1 /*
2  * fs/direct-io.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * O_DIRECT
7  *
8  * 04Jul2002	Andrew Morton
9  *		Initial version
10  * 11Sep2002	janetinc@us.ibm.com
11  * 		added readv/writev support.
12  * 29Oct2002	Andrew Morton
13  *		rewrote bio_add_page() support.
14  * 30Oct2002	pbadari@us.ibm.com
15  *		added support for non-aligned IO.
16  * 06Nov2002	pbadari@us.ibm.com
17  *		added asynchronous IO support.
18  * 21Jul2003	nathans@sgi.com
19  *		added IO completion notifier.
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/fs.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/bio.h>
32 #include <linux/wait.h>
33 #include <linux/err.h>
34 #include <linux/blkdev.h>
35 #include <linux/buffer_head.h>
36 #include <linux/rwsem.h>
37 #include <linux/uio.h>
38 #include <linux/atomic.h>
39 #include <linux/prefetch.h>
40 
41 /*
42  * How many user pages to map in one call to get_user_pages().  This determines
43  * the size of a structure in the slab cache
44  */
45 #define DIO_PAGES	64
46 
47 /*
48  * This code generally works in units of "dio_blocks".  A dio_block is
49  * somewhere between the hard sector size and the filesystem block size.  it
50  * is determined on a per-invocation basis.   When talking to the filesystem
51  * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
52  * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
53  * to bio_block quantities by shifting left by blkfactor.
54  *
55  * If blkfactor is zero then the user's request was aligned to the filesystem's
56  * blocksize.
57  */
58 
59 /* dio_state only used in the submission path */
60 
61 struct dio_submit {
62 	struct bio *bio;		/* bio under assembly */
63 	unsigned blkbits;		/* doesn't change */
64 	unsigned blkfactor;		/* When we're using an alignment which
65 					   is finer than the filesystem's soft
66 					   blocksize, this specifies how much
67 					   finer.  blkfactor=2 means 1/4-block
68 					   alignment.  Does not change */
69 	unsigned start_zero_done;	/* flag: sub-blocksize zeroing has
70 					   been performed at the start of a
71 					   write */
72 	int pages_in_io;		/* approximate total IO pages */
73 	size_t	size;			/* total request size (doesn't change)*/
74 	sector_t block_in_file;		/* Current offset into the underlying
75 					   file in dio_block units. */
76 	unsigned blocks_available;	/* At block_in_file.  changes */
77 	int reap_counter;		/* rate limit reaping */
78 	sector_t final_block_in_request;/* doesn't change */
79 	unsigned first_block_in_page;	/* doesn't change, Used only once */
80 	int boundary;			/* prev block is at a boundary */
81 	get_block_t *get_block;		/* block mapping function */
82 	dio_submit_t *submit_io;	/* IO submition function */
83 
84 	loff_t logical_offset_in_bio;	/* current first logical block in bio */
85 	sector_t final_block_in_bio;	/* current final block in bio + 1 */
86 	sector_t next_block_for_io;	/* next block to be put under IO,
87 					   in dio_blocks units */
88 
89 	/*
90 	 * Deferred addition of a page to the dio.  These variables are
91 	 * private to dio_send_cur_page(), submit_page_section() and
92 	 * dio_bio_add_page().
93 	 */
94 	struct page *cur_page;		/* The page */
95 	unsigned cur_page_offset;	/* Offset into it, in bytes */
96 	unsigned cur_page_len;		/* Nr of bytes at cur_page_offset */
97 	sector_t cur_page_block;	/* Where it starts */
98 	loff_t cur_page_fs_offset;	/* Offset in file */
99 
100 	/*
101 	 * Page fetching state. These variables belong to dio_refill_pages().
102 	 */
103 	int curr_page;			/* changes */
104 	int total_pages;		/* doesn't change */
105 	unsigned long curr_user_address;/* changes */
106 
107 	/*
108 	 * Page queue.  These variables belong to dio_refill_pages() and
109 	 * dio_get_page().
110 	 */
111 	unsigned head;			/* next page to process */
112 	unsigned tail;			/* last valid page + 1 */
113 };
114 
115 /* dio_state communicated between submission path and end_io */
116 struct dio {
117 	int flags;			/* doesn't change */
118 	int rw;
119 	struct inode *inode;
120 	loff_t i_size;			/* i_size when submitted */
121 	dio_iodone_t *end_io;		/* IO completion function */
122 
123 	void *private;			/* copy from map_bh.b_private */
124 
125 	/* BIO completion state */
126 	spinlock_t bio_lock;		/* protects BIO fields below */
127 	int page_errors;		/* errno from get_user_pages() */
128 	int is_async;			/* is IO async ? */
129 	int io_error;			/* IO error in completion path */
130 	unsigned long refcount;		/* direct_io_worker() and bios */
131 	struct bio *bio_list;		/* singly linked via bi_private */
132 	struct task_struct *waiter;	/* waiting task (NULL if none) */
133 
134 	/* AIO related stuff */
135 	struct kiocb *iocb;		/* kiocb */
136 	ssize_t result;                 /* IO result */
137 
138 	/*
139 	 * pages[] (and any fields placed after it) are not zeroed out at
140 	 * allocation time.  Don't add new fields after pages[] unless you
141 	 * wish that they not be zeroed.
142 	 */
143 	struct page *pages[DIO_PAGES];	/* page buffer */
144 } ____cacheline_aligned_in_smp;
145 
146 static struct kmem_cache *dio_cache __read_mostly;
147 
__inode_dio_wait(struct inode * inode)148 static void __inode_dio_wait(struct inode *inode)
149 {
150 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
151 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
152 
153 	do {
154 		prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
155 		if (atomic_read(&inode->i_dio_count))
156 			schedule();
157 	} while (atomic_read(&inode->i_dio_count));
158 	finish_wait(wq, &q.wait);
159 }
160 
161 /**
162  * inode_dio_wait - wait for outstanding DIO requests to finish
163  * @inode: inode to wait for
164  *
165  * Waits for all pending direct I/O requests to finish so that we can
166  * proceed with a truncate or equivalent operation.
167  *
168  * Must be called under a lock that serializes taking new references
169  * to i_dio_count, usually by inode->i_mutex.
170  */
inode_dio_wait(struct inode * inode)171 void inode_dio_wait(struct inode *inode)
172 {
173 	if (atomic_read(&inode->i_dio_count))
174 		__inode_dio_wait(inode);
175 }
176 EXPORT_SYMBOL(inode_dio_wait);
177 
178 /*
179  * inode_dio_done - signal finish of a direct I/O requests
180  * @inode: inode the direct I/O happens on
181  *
182  * This is called once we've finished processing a direct I/O request,
183  * and is used to wake up callers waiting for direct I/O to be quiesced.
184  */
inode_dio_done(struct inode * inode)185 void inode_dio_done(struct inode *inode)
186 {
187 	if (atomic_dec_and_test(&inode->i_dio_count))
188 		wake_up_bit(&inode->i_state, __I_DIO_WAKEUP);
189 }
190 EXPORT_SYMBOL(inode_dio_done);
191 
192 /*
193  * How many pages are in the queue?
194  */
dio_pages_present(struct dio_submit * sdio)195 static inline unsigned dio_pages_present(struct dio_submit *sdio)
196 {
197 	return sdio->tail - sdio->head;
198 }
199 
200 /*
201  * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
202  */
dio_refill_pages(struct dio * dio,struct dio_submit * sdio)203 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
204 {
205 	int ret;
206 	int nr_pages;
207 
208 	nr_pages = min(sdio->total_pages - sdio->curr_page, DIO_PAGES);
209 	ret = get_user_pages_fast(
210 		sdio->curr_user_address,		/* Where from? */
211 		nr_pages,			/* How many pages? */
212 		dio->rw == READ,		/* Write to memory? */
213 		&dio->pages[0]);		/* Put results here */
214 
215 	if (ret < 0 && sdio->blocks_available && (dio->rw & WRITE)) {
216 		struct page *page = ZERO_PAGE(0);
217 		/*
218 		 * A memory fault, but the filesystem has some outstanding
219 		 * mapped blocks.  We need to use those blocks up to avoid
220 		 * leaking stale data in the file.
221 		 */
222 		if (dio->page_errors == 0)
223 			dio->page_errors = ret;
224 		page_cache_get(page);
225 		dio->pages[0] = page;
226 		sdio->head = 0;
227 		sdio->tail = 1;
228 		ret = 0;
229 		goto out;
230 	}
231 
232 	if (ret >= 0) {
233 		sdio->curr_user_address += ret * PAGE_SIZE;
234 		sdio->curr_page += ret;
235 		sdio->head = 0;
236 		sdio->tail = ret;
237 		ret = 0;
238 	}
239 out:
240 	return ret;
241 }
242 
243 /*
244  * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
245  * buffered inside the dio so that we can call get_user_pages() against a
246  * decent number of pages, less frequently.  To provide nicer use of the
247  * L1 cache.
248  */
dio_get_page(struct dio * dio,struct dio_submit * sdio)249 static inline struct page *dio_get_page(struct dio *dio,
250 		struct dio_submit *sdio)
251 {
252 	if (dio_pages_present(sdio) == 0) {
253 		int ret;
254 
255 		ret = dio_refill_pages(dio, sdio);
256 		if (ret)
257 			return ERR_PTR(ret);
258 		BUG_ON(dio_pages_present(sdio) == 0);
259 	}
260 	return dio->pages[sdio->head++];
261 }
262 
263 /**
264  * dio_complete() - called when all DIO BIO I/O has been completed
265  * @offset: the byte offset in the file of the completed operation
266  *
267  * This releases locks as dictated by the locking type, lets interested parties
268  * know that a DIO operation has completed, and calculates the resulting return
269  * code for the operation.
270  *
271  * It lets the filesystem know if it registered an interest earlier via
272  * get_block.  Pass the private field of the map buffer_head so that
273  * filesystems can use it to hold additional state between get_block calls and
274  * dio_complete.
275  */
dio_complete(struct dio * dio,loff_t offset,ssize_t ret,bool is_async)276 static ssize_t dio_complete(struct dio *dio, loff_t offset, ssize_t ret, bool is_async)
277 {
278 	ssize_t transferred = 0;
279 
280 	/*
281 	 * AIO submission can race with bio completion to get here while
282 	 * expecting to have the last io completed by bio completion.
283 	 * In that case -EIOCBQUEUED is in fact not an error we want
284 	 * to preserve through this call.
285 	 */
286 	if (ret == -EIOCBQUEUED)
287 		ret = 0;
288 
289 	if (dio->result) {
290 		transferred = dio->result;
291 
292 		/* Check for short read case */
293 		if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
294 			transferred = dio->i_size - offset;
295 	}
296 
297 	if (ret == 0)
298 		ret = dio->page_errors;
299 	if (ret == 0)
300 		ret = dio->io_error;
301 	if (ret == 0)
302 		ret = transferred;
303 
304 	if (dio->end_io && dio->result) {
305 		dio->end_io(dio->iocb, offset, transferred,
306 			    dio->private, ret, is_async);
307 	} else {
308 		inode_dio_done(dio->inode);
309 		if (is_async)
310 			aio_complete(dio->iocb, ret, 0);
311 	}
312 
313 	return ret;
314 }
315 
316 static int dio_bio_complete(struct dio *dio, struct bio *bio);
317 /*
318  * Asynchronous IO callback.
319  */
dio_bio_end_aio(struct bio * bio,int error)320 static void dio_bio_end_aio(struct bio *bio, int error)
321 {
322 	struct dio *dio = bio->bi_private;
323 	unsigned long remaining;
324 	unsigned long flags;
325 
326 	/* cleanup the bio */
327 	dio_bio_complete(dio, bio);
328 
329 	spin_lock_irqsave(&dio->bio_lock, flags);
330 	remaining = --dio->refcount;
331 	if (remaining == 1 && dio->waiter)
332 		wake_up_process(dio->waiter);
333 	spin_unlock_irqrestore(&dio->bio_lock, flags);
334 
335 	if (remaining == 0) {
336 		dio_complete(dio, dio->iocb->ki_pos, 0, true);
337 		kmem_cache_free(dio_cache, dio);
338 	}
339 }
340 
341 /*
342  * The BIO completion handler simply queues the BIO up for the process-context
343  * handler.
344  *
345  * During I/O bi_private points at the dio.  After I/O, bi_private is used to
346  * implement a singly-linked list of completed BIOs, at dio->bio_list.
347  */
dio_bio_end_io(struct bio * bio,int error)348 static void dio_bio_end_io(struct bio *bio, int error)
349 {
350 	struct dio *dio = bio->bi_private;
351 	unsigned long flags;
352 
353 	spin_lock_irqsave(&dio->bio_lock, flags);
354 	bio->bi_private = dio->bio_list;
355 	dio->bio_list = bio;
356 	if (--dio->refcount == 1 && dio->waiter)
357 		wake_up_process(dio->waiter);
358 	spin_unlock_irqrestore(&dio->bio_lock, flags);
359 }
360 
361 /**
362  * dio_end_io - handle the end io action for the given bio
363  * @bio: The direct io bio thats being completed
364  * @error: Error if there was one
365  *
366  * This is meant to be called by any filesystem that uses their own dio_submit_t
367  * so that the DIO specific endio actions are dealt with after the filesystem
368  * has done it's completion work.
369  */
dio_end_io(struct bio * bio,int error)370 void dio_end_io(struct bio *bio, int error)
371 {
372 	struct dio *dio = bio->bi_private;
373 
374 	if (dio->is_async)
375 		dio_bio_end_aio(bio, error);
376 	else
377 		dio_bio_end_io(bio, error);
378 }
379 EXPORT_SYMBOL_GPL(dio_end_io);
380 
381 static inline void
dio_bio_alloc(struct dio * dio,struct dio_submit * sdio,struct block_device * bdev,sector_t first_sector,int nr_vecs)382 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
383 	      struct block_device *bdev,
384 	      sector_t first_sector, int nr_vecs)
385 {
386 	struct bio *bio;
387 
388 	/*
389 	 * bio_alloc() is guaranteed to return a bio when called with
390 	 * __GFP_WAIT and we request a valid number of vectors.
391 	 */
392 	bio = bio_alloc(GFP_KERNEL, nr_vecs);
393 
394 	bio->bi_bdev = bdev;
395 	bio->bi_sector = first_sector;
396 	if (dio->is_async)
397 		bio->bi_end_io = dio_bio_end_aio;
398 	else
399 		bio->bi_end_io = dio_bio_end_io;
400 
401 	sdio->bio = bio;
402 	sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
403 }
404 
405 /*
406  * In the AIO read case we speculatively dirty the pages before starting IO.
407  * During IO completion, any of these pages which happen to have been written
408  * back will be redirtied by bio_check_pages_dirty().
409  *
410  * bios hold a dio reference between submit_bio and ->end_io.
411  */
dio_bio_submit(struct dio * dio,struct dio_submit * sdio)412 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
413 {
414 	struct bio *bio = sdio->bio;
415 	unsigned long flags;
416 
417 	bio->bi_private = dio;
418 
419 	spin_lock_irqsave(&dio->bio_lock, flags);
420 	dio->refcount++;
421 	spin_unlock_irqrestore(&dio->bio_lock, flags);
422 
423 	if (dio->is_async && dio->rw == READ)
424 		bio_set_pages_dirty(bio);
425 
426 	if (sdio->submit_io)
427 		sdio->submit_io(dio->rw, bio, dio->inode,
428 			       sdio->logical_offset_in_bio);
429 	else
430 		submit_bio(dio->rw, bio);
431 
432 	sdio->bio = NULL;
433 	sdio->boundary = 0;
434 	sdio->logical_offset_in_bio = 0;
435 }
436 
437 /*
438  * Release any resources in case of a failure
439  */
dio_cleanup(struct dio * dio,struct dio_submit * sdio)440 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
441 {
442 	while (dio_pages_present(sdio))
443 		page_cache_release(dio_get_page(dio, sdio));
444 }
445 
446 /*
447  * Wait for the next BIO to complete.  Remove it and return it.  NULL is
448  * returned once all BIOs have been completed.  This must only be called once
449  * all bios have been issued so that dio->refcount can only decrease.  This
450  * requires that that the caller hold a reference on the dio.
451  */
dio_await_one(struct dio * dio)452 static struct bio *dio_await_one(struct dio *dio)
453 {
454 	unsigned long flags;
455 	struct bio *bio = NULL;
456 
457 	spin_lock_irqsave(&dio->bio_lock, flags);
458 
459 	/*
460 	 * Wait as long as the list is empty and there are bios in flight.  bio
461 	 * completion drops the count, maybe adds to the list, and wakes while
462 	 * holding the bio_lock so we don't need set_current_state()'s barrier
463 	 * and can call it after testing our condition.
464 	 */
465 	while (dio->refcount > 1 && dio->bio_list == NULL) {
466 		__set_current_state(TASK_UNINTERRUPTIBLE);
467 		dio->waiter = current;
468 		spin_unlock_irqrestore(&dio->bio_lock, flags);
469 		io_schedule();
470 		/* wake up sets us TASK_RUNNING */
471 		spin_lock_irqsave(&dio->bio_lock, flags);
472 		dio->waiter = NULL;
473 	}
474 	if (dio->bio_list) {
475 		bio = dio->bio_list;
476 		dio->bio_list = bio->bi_private;
477 	}
478 	spin_unlock_irqrestore(&dio->bio_lock, flags);
479 	return bio;
480 }
481 
482 /*
483  * Process one completed BIO.  No locks are held.
484  */
dio_bio_complete(struct dio * dio,struct bio * bio)485 static int dio_bio_complete(struct dio *dio, struct bio *bio)
486 {
487 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
488 	struct bio_vec *bvec = bio->bi_io_vec;
489 	int page_no;
490 
491 	if (!uptodate)
492 		dio->io_error = -EIO;
493 
494 	if (dio->is_async && dio->rw == READ) {
495 		bio_check_pages_dirty(bio);	/* transfers ownership */
496 	} else {
497 		for (page_no = 0; page_no < bio->bi_vcnt; page_no++) {
498 			struct page *page = bvec[page_no].bv_page;
499 
500 			if (dio->rw == READ && !PageCompound(page))
501 				set_page_dirty_lock(page);
502 			page_cache_release(page);
503 		}
504 		bio_put(bio);
505 	}
506 	return uptodate ? 0 : -EIO;
507 }
508 
509 /*
510  * Wait on and process all in-flight BIOs.  This must only be called once
511  * all bios have been issued so that the refcount can only decrease.
512  * This just waits for all bios to make it through dio_bio_complete.  IO
513  * errors are propagated through dio->io_error and should be propagated via
514  * dio_complete().
515  */
dio_await_completion(struct dio * dio)516 static void dio_await_completion(struct dio *dio)
517 {
518 	struct bio *bio;
519 	do {
520 		bio = dio_await_one(dio);
521 		if (bio)
522 			dio_bio_complete(dio, bio);
523 	} while (bio);
524 }
525 
526 /*
527  * A really large O_DIRECT read or write can generate a lot of BIOs.  So
528  * to keep the memory consumption sane we periodically reap any completed BIOs
529  * during the BIO generation phase.
530  *
531  * This also helps to limit the peak amount of pinned userspace memory.
532  */
dio_bio_reap(struct dio * dio,struct dio_submit * sdio)533 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
534 {
535 	int ret = 0;
536 
537 	if (sdio->reap_counter++ >= 64) {
538 		while (dio->bio_list) {
539 			unsigned long flags;
540 			struct bio *bio;
541 			int ret2;
542 
543 			spin_lock_irqsave(&dio->bio_lock, flags);
544 			bio = dio->bio_list;
545 			dio->bio_list = bio->bi_private;
546 			spin_unlock_irqrestore(&dio->bio_lock, flags);
547 			ret2 = dio_bio_complete(dio, bio);
548 			if (ret == 0)
549 				ret = ret2;
550 		}
551 		sdio->reap_counter = 0;
552 	}
553 	return ret;
554 }
555 
556 /*
557  * Call into the fs to map some more disk blocks.  We record the current number
558  * of available blocks at sdio->blocks_available.  These are in units of the
559  * fs blocksize, (1 << inode->i_blkbits).
560  *
561  * The fs is allowed to map lots of blocks at once.  If it wants to do that,
562  * it uses the passed inode-relative block number as the file offset, as usual.
563  *
564  * get_block() is passed the number of i_blkbits-sized blocks which direct_io
565  * has remaining to do.  The fs should not map more than this number of blocks.
566  *
567  * If the fs has mapped a lot of blocks, it should populate bh->b_size to
568  * indicate how much contiguous disk space has been made available at
569  * bh->b_blocknr.
570  *
571  * If *any* of the mapped blocks are new, then the fs must set buffer_new().
572  * This isn't very efficient...
573  *
574  * In the case of filesystem holes: the fs may return an arbitrarily-large
575  * hole by returning an appropriate value in b_size and by clearing
576  * buffer_mapped().  However the direct-io code will only process holes one
577  * block at a time - it will repeatedly call get_block() as it walks the hole.
578  */
get_more_blocks(struct dio * dio,struct dio_submit * sdio,struct buffer_head * map_bh)579 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
580 			   struct buffer_head *map_bh)
581 {
582 	int ret;
583 	sector_t fs_startblk;	/* Into file, in filesystem-sized blocks */
584 	sector_t fs_endblk;	/* Into file, in filesystem-sized blocks */
585 	unsigned long fs_count;	/* Number of filesystem-sized blocks */
586 	int create;
587 
588 	/*
589 	 * If there was a memory error and we've overwritten all the
590 	 * mapped blocks then we can now return that memory error
591 	 */
592 	ret = dio->page_errors;
593 	if (ret == 0) {
594 		BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
595 		fs_startblk = sdio->block_in_file >> sdio->blkfactor;
596 		fs_endblk = (sdio->final_block_in_request - 1) >>
597 					sdio->blkfactor;
598 		fs_count = fs_endblk - fs_startblk + 1;
599 
600 		map_bh->b_state = 0;
601 		map_bh->b_size = fs_count << dio->inode->i_blkbits;
602 
603 		/*
604 		 * For writes inside i_size on a DIO_SKIP_HOLES filesystem we
605 		 * forbid block creations: only overwrites are permitted.
606 		 * We will return early to the caller once we see an
607 		 * unmapped buffer head returned, and the caller will fall
608 		 * back to buffered I/O.
609 		 *
610 		 * Otherwise the decision is left to the get_blocks method,
611 		 * which may decide to handle it or also return an unmapped
612 		 * buffer head.
613 		 */
614 		create = dio->rw & WRITE;
615 		if (dio->flags & DIO_SKIP_HOLES) {
616 			if (sdio->block_in_file < (i_size_read(dio->inode) >>
617 							sdio->blkbits))
618 				create = 0;
619 		}
620 
621 		ret = (*sdio->get_block)(dio->inode, fs_startblk,
622 						map_bh, create);
623 
624 		/* Store for completion */
625 		dio->private = map_bh->b_private;
626 	}
627 	return ret;
628 }
629 
630 /*
631  * There is no bio.  Make one now.
632  */
dio_new_bio(struct dio * dio,struct dio_submit * sdio,sector_t start_sector,struct buffer_head * map_bh)633 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
634 		sector_t start_sector, struct buffer_head *map_bh)
635 {
636 	sector_t sector;
637 	int ret, nr_pages;
638 
639 	ret = dio_bio_reap(dio, sdio);
640 	if (ret)
641 		goto out;
642 	sector = start_sector << (sdio->blkbits - 9);
643 	nr_pages = min(sdio->pages_in_io, bio_get_nr_vecs(map_bh->b_bdev));
644 	nr_pages = min(nr_pages, BIO_MAX_PAGES);
645 	BUG_ON(nr_pages <= 0);
646 	dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
647 	sdio->boundary = 0;
648 out:
649 	return ret;
650 }
651 
652 /*
653  * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
654  * that was successful then update final_block_in_bio and take a ref against
655  * the just-added page.
656  *
657  * Return zero on success.  Non-zero means the caller needs to start a new BIO.
658  */
dio_bio_add_page(struct dio_submit * sdio)659 static inline int dio_bio_add_page(struct dio_submit *sdio)
660 {
661 	int ret;
662 
663 	ret = bio_add_page(sdio->bio, sdio->cur_page,
664 			sdio->cur_page_len, sdio->cur_page_offset);
665 	if (ret == sdio->cur_page_len) {
666 		/*
667 		 * Decrement count only, if we are done with this page
668 		 */
669 		if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
670 			sdio->pages_in_io--;
671 		page_cache_get(sdio->cur_page);
672 		sdio->final_block_in_bio = sdio->cur_page_block +
673 			(sdio->cur_page_len >> sdio->blkbits);
674 		ret = 0;
675 	} else {
676 		ret = 1;
677 	}
678 	return ret;
679 }
680 
681 /*
682  * Put cur_page under IO.  The section of cur_page which is described by
683  * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
684  * starts on-disk at cur_page_block.
685  *
686  * We take a ref against the page here (on behalf of its presence in the bio).
687  *
688  * The caller of this function is responsible for removing cur_page from the
689  * dio, and for dropping the refcount which came from that presence.
690  */
dio_send_cur_page(struct dio * dio,struct dio_submit * sdio,struct buffer_head * map_bh)691 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
692 		struct buffer_head *map_bh)
693 {
694 	int ret = 0;
695 
696 	if (sdio->bio) {
697 		loff_t cur_offset = sdio->cur_page_fs_offset;
698 		loff_t bio_next_offset = sdio->logical_offset_in_bio +
699 			sdio->bio->bi_size;
700 
701 		/*
702 		 * See whether this new request is contiguous with the old.
703 		 *
704 		 * Btrfs cannot handle having logically non-contiguous requests
705 		 * submitted.  For example if you have
706 		 *
707 		 * Logical:  [0-4095][HOLE][8192-12287]
708 		 * Physical: [0-4095]      [4096-8191]
709 		 *
710 		 * We cannot submit those pages together as one BIO.  So if our
711 		 * current logical offset in the file does not equal what would
712 		 * be the next logical offset in the bio, submit the bio we
713 		 * have.
714 		 */
715 		if (sdio->final_block_in_bio != sdio->cur_page_block ||
716 		    cur_offset != bio_next_offset)
717 			dio_bio_submit(dio, sdio);
718 		/*
719 		 * Submit now if the underlying fs is about to perform a
720 		 * metadata read
721 		 */
722 		else if (sdio->boundary)
723 			dio_bio_submit(dio, sdio);
724 	}
725 
726 	if (sdio->bio == NULL) {
727 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
728 		if (ret)
729 			goto out;
730 	}
731 
732 	if (dio_bio_add_page(sdio) != 0) {
733 		dio_bio_submit(dio, sdio);
734 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
735 		if (ret == 0) {
736 			ret = dio_bio_add_page(sdio);
737 			BUG_ON(ret != 0);
738 		}
739 	}
740 out:
741 	return ret;
742 }
743 
744 /*
745  * An autonomous function to put a chunk of a page under deferred IO.
746  *
747  * The caller doesn't actually know (or care) whether this piece of page is in
748  * a BIO, or is under IO or whatever.  We just take care of all possible
749  * situations here.  The separation between the logic of do_direct_IO() and
750  * that of submit_page_section() is important for clarity.  Please don't break.
751  *
752  * The chunk of page starts on-disk at blocknr.
753  *
754  * We perform deferred IO, by recording the last-submitted page inside our
755  * private part of the dio structure.  If possible, we just expand the IO
756  * across that page here.
757  *
758  * If that doesn't work out then we put the old page into the bio and add this
759  * page to the dio instead.
760  */
761 static inline int
submit_page_section(struct dio * dio,struct dio_submit * sdio,struct page * page,unsigned offset,unsigned len,sector_t blocknr,struct buffer_head * map_bh)762 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
763 		    unsigned offset, unsigned len, sector_t blocknr,
764 		    struct buffer_head *map_bh)
765 {
766 	int ret = 0;
767 
768 	if (dio->rw & WRITE) {
769 		/*
770 		 * Read accounting is performed in submit_bio()
771 		 */
772 		task_io_account_write(len);
773 	}
774 
775 	/*
776 	 * Can we just grow the current page's presence in the dio?
777 	 */
778 	if (sdio->cur_page == page &&
779 	    sdio->cur_page_offset + sdio->cur_page_len == offset &&
780 	    sdio->cur_page_block +
781 	    (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
782 		sdio->cur_page_len += len;
783 
784 		/*
785 		 * If sdio->boundary then we want to schedule the IO now to
786 		 * avoid metadata seeks.
787 		 */
788 		if (sdio->boundary) {
789 			ret = dio_send_cur_page(dio, sdio, map_bh);
790 			page_cache_release(sdio->cur_page);
791 			sdio->cur_page = NULL;
792 		}
793 		goto out;
794 	}
795 
796 	/*
797 	 * If there's a deferred page already there then send it.
798 	 */
799 	if (sdio->cur_page) {
800 		ret = dio_send_cur_page(dio, sdio, map_bh);
801 		page_cache_release(sdio->cur_page);
802 		sdio->cur_page = NULL;
803 		if (ret)
804 			goto out;
805 	}
806 
807 	page_cache_get(page);		/* It is in dio */
808 	sdio->cur_page = page;
809 	sdio->cur_page_offset = offset;
810 	sdio->cur_page_len = len;
811 	sdio->cur_page_block = blocknr;
812 	sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
813 out:
814 	return ret;
815 }
816 
817 /*
818  * Clean any dirty buffers in the blockdev mapping which alias newly-created
819  * file blocks.  Only called for S_ISREG files - blockdevs do not set
820  * buffer_new
821  */
clean_blockdev_aliases(struct dio * dio,struct buffer_head * map_bh)822 static void clean_blockdev_aliases(struct dio *dio, struct buffer_head *map_bh)
823 {
824 	unsigned i;
825 	unsigned nblocks;
826 
827 	nblocks = map_bh->b_size >> dio->inode->i_blkbits;
828 
829 	for (i = 0; i < nblocks; i++) {
830 		unmap_underlying_metadata(map_bh->b_bdev,
831 					  map_bh->b_blocknr + i);
832 	}
833 }
834 
835 /*
836  * If we are not writing the entire block and get_block() allocated
837  * the block for us, we need to fill-in the unused portion of the
838  * block with zeros. This happens only if user-buffer, fileoffset or
839  * io length is not filesystem block-size multiple.
840  *
841  * `end' is zero if we're doing the start of the IO, 1 at the end of the
842  * IO.
843  */
dio_zero_block(struct dio * dio,struct dio_submit * sdio,int end,struct buffer_head * map_bh)844 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
845 		int end, struct buffer_head *map_bh)
846 {
847 	unsigned dio_blocks_per_fs_block;
848 	unsigned this_chunk_blocks;	/* In dio_blocks */
849 	unsigned this_chunk_bytes;
850 	struct page *page;
851 
852 	sdio->start_zero_done = 1;
853 	if (!sdio->blkfactor || !buffer_new(map_bh))
854 		return;
855 
856 	dio_blocks_per_fs_block = 1 << sdio->blkfactor;
857 	this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
858 
859 	if (!this_chunk_blocks)
860 		return;
861 
862 	/*
863 	 * We need to zero out part of an fs block.  It is either at the
864 	 * beginning or the end of the fs block.
865 	 */
866 	if (end)
867 		this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
868 
869 	this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
870 
871 	page = ZERO_PAGE(0);
872 	if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
873 				sdio->next_block_for_io, map_bh))
874 		return;
875 
876 	sdio->next_block_for_io += this_chunk_blocks;
877 }
878 
879 /*
880  * Walk the user pages, and the file, mapping blocks to disk and generating
881  * a sequence of (page,offset,len,block) mappings.  These mappings are injected
882  * into submit_page_section(), which takes care of the next stage of submission
883  *
884  * Direct IO against a blockdev is different from a file.  Because we can
885  * happily perform page-sized but 512-byte aligned IOs.  It is important that
886  * blockdev IO be able to have fine alignment and large sizes.
887  *
888  * So what we do is to permit the ->get_block function to populate bh.b_size
889  * with the size of IO which is permitted at this offset and this i_blkbits.
890  *
891  * For best results, the blockdev should be set up with 512-byte i_blkbits and
892  * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
893  * fine alignment but still allows this function to work in PAGE_SIZE units.
894  */
do_direct_IO(struct dio * dio,struct dio_submit * sdio,struct buffer_head * map_bh)895 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
896 			struct buffer_head *map_bh)
897 {
898 	const unsigned blkbits = sdio->blkbits;
899 	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
900 	struct page *page;
901 	unsigned block_in_page;
902 	int ret = 0;
903 
904 	/* The I/O can start at any block offset within the first page */
905 	block_in_page = sdio->first_block_in_page;
906 
907 	while (sdio->block_in_file < sdio->final_block_in_request) {
908 		page = dio_get_page(dio, sdio);
909 		if (IS_ERR(page)) {
910 			ret = PTR_ERR(page);
911 			goto out;
912 		}
913 
914 		while (block_in_page < blocks_per_page) {
915 			unsigned offset_in_page = block_in_page << blkbits;
916 			unsigned this_chunk_bytes;	/* # of bytes mapped */
917 			unsigned this_chunk_blocks;	/* # of blocks */
918 			unsigned u;
919 
920 			if (sdio->blocks_available == 0) {
921 				/*
922 				 * Need to go and map some more disk
923 				 */
924 				unsigned long blkmask;
925 				unsigned long dio_remainder;
926 
927 				ret = get_more_blocks(dio, sdio, map_bh);
928 				if (ret) {
929 					page_cache_release(page);
930 					goto out;
931 				}
932 				if (!buffer_mapped(map_bh))
933 					goto do_holes;
934 
935 				sdio->blocks_available =
936 						map_bh->b_size >> sdio->blkbits;
937 				sdio->next_block_for_io =
938 					map_bh->b_blocknr << sdio->blkfactor;
939 				if (buffer_new(map_bh))
940 					clean_blockdev_aliases(dio, map_bh);
941 
942 				if (!sdio->blkfactor)
943 					goto do_holes;
944 
945 				blkmask = (1 << sdio->blkfactor) - 1;
946 				dio_remainder = (sdio->block_in_file & blkmask);
947 
948 				/*
949 				 * If we are at the start of IO and that IO
950 				 * starts partway into a fs-block,
951 				 * dio_remainder will be non-zero.  If the IO
952 				 * is a read then we can simply advance the IO
953 				 * cursor to the first block which is to be
954 				 * read.  But if the IO is a write and the
955 				 * block was newly allocated we cannot do that;
956 				 * the start of the fs block must be zeroed out
957 				 * on-disk
958 				 */
959 				if (!buffer_new(map_bh))
960 					sdio->next_block_for_io += dio_remainder;
961 				sdio->blocks_available -= dio_remainder;
962 			}
963 do_holes:
964 			/* Handle holes */
965 			if (!buffer_mapped(map_bh)) {
966 				loff_t i_size_aligned;
967 
968 				/* AKPM: eargh, -ENOTBLK is a hack */
969 				if (dio->rw & WRITE) {
970 					page_cache_release(page);
971 					return -ENOTBLK;
972 				}
973 
974 				/*
975 				 * Be sure to account for a partial block as the
976 				 * last block in the file
977 				 */
978 				i_size_aligned = ALIGN(i_size_read(dio->inode),
979 							1 << blkbits);
980 				if (sdio->block_in_file >=
981 						i_size_aligned >> blkbits) {
982 					/* We hit eof */
983 					page_cache_release(page);
984 					goto out;
985 				}
986 				zero_user(page, block_in_page << blkbits,
987 						1 << blkbits);
988 				sdio->block_in_file++;
989 				block_in_page++;
990 				goto next_block;
991 			}
992 
993 			/*
994 			 * If we're performing IO which has an alignment which
995 			 * is finer than the underlying fs, go check to see if
996 			 * we must zero out the start of this block.
997 			 */
998 			if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
999 				dio_zero_block(dio, sdio, 0, map_bh);
1000 
1001 			/*
1002 			 * Work out, in this_chunk_blocks, how much disk we
1003 			 * can add to this page
1004 			 */
1005 			this_chunk_blocks = sdio->blocks_available;
1006 			u = (PAGE_SIZE - offset_in_page) >> blkbits;
1007 			if (this_chunk_blocks > u)
1008 				this_chunk_blocks = u;
1009 			u = sdio->final_block_in_request - sdio->block_in_file;
1010 			if (this_chunk_blocks > u)
1011 				this_chunk_blocks = u;
1012 			this_chunk_bytes = this_chunk_blocks << blkbits;
1013 			BUG_ON(this_chunk_bytes == 0);
1014 
1015 			sdio->boundary = buffer_boundary(map_bh);
1016 			ret = submit_page_section(dio, sdio, page,
1017 						  offset_in_page,
1018 						  this_chunk_bytes,
1019 						  sdio->next_block_for_io,
1020 						  map_bh);
1021 			if (ret) {
1022 				page_cache_release(page);
1023 				goto out;
1024 			}
1025 			sdio->next_block_for_io += this_chunk_blocks;
1026 
1027 			sdio->block_in_file += this_chunk_blocks;
1028 			block_in_page += this_chunk_blocks;
1029 			sdio->blocks_available -= this_chunk_blocks;
1030 next_block:
1031 			BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1032 			if (sdio->block_in_file == sdio->final_block_in_request)
1033 				break;
1034 		}
1035 
1036 		/* Drop the ref which was taken in get_user_pages() */
1037 		page_cache_release(page);
1038 		block_in_page = 0;
1039 	}
1040 out:
1041 	return ret;
1042 }
1043 
drop_refcount(struct dio * dio)1044 static inline int drop_refcount(struct dio *dio)
1045 {
1046 	int ret2;
1047 	unsigned long flags;
1048 
1049 	/*
1050 	 * Sync will always be dropping the final ref and completing the
1051 	 * operation.  AIO can if it was a broken operation described above or
1052 	 * in fact if all the bios race to complete before we get here.  In
1053 	 * that case dio_complete() translates the EIOCBQUEUED into the proper
1054 	 * return code that the caller will hand to aio_complete().
1055 	 *
1056 	 * This is managed by the bio_lock instead of being an atomic_t so that
1057 	 * completion paths can drop their ref and use the remaining count to
1058 	 * decide to wake the submission path atomically.
1059 	 */
1060 	spin_lock_irqsave(&dio->bio_lock, flags);
1061 	ret2 = --dio->refcount;
1062 	spin_unlock_irqrestore(&dio->bio_lock, flags);
1063 	return ret2;
1064 }
1065 
1066 /*
1067  * This is a library function for use by filesystem drivers.
1068  *
1069  * The locking rules are governed by the flags parameter:
1070  *  - if the flags value contains DIO_LOCKING we use a fancy locking
1071  *    scheme for dumb filesystems.
1072  *    For writes this function is called under i_mutex and returns with
1073  *    i_mutex held, for reads, i_mutex is not held on entry, but it is
1074  *    taken and dropped again before returning.
1075  *  - if the flags value does NOT contain DIO_LOCKING we don't use any
1076  *    internal locking but rather rely on the filesystem to synchronize
1077  *    direct I/O reads/writes versus each other and truncate.
1078  *
1079  * To help with locking against truncate we incremented the i_dio_count
1080  * counter before starting direct I/O, and decrement it once we are done.
1081  * Truncate can wait for it to reach zero to provide exclusion.  It is
1082  * expected that filesystem provide exclusion between new direct I/O
1083  * and truncates.  For DIO_LOCKING filesystems this is done by i_mutex,
1084  * but other filesystems need to take care of this on their own.
1085  *
1086  * NOTE: if you pass "sdio" to anything by pointer make sure that function
1087  * is always inlined. Otherwise gcc is unable to split the structure into
1088  * individual fields and will generate much worse code. This is important
1089  * for the whole file.
1090  */
1091 static inline ssize_t
do_blockdev_direct_IO(int rw,struct kiocb * iocb,struct inode * inode,struct block_device * bdev,const struct iovec * iov,loff_t offset,unsigned long nr_segs,get_block_t get_block,dio_iodone_t end_io,dio_submit_t submit_io,int flags)1092 do_blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
1093 	struct block_device *bdev, const struct iovec *iov, loff_t offset,
1094 	unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io,
1095 	dio_submit_t submit_io,	int flags)
1096 {
1097 	int seg;
1098 	size_t size;
1099 	unsigned long addr;
1100 	unsigned blkbits = inode->i_blkbits;
1101 	unsigned blocksize_mask = (1 << blkbits) - 1;
1102 	ssize_t retval = -EINVAL;
1103 	loff_t end = offset;
1104 	struct dio *dio;
1105 	struct dio_submit sdio = { 0, };
1106 	unsigned long user_addr;
1107 	size_t bytes;
1108 	struct buffer_head map_bh = { 0, };
1109 
1110 	if (rw & WRITE)
1111 		rw = WRITE_ODIRECT;
1112 
1113 	/*
1114 	 * Avoid references to bdev if not absolutely needed to give
1115 	 * the early prefetch in the caller enough time.
1116 	 */
1117 
1118 	if (offset & blocksize_mask) {
1119 		if (bdev)
1120 			blkbits = blksize_bits(bdev_logical_block_size(bdev));
1121 		blocksize_mask = (1 << blkbits) - 1;
1122 		if (offset & blocksize_mask)
1123 			goto out;
1124 	}
1125 
1126 	/* Check the memory alignment.  Blocks cannot straddle pages */
1127 	for (seg = 0; seg < nr_segs; seg++) {
1128 		addr = (unsigned long)iov[seg].iov_base;
1129 		size = iov[seg].iov_len;
1130 		end += size;
1131 		if (unlikely((addr & blocksize_mask) ||
1132 			     (size & blocksize_mask))) {
1133 			if (bdev)
1134 				blkbits = blksize_bits(
1135 					 bdev_logical_block_size(bdev));
1136 			blocksize_mask = (1 << blkbits) - 1;
1137 			if ((addr & blocksize_mask) || (size & blocksize_mask))
1138 				goto out;
1139 		}
1140 	}
1141 
1142 	/* watch out for a 0 len io from a tricksy fs */
1143 	if (rw == READ && end == offset)
1144 		return 0;
1145 
1146 	dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1147 	retval = -ENOMEM;
1148 	if (!dio)
1149 		goto out;
1150 	/*
1151 	 * Believe it or not, zeroing out the page array caused a .5%
1152 	 * performance regression in a database benchmark.  So, we take
1153 	 * care to only zero out what's needed.
1154 	 */
1155 	memset(dio, 0, offsetof(struct dio, pages));
1156 
1157 	dio->flags = flags;
1158 	if (dio->flags & DIO_LOCKING) {
1159 		if (rw == READ) {
1160 			struct address_space *mapping =
1161 					iocb->ki_filp->f_mapping;
1162 
1163 			/* will be released by direct_io_worker */
1164 			mutex_lock(&inode->i_mutex);
1165 
1166 			retval = filemap_write_and_wait_range(mapping, offset,
1167 							      end - 1);
1168 			if (retval) {
1169 				mutex_unlock(&inode->i_mutex);
1170 				kmem_cache_free(dio_cache, dio);
1171 				goto out;
1172 			}
1173 		}
1174 	}
1175 
1176 	/*
1177 	 * Will be decremented at I/O completion time.
1178 	 */
1179 	atomic_inc(&inode->i_dio_count);
1180 
1181 	/*
1182 	 * For file extending writes updating i_size before data
1183 	 * writeouts complete can expose uninitialized blocks. So
1184 	 * even for AIO, we need to wait for i/o to complete before
1185 	 * returning in this case.
1186 	 */
1187 	dio->is_async = !is_sync_kiocb(iocb) && !((rw & WRITE) &&
1188 		(end > i_size_read(inode)));
1189 
1190 	retval = 0;
1191 
1192 	dio->inode = inode;
1193 	dio->rw = rw;
1194 	sdio.blkbits = blkbits;
1195 	sdio.blkfactor = inode->i_blkbits - blkbits;
1196 	sdio.block_in_file = offset >> blkbits;
1197 
1198 	sdio.get_block = get_block;
1199 	dio->end_io = end_io;
1200 	sdio.submit_io = submit_io;
1201 	sdio.final_block_in_bio = -1;
1202 	sdio.next_block_for_io = -1;
1203 
1204 	dio->iocb = iocb;
1205 	dio->i_size = i_size_read(inode);
1206 
1207 	spin_lock_init(&dio->bio_lock);
1208 	dio->refcount = 1;
1209 
1210 	/*
1211 	 * In case of non-aligned buffers, we may need 2 more
1212 	 * pages since we need to zero out first and last block.
1213 	 */
1214 	if (unlikely(sdio.blkfactor))
1215 		sdio.pages_in_io = 2;
1216 
1217 	for (seg = 0; seg < nr_segs; seg++) {
1218 		user_addr = (unsigned long)iov[seg].iov_base;
1219 		sdio.pages_in_io +=
1220 			((user_addr + iov[seg].iov_len + PAGE_SIZE-1) /
1221 				PAGE_SIZE - user_addr / PAGE_SIZE);
1222 	}
1223 
1224 	for (seg = 0; seg < nr_segs; seg++) {
1225 		user_addr = (unsigned long)iov[seg].iov_base;
1226 		sdio.size += bytes = iov[seg].iov_len;
1227 
1228 		/* Index into the first page of the first block */
1229 		sdio.first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits;
1230 		sdio.final_block_in_request = sdio.block_in_file +
1231 						(bytes >> blkbits);
1232 		/* Page fetching state */
1233 		sdio.head = 0;
1234 		sdio.tail = 0;
1235 		sdio.curr_page = 0;
1236 
1237 		sdio.total_pages = 0;
1238 		if (user_addr & (PAGE_SIZE-1)) {
1239 			sdio.total_pages++;
1240 			bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1));
1241 		}
1242 		sdio.total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE;
1243 		sdio.curr_user_address = user_addr;
1244 
1245 		retval = do_direct_IO(dio, &sdio, &map_bh);
1246 
1247 		dio->result += iov[seg].iov_len -
1248 			((sdio.final_block_in_request - sdio.block_in_file) <<
1249 					blkbits);
1250 
1251 		if (retval) {
1252 			dio_cleanup(dio, &sdio);
1253 			break;
1254 		}
1255 	} /* end iovec loop */
1256 
1257 	if (retval == -ENOTBLK) {
1258 		/*
1259 		 * The remaining part of the request will be
1260 		 * be handled by buffered I/O when we return
1261 		 */
1262 		retval = 0;
1263 	}
1264 	/*
1265 	 * There may be some unwritten disk at the end of a part-written
1266 	 * fs-block-sized block.  Go zero that now.
1267 	 */
1268 	dio_zero_block(dio, &sdio, 1, &map_bh);
1269 
1270 	if (sdio.cur_page) {
1271 		ssize_t ret2;
1272 
1273 		ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1274 		if (retval == 0)
1275 			retval = ret2;
1276 		page_cache_release(sdio.cur_page);
1277 		sdio.cur_page = NULL;
1278 	}
1279 	if (sdio.bio)
1280 		dio_bio_submit(dio, &sdio);
1281 
1282 	/*
1283 	 * It is possible that, we return short IO due to end of file.
1284 	 * In that case, we need to release all the pages we got hold on.
1285 	 */
1286 	dio_cleanup(dio, &sdio);
1287 
1288 	/*
1289 	 * All block lookups have been performed. For READ requests
1290 	 * we can let i_mutex go now that its achieved its purpose
1291 	 * of protecting us from looking up uninitialized blocks.
1292 	 */
1293 	if (rw == READ && (dio->flags & DIO_LOCKING))
1294 		mutex_unlock(&dio->inode->i_mutex);
1295 
1296 	/*
1297 	 * The only time we want to leave bios in flight is when a successful
1298 	 * partial aio read or full aio write have been setup.  In that case
1299 	 * bio completion will call aio_complete.  The only time it's safe to
1300 	 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1301 	 * This had *better* be the only place that raises -EIOCBQUEUED.
1302 	 */
1303 	BUG_ON(retval == -EIOCBQUEUED);
1304 	if (dio->is_async && retval == 0 && dio->result &&
1305 	    ((rw & READ) || (dio->result == sdio.size)))
1306 		retval = -EIOCBQUEUED;
1307 
1308 	if (retval != -EIOCBQUEUED)
1309 		dio_await_completion(dio);
1310 
1311 	if (drop_refcount(dio) == 0) {
1312 		retval = dio_complete(dio, offset, retval, false);
1313 		kmem_cache_free(dio_cache, dio);
1314 	} else
1315 		BUG_ON(retval != -EIOCBQUEUED);
1316 
1317 out:
1318 	return retval;
1319 }
1320 
1321 ssize_t
__blockdev_direct_IO(int rw,struct kiocb * iocb,struct inode * inode,struct block_device * bdev,const struct iovec * iov,loff_t offset,unsigned long nr_segs,get_block_t get_block,dio_iodone_t end_io,dio_submit_t submit_io,int flags)1322 __blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
1323 	struct block_device *bdev, const struct iovec *iov, loff_t offset,
1324 	unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io,
1325 	dio_submit_t submit_io,	int flags)
1326 {
1327 	/*
1328 	 * The block device state is needed in the end to finally
1329 	 * submit everything.  Since it's likely to be cache cold
1330 	 * prefetch it here as first thing to hide some of the
1331 	 * latency.
1332 	 *
1333 	 * Attempt to prefetch the pieces we likely need later.
1334 	 */
1335 	prefetch(&bdev->bd_disk->part_tbl);
1336 	prefetch(bdev->bd_queue);
1337 	prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1338 
1339 	return do_blockdev_direct_IO(rw, iocb, inode, bdev, iov, offset,
1340 				     nr_segs, get_block, end_io,
1341 				     submit_io, flags);
1342 }
1343 
1344 EXPORT_SYMBOL(__blockdev_direct_IO);
1345 
dio_init(void)1346 static __init int dio_init(void)
1347 {
1348 	dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1349 	return 0;
1350 }
1351 module_init(dio_init)
1352