1 /*
2  * Copyright (C) 2005-2006 by Texas Instruments
3  *
4  * This file implements a DMA  interface using TI's CPPI DMA.
5  * For now it's DaVinci-only, but CPPI isn't specific to DaVinci or USB.
6  * The TUSB6020, using VLYNQ, has CPPI that looks much like DaVinci.
7  */
8 
9 #include <linux/platform_device.h>
10 #include <linux/slab.h>
11 #include <linux/usb.h>
12 
13 #include "musb_core.h"
14 #include "musb_debug.h"
15 #include "cppi_dma.h"
16 
17 
18 /* CPPI DMA status 7-mar-2006:
19  *
20  * - See musb_{host,gadget}.c for more info
21  *
22  * - Correct RX DMA generally forces the engine into irq-per-packet mode,
23  *   which can easily saturate the CPU under non-mass-storage loads.
24  *
25  * NOTES 24-aug-2006 (2.6.18-rc4):
26  *
27  * - peripheral RXDMA wedged in a test with packets of length 512/512/1.
28  *   evidently after the 1 byte packet was received and acked, the queue
29  *   of BDs got garbaged so it wouldn't empty the fifo.  (rxcsr 0x2003,
30  *   and RX DMA0: 4 left, 80000000 8feff880, 8feff860 8feff860; 8f321401
31  *   004001ff 00000001 .. 8feff860)  Host was just getting NAKed on tx
32  *   of its next (512 byte) packet.  IRQ issues?
33  *
34  * REVISIT:  the "transfer DMA" glue between CPPI and USB fifos will
35  * evidently also directly update the RX and TX CSRs ... so audit all
36  * host and peripheral side DMA code to avoid CSR access after DMA has
37  * been started.
38  */
39 
40 /* REVISIT now we can avoid preallocating these descriptors; or
41  * more simply, switch to a global freelist not per-channel ones.
42  * Note: at full speed, 64 descriptors == 4K bulk data.
43  */
44 #define NUM_TXCHAN_BD       64
45 #define NUM_RXCHAN_BD       64
46 
cpu_drain_writebuffer(void)47 static inline void cpu_drain_writebuffer(void)
48 {
49 	wmb();
50 #ifdef	CONFIG_CPU_ARM926T
51 	/* REVISIT this "should not be needed",
52 	 * but lack of it sure seemed to hurt ...
53 	 */
54 	asm("mcr p15, 0, r0, c7, c10, 4 @ drain write buffer\n");
55 #endif
56 }
57 
cppi_bd_alloc(struct cppi_channel * c)58 static inline struct cppi_descriptor *cppi_bd_alloc(struct cppi_channel *c)
59 {
60 	struct cppi_descriptor	*bd = c->freelist;
61 
62 	if (bd)
63 		c->freelist = bd->next;
64 	return bd;
65 }
66 
67 static inline void
cppi_bd_free(struct cppi_channel * c,struct cppi_descriptor * bd)68 cppi_bd_free(struct cppi_channel *c, struct cppi_descriptor *bd)
69 {
70 	if (!bd)
71 		return;
72 	bd->next = c->freelist;
73 	c->freelist = bd;
74 }
75 
76 /*
77  *  Start DMA controller
78  *
79  *  Initialize the DMA controller as necessary.
80  */
81 
82 /* zero out entire rx state RAM entry for the channel */
cppi_reset_rx(struct cppi_rx_stateram __iomem * rx)83 static void cppi_reset_rx(struct cppi_rx_stateram __iomem *rx)
84 {
85 	musb_writel(&rx->rx_skipbytes, 0, 0);
86 	musb_writel(&rx->rx_head, 0, 0);
87 	musb_writel(&rx->rx_sop, 0, 0);
88 	musb_writel(&rx->rx_current, 0, 0);
89 	musb_writel(&rx->rx_buf_current, 0, 0);
90 	musb_writel(&rx->rx_len_len, 0, 0);
91 	musb_writel(&rx->rx_cnt_cnt, 0, 0);
92 }
93 
94 /* zero out entire tx state RAM entry for the channel */
cppi_reset_tx(struct cppi_tx_stateram __iomem * tx,u32 ptr)95 static void cppi_reset_tx(struct cppi_tx_stateram __iomem *tx, u32 ptr)
96 {
97 	musb_writel(&tx->tx_head, 0, 0);
98 	musb_writel(&tx->tx_buf, 0, 0);
99 	musb_writel(&tx->tx_current, 0, 0);
100 	musb_writel(&tx->tx_buf_current, 0, 0);
101 	musb_writel(&tx->tx_info, 0, 0);
102 	musb_writel(&tx->tx_rem_len, 0, 0);
103 	/* musb_writel(&tx->tx_dummy, 0, 0); */
104 	musb_writel(&tx->tx_complete, 0, ptr);
105 }
106 
cppi_pool_init(struct cppi * cppi,struct cppi_channel * c)107 static void __init cppi_pool_init(struct cppi *cppi, struct cppi_channel *c)
108 {
109 	int	j;
110 
111 	/* initialize channel fields */
112 	c->head = NULL;
113 	c->tail = NULL;
114 	c->last_processed = NULL;
115 	c->channel.status = MUSB_DMA_STATUS_UNKNOWN;
116 	c->controller = cppi;
117 	c->is_rndis = 0;
118 	c->freelist = NULL;
119 
120 	/* build the BD Free list for the channel */
121 	for (j = 0; j < NUM_TXCHAN_BD + 1; j++) {
122 		struct cppi_descriptor	*bd;
123 		dma_addr_t		dma;
124 
125 		bd = dma_pool_alloc(cppi->pool, GFP_KERNEL, &dma);
126 		bd->dma = dma;
127 		cppi_bd_free(c, bd);
128 	}
129 }
130 
131 static int cppi_channel_abort(struct dma_channel *);
132 
cppi_pool_free(struct cppi_channel * c)133 static void cppi_pool_free(struct cppi_channel *c)
134 {
135 	struct cppi		*cppi = c->controller;
136 	struct cppi_descriptor	*bd;
137 
138 	(void) cppi_channel_abort(&c->channel);
139 	c->channel.status = MUSB_DMA_STATUS_UNKNOWN;
140 	c->controller = NULL;
141 
142 	/* free all its bds */
143 	bd = c->last_processed;
144 	do {
145 		if (bd)
146 			dma_pool_free(cppi->pool, bd, bd->dma);
147 		bd = cppi_bd_alloc(c);
148 	} while (bd);
149 	c->last_processed = NULL;
150 }
151 
cppi_controller_start(struct dma_controller * c)152 static int __init cppi_controller_start(struct dma_controller *c)
153 {
154 	struct cppi	*controller;
155 	void __iomem	*tibase;
156 	int		i;
157 
158 	controller = container_of(c, struct cppi, controller);
159 
160 	/* do whatever is necessary to start controller */
161 	for (i = 0; i < ARRAY_SIZE(controller->tx); i++) {
162 		controller->tx[i].transmit = true;
163 		controller->tx[i].index = i;
164 	}
165 	for (i = 0; i < ARRAY_SIZE(controller->rx); i++) {
166 		controller->rx[i].transmit = false;
167 		controller->rx[i].index = i;
168 	}
169 
170 	/* setup BD list on a per channel basis */
171 	for (i = 0; i < ARRAY_SIZE(controller->tx); i++)
172 		cppi_pool_init(controller, controller->tx + i);
173 	for (i = 0; i < ARRAY_SIZE(controller->rx); i++)
174 		cppi_pool_init(controller, controller->rx + i);
175 
176 	tibase =  controller->tibase;
177 	INIT_LIST_HEAD(&controller->tx_complete);
178 
179 	/* initialise tx/rx channel head pointers to zero */
180 	for (i = 0; i < ARRAY_SIZE(controller->tx); i++) {
181 		struct cppi_channel	*tx_ch = controller->tx + i;
182 		struct cppi_tx_stateram __iomem *tx;
183 
184 		INIT_LIST_HEAD(&tx_ch->tx_complete);
185 
186 		tx = tibase + DAVINCI_TXCPPI_STATERAM_OFFSET(i);
187 		tx_ch->state_ram = tx;
188 		cppi_reset_tx(tx, 0);
189 	}
190 	for (i = 0; i < ARRAY_SIZE(controller->rx); i++) {
191 		struct cppi_channel	*rx_ch = controller->rx + i;
192 		struct cppi_rx_stateram __iomem *rx;
193 
194 		INIT_LIST_HEAD(&rx_ch->tx_complete);
195 
196 		rx = tibase + DAVINCI_RXCPPI_STATERAM_OFFSET(i);
197 		rx_ch->state_ram = rx;
198 		cppi_reset_rx(rx);
199 	}
200 
201 	/* enable individual cppi channels */
202 	musb_writel(tibase, DAVINCI_TXCPPI_INTENAB_REG,
203 			DAVINCI_DMA_ALL_CHANNELS_ENABLE);
204 	musb_writel(tibase, DAVINCI_RXCPPI_INTENAB_REG,
205 			DAVINCI_DMA_ALL_CHANNELS_ENABLE);
206 
207 	/* enable tx/rx CPPI control */
208 	musb_writel(tibase, DAVINCI_TXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_ENABLE);
209 	musb_writel(tibase, DAVINCI_RXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_ENABLE);
210 
211 	/* disable RNDIS mode, also host rx RNDIS autorequest */
212 	musb_writel(tibase, DAVINCI_RNDIS_REG, 0);
213 	musb_writel(tibase, DAVINCI_AUTOREQ_REG, 0);
214 
215 	return 0;
216 }
217 
218 /*
219  *  Stop DMA controller
220  *
221  *  De-Init the DMA controller as necessary.
222  */
223 
cppi_controller_stop(struct dma_controller * c)224 static int cppi_controller_stop(struct dma_controller *c)
225 {
226 	struct cppi		*controller;
227 	void __iomem		*tibase;
228 	int			i;
229 	struct musb		*musb;
230 
231 	controller = container_of(c, struct cppi, controller);
232 	musb = controller->musb;
233 
234 	tibase = controller->tibase;
235 	/* DISABLE INDIVIDUAL CHANNEL Interrupts */
236 	musb_writel(tibase, DAVINCI_TXCPPI_INTCLR_REG,
237 			DAVINCI_DMA_ALL_CHANNELS_ENABLE);
238 	musb_writel(tibase, DAVINCI_RXCPPI_INTCLR_REG,
239 			DAVINCI_DMA_ALL_CHANNELS_ENABLE);
240 
241 	dev_dbg(musb->controller, "Tearing down RX and TX Channels\n");
242 	for (i = 0; i < ARRAY_SIZE(controller->tx); i++) {
243 		/* FIXME restructure of txdma to use bds like rxdma */
244 		controller->tx[i].last_processed = NULL;
245 		cppi_pool_free(controller->tx + i);
246 	}
247 	for (i = 0; i < ARRAY_SIZE(controller->rx); i++)
248 		cppi_pool_free(controller->rx + i);
249 
250 	/* in Tx Case proper teardown is supported. We resort to disabling
251 	 * Tx/Rx CPPI after cleanup of Tx channels. Before TX teardown is
252 	 * complete TX CPPI cannot be disabled.
253 	 */
254 	/*disable tx/rx cppi */
255 	musb_writel(tibase, DAVINCI_TXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_DISABLE);
256 	musb_writel(tibase, DAVINCI_RXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_DISABLE);
257 
258 	return 0;
259 }
260 
261 /* While dma channel is allocated, we only want the core irqs active
262  * for fault reports, otherwise we'd get irqs that we don't care about.
263  * Except for TX irqs, where dma done != fifo empty and reusable ...
264  *
265  * NOTE: docs don't say either way, but irq masking **enables** irqs.
266  *
267  * REVISIT same issue applies to pure PIO usage too, and non-cppi dma...
268  */
core_rxirq_disable(void __iomem * tibase,unsigned epnum)269 static inline void core_rxirq_disable(void __iomem *tibase, unsigned epnum)
270 {
271 	musb_writel(tibase, DAVINCI_USB_INT_MASK_CLR_REG, 1 << (epnum + 8));
272 }
273 
core_rxirq_enable(void __iomem * tibase,unsigned epnum)274 static inline void core_rxirq_enable(void __iomem *tibase, unsigned epnum)
275 {
276 	musb_writel(tibase, DAVINCI_USB_INT_MASK_SET_REG, 1 << (epnum + 8));
277 }
278 
279 
280 /*
281  * Allocate a CPPI Channel for DMA.  With CPPI, channels are bound to
282  * each transfer direction of a non-control endpoint, so allocating
283  * (and deallocating) is mostly a way to notice bad housekeeping on
284  * the software side.  We assume the irqs are always active.
285  */
286 static struct dma_channel *
cppi_channel_allocate(struct dma_controller * c,struct musb_hw_ep * ep,u8 transmit)287 cppi_channel_allocate(struct dma_controller *c,
288 		struct musb_hw_ep *ep, u8 transmit)
289 {
290 	struct cppi		*controller;
291 	u8			index;
292 	struct cppi_channel	*cppi_ch;
293 	void __iomem		*tibase;
294 	struct musb		*musb;
295 
296 	controller = container_of(c, struct cppi, controller);
297 	tibase = controller->tibase;
298 	musb = controller->musb;
299 
300 	/* ep0 doesn't use DMA; remember cppi indices are 0..N-1 */
301 	index = ep->epnum - 1;
302 
303 	/* return the corresponding CPPI Channel Handle, and
304 	 * probably disable the non-CPPI irq until we need it.
305 	 */
306 	if (transmit) {
307 		if (index >= ARRAY_SIZE(controller->tx)) {
308 			dev_dbg(musb->controller, "no %cX%d CPPI channel\n", 'T', index);
309 			return NULL;
310 		}
311 		cppi_ch = controller->tx + index;
312 	} else {
313 		if (index >= ARRAY_SIZE(controller->rx)) {
314 			dev_dbg(musb->controller, "no %cX%d CPPI channel\n", 'R', index);
315 			return NULL;
316 		}
317 		cppi_ch = controller->rx + index;
318 		core_rxirq_disable(tibase, ep->epnum);
319 	}
320 
321 	/* REVISIT make this an error later once the same driver code works
322 	 * with the other DMA engine too
323 	 */
324 	if (cppi_ch->hw_ep)
325 		dev_dbg(musb->controller, "re-allocating DMA%d %cX channel %p\n",
326 				index, transmit ? 'T' : 'R', cppi_ch);
327 	cppi_ch->hw_ep = ep;
328 	cppi_ch->channel.status = MUSB_DMA_STATUS_FREE;
329 	cppi_ch->channel.max_len = 0x7fffffff;
330 
331 	dev_dbg(musb->controller, "Allocate CPPI%d %cX\n", index, transmit ? 'T' : 'R');
332 	return &cppi_ch->channel;
333 }
334 
335 /* Release a CPPI Channel.  */
cppi_channel_release(struct dma_channel * channel)336 static void cppi_channel_release(struct dma_channel *channel)
337 {
338 	struct cppi_channel	*c;
339 	void __iomem		*tibase;
340 
341 	/* REVISIT:  for paranoia, check state and abort if needed... */
342 
343 	c = container_of(channel, struct cppi_channel, channel);
344 	tibase = c->controller->tibase;
345 	if (!c->hw_ep)
346 		dev_dbg(c->controller->musb->controller,
347 			"releasing idle DMA channel %p\n", c);
348 	else if (!c->transmit)
349 		core_rxirq_enable(tibase, c->index + 1);
350 
351 	/* for now, leave its cppi IRQ enabled (we won't trigger it) */
352 	c->hw_ep = NULL;
353 	channel->status = MUSB_DMA_STATUS_UNKNOWN;
354 }
355 
356 /* Context: controller irqlocked */
357 static void
cppi_dump_rx(int level,struct cppi_channel * c,const char * tag)358 cppi_dump_rx(int level, struct cppi_channel *c, const char *tag)
359 {
360 	void __iomem			*base = c->controller->mregs;
361 	struct cppi_rx_stateram __iomem	*rx = c->state_ram;
362 
363 	musb_ep_select(base, c->index + 1);
364 
365 	dev_dbg(c->controller->musb->controller,
366 		"RX DMA%d%s: %d left, csr %04x, "
367 		"%08x H%08x S%08x C%08x, "
368 		"B%08x L%08x %08x .. %08x"
369 		"\n",
370 		c->index, tag,
371 		musb_readl(c->controller->tibase,
372 			DAVINCI_RXCPPI_BUFCNT0_REG + 4 * c->index),
373 		musb_readw(c->hw_ep->regs, MUSB_RXCSR),
374 
375 		musb_readl(&rx->rx_skipbytes, 0),
376 		musb_readl(&rx->rx_head, 0),
377 		musb_readl(&rx->rx_sop, 0),
378 		musb_readl(&rx->rx_current, 0),
379 
380 		musb_readl(&rx->rx_buf_current, 0),
381 		musb_readl(&rx->rx_len_len, 0),
382 		musb_readl(&rx->rx_cnt_cnt, 0),
383 		musb_readl(&rx->rx_complete, 0)
384 		);
385 }
386 
387 /* Context: controller irqlocked */
388 static void
cppi_dump_tx(int level,struct cppi_channel * c,const char * tag)389 cppi_dump_tx(int level, struct cppi_channel *c, const char *tag)
390 {
391 	void __iomem			*base = c->controller->mregs;
392 	struct cppi_tx_stateram __iomem	*tx = c->state_ram;
393 
394 	musb_ep_select(base, c->index + 1);
395 
396 	dev_dbg(c->controller->musb->controller,
397 		"TX DMA%d%s: csr %04x, "
398 		"H%08x S%08x C%08x %08x, "
399 		"F%08x L%08x .. %08x"
400 		"\n",
401 		c->index, tag,
402 		musb_readw(c->hw_ep->regs, MUSB_TXCSR),
403 
404 		musb_readl(&tx->tx_head, 0),
405 		musb_readl(&tx->tx_buf, 0),
406 		musb_readl(&tx->tx_current, 0),
407 		musb_readl(&tx->tx_buf_current, 0),
408 
409 		musb_readl(&tx->tx_info, 0),
410 		musb_readl(&tx->tx_rem_len, 0),
411 		/* dummy/unused word 6 */
412 		musb_readl(&tx->tx_complete, 0)
413 		);
414 }
415 
416 /* Context: controller irqlocked */
417 static inline void
cppi_rndis_update(struct cppi_channel * c,int is_rx,void __iomem * tibase,int is_rndis)418 cppi_rndis_update(struct cppi_channel *c, int is_rx,
419 		void __iomem *tibase, int is_rndis)
420 {
421 	/* we may need to change the rndis flag for this cppi channel */
422 	if (c->is_rndis != is_rndis) {
423 		u32	value = musb_readl(tibase, DAVINCI_RNDIS_REG);
424 		u32	temp = 1 << (c->index);
425 
426 		if (is_rx)
427 			temp <<= 16;
428 		if (is_rndis)
429 			value |= temp;
430 		else
431 			value &= ~temp;
432 		musb_writel(tibase, DAVINCI_RNDIS_REG, value);
433 		c->is_rndis = is_rndis;
434 	}
435 }
436 
437 #ifdef CONFIG_USB_MUSB_DEBUG
cppi_dump_rxbd(const char * tag,struct cppi_descriptor * bd)438 static void cppi_dump_rxbd(const char *tag, struct cppi_descriptor *bd)
439 {
440 	pr_debug("RXBD/%s %08x: "
441 			"nxt %08x buf %08x off.blen %08x opt.plen %08x\n",
442 			tag, bd->dma,
443 			bd->hw_next, bd->hw_bufp, bd->hw_off_len,
444 			bd->hw_options);
445 }
446 #endif
447 
cppi_dump_rxq(int level,const char * tag,struct cppi_channel * rx)448 static void cppi_dump_rxq(int level, const char *tag, struct cppi_channel *rx)
449 {
450 #ifdef CONFIG_USB_MUSB_DEBUG
451 	struct cppi_descriptor	*bd;
452 
453 	if (!_dbg_level(level))
454 		return;
455 	cppi_dump_rx(level, rx, tag);
456 	if (rx->last_processed)
457 		cppi_dump_rxbd("last", rx->last_processed);
458 	for (bd = rx->head; bd; bd = bd->next)
459 		cppi_dump_rxbd("active", bd);
460 #endif
461 }
462 
463 
464 /* NOTE:  DaVinci autoreq is ignored except for host side "RNDIS" mode RX;
465  * so we won't ever use it (see "CPPI RX Woes" below).
466  */
cppi_autoreq_update(struct cppi_channel * rx,void __iomem * tibase,int onepacket,unsigned n_bds)467 static inline int cppi_autoreq_update(struct cppi_channel *rx,
468 		void __iomem *tibase, int onepacket, unsigned n_bds)
469 {
470 	u32	val;
471 
472 #ifdef	RNDIS_RX_IS_USABLE
473 	u32	tmp;
474 	/* assert(is_host_active(musb)) */
475 
476 	/* start from "AutoReq never" */
477 	tmp = musb_readl(tibase, DAVINCI_AUTOREQ_REG);
478 	val = tmp & ~((0x3) << (rx->index * 2));
479 
480 	/* HCD arranged reqpkt for packet #1.  we arrange int
481 	 * for all but the last one, maybe in two segments.
482 	 */
483 	if (!onepacket) {
484 #if 0
485 		/* use two segments, autoreq "all" then the last "never" */
486 		val |= ((0x3) << (rx->index * 2));
487 		n_bds--;
488 #else
489 		/* one segment, autoreq "all-but-last" */
490 		val |= ((0x1) << (rx->index * 2));
491 #endif
492 	}
493 
494 	if (val != tmp) {
495 		int n = 100;
496 
497 		/* make sure that autoreq is updated before continuing */
498 		musb_writel(tibase, DAVINCI_AUTOREQ_REG, val);
499 		do {
500 			tmp = musb_readl(tibase, DAVINCI_AUTOREQ_REG);
501 			if (tmp == val)
502 				break;
503 			cpu_relax();
504 		} while (n-- > 0);
505 	}
506 #endif
507 
508 	/* REQPKT is turned off after each segment */
509 	if (n_bds && rx->channel.actual_len) {
510 		void __iomem	*regs = rx->hw_ep->regs;
511 
512 		val = musb_readw(regs, MUSB_RXCSR);
513 		if (!(val & MUSB_RXCSR_H_REQPKT)) {
514 			val |= MUSB_RXCSR_H_REQPKT | MUSB_RXCSR_H_WZC_BITS;
515 			musb_writew(regs, MUSB_RXCSR, val);
516 			/* flush writebuffer */
517 			val = musb_readw(regs, MUSB_RXCSR);
518 		}
519 	}
520 	return n_bds;
521 }
522 
523 
524 /* Buffer enqueuing Logic:
525  *
526  *  - RX builds new queues each time, to help handle routine "early
527  *    termination" cases (faults, including errors and short reads)
528  *    more correctly.
529  *
530  *  - for now, TX reuses the same queue of BDs every time
531  *
532  * REVISIT long term, we want a normal dynamic model.
533  * ... the goal will be to append to the
534  * existing queue, processing completed "dma buffers" (segments) on the fly.
535  *
536  * Otherwise we force an IRQ latency between requests, which slows us a lot
537  * (especially in "transparent" dma).  Unfortunately that model seems to be
538  * inherent in the DMA model from the Mentor code, except in the rare case
539  * of transfers big enough (~128+ KB) that we could append "middle" segments
540  * in the TX paths.  (RX can't do this, see below.)
541  *
542  * That's true even in the CPPI- friendly iso case, where most urbs have
543  * several small segments provided in a group and where the "packet at a time"
544  * "transparent" DMA model is always correct, even on the RX side.
545  */
546 
547 /*
548  * CPPI TX:
549  * ========
550  * TX is a lot more reasonable than RX; it doesn't need to run in
551  * irq-per-packet mode very often.  RNDIS mode seems to behave too
552  * (except how it handles the exactly-N-packets case).  Building a
553  * txdma queue with multiple requests (urb or usb_request) looks
554  * like it would work ... but fault handling would need much testing.
555  *
556  * The main issue with TX mode RNDIS relates to transfer lengths that
557  * are an exact multiple of the packet length.  It appears that there's
558  * a hiccup in that case (maybe the DMA completes before the ZLP gets
559  * written?) boiling down to not being able to rely on CPPI writing any
560  * terminating zero length packet before the next transfer is written.
561  * So that's punted to PIO; better yet, gadget drivers can avoid it.
562  *
563  * Plus, there's allegedly an undocumented constraint that rndis transfer
564  * length be a multiple of 64 bytes ... but the chip doesn't act that
565  * way, and we really don't _want_ that behavior anyway.
566  *
567  * On TX, "transparent" mode works ... although experiments have shown
568  * problems trying to use the SOP/EOP bits in different USB packets.
569  *
570  * REVISIT try to handle terminating zero length packets using CPPI
571  * instead of doing it by PIO after an IRQ.  (Meanwhile, make Ethernet
572  * links avoid that issue by forcing them to avoid zlps.)
573  */
574 static void
cppi_next_tx_segment(struct musb * musb,struct cppi_channel * tx)575 cppi_next_tx_segment(struct musb *musb, struct cppi_channel *tx)
576 {
577 	unsigned		maxpacket = tx->maxpacket;
578 	dma_addr_t		addr = tx->buf_dma + tx->offset;
579 	size_t			length = tx->buf_len - tx->offset;
580 	struct cppi_descriptor	*bd;
581 	unsigned		n_bds;
582 	unsigned		i;
583 	struct cppi_tx_stateram	__iomem *tx_ram = tx->state_ram;
584 	int			rndis;
585 
586 	/* TX can use the CPPI "rndis" mode, where we can probably fit this
587 	 * transfer in one BD and one IRQ.  The only time we would NOT want
588 	 * to use it is when hardware constraints prevent it, or if we'd
589 	 * trigger the "send a ZLP?" confusion.
590 	 */
591 	rndis = (maxpacket & 0x3f) == 0
592 		&& length > maxpacket
593 		&& length < 0xffff
594 		&& (length % maxpacket) != 0;
595 
596 	if (rndis) {
597 		maxpacket = length;
598 		n_bds = 1;
599 	} else {
600 		n_bds = length / maxpacket;
601 		if (!length || (length % maxpacket))
602 			n_bds++;
603 		n_bds = min(n_bds, (unsigned) NUM_TXCHAN_BD);
604 		length = min(n_bds * maxpacket, length);
605 	}
606 
607 	dev_dbg(musb->controller, "TX DMA%d, pktSz %d %s bds %d dma 0x%llx len %u\n",
608 			tx->index,
609 			maxpacket,
610 			rndis ? "rndis" : "transparent",
611 			n_bds,
612 			(unsigned long long)addr, length);
613 
614 	cppi_rndis_update(tx, 0, musb->ctrl_base, rndis);
615 
616 	/* assuming here that channel_program is called during
617 	 * transfer initiation ... current code maintains state
618 	 * for one outstanding request only (no queues, not even
619 	 * the implicit ones of an iso urb).
620 	 */
621 
622 	bd = tx->freelist;
623 	tx->head = bd;
624 	tx->last_processed = NULL;
625 
626 	/* FIXME use BD pool like RX side does, and just queue
627 	 * the minimum number for this request.
628 	 */
629 
630 	/* Prepare queue of BDs first, then hand it to hardware.
631 	 * All BDs except maybe the last should be of full packet
632 	 * size; for RNDIS there _is_ only that last packet.
633 	 */
634 	for (i = 0; i < n_bds; ) {
635 		if (++i < n_bds && bd->next)
636 			bd->hw_next = bd->next->dma;
637 		else
638 			bd->hw_next = 0;
639 
640 		bd->hw_bufp = tx->buf_dma + tx->offset;
641 
642 		/* FIXME set EOP only on the last packet,
643 		 * SOP only on the first ... avoid IRQs
644 		 */
645 		if ((tx->offset + maxpacket) <= tx->buf_len) {
646 			tx->offset += maxpacket;
647 			bd->hw_off_len = maxpacket;
648 			bd->hw_options = CPPI_SOP_SET | CPPI_EOP_SET
649 				| CPPI_OWN_SET | maxpacket;
650 		} else {
651 			/* only this one may be a partial USB Packet */
652 			u32		partial_len;
653 
654 			partial_len = tx->buf_len - tx->offset;
655 			tx->offset = tx->buf_len;
656 			bd->hw_off_len = partial_len;
657 
658 			bd->hw_options = CPPI_SOP_SET | CPPI_EOP_SET
659 				| CPPI_OWN_SET | partial_len;
660 			if (partial_len == 0)
661 				bd->hw_options |= CPPI_ZERO_SET;
662 		}
663 
664 		dev_dbg(musb->controller, "TXBD %p: nxt %08x buf %08x len %04x opt %08x\n",
665 				bd, bd->hw_next, bd->hw_bufp,
666 				bd->hw_off_len, bd->hw_options);
667 
668 		/* update the last BD enqueued to the list */
669 		tx->tail = bd;
670 		bd = bd->next;
671 	}
672 
673 	/* BDs live in DMA-coherent memory, but writes might be pending */
674 	cpu_drain_writebuffer();
675 
676 	/* Write to the HeadPtr in state RAM to trigger */
677 	musb_writel(&tx_ram->tx_head, 0, (u32)tx->freelist->dma);
678 
679 	cppi_dump_tx(5, tx, "/S");
680 }
681 
682 /*
683  * CPPI RX Woes:
684  * =============
685  * Consider a 1KB bulk RX buffer in two scenarios:  (a) it's fed two 300 byte
686  * packets back-to-back, and (b) it's fed two 512 byte packets back-to-back.
687  * (Full speed transfers have similar scenarios.)
688  *
689  * The correct behavior for Linux is that (a) fills the buffer with 300 bytes,
690  * and the next packet goes into a buffer that's queued later; while (b) fills
691  * the buffer with 1024 bytes.  How to do that with CPPI?
692  *
693  * - RX queues in "rndis" mode -- one single BD -- handle (a) correctly, but
694  *   (b) loses **BADLY** because nothing (!) happens when that second packet
695  *   fills the buffer, much less when a third one arrives.  (Which makes this
696  *   not a "true" RNDIS mode.  In the RNDIS protocol short-packet termination
697  *   is optional, and it's fine if peripherals -- not hosts! -- pad messages
698  *   out to end-of-buffer.  Standard PCI host controller DMA descriptors
699  *   implement that mode by default ... which is no accident.)
700  *
701  * - RX queues in "transparent" mode -- two BDs with 512 bytes each -- have
702  *   converse problems:  (b) is handled right, but (a) loses badly.  CPPI RX
703  *   ignores SOP/EOP markings and processes both of those BDs; so both packets
704  *   are loaded into the buffer (with a 212 byte gap between them), and the next
705  *   buffer queued will NOT get its 300 bytes of data. (It seems like SOP/EOP
706  *   are intended as outputs for RX queues, not inputs...)
707  *
708  * - A variant of "transparent" mode -- one BD at a time -- is the only way to
709  *   reliably make both cases work, with software handling both cases correctly
710  *   and at the significant penalty of needing an IRQ per packet.  (The lack of
711  *   I/O overlap can be slightly ameliorated by enabling double buffering.)
712  *
713  * So how to get rid of IRQ-per-packet?  The transparent multi-BD case could
714  * be used in special cases like mass storage, which sets URB_SHORT_NOT_OK
715  * (or maybe its peripheral side counterpart) to flag (a) scenarios as errors
716  * with guaranteed driver level fault recovery and scrubbing out what's left
717  * of that garbaged datastream.
718  *
719  * But there seems to be no way to identify the cases where CPPI RNDIS mode
720  * is appropriate -- which do NOT include RNDIS host drivers, but do include
721  * the CDC Ethernet driver! -- and the documentation is incomplete/wrong.
722  * So we can't _ever_ use RX RNDIS mode ... except by using a heuristic
723  * that applies best on the peripheral side (and which could fail rudely).
724  *
725  * Leaving only "transparent" mode; we avoid multi-bd modes in almost all
726  * cases other than mass storage class.  Otherwise we're correct but slow,
727  * since CPPI penalizes our need for a "true RNDIS" default mode.
728  */
729 
730 
731 /* Heuristic, intended to kick in for ethernet/rndis peripheral ONLY
732  *
733  * IFF
734  *  (a)	peripheral mode ... since rndis peripherals could pad their
735  *	writes to hosts, causing i/o failure; or we'd have to cope with
736  *	a largely unknowable variety of host side protocol variants
737  *  (b)	and short reads are NOT errors ... since full reads would
738  *	cause those same i/o failures
739  *  (c)	and read length is
740  *	- less than 64KB (max per cppi descriptor)
741  *	- not a multiple of 4096 (g_zero default, full reads typical)
742  *	- N (>1) packets long, ditto (full reads not EXPECTED)
743  * THEN
744  *   try rx rndis mode
745  *
746  * Cost of heuristic failing:  RXDMA wedges at the end of transfers that
747  * fill out the whole buffer.  Buggy host side usb network drivers could
748  * trigger that, but "in the field" such bugs seem to be all but unknown.
749  *
750  * So this module parameter lets the heuristic be disabled.  When using
751  * gadgetfs, the heuristic will probably need to be disabled.
752  */
753 static bool cppi_rx_rndis = 1;
754 
755 module_param(cppi_rx_rndis, bool, 0);
756 MODULE_PARM_DESC(cppi_rx_rndis, "enable/disable RX RNDIS heuristic");
757 
758 
759 /**
760  * cppi_next_rx_segment - dma read for the next chunk of a buffer
761  * @musb: the controller
762  * @rx: dma channel
763  * @onepacket: true unless caller treats short reads as errors, and
764  *	performs fault recovery above usbcore.
765  * Context: controller irqlocked
766  *
767  * See above notes about why we can't use multi-BD RX queues except in
768  * rare cases (mass storage class), and can never use the hardware "rndis"
769  * mode (since it's not a "true" RNDIS mode) with complete safety..
770  *
771  * It's ESSENTIAL that callers specify "onepacket" mode unless they kick in
772  * code to recover from corrupted datastreams after each short transfer.
773  */
774 static void
cppi_next_rx_segment(struct musb * musb,struct cppi_channel * rx,int onepacket)775 cppi_next_rx_segment(struct musb *musb, struct cppi_channel *rx, int onepacket)
776 {
777 	unsigned		maxpacket = rx->maxpacket;
778 	dma_addr_t		addr = rx->buf_dma + rx->offset;
779 	size_t			length = rx->buf_len - rx->offset;
780 	struct cppi_descriptor	*bd, *tail;
781 	unsigned		n_bds;
782 	unsigned		i;
783 	void __iomem		*tibase = musb->ctrl_base;
784 	int			is_rndis = 0;
785 	struct cppi_rx_stateram	__iomem *rx_ram = rx->state_ram;
786 
787 	if (onepacket) {
788 		/* almost every USB driver, host or peripheral side */
789 		n_bds = 1;
790 
791 		/* maybe apply the heuristic above */
792 		if (cppi_rx_rndis
793 				&& is_peripheral_active(musb)
794 				&& length > maxpacket
795 				&& (length & ~0xffff) == 0
796 				&& (length & 0x0fff) != 0
797 				&& (length & (maxpacket - 1)) == 0) {
798 			maxpacket = length;
799 			is_rndis = 1;
800 		}
801 	} else {
802 		/* virtually nothing except mass storage class */
803 		if (length > 0xffff) {
804 			n_bds = 0xffff / maxpacket;
805 			length = n_bds * maxpacket;
806 		} else {
807 			n_bds = length / maxpacket;
808 			if (length % maxpacket)
809 				n_bds++;
810 		}
811 		if (n_bds == 1)
812 			onepacket = 1;
813 		else
814 			n_bds = min(n_bds, (unsigned) NUM_RXCHAN_BD);
815 	}
816 
817 	/* In host mode, autorequest logic can generate some IN tokens; it's
818 	 * tricky since we can't leave REQPKT set in RXCSR after the transfer
819 	 * finishes. So:  multipacket transfers involve two or more segments.
820 	 * And always at least two IRQs ... RNDIS mode is not an option.
821 	 */
822 	if (is_host_active(musb))
823 		n_bds = cppi_autoreq_update(rx, tibase, onepacket, n_bds);
824 
825 	cppi_rndis_update(rx, 1, musb->ctrl_base, is_rndis);
826 
827 	length = min(n_bds * maxpacket, length);
828 
829 	dev_dbg(musb->controller, "RX DMA%d seg, maxp %d %s bds %d (cnt %d) "
830 			"dma 0x%llx len %u %u/%u\n",
831 			rx->index, maxpacket,
832 			onepacket
833 				? (is_rndis ? "rndis" : "onepacket")
834 				: "multipacket",
835 			n_bds,
836 			musb_readl(tibase,
837 				DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4))
838 					& 0xffff,
839 			(unsigned long long)addr, length,
840 			rx->channel.actual_len, rx->buf_len);
841 
842 	/* only queue one segment at a time, since the hardware prevents
843 	 * correct queue shutdown after unexpected short packets
844 	 */
845 	bd = cppi_bd_alloc(rx);
846 	rx->head = bd;
847 
848 	/* Build BDs for all packets in this segment */
849 	for (i = 0, tail = NULL; bd && i < n_bds; i++, tail = bd) {
850 		u32	bd_len;
851 
852 		if (i) {
853 			bd = cppi_bd_alloc(rx);
854 			if (!bd)
855 				break;
856 			tail->next = bd;
857 			tail->hw_next = bd->dma;
858 		}
859 		bd->hw_next = 0;
860 
861 		/* all but the last packet will be maxpacket size */
862 		if (maxpacket < length)
863 			bd_len = maxpacket;
864 		else
865 			bd_len = length;
866 
867 		bd->hw_bufp = addr;
868 		addr += bd_len;
869 		rx->offset += bd_len;
870 
871 		bd->hw_off_len = (0 /*offset*/ << 16) + bd_len;
872 		bd->buflen = bd_len;
873 
874 		bd->hw_options = CPPI_OWN_SET | (i == 0 ? length : 0);
875 		length -= bd_len;
876 	}
877 
878 	/* we always expect at least one reusable BD! */
879 	if (!tail) {
880 		WARNING("rx dma%d -- no BDs? need %d\n", rx->index, n_bds);
881 		return;
882 	} else if (i < n_bds)
883 		WARNING("rx dma%d -- only %d of %d BDs\n", rx->index, i, n_bds);
884 
885 	tail->next = NULL;
886 	tail->hw_next = 0;
887 
888 	bd = rx->head;
889 	rx->tail = tail;
890 
891 	/* short reads and other faults should terminate this entire
892 	 * dma segment.  we want one "dma packet" per dma segment, not
893 	 * one per USB packet, terminating the whole queue at once...
894 	 * NOTE that current hardware seems to ignore SOP and EOP.
895 	 */
896 	bd->hw_options |= CPPI_SOP_SET;
897 	tail->hw_options |= CPPI_EOP_SET;
898 
899 #ifdef CONFIG_USB_MUSB_DEBUG
900 	if (_dbg_level(5)) {
901 		struct cppi_descriptor	*d;
902 
903 		for (d = rx->head; d; d = d->next)
904 			cppi_dump_rxbd("S", d);
905 	}
906 #endif
907 
908 	/* in case the preceding transfer left some state... */
909 	tail = rx->last_processed;
910 	if (tail) {
911 		tail->next = bd;
912 		tail->hw_next = bd->dma;
913 	}
914 
915 	core_rxirq_enable(tibase, rx->index + 1);
916 
917 	/* BDs live in DMA-coherent memory, but writes might be pending */
918 	cpu_drain_writebuffer();
919 
920 	/* REVISIT specs say to write this AFTER the BUFCNT register
921 	 * below ... but that loses badly.
922 	 */
923 	musb_writel(&rx_ram->rx_head, 0, bd->dma);
924 
925 	/* bufferCount must be at least 3, and zeroes on completion
926 	 * unless it underflows below zero, or stops at two, or keeps
927 	 * growing ... grr.
928 	 */
929 	i = musb_readl(tibase,
930 			DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4))
931 			& 0xffff;
932 
933 	if (!i)
934 		musb_writel(tibase,
935 			DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4),
936 			n_bds + 2);
937 	else if (n_bds > (i - 3))
938 		musb_writel(tibase,
939 			DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4),
940 			n_bds - (i - 3));
941 
942 	i = musb_readl(tibase,
943 			DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4))
944 			& 0xffff;
945 	if (i < (2 + n_bds)) {
946 		dev_dbg(musb->controller, "bufcnt%d underrun - %d (for %d)\n",
947 					rx->index, i, n_bds);
948 		musb_writel(tibase,
949 			DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4),
950 			n_bds + 2);
951 	}
952 
953 	cppi_dump_rx(4, rx, "/S");
954 }
955 
956 /**
957  * cppi_channel_program - program channel for data transfer
958  * @ch: the channel
959  * @maxpacket: max packet size
960  * @mode: For RX, 1 unless the usb protocol driver promised to treat
961  *	all short reads as errors and kick in high level fault recovery.
962  *	For TX, ignored because of RNDIS mode races/glitches.
963  * @dma_addr: dma address of buffer
964  * @len: length of buffer
965  * Context: controller irqlocked
966  */
cppi_channel_program(struct dma_channel * ch,u16 maxpacket,u8 mode,dma_addr_t dma_addr,u32 len)967 static int cppi_channel_program(struct dma_channel *ch,
968 		u16 maxpacket, u8 mode,
969 		dma_addr_t dma_addr, u32 len)
970 {
971 	struct cppi_channel	*cppi_ch;
972 	struct cppi		*controller;
973 	struct musb		*musb;
974 
975 	cppi_ch = container_of(ch, struct cppi_channel, channel);
976 	controller = cppi_ch->controller;
977 	musb = controller->musb;
978 
979 	switch (ch->status) {
980 	case MUSB_DMA_STATUS_BUS_ABORT:
981 	case MUSB_DMA_STATUS_CORE_ABORT:
982 		/* fault irq handler should have handled cleanup */
983 		WARNING("%cX DMA%d not cleaned up after abort!\n",
984 				cppi_ch->transmit ? 'T' : 'R',
985 				cppi_ch->index);
986 		/* WARN_ON(1); */
987 		break;
988 	case MUSB_DMA_STATUS_BUSY:
989 		WARNING("program active channel?  %cX DMA%d\n",
990 				cppi_ch->transmit ? 'T' : 'R',
991 				cppi_ch->index);
992 		/* WARN_ON(1); */
993 		break;
994 	case MUSB_DMA_STATUS_UNKNOWN:
995 		dev_dbg(musb->controller, "%cX DMA%d not allocated!\n",
996 				cppi_ch->transmit ? 'T' : 'R',
997 				cppi_ch->index);
998 		/* FALLTHROUGH */
999 	case MUSB_DMA_STATUS_FREE:
1000 		break;
1001 	}
1002 
1003 	ch->status = MUSB_DMA_STATUS_BUSY;
1004 
1005 	/* set transfer parameters, then queue up its first segment */
1006 	cppi_ch->buf_dma = dma_addr;
1007 	cppi_ch->offset = 0;
1008 	cppi_ch->maxpacket = maxpacket;
1009 	cppi_ch->buf_len = len;
1010 	cppi_ch->channel.actual_len = 0;
1011 
1012 	/* TX channel? or RX? */
1013 	if (cppi_ch->transmit)
1014 		cppi_next_tx_segment(musb, cppi_ch);
1015 	else
1016 		cppi_next_rx_segment(musb, cppi_ch, mode);
1017 
1018 	return true;
1019 }
1020 
cppi_rx_scan(struct cppi * cppi,unsigned ch)1021 static bool cppi_rx_scan(struct cppi *cppi, unsigned ch)
1022 {
1023 	struct cppi_channel		*rx = &cppi->rx[ch];
1024 	struct cppi_rx_stateram __iomem	*state = rx->state_ram;
1025 	struct cppi_descriptor		*bd;
1026 	struct cppi_descriptor		*last = rx->last_processed;
1027 	bool				completed = false;
1028 	bool				acked = false;
1029 	int				i;
1030 	dma_addr_t			safe2ack;
1031 	void __iomem			*regs = rx->hw_ep->regs;
1032 	struct musb			*musb = cppi->musb;
1033 
1034 	cppi_dump_rx(6, rx, "/K");
1035 
1036 	bd = last ? last->next : rx->head;
1037 	if (!bd)
1038 		return false;
1039 
1040 	/* run through all completed BDs */
1041 	for (i = 0, safe2ack = musb_readl(&state->rx_complete, 0);
1042 			(safe2ack || completed) && bd && i < NUM_RXCHAN_BD;
1043 			i++, bd = bd->next) {
1044 		u16	len;
1045 
1046 		/* catch latest BD writes from CPPI */
1047 		rmb();
1048 		if (!completed && (bd->hw_options & CPPI_OWN_SET))
1049 			break;
1050 
1051 		dev_dbg(musb->controller, "C/RXBD %llx: nxt %08x buf %08x "
1052 			"off.len %08x opt.len %08x (%d)\n",
1053 			(unsigned long long)bd->dma, bd->hw_next, bd->hw_bufp,
1054 			bd->hw_off_len, bd->hw_options,
1055 			rx->channel.actual_len);
1056 
1057 		/* actual packet received length */
1058 		if ((bd->hw_options & CPPI_SOP_SET) && !completed)
1059 			len = bd->hw_off_len & CPPI_RECV_PKTLEN_MASK;
1060 		else
1061 			len = 0;
1062 
1063 		if (bd->hw_options & CPPI_EOQ_MASK)
1064 			completed = true;
1065 
1066 		if (!completed && len < bd->buflen) {
1067 			/* NOTE:  when we get a short packet, RXCSR_H_REQPKT
1068 			 * must have been cleared, and no more DMA packets may
1069 			 * active be in the queue... TI docs didn't say, but
1070 			 * CPPI ignores those BDs even though OWN is still set.
1071 			 */
1072 			completed = true;
1073 			dev_dbg(musb->controller, "rx short %d/%d (%d)\n",
1074 					len, bd->buflen,
1075 					rx->channel.actual_len);
1076 		}
1077 
1078 		/* If we got here, we expect to ack at least one BD; meanwhile
1079 		 * CPPI may completing other BDs while we scan this list...
1080 		 *
1081 		 * RACE: we can notice OWN cleared before CPPI raises the
1082 		 * matching irq by writing that BD as the completion pointer.
1083 		 * In such cases, stop scanning and wait for the irq, avoiding
1084 		 * lost acks and states where BD ownership is unclear.
1085 		 */
1086 		if (bd->dma == safe2ack) {
1087 			musb_writel(&state->rx_complete, 0, safe2ack);
1088 			safe2ack = musb_readl(&state->rx_complete, 0);
1089 			acked = true;
1090 			if (bd->dma == safe2ack)
1091 				safe2ack = 0;
1092 		}
1093 
1094 		rx->channel.actual_len += len;
1095 
1096 		cppi_bd_free(rx, last);
1097 		last = bd;
1098 
1099 		/* stop scanning on end-of-segment */
1100 		if (bd->hw_next == 0)
1101 			completed = true;
1102 	}
1103 	rx->last_processed = last;
1104 
1105 	/* dma abort, lost ack, or ... */
1106 	if (!acked && last) {
1107 		int	csr;
1108 
1109 		if (safe2ack == 0 || safe2ack == rx->last_processed->dma)
1110 			musb_writel(&state->rx_complete, 0, safe2ack);
1111 		if (safe2ack == 0) {
1112 			cppi_bd_free(rx, last);
1113 			rx->last_processed = NULL;
1114 
1115 			/* if we land here on the host side, H_REQPKT will
1116 			 * be clear and we need to restart the queue...
1117 			 */
1118 			WARN_ON(rx->head);
1119 		}
1120 		musb_ep_select(cppi->mregs, rx->index + 1);
1121 		csr = musb_readw(regs, MUSB_RXCSR);
1122 		if (csr & MUSB_RXCSR_DMAENAB) {
1123 			dev_dbg(musb->controller, "list%d %p/%p, last %llx%s, csr %04x\n",
1124 				rx->index,
1125 				rx->head, rx->tail,
1126 				rx->last_processed
1127 					? (unsigned long long)
1128 						rx->last_processed->dma
1129 					: 0,
1130 				completed ? ", completed" : "",
1131 				csr);
1132 			cppi_dump_rxq(4, "/what?", rx);
1133 		}
1134 	}
1135 	if (!completed) {
1136 		int	csr;
1137 
1138 		rx->head = bd;
1139 
1140 		/* REVISIT seems like "autoreq all but EOP" doesn't...
1141 		 * setting it here "should" be racey, but seems to work
1142 		 */
1143 		csr = musb_readw(rx->hw_ep->regs, MUSB_RXCSR);
1144 		if (is_host_active(cppi->musb)
1145 				&& bd
1146 				&& !(csr & MUSB_RXCSR_H_REQPKT)) {
1147 			csr |= MUSB_RXCSR_H_REQPKT;
1148 			musb_writew(regs, MUSB_RXCSR,
1149 					MUSB_RXCSR_H_WZC_BITS | csr);
1150 			csr = musb_readw(rx->hw_ep->regs, MUSB_RXCSR);
1151 		}
1152 	} else {
1153 		rx->head = NULL;
1154 		rx->tail = NULL;
1155 	}
1156 
1157 	cppi_dump_rx(6, rx, completed ? "/completed" : "/cleaned");
1158 	return completed;
1159 }
1160 
cppi_interrupt(int irq,void * dev_id)1161 irqreturn_t cppi_interrupt(int irq, void *dev_id)
1162 {
1163 	struct musb		*musb = dev_id;
1164 	struct cppi		*cppi;
1165 	void __iomem		*tibase;
1166 	struct musb_hw_ep	*hw_ep = NULL;
1167 	u32			rx, tx;
1168 	int			i, index;
1169 	unsigned long		uninitialized_var(flags);
1170 
1171 	cppi = container_of(musb->dma_controller, struct cppi, controller);
1172 	if (cppi->irq)
1173 		spin_lock_irqsave(&musb->lock, flags);
1174 
1175 	tibase = musb->ctrl_base;
1176 
1177 	tx = musb_readl(tibase, DAVINCI_TXCPPI_MASKED_REG);
1178 	rx = musb_readl(tibase, DAVINCI_RXCPPI_MASKED_REG);
1179 
1180 	if (!tx && !rx) {
1181 		if (cppi->irq)
1182 			spin_unlock_irqrestore(&musb->lock, flags);
1183 		return IRQ_NONE;
1184 	}
1185 
1186 	dev_dbg(musb->controller, "CPPI IRQ Tx%x Rx%x\n", tx, rx);
1187 
1188 	/* process TX channels */
1189 	for (index = 0; tx; tx = tx >> 1, index++) {
1190 		struct cppi_channel		*tx_ch;
1191 		struct cppi_tx_stateram __iomem	*tx_ram;
1192 		bool				completed = false;
1193 		struct cppi_descriptor		*bd;
1194 
1195 		if (!(tx & 1))
1196 			continue;
1197 
1198 		tx_ch = cppi->tx + index;
1199 		tx_ram = tx_ch->state_ram;
1200 
1201 		/* FIXME  need a cppi_tx_scan() routine, which
1202 		 * can also be called from abort code
1203 		 */
1204 
1205 		cppi_dump_tx(5, tx_ch, "/E");
1206 
1207 		bd = tx_ch->head;
1208 
1209 		/*
1210 		 * If Head is null then this could mean that a abort interrupt
1211 		 * that needs to be acknowledged.
1212 		 */
1213 		if (NULL == bd) {
1214 			dev_dbg(musb->controller, "null BD\n");
1215 			musb_writel(&tx_ram->tx_complete, 0, 0);
1216 			continue;
1217 		}
1218 
1219 		/* run through all completed BDs */
1220 		for (i = 0; !completed && bd && i < NUM_TXCHAN_BD;
1221 				i++, bd = bd->next) {
1222 			u16	len;
1223 
1224 			/* catch latest BD writes from CPPI */
1225 			rmb();
1226 			if (bd->hw_options & CPPI_OWN_SET)
1227 				break;
1228 
1229 			dev_dbg(musb->controller, "C/TXBD %p n %x b %x off %x opt %x\n",
1230 					bd, bd->hw_next, bd->hw_bufp,
1231 					bd->hw_off_len, bd->hw_options);
1232 
1233 			len = bd->hw_off_len & CPPI_BUFFER_LEN_MASK;
1234 			tx_ch->channel.actual_len += len;
1235 
1236 			tx_ch->last_processed = bd;
1237 
1238 			/* write completion register to acknowledge
1239 			 * processing of completed BDs, and possibly
1240 			 * release the IRQ; EOQ might not be set ...
1241 			 *
1242 			 * REVISIT use the same ack strategy as rx
1243 			 *
1244 			 * REVISIT have observed bit 18 set; huh??
1245 			 */
1246 			/* if ((bd->hw_options & CPPI_EOQ_MASK)) */
1247 				musb_writel(&tx_ram->tx_complete, 0, bd->dma);
1248 
1249 			/* stop scanning on end-of-segment */
1250 			if (bd->hw_next == 0)
1251 				completed = true;
1252 		}
1253 
1254 		/* on end of segment, maybe go to next one */
1255 		if (completed) {
1256 			/* cppi_dump_tx(4, tx_ch, "/complete"); */
1257 
1258 			/* transfer more, or report completion */
1259 			if (tx_ch->offset >= tx_ch->buf_len) {
1260 				tx_ch->head = NULL;
1261 				tx_ch->tail = NULL;
1262 				tx_ch->channel.status = MUSB_DMA_STATUS_FREE;
1263 
1264 				hw_ep = tx_ch->hw_ep;
1265 
1266 				musb_dma_completion(musb, index + 1, 1);
1267 
1268 			} else {
1269 				/* Bigger transfer than we could fit in
1270 				 * that first batch of descriptors...
1271 				 */
1272 				cppi_next_tx_segment(musb, tx_ch);
1273 			}
1274 		} else
1275 			tx_ch->head = bd;
1276 	}
1277 
1278 	/* Start processing the RX block */
1279 	for (index = 0; rx; rx = rx >> 1, index++) {
1280 
1281 		if (rx & 1) {
1282 			struct cppi_channel		*rx_ch;
1283 
1284 			rx_ch = cppi->rx + index;
1285 
1286 			/* let incomplete dma segments finish */
1287 			if (!cppi_rx_scan(cppi, index))
1288 				continue;
1289 
1290 			/* start another dma segment if needed */
1291 			if (rx_ch->channel.actual_len != rx_ch->buf_len
1292 					&& rx_ch->channel.actual_len
1293 						== rx_ch->offset) {
1294 				cppi_next_rx_segment(musb, rx_ch, 1);
1295 				continue;
1296 			}
1297 
1298 			/* all segments completed! */
1299 			rx_ch->channel.status = MUSB_DMA_STATUS_FREE;
1300 
1301 			hw_ep = rx_ch->hw_ep;
1302 
1303 			core_rxirq_disable(tibase, index + 1);
1304 			musb_dma_completion(musb, index + 1, 0);
1305 		}
1306 	}
1307 
1308 	/* write to CPPI EOI register to re-enable interrupts */
1309 	musb_writel(tibase, DAVINCI_CPPI_EOI_REG, 0);
1310 
1311 	if (cppi->irq)
1312 		spin_unlock_irqrestore(&musb->lock, flags);
1313 
1314 	return IRQ_HANDLED;
1315 }
1316 EXPORT_SYMBOL_GPL(cppi_interrupt);
1317 
1318 /* Instantiate a software object representing a DMA controller. */
1319 struct dma_controller *__init
dma_controller_create(struct musb * musb,void __iomem * mregs)1320 dma_controller_create(struct musb *musb, void __iomem *mregs)
1321 {
1322 	struct cppi		*controller;
1323 	struct device		*dev = musb->controller;
1324 	struct platform_device	*pdev = to_platform_device(dev);
1325 	int			irq = platform_get_irq_byname(pdev, "dma");
1326 
1327 	controller = kzalloc(sizeof *controller, GFP_KERNEL);
1328 	if (!controller)
1329 		return NULL;
1330 
1331 	controller->mregs = mregs;
1332 	controller->tibase = mregs - DAVINCI_BASE_OFFSET;
1333 
1334 	controller->musb = musb;
1335 	controller->controller.start = cppi_controller_start;
1336 	controller->controller.stop = cppi_controller_stop;
1337 	controller->controller.channel_alloc = cppi_channel_allocate;
1338 	controller->controller.channel_release = cppi_channel_release;
1339 	controller->controller.channel_program = cppi_channel_program;
1340 	controller->controller.channel_abort = cppi_channel_abort;
1341 
1342 	/* NOTE: allocating from on-chip SRAM would give the least
1343 	 * contention for memory access, if that ever matters here.
1344 	 */
1345 
1346 	/* setup BufferPool */
1347 	controller->pool = dma_pool_create("cppi",
1348 			controller->musb->controller,
1349 			sizeof(struct cppi_descriptor),
1350 			CPPI_DESCRIPTOR_ALIGN, 0);
1351 	if (!controller->pool) {
1352 		kfree(controller);
1353 		return NULL;
1354 	}
1355 
1356 	if (irq > 0) {
1357 		if (request_irq(irq, cppi_interrupt, 0, "cppi-dma", musb)) {
1358 			dev_err(dev, "request_irq %d failed!\n", irq);
1359 			dma_controller_destroy(&controller->controller);
1360 			return NULL;
1361 		}
1362 		controller->irq = irq;
1363 	}
1364 
1365 	return &controller->controller;
1366 }
1367 
1368 /*
1369  *  Destroy a previously-instantiated DMA controller.
1370  */
dma_controller_destroy(struct dma_controller * c)1371 void dma_controller_destroy(struct dma_controller *c)
1372 {
1373 	struct cppi	*cppi;
1374 
1375 	cppi = container_of(c, struct cppi, controller);
1376 
1377 	if (cppi->irq)
1378 		free_irq(cppi->irq, cppi->musb);
1379 
1380 	/* assert:  caller stopped the controller first */
1381 	dma_pool_destroy(cppi->pool);
1382 
1383 	kfree(cppi);
1384 }
1385 
1386 /*
1387  * Context: controller irqlocked, endpoint selected
1388  */
cppi_channel_abort(struct dma_channel * channel)1389 static int cppi_channel_abort(struct dma_channel *channel)
1390 {
1391 	struct cppi_channel	*cppi_ch;
1392 	struct cppi		*controller;
1393 	void __iomem		*mbase;
1394 	void __iomem		*tibase;
1395 	void __iomem		*regs;
1396 	u32			value;
1397 	struct cppi_descriptor	*queue;
1398 
1399 	cppi_ch = container_of(channel, struct cppi_channel, channel);
1400 
1401 	controller = cppi_ch->controller;
1402 
1403 	switch (channel->status) {
1404 	case MUSB_DMA_STATUS_BUS_ABORT:
1405 	case MUSB_DMA_STATUS_CORE_ABORT:
1406 		/* from RX or TX fault irq handler */
1407 	case MUSB_DMA_STATUS_BUSY:
1408 		/* the hardware needs shutting down */
1409 		regs = cppi_ch->hw_ep->regs;
1410 		break;
1411 	case MUSB_DMA_STATUS_UNKNOWN:
1412 	case MUSB_DMA_STATUS_FREE:
1413 		return 0;
1414 	default:
1415 		return -EINVAL;
1416 	}
1417 
1418 	if (!cppi_ch->transmit && cppi_ch->head)
1419 		cppi_dump_rxq(3, "/abort", cppi_ch);
1420 
1421 	mbase = controller->mregs;
1422 	tibase = controller->tibase;
1423 
1424 	queue = cppi_ch->head;
1425 	cppi_ch->head = NULL;
1426 	cppi_ch->tail = NULL;
1427 
1428 	/* REVISIT should rely on caller having done this,
1429 	 * and caller should rely on us not changing it.
1430 	 * peripheral code is safe ... check host too.
1431 	 */
1432 	musb_ep_select(mbase, cppi_ch->index + 1);
1433 
1434 	if (cppi_ch->transmit) {
1435 		struct cppi_tx_stateram __iomem *tx_ram;
1436 		/* REVISIT put timeouts on these controller handshakes */
1437 
1438 		cppi_dump_tx(6, cppi_ch, " (teardown)");
1439 
1440 		/* teardown DMA engine then usb core */
1441 		do {
1442 			value = musb_readl(tibase, DAVINCI_TXCPPI_TEAR_REG);
1443 		} while (!(value & CPPI_TEAR_READY));
1444 		musb_writel(tibase, DAVINCI_TXCPPI_TEAR_REG, cppi_ch->index);
1445 
1446 		tx_ram = cppi_ch->state_ram;
1447 		do {
1448 			value = musb_readl(&tx_ram->tx_complete, 0);
1449 		} while (0xFFFFFFFC != value);
1450 
1451 		/* FIXME clean up the transfer state ... here?
1452 		 * the completion routine should get called with
1453 		 * an appropriate status code.
1454 		 */
1455 
1456 		value = musb_readw(regs, MUSB_TXCSR);
1457 		value &= ~MUSB_TXCSR_DMAENAB;
1458 		value |= MUSB_TXCSR_FLUSHFIFO;
1459 		musb_writew(regs, MUSB_TXCSR, value);
1460 		musb_writew(regs, MUSB_TXCSR, value);
1461 
1462 		/*
1463 		 * 1. Write to completion Ptr value 0x1(bit 0 set)
1464 		 *    (write back mode)
1465 		 * 2. Wait for abort interrupt and then put the channel in
1466 		 *    compare mode by writing 1 to the tx_complete register.
1467 		 */
1468 		cppi_reset_tx(tx_ram, 1);
1469 		cppi_ch->head = NULL;
1470 		musb_writel(&tx_ram->tx_complete, 0, 1);
1471 		cppi_dump_tx(5, cppi_ch, " (done teardown)");
1472 
1473 		/* REVISIT tx side _should_ clean up the same way
1474 		 * as the RX side ... this does no cleanup at all!
1475 		 */
1476 
1477 	} else /* RX */ {
1478 		u16			csr;
1479 
1480 		/* NOTE: docs don't guarantee any of this works ...  we
1481 		 * expect that if the usb core stops telling the cppi core
1482 		 * to pull more data from it, then it'll be safe to flush
1483 		 * current RX DMA state iff any pending fifo transfer is done.
1484 		 */
1485 
1486 		core_rxirq_disable(tibase, cppi_ch->index + 1);
1487 
1488 		/* for host, ensure ReqPkt is never set again */
1489 		if (is_host_active(cppi_ch->controller->musb)) {
1490 			value = musb_readl(tibase, DAVINCI_AUTOREQ_REG);
1491 			value &= ~((0x3) << (cppi_ch->index * 2));
1492 			musb_writel(tibase, DAVINCI_AUTOREQ_REG, value);
1493 		}
1494 
1495 		csr = musb_readw(regs, MUSB_RXCSR);
1496 
1497 		/* for host, clear (just) ReqPkt at end of current packet(s) */
1498 		if (is_host_active(cppi_ch->controller->musb)) {
1499 			csr |= MUSB_RXCSR_H_WZC_BITS;
1500 			csr &= ~MUSB_RXCSR_H_REQPKT;
1501 		} else
1502 			csr |= MUSB_RXCSR_P_WZC_BITS;
1503 
1504 		/* clear dma enable */
1505 		csr &= ~(MUSB_RXCSR_DMAENAB);
1506 		musb_writew(regs, MUSB_RXCSR, csr);
1507 		csr = musb_readw(regs, MUSB_RXCSR);
1508 
1509 		/* Quiesce: wait for current dma to finish (if not cleanup).
1510 		 * We can't use bit zero of stateram->rx_sop, since that
1511 		 * refers to an entire "DMA packet" not just emptying the
1512 		 * current fifo.  Most segments need multiple usb packets.
1513 		 */
1514 		if (channel->status == MUSB_DMA_STATUS_BUSY)
1515 			udelay(50);
1516 
1517 		/* scan the current list, reporting any data that was
1518 		 * transferred and acking any IRQ
1519 		 */
1520 		cppi_rx_scan(controller, cppi_ch->index);
1521 
1522 		/* clobber the existing state once it's idle
1523 		 *
1524 		 * NOTE:  arguably, we should also wait for all the other
1525 		 * RX channels to quiesce (how??) and then temporarily
1526 		 * disable RXCPPI_CTRL_REG ... but it seems that we can
1527 		 * rely on the controller restarting from state ram, with
1528 		 * only RXCPPI_BUFCNT state being bogus.  BUFCNT will
1529 		 * correct itself after the next DMA transfer though.
1530 		 *
1531 		 * REVISIT does using rndis mode change that?
1532 		 */
1533 		cppi_reset_rx(cppi_ch->state_ram);
1534 
1535 		/* next DMA request _should_ load cppi head ptr */
1536 
1537 		/* ... we don't "free" that list, only mutate it in place.  */
1538 		cppi_dump_rx(5, cppi_ch, " (done abort)");
1539 
1540 		/* clean up previously pending bds */
1541 		cppi_bd_free(cppi_ch, cppi_ch->last_processed);
1542 		cppi_ch->last_processed = NULL;
1543 
1544 		while (queue) {
1545 			struct cppi_descriptor	*tmp = queue->next;
1546 
1547 			cppi_bd_free(cppi_ch, queue);
1548 			queue = tmp;
1549 		}
1550 	}
1551 
1552 	channel->status = MUSB_DMA_STATUS_FREE;
1553 	cppi_ch->buf_dma = 0;
1554 	cppi_ch->offset = 0;
1555 	cppi_ch->buf_len = 0;
1556 	cppi_ch->maxpacket = 0;
1557 	return 0;
1558 }
1559 
1560 /* TBD Queries:
1561  *
1562  * Power Management ... probably turn off cppi during suspend, restart;
1563  * check state ram?  Clocking is presumably shared with usb core.
1564  */
1565