For now, this function simply looks at the registered auth_tok's
551  * linked off the mount_crypt_stat, so all the auth_toks that can be
552  * used must be registered at mount time. This function could
553  * potentially try a lot harder to find auth_tok's (e.g., by calling
554  * out to ecryptfsd to dynamically retrieve an auth_tok object) so
555  * that static registration of auth_tok's will no longer be necessary.
556  *
557  * Returns zero on no error; non-zero on error
558  */
559 static int
ecryptfs_find_auth_tok_for_sig(struct key ** auth_tok_key,struct ecryptfs_auth_tok ** auth_tok,struct ecryptfs_mount_crypt_stat * mount_crypt_stat,char * sig)560 ecryptfs_find_auth_tok_for_sig(
561 	struct key **auth_tok_key,
562 	struct ecryptfs_auth_tok **auth_tok,
563 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
564 	char *sig)
565 {
566 	int rc = 0;
567 
568 	rc = ecryptfs_find_global_auth_tok_for_sig(auth_tok_key, auth_tok,
569 						   mount_crypt_stat, sig);
570 	if (rc == -ENOENT) {
571 		/* if the flag ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY is set in the
572 		 * mount_crypt_stat structure, we prevent to use auth toks that
573 		 * are not inserted through the ecryptfs_add_global_auth_tok
574 		 * function.
575 		 */
576 		if (mount_crypt_stat->flags
577 				& ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY)
578 			return -EINVAL;
579 
580 		rc = ecryptfs_keyring_auth_tok_for_sig(auth_tok_key, auth_tok,
581 						       sig);
582 	}
583 	return rc;
584 }
585 
586 /**
587  * write_tag_70_packet can gobble a lot of stack space. We stuff most
588  * of the function's parameters in a kmalloc'd struct to help reduce
589  * eCryptfs' overall stack usage.
590  */
591 struct ecryptfs_write_tag_70_packet_silly_stack {
592 	u8 cipher_code;
593 	size_t max_packet_size;
594 	size_t packet_size_len;
595 	size_t block_aligned_filename_size;
596 	size_t block_size;
597 	size_t i;
598 	size_t j;
599 	size_t num_rand_bytes;
600 	struct mutex *tfm_mutex;
601 	char *block_aligned_filename;
602 	struct ecryptfs_auth_tok *auth_tok;
603 	struct scatterlist src_sg[2];
604 	struct scatterlist dst_sg[2];
605 	struct blkcipher_desc desc;
606 	char iv[ECRYPTFS_MAX_IV_BYTES];
607 	char hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
608 	char tmp_hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
609 	struct hash_desc hash_desc;
610 	struct scatterlist hash_sg;
611 };
612 
613 /**
614  * write_tag_70_packet - Write encrypted filename (EFN) packet against FNEK
615  * @filename: NULL-terminated filename string
616  *
617  * This is the simplest mechanism for achieving filename encryption in
618  * eCryptfs. It encrypts the given filename with the mount-wide
619  * filename encryption key (FNEK) and stores it in a packet to @dest,
620  * which the callee will encode and write directly into the dentry
621  * name.
622  */
623 int
ecryptfs_write_tag_70_packet(char * dest,size_t * remaining_bytes,size_t * packet_size,struct ecryptfs_mount_crypt_stat * mount_crypt_stat,char * filename,size_t filename_size)624 ecryptfs_write_tag_70_packet(char *dest, size_t *remaining_bytes,
625 			     size_t *packet_size,
626 			     struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
627 			     char *filename, size_t filename_size)
628 {
629 	struct ecryptfs_write_tag_70_packet_silly_stack *s;
630 	struct key *auth_tok_key = NULL;
631 	int rc = 0;
632 
633 	s = kmalloc(sizeof(*s), GFP_KERNEL);
634 	if (!s) {
635 		printk(KERN_ERR "%s: Out of memory whilst trying to kmalloc "
636 		       "[%zd] bytes of kernel memory\n", __func__, sizeof(*s));
637 		rc = -ENOMEM;
638 		goto out;
639 	}
640 	s->desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
641 	(*packet_size) = 0;
642 	rc = ecryptfs_find_auth_tok_for_sig(
643 		&auth_tok_key,
644 		&s->auth_tok, mount_crypt_stat,
645 		mount_crypt_stat->global_default_fnek_sig);
646 	if (rc) {
647 		printk(KERN_ERR "%s: Error attempting to find auth tok for "
648 		       "fnek sig [%s]; rc = [%d]\n", __func__,
649 		       mount_crypt_stat->global_default_fnek_sig, rc);
650 		goto out;
651 	}
652 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(
653 		&s->desc.tfm,
654 		&s->tfm_mutex, mount_crypt_stat->global_default_fn_cipher_name);
655 	if (unlikely(rc)) {
656 		printk(KERN_ERR "Internal error whilst attempting to get "
657 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
658 		       mount_crypt_stat->global_default_fn_cipher_name, rc);
659 		goto out;
660 	}
661 	mutex_lock(s->tfm_mutex);
662 	s->block_size = crypto_blkcipher_blocksize(s->desc.tfm);
663 	/* Plus one for the \0 separator between the random prefix
664 	 * and the plaintext filename */
665 	s->num_rand_bytes = (ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES + 1);
666 	s->block_aligned_filename_size = (s->num_rand_bytes + filename_size);
667 	if ((s->block_aligned_filename_size % s->block_size) != 0) {
668 		s->num_rand_bytes += (s->block_size
669 				      - (s->block_aligned_filename_size
670 					 % s->block_size));
671 		s->block_aligned_filename_size = (s->num_rand_bytes
672 						  + filename_size);
673 	}
674 	/* Octet 0: Tag 70 identifier
675 	 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
676 	 *              and block-aligned encrypted filename size)
677 	 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
678 	 * Octet N2-N3: Cipher identifier (1 octet)
679 	 * Octets N3-N4: Block-aligned encrypted filename
680 	 *  - Consists of a minimum number of random characters, a \0
681 	 *    separator, and then the filename */
682 	s->max_packet_size = (ECRYPTFS_TAG_70_MAX_METADATA_SIZE
683 			      + s->block_aligned_filename_size);
684 	if (dest == NULL) {
685 		(*packet_size) = s->max_packet_size;
686 		goto out_unlock;
687 	}
688 	if (s->max_packet_size > (*remaining_bytes)) {
689 		printk(KERN_WARNING "%s: Require [%zd] bytes to write; only "
690 		       "[%zd] available\n", __func__, s->max_packet_size,
691 		       (*remaining_bytes));
692 		rc = -EINVAL;
693 		goto out_unlock;
694 	}
695 	s->block_aligned_filename = kzalloc(s->block_aligned_filename_size,
696 					    GFP_KERNEL);
697 	if (!s->block_aligned_filename) {
698 		printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
699 		       "kzalloc [%zd] bytes\n", __func__,
700 		       s->block_aligned_filename_size);
701 		rc = -ENOMEM;
702 		goto out_unlock;
703 	}
704 	s->i = 0;
705 	dest[s->i++] = ECRYPTFS_TAG_70_PACKET_TYPE;
706 	rc = ecryptfs_write_packet_length(&dest[s->i],
707 					  (ECRYPTFS_SIG_SIZE
708 					   + 1 /* Cipher code */
709 					   + s->block_aligned_filename_size),
710 					  &s->packet_size_len);
711 	if (rc) {
712 		printk(KERN_ERR "%s: Error generating tag 70 packet "
713 		       "header; cannot generate packet length; rc = [%d]\n",
714 		       __func__, rc);
715 		goto out_free_unlock;
716 	}
717 	s->i += s->packet_size_len;
718 	ecryptfs_from_hex(&dest[s->i],
719 			  mount_crypt_stat->global_default_fnek_sig,
720 			  ECRYPTFS_SIG_SIZE);
721 	s->i += ECRYPTFS_SIG_SIZE;
722 	s->cipher_code = ecryptfs_code_for_cipher_string(
723 		mount_crypt_stat->global_default_fn_cipher_name,
724 		mount_crypt_stat->global_default_fn_cipher_key_bytes);
725 	if (s->cipher_code == 0) {
726 		printk(KERN_WARNING "%s: Unable to generate code for "
727 		       "cipher [%s] with key bytes [%zd]\n", __func__,
728 		       mount_crypt_stat->global_default_fn_cipher_name,
729 		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
730 		rc = -EINVAL;
731 		goto out_free_unlock;
732 	}
733 	dest[s->i++] = s->cipher_code;
734 	/* TODO: Support other key modules than passphrase for
735 	 * filename encryption */
736 	if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
737 		rc = -EOPNOTSUPP;
738 		printk(KERN_INFO "%s: Filename encryption only supports "
739 		       "password tokens\n", __func__);
740 		goto out_free_unlock;
741 	}
742 	sg_init_one(
743 		&s->hash_sg,
744 		(u8 *)s->auth_tok->token.password.session_key_encryption_key,
745 		s->auth_tok->token.password.session_key_encryption_key_bytes);
746 	s->hash_desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
747 	s->hash_desc.tfm = crypto_alloc_hash(ECRYPTFS_TAG_70_DIGEST, 0,
748 					     CRYPTO_ALG_ASYNC);
749 	if (IS_ERR(s->hash_desc.tfm)) {
750 			rc = PTR_ERR(s->hash_desc.tfm);
751 			printk(KERN_ERR "%s: Error attempting to "
752 			       "allocate hash crypto context; rc = [%d]\n",
753 			       __func__, rc);
754 			goto out_free_unlock;
755 	}
756 	rc = crypto_hash_init(&s->hash_desc);
757 	if (rc) {
758 		printk(KERN_ERR
759 		       "%s: Error initializing crypto hash; rc = [%d]\n",
760 		       __func__, rc);
761 		goto out_release_free_unlock;
762 	}
763 	rc = crypto_hash_update(
764 		&s->hash_desc, &s->hash_sg,
765 		s->auth_tok->token.password.session_key_encryption_key_bytes);
766 	if (rc) {
767 		printk(KERN_ERR
768 		       "%s: Error updating crypto hash; rc = [%d]\n",
769 		       __func__, rc);
770 		goto out_release_free_unlock;
771 	}
772 	rc = crypto_hash_final(&s->hash_desc, s->hash);
773 	if (rc) {
774 		printk(KERN_ERR
775 		       "%s: Error finalizing crypto hash; rc = [%d]\n",
776 		       __func__, rc);
777 		goto out_release_free_unlock;
778 	}
779 	for (s->j = 0; s->j < (s->num_rand_bytes - 1); s->j++) {
780 		s->block_aligned_filename[s->j] =
781 			s->hash[(s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)];
782 		if ((s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)
783 		    == (ECRYPTFS_TAG_70_DIGEST_SIZE - 1)) {
784 			sg_init_one(&s->hash_sg, (u8 *)s->hash,
785 				    ECRYPTFS_TAG_70_DIGEST_SIZE);
786 			rc = crypto_hash_init(&s->hash_desc);
787 			if (rc) {
788 				printk(KERN_ERR
789 				       "%s: Error initializing crypto hash; "
790 				       "rc = [%d]\n", __func__, rc);
791 				goto out_release_free_unlock;
792 			}
793 			rc = crypto_hash_update(&s->hash_desc, &s->hash_sg,
794 						ECRYPTFS_TAG_70_DIGEST_SIZE);
795 			if (rc) {
796 				printk(KERN_ERR
797 				       "%s: Error updating crypto hash; "
798 				       "rc = [%d]\n", __func__, rc);
799 				goto out_release_free_unlock;
800 			}
801 			rc = crypto_hash_final(&s->hash_desc, s->tmp_hash);
802 			if (rc) {
803 				printk(KERN_ERR
804 				       "%s: Error finalizing crypto hash; "
805 				       "rc = [%d]\n", __func__, rc);
806 				goto out_release_free_unlock;
807 			}
808 			memcpy(s->hash, s->tmp_hash,
809 			       ECRYPTFS_TAG_70_DIGEST_SIZE);
810 		}
811 		if (s->block_aligned_filename[s->j] == '\0')
812 			s->block_aligned_filename[s->j] = ECRYPTFS_NON_NULL;
813 	}
814 	memcpy(&s->block_aligned_filename[s->num_rand_bytes], filename,
815 	       filename_size);
816 	rc = virt_to_scatterlist(s->block_aligned_filename,
817 				 s->block_aligned_filename_size, s->src_sg, 2);
818 	if (rc < 1) {
819 		printk(KERN_ERR "%s: Internal error whilst attempting to "
820 		       "convert filename memory to scatterlist; rc = [%d]. "
821 		       "block_aligned_filename_size = [%zd]\n", __func__, rc,
822 		       s->block_aligned_filename_size);
823 		goto out_release_free_unlock;
824 	}
825 	rc = virt_to_scatterlist(&dest[s->i], s->block_aligned_filename_size,
826 				 s->dst_sg, 2);
827 	if (rc < 1) {
828 		printk(KERN_ERR "%s: Internal error whilst attempting to "
829 		       "convert encrypted filename memory to scatterlist; "
830 		       "rc = [%d]. block_aligned_filename_size = [%zd]\n",
831 		       __func__, rc, s->block_aligned_filename_size);
832 		goto out_release_free_unlock;
833 	}
834 	/* The characters in the first block effectively do the job
835 	 * of the IV here, so we just use 0's for the IV. Note the
836 	 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
837 	 * >= ECRYPTFS_MAX_IV_BYTES. */
838 	memset(s->iv, 0, ECRYPTFS_MAX_IV_BYTES);
839 	s->desc.info = s->iv;
840 	rc = crypto_blkcipher_setkey(
841 		s->desc.tfm,
842 		s->auth_tok->token.password.session_key_encryption_key,
843 		mount_crypt_stat->global_default_fn_cipher_key_bytes);
844 	if (rc < 0) {
845 		printk(KERN_ERR "%s: Error setting key for crypto context; "
846 		       "rc = [%d]. s->auth_tok->token.password.session_key_"
847 		       "encryption_key = [0x%p]; mount_crypt_stat->"
848 		       "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
849 		       rc,
850 		       s->auth_tok->token.password.session_key_encryption_key,
851 		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
852 		goto out_release_free_unlock;
853 	}
854 	rc = crypto_blkcipher_encrypt_iv(&s->desc, s->dst_sg, s->src_sg,
855 					 s->block_aligned_filename_size);
856 	if (rc) {
857 		printk(KERN_ERR "%s: Error attempting to encrypt filename; "
858 		       "rc = [%d]\n", __func__, rc);
859 		goto out_release_free_unlock;
860 	}
861 	s->i += s->block_aligned_filename_size;
862 	(*packet_size) = s->i;
863 	(*remaining_bytes) -= (*packet_size);
864 out_release_free_unlock:
865 	crypto_free_hash(s->hash_desc.tfm);
866 out_free_unlock:
867 	kzfree(s->block_aligned_filename);
868 out_unlock:
869 	mutex_unlock(s->tfm_mutex);
870 out:
871 	if (auth_tok_key) {
872 		up_write(&(auth_tok_key->sem));
873 		key_put(auth_tok_key);
874 	}
875 	kfree(s);
876 	return rc;
877 }
878 
879 struct ecryptfs_parse_tag_70_packet_silly_stack {
880 	u8 cipher_code;
881 	size_t max_packet_size;
882 	size_t packet_size_len;
883 	size_t parsed_tag_70_packet_size;
884 	size_t block_aligned_filename_size;
885 	size_t block_size;
886 	size_t i;
887 	struct mutex *tfm_mutex;
888 	char *decrypted_filename;
889 	struct ecryptfs_auth_tok *auth_tok;
890 	struct scatterlist src_sg[2];
891 	struct scatterlist dst_sg[2];
892 	struct blkcipher_desc desc;
893 	char fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX + 1];
894 	char iv[ECRYPTFS_MAX_IV_BYTES];
895 	char cipher_string[ECRYPTFS_MAX_CIPHER_NAME_SIZE];
896 };
897 
898 /**
899  * parse_tag_70_packet - Parse and process FNEK-encrypted passphrase packet
900  * @filename: This function kmalloc's the memory for the filename
901  * @filename_size: This function sets this to the amount of memory
902  *                 kmalloc'd for the filename
903  * @packet_size: This function sets this to the the number of octets
904  *               in the packet parsed
905  * @mount_crypt_stat: The mount-wide cryptographic context
906  * @data: The memory location containing the start of the tag 70
907  *        packet
908  * @max_packet_size: The maximum legal size of the packet to be parsed
909  *                   from @data
910  *
911  * Returns zero on success; non-zero otherwise
912  */
913 int
ecryptfs_parse_tag_70_packet(char ** filename,size_t * filename_size,size_t * packet_size,struct ecryptfs_mount_crypt_stat * mount_crypt_stat,char * data,size_t max_packet_size)914 ecryptfs_parse_tag_70_packet(char **filename, size_t *filename_size,
915 			     size_t *packet_size,
916 			     struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
917 			     char *data, size_t max_packet_size)
918 {
919 	struct ecryptfs_parse_tag_70_packet_silly_stack *s;
920 	struct key *auth_tok_key = NULL;
921 	int rc = 0;
922 
923 	(*packet_size) = 0;
924 	(*filename_size) = 0;
925 	(*filename) = NULL;
926 	s = kmalloc(sizeof(*s), GFP_KERNEL);
927 	if (!s) {
928 		printk(KERN_ERR "%s: Out of memory whilst trying to kmalloc "
929 		       "[%zd] bytes of kernel memory\n", __func__, sizeof(*s));
930 		rc = -ENOMEM;
931 		goto out;
932 	}
933 	s->desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
934 	if (max_packet_size < ECRYPTFS_TAG_70_MIN_METADATA_SIZE) {
935 		printk(KERN_WARNING "%s: max_packet_size is [%zd]; it must be "
936 		       "at least [%d]\n", __func__, max_packet_size,
937 		       ECRYPTFS_TAG_70_MIN_METADATA_SIZE);
938 		rc = -EINVAL;
939 		goto out;
940 	}
941 	/* Octet 0: Tag 70 identifier
942 	 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
943 	 *              and block-aligned encrypted filename size)
944 	 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
945 	 * Octet N2-N3: Cipher identifier (1 octet)
946 	 * Octets N3-N4: Block-aligned encrypted filename
947 	 *  - Consists of a minimum number of random numbers, a \0
948 	 *    separator, and then the filename */
949 	if (data[(*packet_size)++] != ECRYPTFS_TAG_70_PACKET_TYPE) {
950 		printk(KERN_WARNING "%s: Invalid packet tag [0x%.2x]; must be "
951 		       "tag [0x%.2x]\n", __func__,
952 		       data[((*packet_size) - 1)], ECRYPTFS_TAG_70_PACKET_TYPE);
953 		rc = -EINVAL;
954 		goto out;
955 	}
956 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)],
957 					  &s->parsed_tag_70_packet_size,
958 					  &s->packet_size_len);
959 	if (rc) {
960 		printk(KERN_WARNING "%s: Error parsing packet length; "
961 		       "rc = [%d]\n", __func__, rc);
962 		goto out;
963 	}
964 	s->block_aligned_filename_size = (s->parsed_tag_70_packet_size
965 					  - ECRYPTFS_SIG_SIZE - 1);
966 	if ((1 + s->packet_size_len + s->parsed_tag_70_packet_size)
967 	    > max_packet_size) {
968 		printk(KERN_WARNING "%s: max_packet_size is [%zd]; real packet "
969 		       "size is [%zd]\n", __func__, max_packet_size,
970 		       (1 + s->packet_size_len + 1
971 			+ s->block_aligned_filename_size));
972 		rc = -EINVAL;
973 		goto out;
974 	}
975 	(*packet_size) += s->packet_size_len;
976 	ecryptfs_to_hex(s->fnek_sig_hex, &data[(*packet_size)],
977 			ECRYPTFS_SIG_SIZE);
978 	s->fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX] = '\0';
979 	(*packet_size) += ECRYPTFS_SIG_SIZE;
980 	s->cipher_code = data[(*packet_size)++];
981 	rc = ecryptfs_cipher_code_to_string(s->cipher_string, s->cipher_code);
982 	if (rc) {
983 		printk(KERN_WARNING "%s: Cipher code [%d] is invalid\n",
984 		       __func__, s->cipher_code);
985 		goto out;
986 	}
987 	rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key,
988 					    &s->auth_tok, mount_crypt_stat,
989 					    s->fnek_sig_hex);
990 	if (rc) {
991 		printk(KERN_ERR "%s: Error attempting to find auth tok for "
992 		       "fnek sig [%s]; rc = [%d]\n", __func__, s->fnek_sig_hex,
993 		       rc);
994 		goto out;
995 	}
996 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&s->desc.tfm,
997 							&s->tfm_mutex,
998 							s->cipher_string);
999 	if (unlikely(rc)) {
1000 		printk(KERN_ERR "Internal error whilst attempting to get "
1001 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1002 		       s->cipher_string, rc);
1003 		goto out;
1004 	}
1005 	mutex_lock(s->tfm_mutex);
1006 	rc = virt_to_scatterlist(&data[(*packet_size)],
1007 				 s->block_aligned_filename_size, s->src_sg, 2);
1008 	if (rc < 1) {
1009 		printk(KERN_ERR "%s: Internal error whilst attempting to "
1010 		       "convert encrypted filename memory to scatterlist; "
1011 		       "rc = [%d]. block_aligned_filename_size = [%zd]\n",
1012 		       __func__, rc, s->block_aligned_filename_size);
1013 		goto out_unlock;
1014 	}
1015 	(*packet_size) += s->block_aligned_filename_size;
1016 	s->decrypted_filename = kmalloc(s->block_aligned_filename_size,
1017 					GFP_KERNEL);
1018 	if (!s->decrypted_filename) {
1019 		printk(KERN_ERR "%s: Out of memory whilst attempting to "
1020 		       "kmalloc [%zd] bytes\n", __func__,
1021 		       s->block_aligned_filename_size);
1022 		rc = -ENOMEM;
1023 		goto out_unlock;
1024 	}
1025 	rc = virt_to_scatterlist(s->decrypted_filename,
1026 				 s->block_aligned_filename_size, s->dst_sg, 2);
1027 	if (rc < 1) {
1028 		printk(KERN_ERR "%s: Internal error whilst attempting to "
1029 		       "convert decrypted filename memory to scatterlist; "
1030 		       "rc = [%d]. block_aligned_filename_size = [%zd]\n",
1031 		       __func__, rc, s->block_aligned_filename_size);
1032 		goto out_free_unlock;
1033 	}
1034 	/* The characters in the first block effectively do the job of
1035 	 * the IV here, so we just use 0's for the IV. Note the
1036 	 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
1037 	 * >= ECRYPTFS_MAX_IV_BYTES. */
1038 	memset(s->iv, 0, ECRYPTFS_MAX_IV_BYTES);
1039 	s->desc.info = s->iv;
1040 	/* TODO: Support other key modules than passphrase for
1041 	 * filename encryption */
1042 	if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
1043 		rc = -EOPNOTSUPP;
1044 		printk(KERN_INFO "%s: Filename encryption only supports "
1045 		       "password tokens\n", __func__);
1046 		goto out_free_unlock;
1047 	}
1048 	rc = crypto_blkcipher_setkey(
1049 		s->desc.tfm,
1050 		s->auth_tok->token.password.session_key_encryption_key,
1051 		mount_crypt_stat->global_default_fn_cipher_key_bytes);
1052 	if (rc < 0) {
1053 		printk(KERN_ERR "%s: Error setting key for crypto context; "
1054 		       "rc = [%d]. s->auth_tok->token.password.session_key_"
1055 		       "encryption_key = [0x%p]; mount_crypt_stat->"
1056 		       "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
1057 		       rc,
1058 		       s->auth_tok->token.password.session_key_encryption_key,
1059 		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
1060 		goto out_free_unlock;
1061 	}
1062 	rc = crypto_blkcipher_decrypt_iv(&s->desc, s->dst_sg, s->src_sg,
1063 					 s->block_aligned_filename_size);
1064 	if (rc) {
1065 		printk(KERN_ERR "%s: Error attempting to decrypt filename; "
1066 		       "rc = [%d]\n", __func__, rc);
1067 		goto out_free_unlock;
1068 	}
1069 	s->i = 0;
1070 	while (s->decrypted_filename[s->i] != '\0'
1071 	       && s->i < s->block_aligned_filename_size)
1072 		s->i++;
1073 	if (s->i == s->block_aligned_filename_size) {
1074 		printk(KERN_WARNING "%s: Invalid tag 70 packet; could not "
1075 		       "find valid separator between random characters and "
1076 		       "the filename\n", __func__);
1077 		rc = -EINVAL;
1078 		goto out_free_unlock;
1079 	}
1080 	s->i++;
1081 	(*filename_size) = (s->block_aligned_filename_size - s->i);
1082 	if (!((*filename_size) > 0 && (*filename_size < PATH_MAX))) {
1083 		printk(KERN_WARNING "%s: Filename size is [%zd], which is "
1084 		       "invalid\n", __func__, (*filename_size));
1085 		rc = -EINVAL;
1086 		goto out_free_unlock;
1087 	}
1088 	(*filename) = kmalloc(((*filename_size) + 1), GFP_KERNEL);
1089 	if (!(*filename)) {
1090 		printk(KERN_ERR "%s: Out of memory whilst attempting to "
1091 		       "kmalloc [%zd] bytes\n", __func__,
1092 		       ((*filename_size) + 1));
1093 		rc = -ENOMEM;
1094 		goto out_free_unlock;
1095 	}
1096 	memcpy((*filename), &s->decrypted_filename[s->i], (*filename_size));
1097 	(*filename)[(*filename_size)] = '\0';
1098 out_free_unlock:
1099 	kfree(s->decrypted_filename);
1100 out_unlock:
1101 	mutex_unlock(s->tfm_mutex);
1102 out:
1103 	if (rc) {
1104 		(*packet_size) = 0;
1105 		(*filename_size) = 0;
1106 		(*filename) = NULL;
1107 	}
1108 	if (auth_tok_key) {
1109 		up_write(&(auth_tok_key->sem));
1110 		key_put(auth_tok_key);
1111 	}
1112 	kfree(s);
1113 	return rc;
1114 }
1115 
1116 static int
ecryptfs_get_auth_tok_sig(char ** sig,struct ecryptfs_auth_tok * auth_tok)1117 ecryptfs_get_auth_tok_sig(char **sig, struct ecryptfs_auth_tok *auth_tok)
1118 {
1119 	int rc = 0;
1120 
1121 	(*sig) = NULL;
1122 	switch (auth_tok->token_type) {
1123 	case ECRYPTFS_PASSWORD:
1124 		(*sig) = auth_tok->token.password.signature;
1125 		break;
1126 	case ECRYPTFS_PRIVATE_KEY:
1127 		(*sig) = auth_tok->token.private_key.signature;
1128 		break;
1129 	default:
1130 		printk(KERN_ERR "Cannot get sig for auth_tok of type [%d]\n",
1131 		       auth_tok->token_type);
1132 		rc = -EINVAL;
1133 	}
1134 	return rc;
1135 }
1136 
1137 /**
1138  * decrypt_pki_encrypted_session_key - Decrypt the session key with the given auth_tok.
1139  * @auth_tok: The key authentication token used to decrypt the session key
1140  * @crypt_stat: The cryptographic context
1141  *
1142  * Returns zero on success; non-zero error otherwise.
1143  */
1144 static int
decrypt_pki_encrypted_session_key(struct ecryptfs_auth_tok * auth_tok,struct ecryptfs_crypt_stat * crypt_stat)1145 decrypt_pki_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1146 				  struct ecryptfs_crypt_stat *crypt_stat)
1147 {
1148 	u8 cipher_code = 0;
1149 	struct ecryptfs_msg_ctx *msg_ctx;
1150 	struct ecryptfs_message *msg = NULL;
1151 	char *auth_tok_sig;
1152 	char *payload = NULL;
1153 	size_t payload_len;
1154 	int rc;
1155 
1156 	rc = ecryptfs_get_auth_tok_sig(&auth_tok_sig, auth_tok);
1157 	if (rc) {
1158 		printk(KERN_ERR "Unrecognized auth tok type: [%d]\n",
1159 		       auth_tok->token_type);
1160 		goto out;
1161 	}
1162 	rc = write_tag_64_packet(auth_tok_sig, &(auth_tok->session_key),
1163 				 &payload, &payload_len);
1164 	if (rc) {
1165 		ecryptfs_printk(KERN_ERR, "Failed to write tag 64 packet\n");
1166 		goto out;
1167 	}
1168 	rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1169 	if (rc) {
1170 		ecryptfs_printk(KERN_ERR, "Error sending message to "
1171 				"ecryptfsd\n");
1172 		goto out;
1173 	}
1174 	rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1175 	if (rc) {
1176 		ecryptfs_printk(KERN_ERR, "Failed to receive tag 65 packet "
1177 				"from the user space daemon\n");
1178 		rc = -EIO;
1179 		goto out;
1180 	}
1181 	rc = parse_tag_65_packet(&(auth_tok->session_key),
1182 				 &cipher_code, msg);
1183 	if (rc) {
1184 		printk(KERN_ERR "Failed to parse tag 65 packet; rc = [%d]\n",
1185 		       rc);
1186 		goto out;
1187 	}
1188 	auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1189 	memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1190 	       auth_tok->session_key.decrypted_key_size);
1191 	crypt_stat->key_size = auth_tok->session_key.decrypted_key_size;
1192 	rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher, cipher_code);
1193 	if (rc) {
1194 		ecryptfs_printk(KERN_ERR, "Cipher code [%d] is invalid\n",
1195 				cipher_code)
1196 		goto out;
1197 	}
1198 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1199 	if (ecryptfs_verbosity > 0) {
1200 		ecryptfs_printk(KERN_DEBUG, "Decrypted session key:\n");
1201 		ecryptfs_dump_hex(crypt_stat->key,
1202 				  crypt_stat->key_size);
1203 	}
1204 out:
1205 	if (msg)
1206 		kfree(msg);
1207 	kfree(payload);
1208 	return rc;
1209 }
1210 
wipe_auth_tok_list(struct list_head * auth_tok_list_head)1211 static void wipe_auth_tok_list(struct list_head *auth_tok_list_head)
1212 {
1213 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1214 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1215 
1216 	list_for_each_entry_safe(auth_tok_list_item, auth_tok_list_item_tmp,
1217 				 auth_tok_list_head, list) {
1218 		list_del(&auth_tok_list_item->list);
1219 		kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1220 				auth_tok_list_item);
1221 	}
1222 }
1223 
1224 struct kmem_cache *ecryptfs_auth_tok_list_item_cache;
1225 
1226 /**
1227  * parse_tag_1_packet
1228  * @crypt_stat: The cryptographic context to modify based on packet contents
1229  * @data: The raw bytes of the packet.
1230  * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1231  *                 a new authentication token will be placed at the
1232  *                 end of this list for this packet.
1233  * @new_auth_tok: Pointer to a pointer to memory that this function
1234  *                allocates; sets the memory address of the pointer to
1235  *                NULL on error. This object is added to the
1236  *                auth_tok_list.
1237  * @packet_size: This function writes the size of the parsed packet
1238  *               into this memory location; zero on error.
1239  * @max_packet_size: The maximum allowable packet size
1240  *
1241  * Returns zero on success; non-zero on error.
1242  */
1243 static int
parse_tag_1_packet(struct ecryptfs_crypt_stat * crypt_stat,unsigned char * data,struct list_head * auth_tok_list,struct ecryptfs_auth_tok ** new_auth_tok,size_t * packet_size,size_t max_packet_size)1244 parse_tag_1_packet(struct ecryptfs_crypt_stat *crypt_stat,
1245 		   unsigned char *data, struct list_head *auth_tok_list,
1246 		   struct ecryptfs_auth_tok **new_auth_tok,
1247 		   size_t *packet_size, size_t max_packet_size)
1248 {
1249 	size_t body_size;
1250 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1251 	size_t length_size;
1252 	int rc = 0;
1253 
1254 	(*packet_size) = 0;
1255 	(*new_auth_tok) = NULL;
1256 	/**
1257 	 * This format is inspired by OpenPGP; see RFC 2440
1258 	 * packet tag 1
1259 	 *
1260 	 * Tag 1 identifier (1 byte)
1261 	 * Max Tag 1 packet size (max 3 bytes)
1262 	 * Version (1 byte)
1263 	 * Key identifier (8 bytes; ECRYPTFS_SIG_SIZE)
1264 	 * Cipher identifier (1 byte)
1265 	 * Encrypted key size (arbitrary)
1266 	 *
1267 	 * 12 bytes minimum packet size
1268 	 */
1269 	if (unlikely(max_packet_size < 12)) {
1270 		printk(KERN_ERR "Invalid max packet size; must be >=12\n");
1271 		rc = -EINVAL;
1272 		goto out;
1273 	}
1274 	if (data[(*packet_size)++] != ECRYPTFS_TAG_1_PACKET_TYPE) {
1275 		printk(KERN_ERR "Enter w/ first byte != 0x%.2x\n",
1276 		       ECRYPTFS_TAG_1_PACKET_TYPE);
1277 		rc = -EINVAL;
1278 		goto out;
1279 	}
1280 	/* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1281 	 * at end of function upon failure */
1282 	auth_tok_list_item =
1283 		kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache,
1284 				  GFP_KERNEL);
1285 	if (!auth_tok_list_item) {
1286 		printk(KERN_ERR "Unable to allocate memory\n");
1287 		rc = -ENOMEM;
1288 		goto out;
1289 	}
1290 	(*new_auth_tok) = &auth_tok_list_item->auth_tok;
1291 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1292 					  &length_size);
1293 	if (rc) {
1294 		printk(KERN_WARNING "Error parsing packet length; "
1295 		       "rc = [%d]\n", rc);
1296 		goto out_free;
1297 	}
1298 	if (unlikely(body_size < (ECRYPTFS_SIG_SIZE + 2))) {
1299 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1300 		rc = -EINVAL;
1301 		goto out_free;
1302 	}
1303 	(*packet_size) += length_size;
1304 	if (unlikely((*packet_size) + body_size > max_packet_size)) {
1305 		printk(KERN_WARNING "Packet size exceeds max\n");
1306 		rc = -EINVAL;
1307 		goto out_free;
1308 	}
1309 	if (unlikely(data[(*packet_size)++] != 0x03)) {
1310 		printk(KERN_WARNING "Unknown version number [%d]\n",
1311 		       data[(*packet_size) - 1]);
1312 		rc = -EINVAL;
1313 		goto out_free;
1314 	}
1315 	ecryptfs_to_hex((*new_auth_tok)->token.private_key.signature,
1316 			&data[(*packet_size)], ECRYPTFS_SIG_SIZE);
1317 	*packet_size += ECRYPTFS_SIG_SIZE;
1318 	/* This byte is skipped because the kernel does not need to
1319 	 * know which public key encryption algorithm was used */
1320 	(*packet_size)++;
1321 	(*new_auth_tok)->session_key.encrypted_key_size =
1322 		body_size - (ECRYPTFS_SIG_SIZE + 2);
1323 	if ((*new_auth_tok)->session_key.encrypted_key_size
1324 	    > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1325 		printk(KERN_WARNING "Tag 1 packet contains key larger "
1326 		       "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES");
1327 		rc = -EINVAL;
1328 		goto out;
1329 	}
1330 	memcpy((*new_auth_tok)->session_key.encrypted_key,
1331 	       &data[(*packet_size)], (body_size - (ECRYPTFS_SIG_SIZE + 2)));
1332 	(*packet_size) += (*new_auth_tok)->session_key.encrypted_key_size;
1333 	(*new_auth_tok)->session_key.flags &=
1334 		~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1335 	(*new_auth_tok)->session_key.flags |=
1336 		ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1337 	(*new_auth_tok)->token_type = ECRYPTFS_PRIVATE_KEY;
1338 	(*new_auth_tok)->flags = 0;
1339 	(*new_auth_tok)->session_key.flags &=
1340 		~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1341 	(*new_auth_tok)->session_key.flags &=
1342 		~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1343 	list_add(&auth_tok_list_item->list, auth_tok_list);
1344 	goto out;
1345 out_free:
1346 	(*new_auth_tok) = NULL;
1347 	memset(auth_tok_list_item, 0,
1348 	       sizeof(struct ecryptfs_auth_tok_list_item));
1349 	kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1350 			auth_tok_list_item);
1351 out:
1352 	if (rc)
1353 		(*packet_size) = 0;
1354 	return rc;
1355 }
1356 
1357 /**
1358  * parse_tag_3_packet
1359  * @crypt_stat: The cryptographic context to modify based on packet
1360  *              contents.
1361  * @data: The raw bytes of the packet.
1362  * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1363  *                 a new authentication token will be placed at the end
1364  *                 of this list for this packet.
1365  * @new_auth_tok: Pointer to a pointer to memory that this function
1366  *                allocates; sets the memory address of the pointer to
1367  *                NULL on error. This object is added to the
1368  *                auth_tok_list.
1369  * @packet_size: This function writes the size of the parsed packet
1370  *               into this memory location; zero on error.
1371  * @max_packet_size: maximum number of bytes to parse
1372  *
1373  * Returns zero on success; non-zero on error.
1374  */
1375 static int
parse_tag_3_packet(struct ecryptfs_crypt_stat * crypt_stat,unsigned char * data,struct list_head * auth_tok_list,struct ecryptfs_auth_tok ** new_auth_tok,size_t * packet_size,size_t max_packet_size)1376 parse_tag_3_packet(struct ecryptfs_crypt_stat *crypt_stat,
1377 		   unsigned char *data, struct list_head *auth_tok_list,
1378 		   struct ecryptfs_auth_tok **new_auth_tok,
1379 		   size_t *packet_size, size_t max_packet_size)
1380 {
1381 	size_t body_size;
1382 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1383 	size_t length_size;
1384 	int rc = 0;
1385 
1386 	(*packet_size) = 0;
1387 	(*new_auth_tok) = NULL;
1388 	/**
1389 	 *This format is inspired by OpenPGP; see RFC 2440
1390 	 * packet tag 3
1391 	 *
1392 	 * Tag 3 identifier (1 byte)
1393 	 * Max Tag 3 packet size (max 3 bytes)
1394 	 * Version (1 byte)
1395 	 * Cipher code (1 byte)
1396 	 * S2K specifier (1 byte)
1397 	 * Hash identifier (1 byte)
1398 	 * Salt (ECRYPTFS_SALT_SIZE)
1399 	 * Hash iterations (1 byte)
1400 	 * Encrypted key (arbitrary)
1401 	 *
1402 	 * (ECRYPTFS_SALT_SIZE + 7) minimum packet size
1403 	 */
1404 	if (max_packet_size < (ECRYPTFS_SALT_SIZE + 7)) {
1405 		printk(KERN_ERR "Max packet size too large\n");
1406 		rc = -EINVAL;
1407 		goto out;
1408 	}
1409 	if (data[(*packet_size)++] != ECRYPTFS_TAG_3_PACKET_TYPE) {
1410 		printk(KERN_ERR "First byte != 0x%.2x; invalid packet\n",
1411 		       ECRYPTFS_TAG_3_PACKET_TYPE);
1412 		rc = -EINVAL;
1413 		goto out;
1414 	}
1415 	/* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1416 	 * at end of function upon failure */
1417 	auth_tok_list_item =
1418 	    kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache, GFP_KERNEL);
1419 	if (!auth_tok_list_item) {
1420 		printk(KERN_ERR "Unable to allocate memory\n");
1421 		rc = -ENOMEM;
1422 		goto out;
1423 	}
1424 	(*new_auth_tok) = &auth_tok_list_item->auth_tok;
1425 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1426 					  &length_size);
1427 	if (rc) {
1428 		printk(KERN_WARNING "Error parsing packet length; rc = [%d]\n",
1429 		       rc);
1430 		goto out_free;
1431 	}
1432 	if (unlikely(body_size < (ECRYPTFS_SALT_SIZE + 5))) {
1433 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1434 		rc = -EINVAL;
1435 		goto out_free;
1436 	}
1437 	(*packet_size) += length_size;
1438 	if (unlikely((*packet_size) + body_size > max_packet_size)) {
1439 		printk(KERN_ERR "Packet size exceeds max\n");
1440 		rc = -EINVAL;
1441 		goto out_free;
1442 	}
1443 	(*new_auth_tok)->session_key.encrypted_key_size =
1444 		(body_size - (ECRYPTFS_SALT_SIZE + 5));
1445 	if ((*new_auth_tok)->session_key.encrypted_key_size
1446 	    > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1447 		printk(KERN_WARNING "Tag 3 packet contains key larger "
1448 		       "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES\n");
1449 		rc = -EINVAL;
1450 		goto out_free;
1451 	}
1452 	if (unlikely(data[(*packet_size)++] != 0x04)) {
1453 		printk(KERN_WARNING "Unknown version number [%d]\n",
1454 		       data[(*packet_size) - 1]);
1455 		rc = -EINVAL;
1456 		goto out_free;
1457 	}
1458 	rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher,
1459 					    (u16)data[(*packet_size)]);
1460 	if (rc)
1461 		goto out_free;
1462 	/* A little extra work to differentiate among the AES key
1463 	 * sizes; see RFC2440 */
1464 	switch(data[(*packet_size)++]) {
1465 	case RFC2440_CIPHER_AES_192:
1466 		crypt_stat->key_size = 24;
1467 		break;
1468 	default:
1469 		crypt_stat->key_size =
1470 			(*new_auth_tok)->session_key.encrypted_key_size;
1471 	}
1472 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1473 	if (rc)
1474 		goto out_free;
1475 	if (unlikely(data[(*packet_size)++] != 0x03)) {
1476 		printk(KERN_WARNING "Only S2K ID 3 is currently supported\n");
1477 		rc = -ENOSYS;
1478 		goto out_free;
1479 	}
1480 	/* TODO: finish the hash mapping */
1481 	switch (data[(*packet_size)++]) {
1482 	case 0x01: /* See RFC2440 for these numbers and their mappings */
1483 		/* Choose MD5 */
1484 		memcpy((*new_auth_tok)->token.password.salt,
1485 		       &data[(*packet_size)], ECRYPTFS_SALT_SIZE);
1486 		(*packet_size) += ECRYPTFS_SALT_SIZE;
1487 		/* This conversion was taken straight from RFC2440 */
1488 		(*new_auth_tok)->token.password.hash_iterations =
1489 			((u32) 16 + (data[(*packet_size)] & 15))
1490 				<< ((data[(*packet_size)] >> 4) + 6);
1491 		(*packet_size)++;
1492 		/* Friendly reminder:
1493 		 * (*new_auth_tok)->session_key.encrypted_key_size =
1494 		 *         (body_size - (ECRYPTFS_SALT_SIZE + 5)); */
1495 		memcpy((*new_auth_tok)->session_key.encrypted_key,
1496 		       &data[(*packet_size)],
1497 		       (*new_auth_tok)->session_key.encrypted_key_size);
1498 		(*packet_size) +=
1499 			(*new_auth_tok)->session_key.encrypted_key_size;
1500 		(*new_auth_tok)->session_key.flags &=
1501 			~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1502 		(*new_auth_tok)->session_key.flags |=
1503 			ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1504 		(*new_auth_tok)->token.password.hash_algo = 0x01; /* MD5 */
1505 		break;
1506 	default:
1507 		ecryptfs_printk(KERN_ERR, "Unsupported hash algorithm: "
1508 				"[%d]\n", data[(*packet_size) - 1]);
1509 		rc = -ENOSYS;
1510 		goto out_free;
1511 	}
1512 	(*new_auth_tok)->token_type = ECRYPTFS_PASSWORD;
1513 	/* TODO: Parametarize; we might actually want userspace to
1514 	 * decrypt the session key. */
1515 	(*new_auth_tok)->session_key.flags &=
1516 			    ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1517 	(*new_auth_tok)->session_key.flags &=
1518 			    ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1519 	list_add(&auth_tok_list_item->list, auth_tok_list);
1520 	goto out;
1521 out_free:
1522 	(*new_auth_tok) = NULL;
1523 	memset(auth_tok_list_item, 0,
1524 	       sizeof(struct ecryptfs_auth_tok_list_item));
1525 	kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1526 			auth_tok_list_item);
1527 out:
1528 	if (rc)
1529 		(*packet_size) = 0;
1530 	return rc;
1531 }
1532 
1533 /**
1534  * parse_tag_11_packet
1535  * @data: The raw bytes of the packet
1536  * @contents: This function writes the data contents of the literal
1537  *            packet into this memory location
1538  * @max_contents_bytes: The maximum number of bytes that this function
1539  *                      is allowed to write into contents
1540  * @tag_11_contents_size: This function writes the size of the parsed
1541  *                        contents into this memory location; zero on
1542  *                        error
1543  * @packet_size: This function writes the size of the parsed packet
1544  *               into this memory location; zero on error
1545  * @max_packet_size: maximum number of bytes to parse
1546  *
1547  * Returns zero on success; non-zero on error.
1548  */
1549 static int
parse_tag_11_packet(unsigned char * data,unsigned char * contents,size_t max_contents_bytes,size_t * tag_11_contents_size,size_t * packet_size,size_t max_packet_size)1550 parse_tag_11_packet(unsigned char *data, unsigned char *contents,
1551 		    size_t max_contents_bytes, size_t *tag_11_contents_size,
1552 		    size_t *packet_size, size_t max_packet_size)
1553 {
1554 	size_t body_size;
1555 	size_t length_size;
1556 	int rc = 0;
1557 
1558 	(*packet_size) = 0;
1559 	(*tag_11_contents_size) = 0;
1560 	/* This format is inspired by OpenPGP; see RFC 2440
1561 	 * packet tag 11
1562 	 *
1563 	 * Tag 11 identifier (1 byte)
1564 	 * Max Tag 11 packet size (max 3 bytes)
1565 	 * Binary format specifier (1 byte)
1566 	 * Filename length (1 byte)
1567 	 * Filename ("_CONSOLE") (8 bytes)
1568 	 * Modification date (4 bytes)
1569 	 * Literal data (arbitrary)
1570 	 *
1571 	 * We need at least 16 bytes of data for the packet to even be
1572 	 * valid.
1573 	 */
1574 	if (max_packet_size < 16) {
1575 		printk(KERN_ERR "Maximum packet size too small\n");
1576 		rc = -EINVAL;
1577 		goto out;
1578 	}
1579 	if (data[(*packet_size)++] != ECRYPTFS_TAG_11_PACKET_TYPE) {
1580 		printk(KERN_WARNING "Invalid tag 11 packet format\n");
1581 		rc = -EINVAL;
1582 		goto out;
1583 	}
1584 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1585 					  &length_size);
1586 	if (rc) {
1587 		printk(KERN_WARNING "Invalid tag 11 packet format\n");
1588 		goto out;
1589 	}
1590 	if (body_size < 14) {
1591 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1592 		rc = -EINVAL;
1593 		goto out;
1594 	}
1595 	(*packet_size) += length_size;
1596 	(*tag_11_contents_size) = (body_size - 14);
1597 	if (unlikely((*packet_size) + body_size + 1 > max_packet_size)) {
1598 		printk(KERN_ERR "Packet size exceeds max\n");
1599 		rc = -EINVAL;
1600 		goto out;
1601 	}
1602 	if (unlikely((*tag_11_contents_size) > max_contents_bytes)) {
1603 		printk(KERN_ERR "Literal data section in tag 11 packet exceeds "
1604 		       "expected size\n");
1605 		rc = -EINVAL;
1606 		goto out;
1607 	}
1608 	if (data[(*packet_size)++] != 0x62) {
1609 		printk(KERN_WARNING "Unrecognizable packet\n");
1610 		rc = -EINVAL;
1611 		goto out;
1612 	}
1613 	if (data[(*packet_size)++] != 0x08) {
1614 		printk(KERN_WARNING "Unrecognizable packet\n");
1615 		rc = -EINVAL;
1616 		goto out;
1617 	}
1618 	(*packet_size) += 12; /* Ignore filename and modification date */
1619 	memcpy(contents, &data[(*packet_size)], (*tag_11_contents_size));
1620 	(*packet_size) += (*tag_11_contents_size);
1621 out:
1622 	if (rc) {
1623 		(*packet_size) = 0;
1624 		(*tag_11_contents_size) = 0;
1625 	}
1626 	return rc;
1627 }
1628 
ecryptfs_keyring_auth_tok_for_sig(struct key ** auth_tok_key,struct ecryptfs_auth_tok ** auth_tok,char * sig)1629 int ecryptfs_keyring_auth_tok_for_sig(struct key **auth_tok_key,
1630 				      struct ecryptfs_auth_tok **auth_tok,
1631 				      char *sig)
1632 {
1633 	int rc = 0;
1634 
1635 	(*auth_tok_key) = request_key(&key_type_user, sig, NULL);
1636 	if (!(*auth_tok_key) || IS_ERR(*auth_tok_key)) {
1637 		(*auth_tok_key) = ecryptfs_get_encrypted_key(sig);
1638 		if (!(*auth_tok_key) || IS_ERR(*auth_tok_key)) {
1639 			printk(KERN_ERR "Could not find key with description: [%s]\n",
1640 			      sig);
1641 			rc = process_request_key_err(PTR_ERR(*auth_tok_key));
1642 			(*auth_tok_key) = NULL;
1643 			goto out;
1644 		}
1645 	}
1646 	down_write(&(*auth_tok_key)->sem);
1647 	rc = ecryptfs_verify_auth_tok_from_key(*auth_tok_key, auth_tok);
1648 	if (rc) {
1649 		up_write(&(*auth_tok_key)->sem);
1650 		key_put(*auth_tok_key);
1651 		(*auth_tok_key) = NULL;
1652 		goto out;
1653 	}
1654 out:
1655 	return rc;
1656 }
1657 
1658 /**
1659  * decrypt_passphrase_encrypted_session_key - Decrypt the session key with the given auth_tok.
1660  * @auth_tok: The passphrase authentication token to use to encrypt the FEK
1661  * @crypt_stat: The cryptographic context
1662  *
1663  * Returns zero on success; non-zero error otherwise
1664  */
1665 static int
decrypt_passphrase_encrypted_session_key(struct ecryptfs_auth_tok * auth_tok,struct ecryptfs_crypt_stat * crypt_stat)1666 decrypt_passphrase_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1667 					 struct ecryptfs_crypt_stat *crypt_stat)
1668 {
1669 	struct scatterlist dst_sg[2];
1670 	struct scatterlist src_sg[2];
1671 	struct mutex *tfm_mutex;
1672 	struct blkcipher_desc desc = {
1673 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
1674 	};
1675 	int rc = 0;
1676 
1677 	if (unlikely(ecryptfs_verbosity > 0)) {
1678 		ecryptfs_printk(
1679 			KERN_DEBUG, "Session key encryption key (size [%d]):\n",
1680 			auth_tok->token.password.session_key_encryption_key_bytes);
1681 		ecryptfs_dump_hex(
1682 			auth_tok->token.password.session_key_encryption_key,
1683 			auth_tok->token.password.session_key_encryption_key_bytes);
1684 	}
1685 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
1686 							crypt_stat->cipher);
1687 	if (unlikely(rc)) {
1688 		printk(KERN_ERR "Internal error whilst attempting to get "
1689 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1690 		       crypt_stat->cipher, rc);
1691 		goto out;
1692 	}
1693 	rc = virt_to_scatterlist(auth_tok->session_key.encrypted_key,
1694 				 auth_tok->session_key.encrypted_key_size,
1695 				 src_sg, 2);
1696 	if (rc < 1 || rc > 2) {
1697 		printk(KERN_ERR "Internal error whilst attempting to convert "
1698 			"auth_tok->session_key.encrypted_key to scatterlist; "
1699 			"expected rc = 1; got rc = [%d]. "
1700 		       "auth_tok->session_key.encrypted_key_size = [%d]\n", rc,
1701 			auth_tok->session_key.encrypted_key_size);
1702 		goto out;
1703 	}
1704 	auth_tok->session_key.decrypted_key_size =
1705 		auth_tok->session_key.encrypted_key_size;
1706 	rc = virt_to_scatterlist(auth_tok->session_key.decrypted_key,
1707 				 auth_tok->session_key.decrypted_key_size,
1708 				 dst_sg, 2);
1709 	if (rc < 1 || rc > 2) {
1710 		printk(KERN_ERR "Internal error whilst attempting to convert "
1711 			"auth_tok->session_key.decrypted_key to scatterlist; "
1712 			"expected rc = 1; got rc = [%d]\n", rc);
1713 		goto out;
1714 	}
1715 	mutex_lock(tfm_mutex);
1716 	rc = crypto_blkcipher_setkey(
1717 		desc.tfm, auth_tok->token.password.session_key_encryption_key,
1718 		crypt_stat->key_size);
1719 	if (unlikely(rc < 0)) {
1720 		mutex_unlock(tfm_mutex);
1721 		printk(KERN_ERR "Error setting key for crypto context\n");
1722 		rc = -EINVAL;
1723 		goto out;
1724 	}
1725 	rc = crypto_blkcipher_decrypt(&desc, dst_sg, src_sg,
1726 				      auth_tok->session_key.encrypted_key_size);
1727 	mutex_unlock(tfm_mutex);
1728 	if (unlikely(rc)) {
1729 		printk(KERN_ERR "Error decrypting; rc = [%d]\n", rc);
1730 		goto out;
1731 	}
1732 	auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1733 	memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1734 	       auth_tok->session_key.decrypted_key_size);
1735 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1736 	if (unlikely(ecryptfs_verbosity > 0)) {
1737 		ecryptfs_printk(KERN_DEBUG, "FEK of size [%zd]:\n",
1738 				crypt_stat->key_size);
1739 		ecryptfs_dump_hex(crypt_stat->key,
1740 				  crypt_stat->key_size);
1741 	}
1742 out:
1743 	return rc;
1744 }
1745 
1746 /**
1747  * ecryptfs_parse_packet_set
1748  * @crypt_stat: The cryptographic context
1749  * @src: Virtual address of region of memory containing the packets
1750  * @ecryptfs_dentry: The eCryptfs dentry associated with the packet set
1751  *
1752  * Get crypt_stat to have the file's session key if the requisite key
1753  * is available to decrypt the session key.
1754  *
1755  * Returns Zero if a valid authentication token was retrieved and
1756  * processed; negative value for file not encrypted or for error
1757  * conditions.
1758  */
ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat * crypt_stat,unsigned char * src,struct dentry * ecryptfs_dentry)1759 int ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat *crypt_stat,
1760 			      unsigned char *src,
1761 			      struct dentry *ecryptfs_dentry)
1762 {
1763 	size_t i = 0;
1764 	size_t found_auth_tok;
1765 	size_t next_packet_is_auth_tok_packet;
1766 	struct list_head auth_tok_list;
1767 	struct ecryptfs_auth_tok *matching_auth_tok;
1768 	struct ecryptfs_auth_tok *candidate_auth_tok;
1769 	char *candidate_auth_tok_sig;
1770 	size_t packet_size;
1771 	struct ecryptfs_auth_tok *new_auth_tok;
1772 	unsigned char sig_tmp_space[ECRYPTFS_SIG_SIZE];
1773 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1774 	size_t tag_11_contents_size;
1775 	size_t tag_11_packet_size;
1776 	struct key *auth_tok_key = NULL;
1777 	int rc = 0;
1778 
1779 	INIT_LIST_HEAD(&auth_tok_list);
1780 	/* Parse the header to find as many packets as we can; these will be
1781 	 * added the our &auth_tok_list */
1782 	next_packet_is_auth_tok_packet = 1;
1783 	while (next_packet_is_auth_tok_packet) {
1784 		size_t max_packet_size = ((PAGE_CACHE_SIZE - 8) - i);
1785 
1786 		switch (src[i]) {
1787 		case ECRYPTFS_TAG_3_PACKET_TYPE:
1788 			rc = parse_tag_3_packet(crypt_stat,
1789 						(unsigned char *)&src[i],
1790 						&auth_tok_list, &new_auth_tok,
1791 						&packet_size, max_packet_size);
1792 			if (rc) {
1793 				ecryptfs_printk(KERN_ERR, "Error parsing "
1794 						"tag 3 packet\n");
1795 				rc = -EIO;
1796 				goto out_wipe_list;
1797 			}
1798 			i += packet_size;
1799 			rc = parse_tag_11_packet((unsigned char *)&src[i],
1800 						 sig_tmp_space,
1801 						 ECRYPTFS_SIG_SIZE,
1802 						 &tag_11_contents_size,
1803 						 &tag_11_packet_size,
1804 						 max_packet_size);
1805 			if (rc) {
1806 				ecryptfs_printk(KERN_ERR, "No valid "
1807 						"(ecryptfs-specific) literal "
1808 						"packet containing "
1809 						"authentication token "
1810 						"signature found after "
1811 						"tag 3 packet\n");
1812 				rc = -EIO;
1813 				goto out_wipe_list;
1814 			}
1815 			i += tag_11_packet_size;
1816 			if (ECRYPTFS_SIG_SIZE != tag_11_contents_size) {
1817 				ecryptfs_printk(KERN_ERR, "Expected "
1818 						"signature of size [%d]; "
1819 						"read size [%zd]\n",
1820 						ECRYPTFS_SIG_SIZE,
1821 						tag_11_contents_size);
1822 				rc = -EIO;
1823 				goto out_wipe_list;
1824 			}
1825 			ecryptfs_to_hex(new_auth_tok->token.password.signature,
1826 					sig_tmp_space, tag_11_contents_size);
1827 			new_auth_tok->token.password.signature[
1828 				ECRYPTFS_PASSWORD_SIG_SIZE] = '\0';
1829 			crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1830 			break;
1831 		case ECRYPTFS_TAG_1_PACKET_TYPE:
1832 			rc = parse_tag_1_packet(crypt_stat,
1833 						(unsigned char *)&src[i],
1834 						&auth_tok_list, &new_auth_tok,
1835 						&packet_size, max_packet_size);
1836 			if (rc) {
1837 				ecryptfs_printk(KERN_ERR, "Error parsing "
1838 						"tag 1 packet\n");
1839 				rc = -EIO;
1840 				goto out_wipe_list;
1841 			}
1842 			i += packet_size;
1843 			crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1844 			break;
1845 		case ECRYPTFS_TAG_11_PACKET_TYPE:
1846 			ecryptfs_printk(KERN_WARNING, "Invalid packet set "
1847 					"(Tag 11 not allowed by itself)\n");
1848 			rc = -EIO;
1849 			goto out_wipe_list;
1850 			break;
1851 		default:
1852 			ecryptfs_printk(KERN_DEBUG, "No packet at offset [%zd] "
1853 					"of the file header; hex value of "
1854 					"character is [0x%.2x]\n", i, src[i]);
1855 			next_packet_is_auth_tok_packet = 0;
1856 		}
1857 	}
1858 	if (list_empty(&auth_tok_list)) {
1859 		printk(KERN_ERR "The lower file appears to be a non-encrypted "
1860 		       "eCryptfs file; this is not supported in this version "
1861 		       "of the eCryptfs kernel module\n");
1862 		rc = -EINVAL;
1863 		goto out;
1864 	}
1865 	/* auth_tok_list contains the set of authentication tokens
1866 	 * parsed from the metadata. We need to find a matching
1867 	 * authentication token that has the secret component(s)
1868 	 * necessary to decrypt the EFEK in the auth_tok parsed from
1869 	 * the metadata. There may be several potential matches, but
1870 	 * just one will be sufficient to decrypt to get the FEK. */
1871 find_next_matching_auth_tok:
1872 	found_auth_tok = 0;
1873 	list_for_each_entry(auth_tok_list_item, &auth_tok_list, list) {
1874 		candidate_auth_tok = &auth_tok_list_item->auth_tok;
1875 		if (unlikely(ecryptfs_verbosity > 0)) {
1876 			ecryptfs_printk(KERN_DEBUG,
1877 					"Considering cadidate auth tok:\n");
1878 			ecryptfs_dump_auth_tok(candidate_auth_tok);
1879 		}
1880 		rc = ecryptfs_get_auth_tok_sig(&candidate_auth_tok_sig,
1881 					       candidate_auth_tok);
1882 		if (rc) {
1883 			printk(KERN_ERR
1884 			       "Unrecognized candidate auth tok type: [%d]\n",
1885 			       candidate_auth_tok->token_type);
1886 			rc = -EINVAL;
1887 			goto out_wipe_list;
1888 		}
1889 		rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key,
1890 					       &matching_auth_tok,
1891 					       crypt_stat->mount_crypt_stat,
1892 					       candidate_auth_tok_sig);
1893 		if (!rc) {
1894 			found_auth_tok = 1;
1895 			goto found_matching_auth_tok;
1896 		}
1897 	}
1898 	if (!found_auth_tok) {
1899 		ecryptfs_printk(KERN_ERR, "Could not find a usable "
1900 				"authentication token\n");
1901 		rc = -EIO;
1902 		goto out_wipe_list;
1903 	}
1904 found_matching_auth_tok:
1905 	if (candidate_auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
1906 		memcpy(&(candidate_auth_tok->token.private_key),
1907 		       &(matching_auth_tok->token.private_key),
1908 		       sizeof(struct ecryptfs_private_key));
1909 		up_write(&(auth_tok_key->sem));
1910 		key_put(auth_tok_key);
1911 		rc = decrypt_pki_encrypted_session_key(candidate_auth_tok,
1912 						       crypt_stat);
1913 	} else if (candidate_auth_tok->token_type == ECRYPTFS_PASSWORD) {
1914 		memcpy(&(candidate_auth_tok->token.password),
1915 		       &(matching_auth_tok->token.password),
1916 		       sizeof(struct ecryptfs_password));
1917 		up_write(&(auth_tok_key->sem));
1918 		key_put(auth_tok_key);
1919 		rc = decrypt_passphrase_encrypted_session_key(
1920 			candidate_auth_tok, crypt_stat);
1921 	} else {
1922 		up_write(&(auth_tok_key->sem));
1923 		key_put(auth_tok_key);
1924 		rc = -EINVAL;
1925 	}
1926 	if (rc) {
1927 		struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1928 
1929 		ecryptfs_printk(KERN_WARNING, "Error decrypting the "
1930 				"session key for authentication token with sig "
1931 				"[%.*s]; rc = [%d]. Removing auth tok "
1932 				"candidate from the list and searching for "
1933 				"the next match.\n", ECRYPTFS_SIG_SIZE_HEX,
1934 				candidate_auth_tok_sig,	rc);
1935 		list_for_each_entry_safe(auth_tok_list_item,
1936 					 auth_tok_list_item_tmp,
1937 					 &auth_tok_list, list) {
1938 			if (candidate_auth_tok
1939 			    == &auth_tok_list_item->auth_tok) {
1940 				list_del(&auth_tok_list_item->list);
1941 				kmem_cache_free(
1942 					ecryptfs_auth_tok_list_item_cache,
1943 					auth_tok_list_item);
1944 				goto find_next_matching_auth_tok;
1945 			}
1946 		}
1947 		BUG();
1948 	}
1949 	rc = ecryptfs_compute_root_iv(crypt_stat);
1950 	if (rc) {
1951 		ecryptfs_printk(KERN_ERR, "Error computing "
1952 				"the root IV\n");
1953 		goto out_wipe_list;
1954 	}
1955 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1956 	if (rc) {
1957 		ecryptfs_printk(KERN_ERR, "Error initializing crypto "
1958 				"context for cipher [%s]; rc = [%d]\n",
1959 				crypt_stat->cipher, rc);
1960 	}
1961 out_wipe_list:
1962 	wipe_auth_tok_list(&auth_tok_list);
1963 out:
1964 	return rc;
1965 }
1966 
1967 static int
pki_encrypt_session_key(struct key * auth_tok_key,struct ecryptfs_auth_tok * auth_tok,struct ecryptfs_crypt_stat * crypt_stat,struct ecryptfs_key_record * key_rec)1968 pki_encrypt_session_key(struct key *auth_tok_key,
1969 			struct ecryptfs_auth_tok *auth_tok,
1970 			struct ecryptfs_crypt_stat *crypt_stat,
1971 			struct ecryptfs_key_record *key_rec)
1972 {
1973 	struct ecryptfs_msg_ctx *msg_ctx = NULL;
1974 	char *payload = NULL;
1975 	size_t payload_len = 0;
1976 	struct ecryptfs_message *msg;
1977 	int rc;
1978 
1979 	rc = write_tag_66_packet(auth_tok->token.private_key.signature,
1980 				 ecryptfs_code_for_cipher_string(
1981 					 crypt_stat->cipher,
1982 					 crypt_stat->key_size),
1983 				 crypt_stat, &payload, &payload_len);
1984 	up_write(&(auth_tok_key->sem));
1985 	key_put(auth_tok_key);
1986 	if (rc) {
1987 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet\n");
1988 		goto out;
1989 	}
1990 	rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1991 	if (rc) {
1992 		ecryptfs_printk(KERN_ERR, "Error sending message to "
1993 				"ecryptfsd\n");
1994 		goto out;
1995 	}
1996 	rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1997 	if (rc) {
1998 		ecryptfs_printk(KERN_ERR, "Failed to receive tag 67 packet "
1999 				"from the user space daemon\n");
2000 		rc = -EIO;
2001 		goto out;
2002 	}
2003 	rc = parse_tag_67_packet(key_rec, msg);
2004 	if (rc)
2005 		ecryptfs_printk(KERN_ERR, "Error parsing tag 67 packet\n");
2006 	kfree(msg);
2007 out:
2008 	kfree(payload);
2009 	return rc;
2010 }
2011 /**
2012  * write_tag_1_packet - Write an RFC2440-compatible tag 1 (public key) packet
2013  * @dest: Buffer into which to write the packet
2014  * @remaining_bytes: Maximum number of bytes that can be writtn
2015  * @auth_tok_key: The authentication token key to unlock and put when done with
2016  *                @auth_tok
2017  * @auth_tok: The authentication token used for generating the tag 1 packet
2018  * @crypt_stat: The cryptographic context
2019  * @key_rec: The key record struct for the tag 1 packet
2020  * @packet_size: This function will write the number of bytes that end
2021  *               up constituting the packet; set to zero on error
2022  *
2023  * Returns zero on success; non-zero on error.
2024  */
2025 static int
write_tag_1_packet(char * dest,size_t * remaining_bytes,struct key * auth_tok_key,struct ecryptfs_auth_tok * auth_tok,struct ecryptfs_crypt_stat * crypt_stat,struct ecryptfs_key_record * key_rec,size_t * packet_size)2026 write_tag_1_packet(char *dest, size_t *remaining_bytes,
2027 		   struct key *auth_tok_key, struct ecryptfs_auth_tok *auth_tok,
2028 		   struct ecryptfs_crypt_stat *crypt_stat,
2029 		   struct ecryptfs_key_record *key_rec, size_t *packet_size)
2030 {
2031 	size_t i;
2032 	size_t encrypted_session_key_valid = 0;
2033 	size_t packet_size_length;
2034 	size_t max_packet_size;
2035 	int rc = 0;
2036 
2037 	(*packet_size) = 0;
2038 	ecryptfs_from_hex(key_rec->sig, auth_tok->token.private_key.signature,
2039 			  ECRYPTFS_SIG_SIZE);
2040 	encrypted_session_key_valid = 0;
2041 	for (i = 0; i < crypt_stat->key_size; i++)
2042 		encrypted_session_key_valid |=
2043 			auth_tok->session_key.encrypted_key[i];
2044 	if (encrypted_session_key_valid) {
2045 		memcpy(key_rec->enc_key,
2046 		       auth_tok->session_key.encrypted_key,
2047 		       auth_tok->session_key.encrypted_key_size);
2048 		up_write(&(auth_tok_key->sem));
2049 		key_put(auth_tok_key);
2050 		goto encrypted_session_key_set;
2051 	}
2052 	if (auth_tok->session_key.encrypted_key_size == 0)
2053 		auth_tok->session_key.encrypted_key_size =
2054 			auth_tok->token.private_key.key_size;
2055 	rc = pki_encrypt_session_key(auth_tok_key, auth_tok, crypt_stat,
2056 				     key_rec);
2057 	if (rc) {
2058 		printk(KERN_ERR "Failed to encrypt session key via a key "
2059 		       "module; rc = [%d]\n", rc);
2060 		goto out;
2061 	}
2062 	if (ecryptfs_verbosity > 0) {
2063 		ecryptfs_printk(KERN_DEBUG, "Encrypted key:\n");
2064 		ecryptfs_dump_hex(key_rec->enc_key, key_rec->enc_key_size);
2065 	}
2066 encrypted_session_key_set:
2067 	/* This format is inspired by OpenPGP; see RFC 2440
2068 	 * packet tag 1 */
2069 	max_packet_size = (1                         /* Tag 1 identifier */
2070 			   + 3                       /* Max Tag 1 packet size */
2071 			   + 1                       /* Version */
2072 			   + ECRYPTFS_SIG_SIZE       /* Key identifier */
2073 			   + 1                       /* Cipher identifier */
2074 			   + key_rec->enc_key_size); /* Encrypted key size */
2075 	if (max_packet_size > (*remaining_bytes)) {
2076 		printk(KERN_ERR "Packet length larger than maximum allowable; "
2077 		       "need up to [%td] bytes, but there are only [%td] "
2078 		       "available\n", max_packet_size, (*remaining_bytes));
2079 		rc = -EINVAL;
2080 		goto out;
2081 	}
2082 	dest[(*packet_size)++] = ECRYPTFS_TAG_1_PACKET_TYPE;
2083 	rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2084 					  (max_packet_size - 4),
2085 					  &packet_size_length);
2086 	if (rc) {
2087 		ecryptfs_printk(KERN_ERR, "Error generating tag 1 packet "
2088 				"header; cannot generate packet length\n");
2089 		goto out;
2090 	}
2091 	(*packet_size) += packet_size_length;
2092 	dest[(*packet_size)++] = 0x03; /* version 3 */
2093 	memcpy(&dest[(*packet_size)], key_rec->sig, ECRYPTFS_SIG_SIZE);
2094 	(*packet_size) += ECRYPTFS_SIG_SIZE;
2095 	dest[(*packet_size)++] = RFC2440_CIPHER_RSA;
2096 	memcpy(&dest[(*packet_size)], key_rec->enc_key,
2097 	       key_rec->enc_key_size);
2098 	(*packet_size) += key_rec->enc_key_size;
2099 out:
2100 	if (rc)
2101 		(*packet_size) = 0;
2102 	else
2103 		(*remaining_bytes) -= (*packet_size);
2104 	return rc;
2105 }
2106 
2107 /**
2108  * write_tag_11_packet
2109  * @dest: Target into which Tag 11 packet is to be written
2110  * @remaining_bytes: Maximum packet length
2111  * @contents: Byte array of contents to copy in
2112  * @contents_length: Number of bytes in contents
2113  * @packet_length: Length of the Tag 11 packet written; zero on error
2114  *
2115  * Returns zero on success; non-zero on error.
2116  */
2117 static int
write_tag_11_packet(char * dest,size_t * remaining_bytes,char * contents,size_t contents_length,size_t * packet_length)2118 write_tag_11_packet(char *dest, size_t *remaining_bytes, char *contents,
2119 		    size_t contents_length, size_t *packet_length)
2120 {
2121 	size_t packet_size_length;
2122 	size_t max_packet_size;
2123 	int rc = 0;
2124 
2125 	(*packet_length) = 0;
2126 	/* This format is inspired by OpenPGP; see RFC 2440
2127 	 * packet tag 11 */
2128 	max_packet_size = (1                   /* Tag 11 identifier */
2129 			   + 3                 /* Max Tag 11 packet size */
2130 			   + 1                 /* Binary format specifier */
2131 			   + 1                 /* Filename length */
2132 			   + 8                 /* Filename ("_CONSOLE") */
2133 			   + 4                 /* Modification date */
2134 			   + contents_length); /* Literal data */
2135 	if (max_packet_size > (*remaining_bytes)) {
2136 		printk(KERN_ERR "Packet length larger than maximum allowable; "
2137 		       "need up to [%td] bytes, but there are only [%td] "
2138 		       "available\n", max_packet_size, (*remaining_bytes));
2139 		rc = -EINVAL;
2140 		goto out;
2141 	}
2142 	dest[(*packet_length)++] = ECRYPTFS_TAG_11_PACKET_TYPE;
2143 	rc = ecryptfs_write_packet_length(&dest[(*packet_length)],
2144 					  (max_packet_size - 4),
2145 					  &packet_size_length);
2146 	if (rc) {
2147 		printk(KERN_ERR "Error generating tag 11 packet header; cannot "
2148 		       "generate packet length. rc = [%d]\n", rc);
2149 		goto out;
2150 	}
2151 	(*packet_length) += packet_size_length;
2152 	dest[(*packet_length)++] = 0x62; /* binary data format specifier */
2153 	dest[(*packet_length)++] = 8;
2154 	memcpy(&dest[(*packet_length)], "_CONSOLE", 8);
2155 	(*packet_length) += 8;
2156 	memset(&dest[(*packet_length)], 0x00, 4);
2157 	(*packet_length) += 4;
2158 	memcpy(&dest[(*packet_length)], contents, contents_length);
2159 	(*packet_length) += contents_length;
2160  out:
2161 	if (rc)
2162 		(*packet_length) = 0;
2163 	else
2164 		(*remaining_bytes) -= (*packet_length);
2165 	return rc;
2166 }
2167 
2168 /**
2169  * write_tag_3_packet
2170  * @dest: Buffer into which to write the packet
2171  * @remaining_bytes: Maximum number of bytes that can be written
2172  * @auth_tok: Authentication token
2173  * @crypt_stat: The cryptographic context
2174  * @key_rec: encrypted key
2175  * @packet_size: This function will write the number of bytes that end
2176  *               up constituting the packet; set to zero on error
2177  *
2178  * Returns zero on success; non-zero on error.
2179  */
2180 static int
write_tag_3_packet(char * dest,size_t * remaining_bytes,struct ecryptfs_auth_tok * auth_tok,struct ecryptfs_crypt_stat * crypt_stat,struct ecryptfs_key_record * key_rec,size_t * packet_size)2181 write_tag_3_packet(char *dest, size_t *remaining_bytes,
2182 		   struct ecryptfs_auth_tok *auth_tok,
2183 		   struct ecryptfs_crypt_stat *crypt_stat,
2184 		   struct ecryptfs_key_record *key_rec, size_t *packet_size)
2185 {
2186 	size_t i;
2187 	size_t encrypted_session_key_valid = 0;
2188 	char session_key_encryption_key[ECRYPTFS_MAX_KEY_BYTES];
2189 	struct scatterlist dst_sg[2];
2190 	struct scatterlist src_sg[2];
2191 	struct mutex *tfm_mutex = NULL;
2192 	u8 cipher_code;
2193 	size_t packet_size_length;
2194 	size_t max_packet_size;
2195 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2196 		crypt_stat->mount_crypt_stat;
2197 	struct blkcipher_desc desc = {
2198 		.tfm = NULL,
2199 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
2200 	};
2201 	int rc = 0;
2202 
2203 	(*packet_size) = 0;
2204 	ecryptfs_from_hex(key_rec->sig, auth_tok->token.password.signature,
2205 			  ECRYPTFS_SIG_SIZE);
2206 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
2207 							crypt_stat->cipher);
2208 	if (unlikely(rc)) {
2209 		printk(KERN_ERR "Internal error whilst attempting to get "
2210 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
2211 		       crypt_stat->cipher, rc);
2212 		goto out;
2213 	}
2214 	if (mount_crypt_stat->global_default_cipher_key_size == 0) {
2215 		struct blkcipher_alg *alg = crypto_blkcipher_alg(desc.tfm);
2216 
2217 		printk(KERN_WARNING "No key size specified at mount; "
2218 		       "defaulting to [%d]\n", alg->max_keysize);
2219 		mount_crypt_stat->global_default_cipher_key_size =
2220 			alg->max_keysize;
2221 	}
2222 	if (crypt_stat->key_size == 0)
2223 		crypt_stat->key_size =
2224 			mount_crypt_stat->global_default_cipher_key_size;
2225 	if (auth_tok->session_key.encrypted_key_size == 0)
2226 		auth_tok->session_key.encrypted_key_size =
2227 			crypt_stat->key_size;
2228 	if (crypt_stat->key_size == 24
2229 	    && strcmp("aes", crypt_stat->cipher) == 0) {
2230 		memset((crypt_stat->key + 24), 0, 8);
2231 		auth_tok->session_key.encrypted_key_size = 32;
2232 	} else
2233 		auth_tok->session_key.encrypted_key_size = crypt_stat->key_size;
2234 	key_rec->enc_key_size =
2235 		auth_tok->session_key.encrypted_key_size;
2236 	encrypted_session_key_valid = 0;
2237 	for (i = 0; i < auth_tok->session_key.encrypted_key_size; i++)
2238 		encrypted_session_key_valid |=
2239 			auth_tok->session_key.encrypted_key[i];
2240 	if (encrypted_session_key_valid) {
2241 		ecryptfs_printk(KERN_DEBUG, "encrypted_session_key_valid != 0; "
2242 				"using auth_tok->session_key.encrypted_key, "
2243 				"where key_rec->enc_key_size = [%zd]\n",
2244 				key_rec->enc_key_size);
2245 		memcpy(key_rec->enc_key,
2246 		       auth_tok->session_key.encrypted_key,
2247 		       key_rec->enc_key_size);
2248 		goto encrypted_session_key_set;
2249 	}
2250 	if (auth_tok->token.password.flags &
2251 	    ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET) {
2252 		ecryptfs_printk(KERN_DEBUG, "Using previously generated "
2253 				"session key encryption key of size [%d]\n",
2254 				auth_tok->token.password.
2255 				session_key_encryption_key_bytes);
2256 		memcpy(session_key_encryption_key,
2257 		       auth_tok->token.password.session_key_encryption_key,
2258 		       crypt_stat->key_size);
2259 		ecryptfs_printk(KERN_DEBUG,
2260 				"Cached session key encryption key:\n");
2261 		if (ecryptfs_verbosity > 0)
2262 			ecryptfs_dump_hex(session_key_encryption_key, 16);
2263 	}
2264 	if (unlikely(ecryptfs_verbosity > 0)) {
2265 		ecryptfs_printk(KERN_DEBUG, "Session key encryption key:\n");
2266 		ecryptfs_dump_hex(session_key_encryption_key, 16);
2267 	}
2268 	rc = virt_to_scatterlist(crypt_stat->key, key_rec->enc_key_size,
2269 				 src_sg, 2);
2270 	if (rc < 1 || rc > 2) {
2271 		ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2272 				"for crypt_stat session key; expected rc = 1; "
2273 				"got rc = [%d]. key_rec->enc_key_size = [%zd]\n",
2274 				rc, key_rec->enc_key_size);
2275 		rc = -ENOMEM;
2276 		goto out;
2277 	}
2278 	rc = virt_to_scatterlist(key_rec->enc_key, key_rec->enc_key_size,
2279 				 dst_sg, 2);
2280 	if (rc < 1 || rc > 2) {
2281 		ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2282 				"for crypt_stat encrypted session key; "
2283 				"expected rc = 1; got rc = [%d]. "
2284 				"key_rec->enc_key_size = [%zd]\n", rc,
2285 				key_rec->enc_key_size);
2286 		rc = -ENOMEM;
2287 		goto out;
2288 	}
2289 	mutex_lock(tfm_mutex);
2290 	rc = crypto_blkcipher_setkey(desc.tfm, session_key_encryption_key,
2291 				     crypt_stat->key_size);
2292 	if (rc < 0) {
2293 		mutex_unlock(tfm_mutex);
2294 		ecryptfs_printk(KERN_ERR, "Error setting key for crypto "
2295 				"context; rc = [%d]\n", rc);
2296 		goto out;
2297 	}
2298 	rc = 0;
2299 	ecryptfs_printk(KERN_DEBUG, "Encrypting [%zd] bytes of the key\n",
2300 			crypt_stat->key_size);
2301 	rc = crypto_blkcipher_encrypt(&desc, dst_sg, src_sg,
2302 				      (*key_rec).enc_key_size);
2303 	mutex_unlock(tfm_mutex);
2304 	if (rc) {
2305 		printk(KERN_ERR "Error encrypting; rc = [%d]\n", rc);
2306 		goto out;
2307 	}
2308 	ecryptfs_printk(KERN_DEBUG, "This should be the encrypted key:\n");
2309 	if (ecryptfs_verbosity > 0) {
2310 		ecryptfs_printk(KERN_DEBUG, "EFEK of size [%zd]:\n",
2311 				key_rec->enc_key_size);
2312 		ecryptfs_dump_hex(key_rec->enc_key,
2313 				  key_rec->enc_key_size);
2314 	}
2315 encrypted_session_key_set:
2316 	/* This format is inspired by OpenPGP; see RFC 2440
2317 	 * packet tag 3 */
2318 	max_packet_size = (1                         /* Tag 3 identifier */
2319 			   + 3                       /* Max Tag 3 packet size */
2320 			   + 1                       /* Version */
2321 			   + 1                       /* Cipher code */
2322 			   + 1                       /* S2K specifier */
2323 			   + 1                       /* Hash identifier */
2324 			   + ECRYPTFS_SALT_SIZE      /* Salt */
2325 			   + 1                       /* Hash iterations */
2326 			   + key_rec->enc_key_size); /* Encrypted key size */
2327 	if (max_packet_size > (*remaining_bytes)) {
2328 		printk(KERN_ERR "Packet too large; need up to [%td] bytes, but "
2329 		       "there are only [%td] available\n", max_packet_size,
2330 		       (*remaining_bytes));
2331 		rc = -EINVAL;
2332 		goto out;
2333 	}
2334 	dest[(*packet_size)++] = ECRYPTFS_TAG_3_PACKET_TYPE;
2335 	/* Chop off the Tag 3 identifier(1) and Tag 3 packet size(3)
2336 	 * to get the number of octets in the actual Tag 3 packet */
2337 	rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2338 					  (max_packet_size - 4),
2339 					  &packet_size_length);
2340 	if (rc) {
2341 		printk(KERN_ERR "Error generating tag 3 packet header; cannot "
2342 		       "generate packet length. rc = [%d]\n", rc);
2343 		goto out;
2344 	}
2345 	(*packet_size) += packet_size_length;
2346 	dest[(*packet_size)++] = 0x04; /* version 4 */
2347 	/* TODO: Break from RFC2440 so that arbitrary ciphers can be
2348 	 * specified with strings */
2349 	cipher_code = ecryptfs_code_for_cipher_string(crypt_stat->cipher,
2350 						      crypt_stat->key_size);
2351 	if (cipher_code == 0) {
2352 		ecryptfs_printk(KERN_WARNING, "Unable to generate code for "
2353 				"cipher [%s]\n", crypt_stat->cipher);
2354 		rc = -EINVAL;
2355 		goto out;
2356 	}
2357 	dest[(*packet_size)++] = cipher_code;
2358 	dest[(*packet_size)++] = 0x03;	/* S2K */
2359 	dest[(*packet_size)++] = 0x01;	/* MD5 (TODO: parameterize) */
2360 	memcpy(&dest[(*packet_size)], auth_tok->token.password.salt,
2361 	       ECRYPTFS_SALT_SIZE);
2362 	(*packet_size) += ECRYPTFS_SALT_SIZE;	/* salt */
2363 	dest[(*packet_size)++] = 0x60;	/* hash iterations (65536) */
2364 	memcpy(&dest[(*packet_size)], key_rec->enc_key,
2365 	       key_rec->enc_key_size);
2366 	(*packet_size) += key_rec->enc_key_size;
2367 out:
2368 	if (rc)
2369 		(*packet_size) = 0;
2370 	else
2371 		(*remaining_bytes) -= (*packet_size);
2372 	return rc;
2373 }
2374 
2375 struct kmem_cache *ecryptfs_key_record_cache;
2376 
2377 /**
2378  * ecryptfs_generate_key_packet_set
2379  * @dest_base: Virtual address from which to write the key record set
2380  * @crypt_stat: The cryptographic context from which the
2381  *              authentication tokens will be retrieved
2382  * @ecryptfs_dentry: The dentry, used to retrieve the mount crypt stat
2383  *                   for the global parameters
2384  * @len: The amount written
2385  * @max: The maximum amount of data allowed to be written
2386  *
2387  * Generates a key packet set and writes it to the virtual address
2388  * passed in.
2389  *
2390  * Returns zero on success; non-zero on error.
2391  */
2392 int
ecryptfs_generate_key_packet_set(char * dest_base,struct ecryptfs_crypt_stat * crypt_stat,struct dentry * ecryptfs_dentry,size_t * len,size_t max)2393 ecryptfs_generate_key_packet_set(char *dest_base,
2394 				 struct ecryptfs_crypt_stat *crypt_stat,
2395 				 struct dentry *ecryptfs_dentry, size_t *len,
2396 				 size_t max)
2397 {
2398 	struct ecryptfs_auth_tok *auth_tok;
2399 	struct key *auth_tok_key = NULL;
2400 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2401 		&ecryptfs_superblock_to_private(
2402 			ecryptfs_dentry->d_sb)->mount_crypt_stat;
2403 	size_t written;
2404 	struct ecryptfs_key_record *key_rec;
2405 	struct ecryptfs_key_sig *key_sig;
2406 	int rc = 0;
2407 
2408 	(*len) = 0;
2409 	mutex_lock(&crypt_stat->keysig_list_mutex);
2410 	key_rec = kmem_cache_alloc(ecryptfs_key_record_cache, GFP_KERNEL);
2411 	if (!key_rec) {
2412 		rc = -ENOMEM;
2413 		goto out;
2414 	}
2415 	list_for_each_entry(key_sig, &crypt_stat->keysig_list,
2416 			    crypt_stat_list) {
2417 		memset(key_rec, 0, sizeof(*key_rec));
2418 		rc = ecryptfs_find_global_auth_tok_for_sig(&auth_tok_key,
2419 							   &auth_tok,
2420 							   mount_crypt_stat,
2421 							   key_sig->keysig);
2422 		if (rc) {
2423 			printk(KERN_WARNING "Unable to retrieve auth tok with "
2424 			       "sig = [%s]\n", key_sig->keysig);
2425 			rc = process_find_global_auth_tok_for_sig_err(rc);
2426 			goto out_free;
2427 		}
2428 		if (auth_tok->token_type == ECRYPTFS_PASSWORD) {
2429 			rc = write_tag_3_packet((dest_base + (*len)),
2430 						&max, auth_tok,
2431 						crypt_stat, key_rec,
2432 						&written);
2433 			up_write(&(auth_tok_key->sem));
2434 			key_put(auth_tok_key);
2435 			if (rc) {
2436 				ecryptfs_printk(KERN_WARNING, "Error "
2437 						"writing tag 3 packet\n");
2438 				goto out_free;
2439 			}
2440 			(*len) += written;
2441 			/* Write auth tok signature packet */
2442 			rc = write_tag_11_packet((dest_base + (*len)), &max,
2443 						 key_rec->sig,
2444 						 ECRYPTFS_SIG_SIZE, &written);
2445 			if (rc) {
2446 				ecryptfs_printk(KERN_ERR, "Error writing "
2447 						"auth tok signature packet\n");
2448 				goto out_free;
2449 			}
2450 			(*len) += written;
2451 		} else if (auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
2452 			rc = write_tag_1_packet(dest_base + (*len), &max,
2453 						auth_tok_key, auth_tok,
2454 						crypt_stat, key_rec, &written);
2455 			if (rc) {
2456 				ecryptfs_printk(KERN_WARNING, "Error "
2457 						"writing tag 1 packet\n");
2458 				goto out_free;
2459 			}
2460 			(*len) += written;
2461 		} else {
2462 			up_write(&(auth_tok_key->sem));
2463 			key_put(auth_tok_key);
2464 			ecryptfs_printk(KERN_WARNING, "Unsupported "
2465 					"authentication token type\n");
2466 			rc = -EINVAL;
2467 			goto out_free;
2468 		}
2469 	}
2470 	if (likely(max > 0)) {
2471 		dest_base[(*len)] = 0x00;
2472 	} else {
2473 		ecryptfs_printk(KERN_ERR, "Error writing boundary byte\n");
2474 		rc = -EIO;
2475 	}
2476 out_free:
2477 	kmem_cache_free(ecryptfs_key_record_cache, key_rec);
2478 out:
2479 	if (rc)
2480 		(*len) = 0;
2481 	mutex_unlock(&crypt_stat->keysig_list_mutex);
2482 	return rc;
2483 }
2484 
2485 struct kmem_cache *ecryptfs_key_sig_cache;
2486 
ecryptfs_add_keysig(struct ecryptfs_crypt_stat * crypt_stat,char * sig)2487 int ecryptfs_add_keysig(struct ecryptfs_crypt_stat *crypt_stat, char *sig)
2488 {
2489 	struct ecryptfs_key_sig *new_key_sig;
2490 
2491 	new_key_sig = kmem_cache_alloc(ecryptfs_key_sig_cache, GFP_KERNEL);
2492 	if (!new_key_sig) {
2493 		printk(KERN_ERR
2494 		       "Error allocating from ecryptfs_key_sig_cache\n");
2495 		return -ENOMEM;
2496 	}
2497 	memcpy(new_key_sig->keysig, sig, ECRYPTFS_SIG_SIZE_HEX);
2498 	new_key_sig->keysig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2499 	/* Caller must hold keysig_list_mutex */
2500 	list_add(&new_key_sig->crypt_stat_list, &crypt_stat->keysig_list);
2501 
2502 	return 0;
2503 }
2504 
2505 struct kmem_cache *ecryptfs_global_auth_tok_cache;
2506 
2507 int
ecryptfs_add_global_auth_tok(struct ecryptfs_mount_crypt_stat * mount_crypt_stat,char * sig,u32 global_auth_tok_flags)2508 ecryptfs_add_global_auth_tok(struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2509 			     char *sig, u32 global_auth_tok_flags)
2510 {
2511 	struct ecryptfs_global_auth_tok *new_auth_tok;
2512 	int rc = 0;
2513 
2514 	new_auth_tok = kmem_cache_zalloc(ecryptfs_global_auth_tok_cache,
2515 					GFP_KERNEL);
2516 	if (!new_auth_tok) {
2517 		rc = -ENOMEM;
2518 		printk(KERN_ERR "Error allocating from "
2519 		       "ecryptfs_global_auth_tok_cache\n");
2520 		goto out;
2521 	}
2522 	memcpy(new_auth_tok->sig, sig, ECRYPTFS_SIG_SIZE_HEX);
2523 	new_auth_tok->flags = global_auth_tok_flags;
2524 	new_auth_tok->sig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2525 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
2526 	list_add(&new_auth_tok->mount_crypt_stat_list,
2527 		 &mount_crypt_stat->global_auth_tok_list);
2528 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
2529 out:
2530 	return rc;
2531 }
2532 
2533