1 /*
2  *  Copyright 2010
3  *  by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
4  *
5  * This code provides a IOMMU for Xen PV guests with PCI passthrough.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License v2.0 as published by
9  * the Free Software Foundation
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * PV guests under Xen are running in an non-contiguous memory architecture.
17  *
18  * When PCI pass-through is utilized, this necessitates an IOMMU for
19  * translating bus (DMA) to virtual and vice-versa and also providing a
20  * mechanism to have contiguous pages for device drivers operations (say DMA
21  * operations).
22  *
23  * Specifically, under Xen the Linux idea of pages is an illusion. It
24  * assumes that pages start at zero and go up to the available memory. To
25  * help with that, the Linux Xen MMU provides a lookup mechanism to
26  * translate the page frame numbers (PFN) to machine frame numbers (MFN)
27  * and vice-versa. The MFN are the "real" frame numbers. Furthermore
28  * memory is not contiguous. Xen hypervisor stitches memory for guests
29  * from different pools, which means there is no guarantee that PFN==MFN
30  * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
31  * allocated in descending order (high to low), meaning the guest might
32  * never get any MFN's under the 4GB mark.
33  *
34  */
35 
36 #include <linux/bootmem.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/export.h>
39 #include <xen/swiotlb-xen.h>
40 #include <xen/page.h>
41 #include <xen/xen-ops.h>
42 #include <xen/hvc-console.h>
43 /*
44  * Used to do a quick range check in swiotlb_tbl_unmap_single and
45  * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
46  * API.
47  */
48 
49 static char *xen_io_tlb_start, *xen_io_tlb_end;
50 static unsigned long xen_io_tlb_nslabs;
51 /*
52  * Quick lookup value of the bus address of the IOTLB.
53  */
54 
55 u64 start_dma_addr;
56 
xen_phys_to_bus(phys_addr_t paddr)57 static dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
58 {
59 	return phys_to_machine(XPADDR(paddr)).maddr;
60 }
61 
xen_bus_to_phys(dma_addr_t baddr)62 static phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
63 {
64 	return machine_to_phys(XMADDR(baddr)).paddr;
65 }
66 
xen_virt_to_bus(void * address)67 static dma_addr_t xen_virt_to_bus(void *address)
68 {
69 	return xen_phys_to_bus(virt_to_phys(address));
70 }
71 
check_pages_physically_contiguous(unsigned long pfn,unsigned int offset,size_t length)72 static int check_pages_physically_contiguous(unsigned long pfn,
73 					     unsigned int offset,
74 					     size_t length)
75 {
76 	unsigned long next_mfn;
77 	int i;
78 	int nr_pages;
79 
80 	next_mfn = pfn_to_mfn(pfn);
81 	nr_pages = (offset + length + PAGE_SIZE-1) >> PAGE_SHIFT;
82 
83 	for (i = 1; i < nr_pages; i++) {
84 		if (pfn_to_mfn(++pfn) != ++next_mfn)
85 			return 0;
86 	}
87 	return 1;
88 }
89 
range_straddles_page_boundary(phys_addr_t p,size_t size)90 static int range_straddles_page_boundary(phys_addr_t p, size_t size)
91 {
92 	unsigned long pfn = PFN_DOWN(p);
93 	unsigned int offset = p & ~PAGE_MASK;
94 
95 	if (offset + size <= PAGE_SIZE)
96 		return 0;
97 	if (check_pages_physically_contiguous(pfn, offset, size))
98 		return 0;
99 	return 1;
100 }
101 
is_xen_swiotlb_buffer(dma_addr_t dma_addr)102 static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
103 {
104 	unsigned long mfn = PFN_DOWN(dma_addr);
105 	unsigned long pfn = mfn_to_local_pfn(mfn);
106 	phys_addr_t paddr;
107 
108 	/* If the address is outside our domain, it CAN
109 	 * have the same virtual address as another address
110 	 * in our domain. Therefore _only_ check address within our domain.
111 	 */
112 	if (pfn_valid(pfn)) {
113 		paddr = PFN_PHYS(pfn);
114 		return paddr >= virt_to_phys(xen_io_tlb_start) &&
115 		       paddr < virt_to_phys(xen_io_tlb_end);
116 	}
117 	return 0;
118 }
119 
120 static int max_dma_bits = 32;
121 
122 static int
xen_swiotlb_fixup(void * buf,size_t size,unsigned long nslabs)123 xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
124 {
125 	int i, rc;
126 	int dma_bits;
127 
128 	dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
129 
130 	i = 0;
131 	do {
132 		int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
133 
134 		do {
135 			rc = xen_create_contiguous_region(
136 				(unsigned long)buf + (i << IO_TLB_SHIFT),
137 				get_order(slabs << IO_TLB_SHIFT),
138 				dma_bits);
139 		} while (rc && dma_bits++ < max_dma_bits);
140 		if (rc)
141 			return rc;
142 
143 		i += slabs;
144 	} while (i < nslabs);
145 	return 0;
146 }
147 
xen_swiotlb_init(int verbose)148 void __init xen_swiotlb_init(int verbose)
149 {
150 	unsigned long bytes;
151 	int rc = -ENOMEM;
152 	unsigned long nr_tbl;
153 	char *m = NULL;
154 	unsigned int repeat = 3;
155 
156 	nr_tbl = swiotlb_nr_tbl();
157 	if (nr_tbl)
158 		xen_io_tlb_nslabs = nr_tbl;
159 	else {
160 		xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
161 		xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
162 	}
163 retry:
164 	bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
165 
166 	/*
167 	 * Get IO TLB memory from any location.
168 	 */
169 	xen_io_tlb_start = alloc_bootmem_pages(PAGE_ALIGN(bytes));
170 	if (!xen_io_tlb_start) {
171 		m = "Cannot allocate Xen-SWIOTLB buffer!\n";
172 		goto error;
173 	}
174 	xen_io_tlb_end = xen_io_tlb_start + bytes;
175 	/*
176 	 * And replace that memory with pages under 4GB.
177 	 */
178 	rc = xen_swiotlb_fixup(xen_io_tlb_start,
179 			       bytes,
180 			       xen_io_tlb_nslabs);
181 	if (rc) {
182 		free_bootmem(__pa(xen_io_tlb_start), PAGE_ALIGN(bytes));
183 		m = "Failed to get contiguous memory for DMA from Xen!\n"\
184 		    "You either: don't have the permissions, do not have"\
185 		    " enough free memory under 4GB, or the hypervisor memory"\
186 		    "is too fragmented!";
187 		goto error;
188 	}
189 	start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
190 	swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs, verbose);
191 
192 	return;
193 error:
194 	if (repeat--) {
195 		xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
196 					(xen_io_tlb_nslabs >> 1));
197 		printk(KERN_INFO "Xen-SWIOTLB: Lowering to %luMB\n",
198 		      (xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
199 		goto retry;
200 	}
201 	xen_raw_printk("%s (rc:%d)", m, rc);
202 	panic("%s (rc:%d)", m, rc);
203 }
204 
205 void *
xen_swiotlb_alloc_coherent(struct device * hwdev,size_t size,dma_addr_t * dma_handle,gfp_t flags,struct dma_attrs * attrs)206 xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
207 			   dma_addr_t *dma_handle, gfp_t flags,
208 			   struct dma_attrs *attrs)
209 {
210 	void *ret;
211 	int order = get_order(size);
212 	u64 dma_mask = DMA_BIT_MASK(32);
213 	unsigned long vstart;
214 	phys_addr_t phys;
215 	dma_addr_t dev_addr;
216 
217 	/*
218 	* Ignore region specifiers - the kernel's ideas of
219 	* pseudo-phys memory layout has nothing to do with the
220 	* machine physical layout.  We can't allocate highmem
221 	* because we can't return a pointer to it.
222 	*/
223 	flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
224 
225 	if (dma_alloc_from_coherent(hwdev, size, dma_handle, &ret))
226 		return ret;
227 
228 	vstart = __get_free_pages(flags, order);
229 	ret = (void *)vstart;
230 
231 	if (!ret)
232 		return ret;
233 
234 	if (hwdev && hwdev->coherent_dma_mask)
235 		dma_mask = dma_alloc_coherent_mask(hwdev, flags);
236 
237 	phys = virt_to_phys(ret);
238 	dev_addr = xen_phys_to_bus(phys);
239 	if (((dev_addr + size - 1 <= dma_mask)) &&
240 	    !range_straddles_page_boundary(phys, size))
241 		*dma_handle = dev_addr;
242 	else {
243 		if (xen_create_contiguous_region(vstart, order,
244 						 fls64(dma_mask)) != 0) {
245 			free_pages(vstart, order);
246 			return NULL;
247 		}
248 		*dma_handle = virt_to_machine(ret).maddr;
249 	}
250 	memset(ret, 0, size);
251 	return ret;
252 }
253 EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent);
254 
255 void
xen_swiotlb_free_coherent(struct device * hwdev,size_t size,void * vaddr,dma_addr_t dev_addr,struct dma_attrs * attrs)256 xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
257 			  dma_addr_t dev_addr, struct dma_attrs *attrs)
258 {
259 	int order = get_order(size);
260 	phys_addr_t phys;
261 	u64 dma_mask = DMA_BIT_MASK(32);
262 
263 	if (dma_release_from_coherent(hwdev, order, vaddr))
264 		return;
265 
266 	if (hwdev && hwdev->coherent_dma_mask)
267 		dma_mask = hwdev->coherent_dma_mask;
268 
269 	phys = virt_to_phys(vaddr);
270 
271 	if (((dev_addr + size - 1 > dma_mask)) ||
272 	    range_straddles_page_boundary(phys, size))
273 		xen_destroy_contiguous_region((unsigned long)vaddr, order);
274 
275 	free_pages((unsigned long)vaddr, order);
276 }
277 EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent);
278 
279 
280 /*
281  * Map a single buffer of the indicated size for DMA in streaming mode.  The
282  * physical address to use is returned.
283  *
284  * Once the device is given the dma address, the device owns this memory until
285  * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
286  */
xen_swiotlb_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,struct dma_attrs * attrs)287 dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
288 				unsigned long offset, size_t size,
289 				enum dma_data_direction dir,
290 				struct dma_attrs *attrs)
291 {
292 	phys_addr_t phys = page_to_phys(page) + offset;
293 	dma_addr_t dev_addr = xen_phys_to_bus(phys);
294 	void *map;
295 
296 	BUG_ON(dir == DMA_NONE);
297 	/*
298 	 * If the address happens to be in the device's DMA window,
299 	 * we can safely return the device addr and not worry about bounce
300 	 * buffering it.
301 	 */
302 	if (dma_capable(dev, dev_addr, size) &&
303 	    !range_straddles_page_boundary(phys, size) && !swiotlb_force)
304 		return dev_addr;
305 
306 	/*
307 	 * Oh well, have to allocate and map a bounce buffer.
308 	 */
309 	map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir);
310 	if (!map)
311 		return DMA_ERROR_CODE;
312 
313 	dev_addr = xen_virt_to_bus(map);
314 
315 	/*
316 	 * Ensure that the address returned is DMA'ble
317 	 */
318 	if (!dma_capable(dev, dev_addr, size)) {
319 		swiotlb_tbl_unmap_single(dev, map, size, dir);
320 		dev_addr = 0;
321 	}
322 	return dev_addr;
323 }
324 EXPORT_SYMBOL_GPL(xen_swiotlb_map_page);
325 
326 /*
327  * Unmap a single streaming mode DMA translation.  The dma_addr and size must
328  * match what was provided for in a previous xen_swiotlb_map_page call.  All
329  * other usages are undefined.
330  *
331  * After this call, reads by the cpu to the buffer are guaranteed to see
332  * whatever the device wrote there.
333  */
xen_unmap_single(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir)334 static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
335 			     size_t size, enum dma_data_direction dir)
336 {
337 	phys_addr_t paddr = xen_bus_to_phys(dev_addr);
338 
339 	BUG_ON(dir == DMA_NONE);
340 
341 	/* NOTE: We use dev_addr here, not paddr! */
342 	if (is_xen_swiotlb_buffer(dev_addr)) {
343 		swiotlb_tbl_unmap_single(hwdev, phys_to_virt(paddr), size, dir);
344 		return;
345 	}
346 
347 	if (dir != DMA_FROM_DEVICE)
348 		return;
349 
350 	/*
351 	 * phys_to_virt doesn't work with hihgmem page but we could
352 	 * call dma_mark_clean() with hihgmem page here. However, we
353 	 * are fine since dma_mark_clean() is null on POWERPC. We can
354 	 * make dma_mark_clean() take a physical address if necessary.
355 	 */
356 	dma_mark_clean(phys_to_virt(paddr), size);
357 }
358 
xen_swiotlb_unmap_page(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir,struct dma_attrs * attrs)359 void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
360 			    size_t size, enum dma_data_direction dir,
361 			    struct dma_attrs *attrs)
362 {
363 	xen_unmap_single(hwdev, dev_addr, size, dir);
364 }
365 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page);
366 
367 /*
368  * Make physical memory consistent for a single streaming mode DMA translation
369  * after a transfer.
370  *
371  * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
372  * using the cpu, yet do not wish to teardown the dma mapping, you must
373  * call this function before doing so.  At the next point you give the dma
374  * address back to the card, you must first perform a
375  * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
376  */
377 static void
xen_swiotlb_sync_single(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir,enum dma_sync_target target)378 xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
379 			size_t size, enum dma_data_direction dir,
380 			enum dma_sync_target target)
381 {
382 	phys_addr_t paddr = xen_bus_to_phys(dev_addr);
383 
384 	BUG_ON(dir == DMA_NONE);
385 
386 	/* NOTE: We use dev_addr here, not paddr! */
387 	if (is_xen_swiotlb_buffer(dev_addr)) {
388 		swiotlb_tbl_sync_single(hwdev, phys_to_virt(paddr), size, dir,
389 				       target);
390 		return;
391 	}
392 
393 	if (dir != DMA_FROM_DEVICE)
394 		return;
395 
396 	dma_mark_clean(phys_to_virt(paddr), size);
397 }
398 
399 void
xen_swiotlb_sync_single_for_cpu(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir)400 xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
401 				size_t size, enum dma_data_direction dir)
402 {
403 	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
404 }
405 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu);
406 
407 void
xen_swiotlb_sync_single_for_device(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir)408 xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
409 				   size_t size, enum dma_data_direction dir)
410 {
411 	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
412 }
413 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device);
414 
415 /*
416  * Map a set of buffers described by scatterlist in streaming mode for DMA.
417  * This is the scatter-gather version of the above xen_swiotlb_map_page
418  * interface.  Here the scatter gather list elements are each tagged with the
419  * appropriate dma address and length.  They are obtained via
420  * sg_dma_{address,length}(SG).
421  *
422  * NOTE: An implementation may be able to use a smaller number of
423  *       DMA address/length pairs than there are SG table elements.
424  *       (for example via virtual mapping capabilities)
425  *       The routine returns the number of addr/length pairs actually
426  *       used, at most nents.
427  *
428  * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
429  * same here.
430  */
431 int
xen_swiotlb_map_sg_attrs(struct device * hwdev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir,struct dma_attrs * attrs)432 xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
433 			 int nelems, enum dma_data_direction dir,
434 			 struct dma_attrs *attrs)
435 {
436 	struct scatterlist *sg;
437 	int i;
438 
439 	BUG_ON(dir == DMA_NONE);
440 
441 	for_each_sg(sgl, sg, nelems, i) {
442 		phys_addr_t paddr = sg_phys(sg);
443 		dma_addr_t dev_addr = xen_phys_to_bus(paddr);
444 
445 		if (swiotlb_force ||
446 		    !dma_capable(hwdev, dev_addr, sg->length) ||
447 		    range_straddles_page_boundary(paddr, sg->length)) {
448 			void *map = swiotlb_tbl_map_single(hwdev,
449 							   start_dma_addr,
450 							   sg_phys(sg),
451 							   sg->length, dir);
452 			if (!map) {
453 				/* Don't panic here, we expect map_sg users
454 				   to do proper error handling. */
455 				xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
456 							   attrs);
457 				sgl[0].dma_length = 0;
458 				return DMA_ERROR_CODE;
459 			}
460 			sg->dma_address = xen_virt_to_bus(map);
461 		} else
462 			sg->dma_address = dev_addr;
463 		sg->dma_length = sg->length;
464 	}
465 	return nelems;
466 }
467 EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs);
468 
469 int
xen_swiotlb_map_sg(struct device * hwdev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir)470 xen_swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
471 		   enum dma_data_direction dir)
472 {
473 	return xen_swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
474 }
475 EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg);
476 
477 /*
478  * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
479  * concerning calls here are the same as for swiotlb_unmap_page() above.
480  */
481 void
xen_swiotlb_unmap_sg_attrs(struct device * hwdev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir,struct dma_attrs * attrs)482 xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
483 			   int nelems, enum dma_data_direction dir,
484 			   struct dma_attrs *attrs)
485 {
486 	struct scatterlist *sg;
487 	int i;
488 
489 	BUG_ON(dir == DMA_NONE);
490 
491 	for_each_sg(sgl, sg, nelems, i)
492 		xen_unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
493 
494 }
495 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs);
496 
497 void
xen_swiotlb_unmap_sg(struct device * hwdev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir)498 xen_swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
499 		     enum dma_data_direction dir)
500 {
501 	return xen_swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
502 }
503 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg);
504 
505 /*
506  * Make physical memory consistent for a set of streaming mode DMA translations
507  * after a transfer.
508  *
509  * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
510  * and usage.
511  */
512 static void
xen_swiotlb_sync_sg(struct device * hwdev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir,enum dma_sync_target target)513 xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
514 		    int nelems, enum dma_data_direction dir,
515 		    enum dma_sync_target target)
516 {
517 	struct scatterlist *sg;
518 	int i;
519 
520 	for_each_sg(sgl, sg, nelems, i)
521 		xen_swiotlb_sync_single(hwdev, sg->dma_address,
522 					sg->dma_length, dir, target);
523 }
524 
525 void
xen_swiotlb_sync_sg_for_cpu(struct device * hwdev,struct scatterlist * sg,int nelems,enum dma_data_direction dir)526 xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
527 			    int nelems, enum dma_data_direction dir)
528 {
529 	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
530 }
531 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu);
532 
533 void
xen_swiotlb_sync_sg_for_device(struct device * hwdev,struct scatterlist * sg,int nelems,enum dma_data_direction dir)534 xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
535 			       int nelems, enum dma_data_direction dir)
536 {
537 	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
538 }
539 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device);
540 
541 int
xen_swiotlb_dma_mapping_error(struct device * hwdev,dma_addr_t dma_addr)542 xen_swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
543 {
544 	return !dma_addr;
545 }
546 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error);
547 
548 /*
549  * Return whether the given device DMA address mask can be supported
550  * properly.  For example, if your device can only drive the low 24-bits
551  * during bus mastering, then you would pass 0x00ffffff as the mask to
552  * this function.
553  */
554 int
xen_swiotlb_dma_supported(struct device * hwdev,u64 mask)555 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
556 {
557 	return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
558 }
559 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported);
560