1 /*
2 * Copyright (C) 2011 STRATO AG
3 * written by Arne Jansen <sensille@gmx.net>
4 * Distributed under the GNU GPL license version 2.
5 */
6
7 #include <linux/slab.h>
8 #include <linux/module.h>
9 #include "ulist.h"
10
11 /*
12 * ulist is a generic data structure to hold a collection of unique u64
13 * values. The only operations it supports is adding to the list and
14 * enumerating it.
15 * It is possible to store an auxiliary value along with the key.
16 *
17 * The implementation is preliminary and can probably be sped up
18 * significantly. A first step would be to store the values in an rbtree
19 * as soon as ULIST_SIZE is exceeded.
20 *
21 * A sample usage for ulists is the enumeration of directed graphs without
22 * visiting a node twice. The pseudo-code could look like this:
23 *
24 * ulist = ulist_alloc();
25 * ulist_add(ulist, root);
26 * elem = NULL;
27 *
28 * while ((elem = ulist_next(ulist, elem)) {
29 * for (all child nodes n in elem)
30 * ulist_add(ulist, n);
31 * do something useful with the node;
32 * }
33 * ulist_free(ulist);
34 *
35 * This assumes the graph nodes are adressable by u64. This stems from the
36 * usage for tree enumeration in btrfs, where the logical addresses are
37 * 64 bit.
38 *
39 * It is also useful for tree enumeration which could be done elegantly
40 * recursively, but is not possible due to kernel stack limitations. The
41 * loop would be similar to the above.
42 */
43
44 /**
45 * ulist_init - freshly initialize a ulist
46 * @ulist: the ulist to initialize
47 *
48 * Note: don't use this function to init an already used ulist, use
49 * ulist_reinit instead.
50 */
ulist_init(struct ulist * ulist)51 void ulist_init(struct ulist *ulist)
52 {
53 ulist->nnodes = 0;
54 ulist->nodes = ulist->int_nodes;
55 ulist->nodes_alloced = ULIST_SIZE;
56 }
57 EXPORT_SYMBOL(ulist_init);
58
59 /**
60 * ulist_fini - free up additionally allocated memory for the ulist
61 * @ulist: the ulist from which to free the additional memory
62 *
63 * This is useful in cases where the base 'struct ulist' has been statically
64 * allocated.
65 */
ulist_fini(struct ulist * ulist)66 void ulist_fini(struct ulist *ulist)
67 {
68 /*
69 * The first ULIST_SIZE elements are stored inline in struct ulist.
70 * Only if more elements are alocated they need to be freed.
71 */
72 if (ulist->nodes_alloced > ULIST_SIZE)
73 kfree(ulist->nodes);
74 ulist->nodes_alloced = 0; /* in case ulist_fini is called twice */
75 }
76 EXPORT_SYMBOL(ulist_fini);
77
78 /**
79 * ulist_reinit - prepare a ulist for reuse
80 * @ulist: ulist to be reused
81 *
82 * Free up all additional memory allocated for the list elements and reinit
83 * the ulist.
84 */
ulist_reinit(struct ulist * ulist)85 void ulist_reinit(struct ulist *ulist)
86 {
87 ulist_fini(ulist);
88 ulist_init(ulist);
89 }
90 EXPORT_SYMBOL(ulist_reinit);
91
92 /**
93 * ulist_alloc - dynamically allocate a ulist
94 * @gfp_mask: allocation flags to for base allocation
95 *
96 * The allocated ulist will be returned in an initialized state.
97 */
ulist_alloc(unsigned long gfp_mask)98 struct ulist *ulist_alloc(unsigned long gfp_mask)
99 {
100 struct ulist *ulist = kmalloc(sizeof(*ulist), gfp_mask);
101
102 if (!ulist)
103 return NULL;
104
105 ulist_init(ulist);
106
107 return ulist;
108 }
109 EXPORT_SYMBOL(ulist_alloc);
110
111 /**
112 * ulist_free - free dynamically allocated ulist
113 * @ulist: ulist to free
114 *
115 * It is not necessary to call ulist_fini before.
116 */
ulist_free(struct ulist * ulist)117 void ulist_free(struct ulist *ulist)
118 {
119 if (!ulist)
120 return;
121 ulist_fini(ulist);
122 kfree(ulist);
123 }
124 EXPORT_SYMBOL(ulist_free);
125
126 /**
127 * ulist_add - add an element to the ulist
128 * @ulist: ulist to add the element to
129 * @val: value to add to ulist
130 * @aux: auxiliary value to store along with val
131 * @gfp_mask: flags to use for allocation
132 *
133 * Note: locking must be provided by the caller. In case of rwlocks write
134 * locking is needed
135 *
136 * Add an element to a ulist. The @val will only be added if it doesn't
137 * already exist. If it is added, the auxiliary value @aux is stored along with
138 * it. In case @val already exists in the ulist, @aux is ignored, even if
139 * it differs from the already stored value.
140 *
141 * ulist_add returns 0 if @val already exists in ulist and 1 if @val has been
142 * inserted.
143 * In case of allocation failure -ENOMEM is returned and the ulist stays
144 * unaltered.
145 */
ulist_add(struct ulist * ulist,u64 val,unsigned long aux,unsigned long gfp_mask)146 int ulist_add(struct ulist *ulist, u64 val, unsigned long aux,
147 unsigned long gfp_mask)
148 {
149 int i;
150
151 for (i = 0; i < ulist->nnodes; ++i) {
152 if (ulist->nodes[i].val == val)
153 return 0;
154 }
155
156 if (ulist->nnodes >= ulist->nodes_alloced) {
157 u64 new_alloced = ulist->nodes_alloced + 128;
158 struct ulist_node *new_nodes;
159 void *old = NULL;
160
161 /*
162 * if nodes_alloced == ULIST_SIZE no memory has been allocated
163 * yet, so pass NULL to krealloc
164 */
165 if (ulist->nodes_alloced > ULIST_SIZE)
166 old = ulist->nodes;
167
168 new_nodes = krealloc(old, sizeof(*new_nodes) * new_alloced,
169 gfp_mask);
170 if (!new_nodes)
171 return -ENOMEM;
172
173 if (!old)
174 memcpy(new_nodes, ulist->int_nodes,
175 sizeof(ulist->int_nodes));
176
177 ulist->nodes = new_nodes;
178 ulist->nodes_alloced = new_alloced;
179 }
180 ulist->nodes[ulist->nnodes].val = val;
181 ulist->nodes[ulist->nnodes].aux = aux;
182 ++ulist->nnodes;
183
184 return 1;
185 }
186 EXPORT_SYMBOL(ulist_add);
187
188 /**
189 * ulist_next - iterate ulist
190 * @ulist: ulist to iterate
191 * @prev: previously returned element or %NULL to start iteration
192 *
193 * Note: locking must be provided by the caller. In case of rwlocks only read
194 * locking is needed
195 *
196 * This function is used to iterate an ulist. The iteration is started with
197 * @prev = %NULL. It returns the next element from the ulist or %NULL when the
198 * end is reached. No guarantee is made with respect to the order in which
199 * the elements are returned. They might neither be returned in order of
200 * addition nor in ascending order.
201 * It is allowed to call ulist_add during an enumeration. Newly added items
202 * are guaranteed to show up in the running enumeration.
203 */
ulist_next(struct ulist * ulist,struct ulist_node * prev)204 struct ulist_node *ulist_next(struct ulist *ulist, struct ulist_node *prev)
205 {
206 int next;
207
208 if (ulist->nnodes == 0)
209 return NULL;
210
211 if (!prev)
212 return &ulist->nodes[0];
213
214 next = (prev - ulist->nodes) + 1;
215 if (next < 0 || next >= ulist->nnodes)
216 return NULL;
217
218 return &ulist->nodes[next];
219 }
220 EXPORT_SYMBOL(ulist_next);
221