1 /*
2  * SPI bus driver for the Topcliff PCH used by Intel SoCs
3  *
4  * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; version 2 of the License.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307, USA.
18  */
19 
20 #include <linux/delay.h>
21 #include <linux/pci.h>
22 #include <linux/wait.h>
23 #include <linux/spi/spi.h>
24 #include <linux/interrupt.h>
25 #include <linux/sched.h>
26 #include <linux/spi/spidev.h>
27 #include <linux/module.h>
28 #include <linux/device.h>
29 #include <linux/platform_device.h>
30 
31 #include <linux/dmaengine.h>
32 #include <linux/pch_dma.h>
33 
34 /* Register offsets */
35 #define PCH_SPCR		0x00	/* SPI control register */
36 #define PCH_SPBRR		0x04	/* SPI baud rate register */
37 #define PCH_SPSR		0x08	/* SPI status register */
38 #define PCH_SPDWR		0x0C	/* SPI write data register */
39 #define PCH_SPDRR		0x10	/* SPI read data register */
40 #define PCH_SSNXCR		0x18	/* SSN Expand Control Register */
41 #define PCH_SRST		0x1C	/* SPI reset register */
42 #define PCH_ADDRESS_SIZE	0x20
43 
44 #define PCH_SPSR_TFD		0x000007C0
45 #define PCH_SPSR_RFD		0x0000F800
46 
47 #define PCH_READABLE(x)		(((x) & PCH_SPSR_RFD)>>11)
48 #define PCH_WRITABLE(x)		(((x) & PCH_SPSR_TFD)>>6)
49 
50 #define PCH_RX_THOLD		7
51 #define PCH_RX_THOLD_MAX	15
52 
53 #define PCH_TX_THOLD		2
54 
55 #define PCH_MAX_BAUDRATE	5000000
56 #define PCH_MAX_FIFO_DEPTH	16
57 
58 #define STATUS_RUNNING		1
59 #define STATUS_EXITING		2
60 #define PCH_SLEEP_TIME		10
61 
62 #define SSN_LOW			0x02U
63 #define SSN_HIGH		0x03U
64 #define SSN_NO_CONTROL		0x00U
65 #define PCH_MAX_CS		0xFF
66 #define PCI_DEVICE_ID_GE_SPI	0x8816
67 
68 #define SPCR_SPE_BIT		(1 << 0)
69 #define SPCR_MSTR_BIT		(1 << 1)
70 #define SPCR_LSBF_BIT		(1 << 4)
71 #define SPCR_CPHA_BIT		(1 << 5)
72 #define SPCR_CPOL_BIT		(1 << 6)
73 #define SPCR_TFIE_BIT		(1 << 8)
74 #define SPCR_RFIE_BIT		(1 << 9)
75 #define SPCR_FIE_BIT		(1 << 10)
76 #define SPCR_ORIE_BIT		(1 << 11)
77 #define SPCR_MDFIE_BIT		(1 << 12)
78 #define SPCR_FICLR_BIT		(1 << 24)
79 #define SPSR_TFI_BIT		(1 << 0)
80 #define SPSR_RFI_BIT		(1 << 1)
81 #define SPSR_FI_BIT		(1 << 2)
82 #define SPSR_ORF_BIT		(1 << 3)
83 #define SPBRR_SIZE_BIT		(1 << 10)
84 
85 #define PCH_ALL			(SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
86 				SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
87 
88 #define SPCR_RFIC_FIELD		20
89 #define SPCR_TFIC_FIELD		16
90 
91 #define MASK_SPBRR_SPBR_BITS	((1 << 10) - 1)
92 #define MASK_RFIC_SPCR_BITS	(0xf << SPCR_RFIC_FIELD)
93 #define MASK_TFIC_SPCR_BITS	(0xf << SPCR_TFIC_FIELD)
94 
95 #define PCH_CLOCK_HZ		50000000
96 #define PCH_MAX_SPBR		1023
97 
98 /* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */
99 #define PCI_VENDOR_ID_ROHM		0x10DB
100 #define PCI_DEVICE_ID_ML7213_SPI	0x802c
101 #define PCI_DEVICE_ID_ML7223_SPI	0x800F
102 #define PCI_DEVICE_ID_ML7831_SPI	0x8816
103 
104 /*
105  * Set the number of SPI instance max
106  * Intel EG20T PCH :		1ch
107  * LAPIS Semiconductor ML7213 IOH :	2ch
108  * LAPIS Semiconductor ML7223 IOH :	1ch
109  * LAPIS Semiconductor ML7831 IOH :	1ch
110 */
111 #define PCH_SPI_MAX_DEV			2
112 
113 #define PCH_BUF_SIZE		4096
114 #define PCH_DMA_TRANS_SIZE	12
115 
116 static int use_dma = 1;
117 
118 struct pch_spi_dma_ctrl {
119 	struct dma_async_tx_descriptor	*desc_tx;
120 	struct dma_async_tx_descriptor	*desc_rx;
121 	struct pch_dma_slave		param_tx;
122 	struct pch_dma_slave		param_rx;
123 	struct dma_chan		*chan_tx;
124 	struct dma_chan		*chan_rx;
125 	struct scatterlist		*sg_tx_p;
126 	struct scatterlist		*sg_rx_p;
127 	struct scatterlist		sg_tx;
128 	struct scatterlist		sg_rx;
129 	int				nent;
130 	void				*tx_buf_virt;
131 	void				*rx_buf_virt;
132 	dma_addr_t			tx_buf_dma;
133 	dma_addr_t			rx_buf_dma;
134 };
135 /**
136  * struct pch_spi_data - Holds the SPI channel specific details
137  * @io_remap_addr:		The remapped PCI base address
138  * @master:			Pointer to the SPI master structure
139  * @work:			Reference to work queue handler
140  * @wk:				Workqueue for carrying out execution of the
141  *				requests
142  * @wait:			Wait queue for waking up upon receiving an
143  *				interrupt.
144  * @transfer_complete:		Status of SPI Transfer
145  * @bcurrent_msg_processing:	Status flag for message processing
146  * @lock:			Lock for protecting this structure
147  * @queue:			SPI Message queue
148  * @status:			Status of the SPI driver
149  * @bpw_len:			Length of data to be transferred in bits per
150  *				word
151  * @transfer_active:		Flag showing active transfer
152  * @tx_index:			Transmit data count; for bookkeeping during
153  *				transfer
154  * @rx_index:			Receive data count; for bookkeeping during
155  *				transfer
156  * @tx_buff:			Buffer for data to be transmitted
157  * @rx_index:			Buffer for Received data
158  * @n_curnt_chip:		The chip number that this SPI driver currently
159  *				operates on
160  * @current_chip:		Reference to the current chip that this SPI
161  *				driver currently operates on
162  * @current_msg:		The current message that this SPI driver is
163  *				handling
164  * @cur_trans:			The current transfer that this SPI driver is
165  *				handling
166  * @board_dat:			Reference to the SPI device data structure
167  * @plat_dev:			platform_device structure
168  * @ch:				SPI channel number
169  * @irq_reg_sts:		Status of IRQ registration
170  */
171 struct pch_spi_data {
172 	void __iomem *io_remap_addr;
173 	unsigned long io_base_addr;
174 	struct spi_master *master;
175 	struct work_struct work;
176 	struct workqueue_struct *wk;
177 	wait_queue_head_t wait;
178 	u8 transfer_complete;
179 	u8 bcurrent_msg_processing;
180 	spinlock_t lock;
181 	struct list_head queue;
182 	u8 status;
183 	u32 bpw_len;
184 	u8 transfer_active;
185 	u32 tx_index;
186 	u32 rx_index;
187 	u16 *pkt_tx_buff;
188 	u16 *pkt_rx_buff;
189 	u8 n_curnt_chip;
190 	struct spi_device *current_chip;
191 	struct spi_message *current_msg;
192 	struct spi_transfer *cur_trans;
193 	struct pch_spi_board_data *board_dat;
194 	struct platform_device	*plat_dev;
195 	int ch;
196 	struct pch_spi_dma_ctrl dma;
197 	int use_dma;
198 	u8 irq_reg_sts;
199 	int save_total_len;
200 };
201 
202 /**
203  * struct pch_spi_board_data - Holds the SPI device specific details
204  * @pdev:		Pointer to the PCI device
205  * @suspend_sts:	Status of suspend
206  * @num:		The number of SPI device instance
207  */
208 struct pch_spi_board_data {
209 	struct pci_dev *pdev;
210 	u8 suspend_sts;
211 	int num;
212 };
213 
214 struct pch_pd_dev_save {
215 	int num;
216 	struct platform_device *pd_save[PCH_SPI_MAX_DEV];
217 	struct pch_spi_board_data *board_dat;
218 };
219 
220 static DEFINE_PCI_DEVICE_TABLE(pch_spi_pcidev_id) = {
221 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI),    1, },
222 	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
223 	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
224 	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, },
225 	{ }
226 };
227 
228 /**
229  * pch_spi_writereg() - Performs  register writes
230  * @master:	Pointer to struct spi_master.
231  * @idx:	Register offset.
232  * @val:	Value to be written to register.
233  */
pch_spi_writereg(struct spi_master * master,int idx,u32 val)234 static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
235 {
236 	struct pch_spi_data *data = spi_master_get_devdata(master);
237 	iowrite32(val, (data->io_remap_addr + idx));
238 }
239 
240 /**
241  * pch_spi_readreg() - Performs register reads
242  * @master:	Pointer to struct spi_master.
243  * @idx:	Register offset.
244  */
pch_spi_readreg(struct spi_master * master,int idx)245 static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
246 {
247 	struct pch_spi_data *data = spi_master_get_devdata(master);
248 	return ioread32(data->io_remap_addr + idx);
249 }
250 
pch_spi_setclr_reg(struct spi_master * master,int idx,u32 set,u32 clr)251 static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
252 				      u32 set, u32 clr)
253 {
254 	u32 tmp = pch_spi_readreg(master, idx);
255 	tmp = (tmp & ~clr) | set;
256 	pch_spi_writereg(master, idx, tmp);
257 }
258 
pch_spi_set_master_mode(struct spi_master * master)259 static void pch_spi_set_master_mode(struct spi_master *master)
260 {
261 	pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
262 }
263 
264 /**
265  * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
266  * @master:	Pointer to struct spi_master.
267  */
pch_spi_clear_fifo(struct spi_master * master)268 static void pch_spi_clear_fifo(struct spi_master *master)
269 {
270 	pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
271 	pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
272 }
273 
pch_spi_handler_sub(struct pch_spi_data * data,u32 reg_spsr_val,void __iomem * io_remap_addr)274 static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
275 				void __iomem *io_remap_addr)
276 {
277 	u32 n_read, tx_index, rx_index, bpw_len;
278 	u16 *pkt_rx_buffer, *pkt_tx_buff;
279 	int read_cnt;
280 	u32 reg_spcr_val;
281 	void __iomem *spsr;
282 	void __iomem *spdrr;
283 	void __iomem *spdwr;
284 
285 	spsr = io_remap_addr + PCH_SPSR;
286 	iowrite32(reg_spsr_val, spsr);
287 
288 	if (data->transfer_active) {
289 		rx_index = data->rx_index;
290 		tx_index = data->tx_index;
291 		bpw_len = data->bpw_len;
292 		pkt_rx_buffer = data->pkt_rx_buff;
293 		pkt_tx_buff = data->pkt_tx_buff;
294 
295 		spdrr = io_remap_addr + PCH_SPDRR;
296 		spdwr = io_remap_addr + PCH_SPDWR;
297 
298 		n_read = PCH_READABLE(reg_spsr_val);
299 
300 		for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
301 			pkt_rx_buffer[rx_index++] = ioread32(spdrr);
302 			if (tx_index < bpw_len)
303 				iowrite32(pkt_tx_buff[tx_index++], spdwr);
304 		}
305 
306 		/* disable RFI if not needed */
307 		if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
308 			reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
309 			reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
310 
311 			/* reset rx threshold */
312 			reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
313 			reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
314 
315 			iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
316 		}
317 
318 		/* update counts */
319 		data->tx_index = tx_index;
320 		data->rx_index = rx_index;
321 
322 		/* if transfer complete interrupt */
323 		if (reg_spsr_val & SPSR_FI_BIT) {
324 			if ((tx_index == bpw_len) && (rx_index == tx_index)) {
325 				/* disable interrupts */
326 				pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
327 						   PCH_ALL);
328 
329 				/* transfer is completed;
330 				   inform pch_spi_process_messages */
331 				data->transfer_complete = true;
332 				data->transfer_active = false;
333 				wake_up(&data->wait);
334 			} else {
335 				dev_err(&data->master->dev,
336 					"%s : Transfer is not completed",
337 					__func__);
338 			}
339 		}
340 	}
341 }
342 
343 /**
344  * pch_spi_handler() - Interrupt handler
345  * @irq:	The interrupt number.
346  * @dev_id:	Pointer to struct pch_spi_board_data.
347  */
pch_spi_handler(int irq,void * dev_id)348 static irqreturn_t pch_spi_handler(int irq, void *dev_id)
349 {
350 	u32 reg_spsr_val;
351 	void __iomem *spsr;
352 	void __iomem *io_remap_addr;
353 	irqreturn_t ret = IRQ_NONE;
354 	struct pch_spi_data *data = dev_id;
355 	struct pch_spi_board_data *board_dat = data->board_dat;
356 
357 	if (board_dat->suspend_sts) {
358 		dev_dbg(&board_dat->pdev->dev,
359 			"%s returning due to suspend\n", __func__);
360 		return IRQ_NONE;
361 	}
362 
363 	io_remap_addr = data->io_remap_addr;
364 	spsr = io_remap_addr + PCH_SPSR;
365 
366 	reg_spsr_val = ioread32(spsr);
367 
368 	if (reg_spsr_val & SPSR_ORF_BIT) {
369 		dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
370 		if (data->current_msg->complete != 0) {
371 			data->transfer_complete = true;
372 			data->current_msg->status = -EIO;
373 			data->current_msg->complete(data->current_msg->context);
374 			data->bcurrent_msg_processing = false;
375 			data->current_msg = NULL;
376 			data->cur_trans = NULL;
377 		}
378 	}
379 
380 	if (data->use_dma)
381 		return IRQ_NONE;
382 
383 	/* Check if the interrupt is for SPI device */
384 	if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
385 		pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
386 		ret = IRQ_HANDLED;
387 	}
388 
389 	dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
390 		__func__, ret);
391 
392 	return ret;
393 }
394 
395 /**
396  * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
397  * @master:	Pointer to struct spi_master.
398  * @speed_hz:	Baud rate.
399  */
pch_spi_set_baud_rate(struct spi_master * master,u32 speed_hz)400 static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
401 {
402 	u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
403 
404 	/* if baud rate is less than we can support limit it */
405 	if (n_spbr > PCH_MAX_SPBR)
406 		n_spbr = PCH_MAX_SPBR;
407 
408 	pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
409 }
410 
411 /**
412  * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
413  * @master:		Pointer to struct spi_master.
414  * @bits_per_word:	Bits per word for SPI transfer.
415  */
pch_spi_set_bits_per_word(struct spi_master * master,u8 bits_per_word)416 static void pch_spi_set_bits_per_word(struct spi_master *master,
417 				      u8 bits_per_word)
418 {
419 	if (bits_per_word == 8)
420 		pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
421 	else
422 		pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
423 }
424 
425 /**
426  * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
427  * @spi:	Pointer to struct spi_device.
428  */
pch_spi_setup_transfer(struct spi_device * spi)429 static void pch_spi_setup_transfer(struct spi_device *spi)
430 {
431 	u32 flags = 0;
432 
433 	dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
434 		__func__, pch_spi_readreg(spi->master, PCH_SPBRR),
435 		spi->max_speed_hz);
436 	pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
437 
438 	/* set bits per word */
439 	pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
440 
441 	if (!(spi->mode & SPI_LSB_FIRST))
442 		flags |= SPCR_LSBF_BIT;
443 	if (spi->mode & SPI_CPOL)
444 		flags |= SPCR_CPOL_BIT;
445 	if (spi->mode & SPI_CPHA)
446 		flags |= SPCR_CPHA_BIT;
447 	pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
448 			   (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
449 
450 	/* Clear the FIFO by toggling  FICLR to 1 and back to 0 */
451 	pch_spi_clear_fifo(spi->master);
452 }
453 
454 /**
455  * pch_spi_reset() - Clears SPI registers
456  * @master:	Pointer to struct spi_master.
457  */
pch_spi_reset(struct spi_master * master)458 static void pch_spi_reset(struct spi_master *master)
459 {
460 	/* write 1 to reset SPI */
461 	pch_spi_writereg(master, PCH_SRST, 0x1);
462 
463 	/* clear reset */
464 	pch_spi_writereg(master, PCH_SRST, 0x0);
465 }
466 
pch_spi_setup(struct spi_device * pspi)467 static int pch_spi_setup(struct spi_device *pspi)
468 {
469 	/* check bits per word */
470 	if (pspi->bits_per_word == 0) {
471 		pspi->bits_per_word = 8;
472 		dev_dbg(&pspi->dev, "%s 8 bits per word\n", __func__);
473 	}
474 
475 	if ((pspi->bits_per_word != 8) && (pspi->bits_per_word != 16)) {
476 		dev_err(&pspi->dev, "%s Invalid bits per word\n", __func__);
477 		return -EINVAL;
478 	}
479 
480 	/* Check baud rate setting */
481 	/* if baud rate of chip is greater than
482 	   max we can support,return error */
483 	if ((pspi->max_speed_hz) > PCH_MAX_BAUDRATE)
484 		pspi->max_speed_hz = PCH_MAX_BAUDRATE;
485 
486 	dev_dbg(&pspi->dev, "%s MODE = %x\n", __func__,
487 		(pspi->mode) & (SPI_CPOL | SPI_CPHA));
488 
489 	return 0;
490 }
491 
pch_spi_transfer(struct spi_device * pspi,struct spi_message * pmsg)492 static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
493 {
494 
495 	struct spi_transfer *transfer;
496 	struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
497 	int retval;
498 	unsigned long flags;
499 
500 	/* validate spi message and baud rate */
501 	if (unlikely(list_empty(&pmsg->transfers) == 1)) {
502 		dev_err(&pspi->dev, "%s list empty\n", __func__);
503 		retval = -EINVAL;
504 		goto err_out;
505 	}
506 
507 	if (unlikely(pspi->max_speed_hz == 0)) {
508 		dev_err(&pspi->dev, "%s pch_spi_tranfer maxspeed=%d\n",
509 			__func__, pspi->max_speed_hz);
510 		retval = -EINVAL;
511 		goto err_out;
512 	}
513 
514 	dev_dbg(&pspi->dev, "%s Transfer List not empty. "
515 		"Transfer Speed is set.\n", __func__);
516 
517 	spin_lock_irqsave(&data->lock, flags);
518 	/* validate Tx/Rx buffers and Transfer length */
519 	list_for_each_entry(transfer, &pmsg->transfers, transfer_list) {
520 		if (!transfer->tx_buf && !transfer->rx_buf) {
521 			dev_err(&pspi->dev,
522 				"%s Tx and Rx buffer NULL\n", __func__);
523 			retval = -EINVAL;
524 			goto err_return_spinlock;
525 		}
526 
527 		if (!transfer->len) {
528 			dev_err(&pspi->dev, "%s Transfer length invalid\n",
529 				__func__);
530 			retval = -EINVAL;
531 			goto err_return_spinlock;
532 		}
533 
534 		dev_dbg(&pspi->dev, "%s Tx/Rx buffer valid. Transfer length"
535 			" valid\n", __func__);
536 
537 		/* if baud rate has been specified validate the same */
538 		if (transfer->speed_hz > PCH_MAX_BAUDRATE)
539 			transfer->speed_hz = PCH_MAX_BAUDRATE;
540 
541 		/* if bits per word has been specified validate the same */
542 		if (transfer->bits_per_word) {
543 			if ((transfer->bits_per_word != 8)
544 			    && (transfer->bits_per_word != 16)) {
545 				retval = -EINVAL;
546 				dev_err(&pspi->dev,
547 					"%s Invalid bits per word\n", __func__);
548 				goto err_return_spinlock;
549 			}
550 		}
551 	}
552 	spin_unlock_irqrestore(&data->lock, flags);
553 
554 	/* We won't process any messages if we have been asked to terminate */
555 	if (data->status == STATUS_EXITING) {
556 		dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
557 		retval = -ESHUTDOWN;
558 		goto err_out;
559 	}
560 
561 	/* If suspended ,return -EINVAL */
562 	if (data->board_dat->suspend_sts) {
563 		dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
564 		retval = -EINVAL;
565 		goto err_out;
566 	}
567 
568 	/* set status of message */
569 	pmsg->actual_length = 0;
570 	dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
571 
572 	pmsg->status = -EINPROGRESS;
573 	spin_lock_irqsave(&data->lock, flags);
574 	/* add message to queue */
575 	list_add_tail(&pmsg->queue, &data->queue);
576 	spin_unlock_irqrestore(&data->lock, flags);
577 
578 	dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
579 
580 	/* schedule work queue to run */
581 	queue_work(data->wk, &data->work);
582 	dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
583 
584 	retval = 0;
585 
586 err_out:
587 	dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
588 	return retval;
589 err_return_spinlock:
590 	dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
591 	spin_unlock_irqrestore(&data->lock, flags);
592 	return retval;
593 }
594 
pch_spi_select_chip(struct pch_spi_data * data,struct spi_device * pspi)595 static inline void pch_spi_select_chip(struct pch_spi_data *data,
596 				       struct spi_device *pspi)
597 {
598 	if (data->current_chip != NULL) {
599 		if (pspi->chip_select != data->n_curnt_chip) {
600 			dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
601 			data->current_chip = NULL;
602 		}
603 	}
604 
605 	data->current_chip = pspi;
606 
607 	data->n_curnt_chip = data->current_chip->chip_select;
608 
609 	dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
610 	pch_spi_setup_transfer(pspi);
611 }
612 
pch_spi_set_tx(struct pch_spi_data * data,int * bpw)613 static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
614 {
615 	int size;
616 	u32 n_writes;
617 	int j;
618 	struct spi_message *pmsg;
619 	const u8 *tx_buf;
620 	const u16 *tx_sbuf;
621 
622 	/* set baud rate if needed */
623 	if (data->cur_trans->speed_hz) {
624 		dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
625 		pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
626 	}
627 
628 	/* set bits per word if needed */
629 	if (data->cur_trans->bits_per_word &&
630 	    (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
631 		dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
632 		pch_spi_set_bits_per_word(data->master,
633 					  data->cur_trans->bits_per_word);
634 		*bpw = data->cur_trans->bits_per_word;
635 	} else {
636 		*bpw = data->current_msg->spi->bits_per_word;
637 	}
638 
639 	/* reset Tx/Rx index */
640 	data->tx_index = 0;
641 	data->rx_index = 0;
642 
643 	data->bpw_len = data->cur_trans->len / (*bpw / 8);
644 
645 	/* find alloc size */
646 	size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
647 
648 	/* allocate memory for pkt_tx_buff & pkt_rx_buffer */
649 	data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
650 	if (data->pkt_tx_buff != NULL) {
651 		data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
652 		if (!data->pkt_rx_buff)
653 			kfree(data->pkt_tx_buff);
654 	}
655 
656 	if (!data->pkt_rx_buff) {
657 		/* flush queue and set status of all transfers to -ENOMEM */
658 		dev_err(&data->master->dev, "%s :kzalloc failed\n", __func__);
659 		list_for_each_entry(pmsg, data->queue.next, queue) {
660 			pmsg->status = -ENOMEM;
661 
662 			if (pmsg->complete != 0)
663 				pmsg->complete(pmsg->context);
664 
665 			/* delete from queue */
666 			list_del_init(&pmsg->queue);
667 		}
668 		return;
669 	}
670 
671 	/* copy Tx Data */
672 	if (data->cur_trans->tx_buf != NULL) {
673 		if (*bpw == 8) {
674 			tx_buf = data->cur_trans->tx_buf;
675 			for (j = 0; j < data->bpw_len; j++)
676 				data->pkt_tx_buff[j] = *tx_buf++;
677 		} else {
678 			tx_sbuf = data->cur_trans->tx_buf;
679 			for (j = 0; j < data->bpw_len; j++)
680 				data->pkt_tx_buff[j] = *tx_sbuf++;
681 		}
682 	}
683 
684 	/* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
685 	n_writes = data->bpw_len;
686 	if (n_writes > PCH_MAX_FIFO_DEPTH)
687 		n_writes = PCH_MAX_FIFO_DEPTH;
688 
689 	dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
690 		"0x2 to SSNXCR\n", __func__);
691 	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
692 
693 	for (j = 0; j < n_writes; j++)
694 		pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
695 
696 	/* update tx_index */
697 	data->tx_index = j;
698 
699 	/* reset transfer complete flag */
700 	data->transfer_complete = false;
701 	data->transfer_active = true;
702 }
703 
pch_spi_nomore_transfer(struct pch_spi_data * data)704 static void pch_spi_nomore_transfer(struct pch_spi_data *data)
705 {
706 	struct spi_message *pmsg;
707 	dev_dbg(&data->master->dev, "%s called\n", __func__);
708 	/* Invoke complete callback
709 	 * [To the spi core..indicating end of transfer] */
710 	data->current_msg->status = 0;
711 
712 	if (data->current_msg->complete != 0) {
713 		dev_dbg(&data->master->dev,
714 			"%s:Invoking callback of SPI core\n", __func__);
715 		data->current_msg->complete(data->current_msg->context);
716 	}
717 
718 	/* update status in global variable */
719 	data->bcurrent_msg_processing = false;
720 
721 	dev_dbg(&data->master->dev,
722 		"%s:data->bcurrent_msg_processing = false\n", __func__);
723 
724 	data->current_msg = NULL;
725 	data->cur_trans = NULL;
726 
727 	/* check if we have items in list and not suspending
728 	 * return 1 if list empty */
729 	if ((list_empty(&data->queue) == 0) &&
730 	    (!data->board_dat->suspend_sts) &&
731 	    (data->status != STATUS_EXITING)) {
732 		/* We have some more work to do (either there is more tranint
733 		 * bpw;sfer requests in the current message or there are
734 		 *more messages)
735 		 */
736 		dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
737 		queue_work(data->wk, &data->work);
738 	} else if (data->board_dat->suspend_sts ||
739 		   data->status == STATUS_EXITING) {
740 		dev_dbg(&data->master->dev,
741 			"%s suspend/remove initiated, flushing queue\n",
742 			__func__);
743 		list_for_each_entry(pmsg, data->queue.next, queue) {
744 			pmsg->status = -EIO;
745 
746 			if (pmsg->complete)
747 				pmsg->complete(pmsg->context);
748 
749 			/* delete from queue */
750 			list_del_init(&pmsg->queue);
751 		}
752 	}
753 }
754 
pch_spi_set_ir(struct pch_spi_data * data)755 static void pch_spi_set_ir(struct pch_spi_data *data)
756 {
757 	/* enable interrupts, set threshold, enable SPI */
758 	if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
759 		/* set receive threshold to PCH_RX_THOLD */
760 		pch_spi_setclr_reg(data->master, PCH_SPCR,
761 				   PCH_RX_THOLD << SPCR_RFIC_FIELD |
762 				   SPCR_FIE_BIT | SPCR_RFIE_BIT |
763 				   SPCR_ORIE_BIT | SPCR_SPE_BIT,
764 				   MASK_RFIC_SPCR_BITS | PCH_ALL);
765 	else
766 		/* set receive threshold to maximum */
767 		pch_spi_setclr_reg(data->master, PCH_SPCR,
768 				   PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
769 				   SPCR_FIE_BIT | SPCR_ORIE_BIT |
770 				   SPCR_SPE_BIT,
771 				   MASK_RFIC_SPCR_BITS | PCH_ALL);
772 
773 	/* Wait until the transfer completes; go to sleep after
774 				 initiating the transfer. */
775 	dev_dbg(&data->master->dev,
776 		"%s:waiting for transfer to get over\n", __func__);
777 
778 	wait_event_interruptible(data->wait, data->transfer_complete);
779 
780 	/* clear all interrupts */
781 	pch_spi_writereg(data->master, PCH_SPSR,
782 			 pch_spi_readreg(data->master, PCH_SPSR));
783 	/* Disable interrupts and SPI transfer */
784 	pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
785 	/* clear FIFO */
786 	pch_spi_clear_fifo(data->master);
787 }
788 
pch_spi_copy_rx_data(struct pch_spi_data * data,int bpw)789 static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
790 {
791 	int j;
792 	u8 *rx_buf;
793 	u16 *rx_sbuf;
794 
795 	/* copy Rx Data */
796 	if (!data->cur_trans->rx_buf)
797 		return;
798 
799 	if (bpw == 8) {
800 		rx_buf = data->cur_trans->rx_buf;
801 		for (j = 0; j < data->bpw_len; j++)
802 			*rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
803 	} else {
804 		rx_sbuf = data->cur_trans->rx_buf;
805 		for (j = 0; j < data->bpw_len; j++)
806 			*rx_sbuf++ = data->pkt_rx_buff[j];
807 	}
808 }
809 
pch_spi_copy_rx_data_for_dma(struct pch_spi_data * data,int bpw)810 static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
811 {
812 	int j;
813 	u8 *rx_buf;
814 	u16 *rx_sbuf;
815 	const u8 *rx_dma_buf;
816 	const u16 *rx_dma_sbuf;
817 
818 	/* copy Rx Data */
819 	if (!data->cur_trans->rx_buf)
820 		return;
821 
822 	if (bpw == 8) {
823 		rx_buf = data->cur_trans->rx_buf;
824 		rx_dma_buf = data->dma.rx_buf_virt;
825 		for (j = 0; j < data->bpw_len; j++)
826 			*rx_buf++ = *rx_dma_buf++ & 0xFF;
827 		data->cur_trans->rx_buf = rx_buf;
828 	} else {
829 		rx_sbuf = data->cur_trans->rx_buf;
830 		rx_dma_sbuf = data->dma.rx_buf_virt;
831 		for (j = 0; j < data->bpw_len; j++)
832 			*rx_sbuf++ = *rx_dma_sbuf++;
833 		data->cur_trans->rx_buf = rx_sbuf;
834 	}
835 }
836 
pch_spi_start_transfer(struct pch_spi_data * data)837 static int pch_spi_start_transfer(struct pch_spi_data *data)
838 {
839 	struct pch_spi_dma_ctrl *dma;
840 	unsigned long flags;
841 	int rtn;
842 
843 	dma = &data->dma;
844 
845 	spin_lock_irqsave(&data->lock, flags);
846 
847 	/* disable interrupts, SPI set enable */
848 	pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
849 
850 	spin_unlock_irqrestore(&data->lock, flags);
851 
852 	/* Wait until the transfer completes; go to sleep after
853 				 initiating the transfer. */
854 	dev_dbg(&data->master->dev,
855 		"%s:waiting for transfer to get over\n", __func__);
856 	rtn = wait_event_interruptible_timeout(data->wait,
857 					       data->transfer_complete,
858 					       msecs_to_jiffies(2 * HZ));
859 	if (!rtn)
860 		dev_err(&data->master->dev,
861 			"%s wait-event timeout\n", __func__);
862 
863 	dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
864 			    DMA_FROM_DEVICE);
865 
866 	dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
867 			    DMA_FROM_DEVICE);
868 	memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
869 
870 	async_tx_ack(dma->desc_rx);
871 	async_tx_ack(dma->desc_tx);
872 	kfree(dma->sg_tx_p);
873 	kfree(dma->sg_rx_p);
874 
875 	spin_lock_irqsave(&data->lock, flags);
876 
877 	/* clear fifo threshold, disable interrupts, disable SPI transfer */
878 	pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
879 			   MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
880 			   SPCR_SPE_BIT);
881 	/* clear all interrupts */
882 	pch_spi_writereg(data->master, PCH_SPSR,
883 			 pch_spi_readreg(data->master, PCH_SPSR));
884 	/* clear FIFO */
885 	pch_spi_clear_fifo(data->master);
886 
887 	spin_unlock_irqrestore(&data->lock, flags);
888 
889 	return rtn;
890 }
891 
pch_dma_rx_complete(void * arg)892 static void pch_dma_rx_complete(void *arg)
893 {
894 	struct pch_spi_data *data = arg;
895 
896 	/* transfer is completed;inform pch_spi_process_messages_dma */
897 	data->transfer_complete = true;
898 	wake_up_interruptible(&data->wait);
899 }
900 
pch_spi_filter(struct dma_chan * chan,void * slave)901 static bool pch_spi_filter(struct dma_chan *chan, void *slave)
902 {
903 	struct pch_dma_slave *param = slave;
904 
905 	if ((chan->chan_id == param->chan_id) &&
906 	    (param->dma_dev == chan->device->dev)) {
907 		chan->private = param;
908 		return true;
909 	} else {
910 		return false;
911 	}
912 }
913 
pch_spi_request_dma(struct pch_spi_data * data,int bpw)914 static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
915 {
916 	dma_cap_mask_t mask;
917 	struct dma_chan *chan;
918 	struct pci_dev *dma_dev;
919 	struct pch_dma_slave *param;
920 	struct pch_spi_dma_ctrl *dma;
921 	unsigned int width;
922 
923 	if (bpw == 8)
924 		width = PCH_DMA_WIDTH_1_BYTE;
925 	else
926 		width = PCH_DMA_WIDTH_2_BYTES;
927 
928 	dma = &data->dma;
929 	dma_cap_zero(mask);
930 	dma_cap_set(DMA_SLAVE, mask);
931 
932 	/* Get DMA's dev information */
933 	dma_dev = pci_get_bus_and_slot(data->board_dat->pdev->bus->number,
934 				       PCI_DEVFN(12, 0));
935 
936 	/* Set Tx DMA */
937 	param = &dma->param_tx;
938 	param->dma_dev = &dma_dev->dev;
939 	param->chan_id = data->master->bus_num * 2; /* Tx = 0, 2 */
940 	param->tx_reg = data->io_base_addr + PCH_SPDWR;
941 	param->width = width;
942 	chan = dma_request_channel(mask, pch_spi_filter, param);
943 	if (!chan) {
944 		dev_err(&data->master->dev,
945 			"ERROR: dma_request_channel FAILS(Tx)\n");
946 		data->use_dma = 0;
947 		return;
948 	}
949 	dma->chan_tx = chan;
950 
951 	/* Set Rx DMA */
952 	param = &dma->param_rx;
953 	param->dma_dev = &dma_dev->dev;
954 	param->chan_id = data->master->bus_num * 2 + 1; /* Rx = Tx + 1 */
955 	param->rx_reg = data->io_base_addr + PCH_SPDRR;
956 	param->width = width;
957 	chan = dma_request_channel(mask, pch_spi_filter, param);
958 	if (!chan) {
959 		dev_err(&data->master->dev,
960 			"ERROR: dma_request_channel FAILS(Rx)\n");
961 		dma_release_channel(dma->chan_tx);
962 		dma->chan_tx = NULL;
963 		data->use_dma = 0;
964 		return;
965 	}
966 	dma->chan_rx = chan;
967 }
968 
pch_spi_release_dma(struct pch_spi_data * data)969 static void pch_spi_release_dma(struct pch_spi_data *data)
970 {
971 	struct pch_spi_dma_ctrl *dma;
972 
973 	dma = &data->dma;
974 	if (dma->chan_tx) {
975 		dma_release_channel(dma->chan_tx);
976 		dma->chan_tx = NULL;
977 	}
978 	if (dma->chan_rx) {
979 		dma_release_channel(dma->chan_rx);
980 		dma->chan_rx = NULL;
981 	}
982 	return;
983 }
984 
pch_spi_handle_dma(struct pch_spi_data * data,int * bpw)985 static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
986 {
987 	const u8 *tx_buf;
988 	const u16 *tx_sbuf;
989 	u8 *tx_dma_buf;
990 	u16 *tx_dma_sbuf;
991 	struct scatterlist *sg;
992 	struct dma_async_tx_descriptor *desc_tx;
993 	struct dma_async_tx_descriptor *desc_rx;
994 	int num;
995 	int i;
996 	int size;
997 	int rem;
998 	int head;
999 	unsigned long flags;
1000 	struct pch_spi_dma_ctrl *dma;
1001 
1002 	dma = &data->dma;
1003 
1004 	/* set baud rate if needed */
1005 	if (data->cur_trans->speed_hz) {
1006 		dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
1007 		spin_lock_irqsave(&data->lock, flags);
1008 		pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
1009 		spin_unlock_irqrestore(&data->lock, flags);
1010 	}
1011 
1012 	/* set bits per word if needed */
1013 	if (data->cur_trans->bits_per_word &&
1014 	    (data->current_msg->spi->bits_per_word !=
1015 	     data->cur_trans->bits_per_word)) {
1016 		dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
1017 		spin_lock_irqsave(&data->lock, flags);
1018 		pch_spi_set_bits_per_word(data->master,
1019 					  data->cur_trans->bits_per_word);
1020 		spin_unlock_irqrestore(&data->lock, flags);
1021 		*bpw = data->cur_trans->bits_per_word;
1022 	} else {
1023 		*bpw = data->current_msg->spi->bits_per_word;
1024 	}
1025 	data->bpw_len = data->cur_trans->len / (*bpw / 8);
1026 
1027 	if (data->bpw_len > PCH_BUF_SIZE) {
1028 		data->bpw_len = PCH_BUF_SIZE;
1029 		data->cur_trans->len -= PCH_BUF_SIZE;
1030 	}
1031 
1032 	/* copy Tx Data */
1033 	if (data->cur_trans->tx_buf != NULL) {
1034 		if (*bpw == 8) {
1035 			tx_buf = data->cur_trans->tx_buf;
1036 			tx_dma_buf = dma->tx_buf_virt;
1037 			for (i = 0; i < data->bpw_len; i++)
1038 				*tx_dma_buf++ = *tx_buf++;
1039 		} else {
1040 			tx_sbuf = data->cur_trans->tx_buf;
1041 			tx_dma_sbuf = dma->tx_buf_virt;
1042 			for (i = 0; i < data->bpw_len; i++)
1043 				*tx_dma_sbuf++ = *tx_sbuf++;
1044 		}
1045 	}
1046 
1047 	/* Calculate Rx parameter for DMA transmitting */
1048 	if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
1049 		if (data->bpw_len % PCH_DMA_TRANS_SIZE) {
1050 			num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1051 			rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
1052 		} else {
1053 			num = data->bpw_len / PCH_DMA_TRANS_SIZE;
1054 			rem = PCH_DMA_TRANS_SIZE;
1055 		}
1056 		size = PCH_DMA_TRANS_SIZE;
1057 	} else {
1058 		num = 1;
1059 		size = data->bpw_len;
1060 		rem = data->bpw_len;
1061 	}
1062 	dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
1063 		__func__, num, size, rem);
1064 	spin_lock_irqsave(&data->lock, flags);
1065 
1066 	/* set receive fifo threshold and transmit fifo threshold */
1067 	pch_spi_setclr_reg(data->master, PCH_SPCR,
1068 			   ((size - 1) << SPCR_RFIC_FIELD) |
1069 			   (PCH_TX_THOLD << SPCR_TFIC_FIELD),
1070 			   MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
1071 
1072 	spin_unlock_irqrestore(&data->lock, flags);
1073 
1074 	/* RX */
1075 	dma->sg_rx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
1076 	sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
1077 	/* offset, length setting */
1078 	sg = dma->sg_rx_p;
1079 	for (i = 0; i < num; i++, sg++) {
1080 		if (i == (num - 2)) {
1081 			sg->offset = size * i;
1082 			sg->offset = sg->offset * (*bpw / 8);
1083 			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
1084 				    sg->offset);
1085 			sg_dma_len(sg) = rem;
1086 		} else if (i == (num - 1)) {
1087 			sg->offset = size * (i - 1) + rem;
1088 			sg->offset = sg->offset * (*bpw / 8);
1089 			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1090 				    sg->offset);
1091 			sg_dma_len(sg) = size;
1092 		} else {
1093 			sg->offset = size * i;
1094 			sg->offset = sg->offset * (*bpw / 8);
1095 			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1096 				    sg->offset);
1097 			sg_dma_len(sg) = size;
1098 		}
1099 		sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
1100 	}
1101 	sg = dma->sg_rx_p;
1102 	desc_rx = dmaengine_prep_slave_sg(dma->chan_rx, sg,
1103 					num, DMA_DEV_TO_MEM,
1104 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1105 	if (!desc_rx) {
1106 		dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
1107 			__func__);
1108 		return;
1109 	}
1110 	dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
1111 	desc_rx->callback = pch_dma_rx_complete;
1112 	desc_rx->callback_param = data;
1113 	dma->nent = num;
1114 	dma->desc_rx = desc_rx;
1115 
1116 	/* Calculate Tx parameter for DMA transmitting */
1117 	if (data->bpw_len > PCH_MAX_FIFO_DEPTH) {
1118 		head = PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE;
1119 		if (data->bpw_len % PCH_DMA_TRANS_SIZE > 4) {
1120 			num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1121 			rem = data->bpw_len % PCH_DMA_TRANS_SIZE - head;
1122 		} else {
1123 			num = data->bpw_len / PCH_DMA_TRANS_SIZE;
1124 			rem = data->bpw_len % PCH_DMA_TRANS_SIZE +
1125 			      PCH_DMA_TRANS_SIZE - head;
1126 		}
1127 		size = PCH_DMA_TRANS_SIZE;
1128 	} else {
1129 		num = 1;
1130 		size = data->bpw_len;
1131 		rem = data->bpw_len;
1132 		head = 0;
1133 	}
1134 
1135 	dma->sg_tx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
1136 	sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
1137 	/* offset, length setting */
1138 	sg = dma->sg_tx_p;
1139 	for (i = 0; i < num; i++, sg++) {
1140 		if (i == 0) {
1141 			sg->offset = 0;
1142 			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size + head,
1143 				    sg->offset);
1144 			sg_dma_len(sg) = size + head;
1145 		} else if (i == (num - 1)) {
1146 			sg->offset = head + size * i;
1147 			sg->offset = sg->offset * (*bpw / 8);
1148 			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
1149 				    sg->offset);
1150 			sg_dma_len(sg) = rem;
1151 		} else {
1152 			sg->offset = head + size * i;
1153 			sg->offset = sg->offset * (*bpw / 8);
1154 			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
1155 				    sg->offset);
1156 			sg_dma_len(sg) = size;
1157 		}
1158 		sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
1159 	}
1160 	sg = dma->sg_tx_p;
1161 	desc_tx = dmaengine_prep_slave_sg(dma->chan_tx,
1162 					sg, num, DMA_MEM_TO_DEV,
1163 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1164 	if (!desc_tx) {
1165 		dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
1166 			__func__);
1167 		return;
1168 	}
1169 	dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
1170 	desc_tx->callback = NULL;
1171 	desc_tx->callback_param = data;
1172 	dma->nent = num;
1173 	dma->desc_tx = desc_tx;
1174 
1175 	dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
1176 		"0x2 to SSNXCR\n", __func__);
1177 
1178 	spin_lock_irqsave(&data->lock, flags);
1179 	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
1180 	desc_rx->tx_submit(desc_rx);
1181 	desc_tx->tx_submit(desc_tx);
1182 	spin_unlock_irqrestore(&data->lock, flags);
1183 
1184 	/* reset transfer complete flag */
1185 	data->transfer_complete = false;
1186 }
1187 
pch_spi_process_messages(struct work_struct * pwork)1188 static void pch_spi_process_messages(struct work_struct *pwork)
1189 {
1190 	struct spi_message *pmsg;
1191 	struct pch_spi_data *data;
1192 	int bpw;
1193 
1194 	data = container_of(pwork, struct pch_spi_data, work);
1195 	dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
1196 
1197 	spin_lock(&data->lock);
1198 	/* check if suspend has been initiated;if yes flush queue */
1199 	if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
1200 		dev_dbg(&data->master->dev, "%s suspend/remove initiated,"
1201 			"flushing queue\n", __func__);
1202 		list_for_each_entry(pmsg, data->queue.next, queue) {
1203 			pmsg->status = -EIO;
1204 
1205 			if (pmsg->complete != 0) {
1206 				spin_unlock(&data->lock);
1207 				pmsg->complete(pmsg->context);
1208 				spin_lock(&data->lock);
1209 			}
1210 
1211 			/* delete from queue */
1212 			list_del_init(&pmsg->queue);
1213 		}
1214 
1215 		spin_unlock(&data->lock);
1216 		return;
1217 	}
1218 
1219 	data->bcurrent_msg_processing = true;
1220 	dev_dbg(&data->master->dev,
1221 		"%s Set data->bcurrent_msg_processing= true\n", __func__);
1222 
1223 	/* Get the message from the queue and delete it from there. */
1224 	data->current_msg = list_entry(data->queue.next, struct spi_message,
1225 					queue);
1226 
1227 	list_del_init(&data->current_msg->queue);
1228 
1229 	data->current_msg->status = 0;
1230 
1231 	pch_spi_select_chip(data, data->current_msg->spi);
1232 
1233 	spin_unlock(&data->lock);
1234 
1235 	if (data->use_dma)
1236 		pch_spi_request_dma(data,
1237 				    data->current_msg->spi->bits_per_word);
1238 	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
1239 	do {
1240 		int cnt;
1241 		/* If we are already processing a message get the next
1242 		transfer structure from the message otherwise retrieve
1243 		the 1st transfer request from the message. */
1244 		spin_lock(&data->lock);
1245 		if (data->cur_trans == NULL) {
1246 			data->cur_trans =
1247 				list_entry(data->current_msg->transfers.next,
1248 					   struct spi_transfer, transfer_list);
1249 			dev_dbg(&data->master->dev, "%s "
1250 				":Getting 1st transfer message\n", __func__);
1251 		} else {
1252 			data->cur_trans =
1253 				list_entry(data->cur_trans->transfer_list.next,
1254 					   struct spi_transfer, transfer_list);
1255 			dev_dbg(&data->master->dev, "%s "
1256 				":Getting next transfer message\n", __func__);
1257 		}
1258 		spin_unlock(&data->lock);
1259 
1260 		if (!data->cur_trans->len)
1261 			goto out;
1262 		cnt = (data->cur_trans->len - 1) / PCH_BUF_SIZE + 1;
1263 		data->save_total_len = data->cur_trans->len;
1264 		if (data->use_dma) {
1265 			int i;
1266 			char *save_rx_buf = data->cur_trans->rx_buf;
1267 			for (i = 0; i < cnt; i ++) {
1268 				pch_spi_handle_dma(data, &bpw);
1269 				if (!pch_spi_start_transfer(data)) {
1270 					data->transfer_complete = true;
1271 					data->current_msg->status = -EIO;
1272 					data->current_msg->complete
1273 						   (data->current_msg->context);
1274 					data->bcurrent_msg_processing = false;
1275 					data->current_msg = NULL;
1276 					data->cur_trans = NULL;
1277 					goto out;
1278 				}
1279 				pch_spi_copy_rx_data_for_dma(data, bpw);
1280 			}
1281 			data->cur_trans->rx_buf = save_rx_buf;
1282 		} else {
1283 			pch_spi_set_tx(data, &bpw);
1284 			pch_spi_set_ir(data);
1285 			pch_spi_copy_rx_data(data, bpw);
1286 			kfree(data->pkt_rx_buff);
1287 			data->pkt_rx_buff = NULL;
1288 			kfree(data->pkt_tx_buff);
1289 			data->pkt_tx_buff = NULL;
1290 		}
1291 		/* increment message count */
1292 		data->cur_trans->len = data->save_total_len;
1293 		data->current_msg->actual_length += data->cur_trans->len;
1294 
1295 		dev_dbg(&data->master->dev,
1296 			"%s:data->current_msg->actual_length=%d\n",
1297 			__func__, data->current_msg->actual_length);
1298 
1299 		/* check for delay */
1300 		if (data->cur_trans->delay_usecs) {
1301 			dev_dbg(&data->master->dev, "%s:"
1302 				"delay in usec=%d\n", __func__,
1303 				data->cur_trans->delay_usecs);
1304 			udelay(data->cur_trans->delay_usecs);
1305 		}
1306 
1307 		spin_lock(&data->lock);
1308 
1309 		/* No more transfer in this message. */
1310 		if ((data->cur_trans->transfer_list.next) ==
1311 		    &(data->current_msg->transfers)) {
1312 			pch_spi_nomore_transfer(data);
1313 		}
1314 
1315 		spin_unlock(&data->lock);
1316 
1317 	} while (data->cur_trans != NULL);
1318 
1319 out:
1320 	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
1321 	if (data->use_dma)
1322 		pch_spi_release_dma(data);
1323 }
1324 
pch_spi_free_resources(struct pch_spi_board_data * board_dat,struct pch_spi_data * data)1325 static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
1326 				   struct pch_spi_data *data)
1327 {
1328 	dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1329 
1330 	/* free workqueue */
1331 	if (data->wk != NULL) {
1332 		destroy_workqueue(data->wk);
1333 		data->wk = NULL;
1334 		dev_dbg(&board_dat->pdev->dev,
1335 			"%s destroy_workqueue invoked successfully\n",
1336 			__func__);
1337 	}
1338 }
1339 
pch_spi_get_resources(struct pch_spi_board_data * board_dat,struct pch_spi_data * data)1340 static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
1341 				 struct pch_spi_data *data)
1342 {
1343 	int retval = 0;
1344 
1345 	dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1346 
1347 	/* create workqueue */
1348 	data->wk = create_singlethread_workqueue(KBUILD_MODNAME);
1349 	if (!data->wk) {
1350 		dev_err(&board_dat->pdev->dev,
1351 			"%s create_singlet hread_workqueue failed\n", __func__);
1352 		retval = -EBUSY;
1353 		goto err_return;
1354 	}
1355 
1356 	/* reset PCH SPI h/w */
1357 	pch_spi_reset(data->master);
1358 	dev_dbg(&board_dat->pdev->dev,
1359 		"%s pch_spi_reset invoked successfully\n", __func__);
1360 
1361 	dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
1362 
1363 err_return:
1364 	if (retval != 0) {
1365 		dev_err(&board_dat->pdev->dev,
1366 			"%s FAIL:invoking pch_spi_free_resources\n", __func__);
1367 		pch_spi_free_resources(board_dat, data);
1368 	}
1369 
1370 	dev_dbg(&board_dat->pdev->dev, "%s Return=%d\n", __func__, retval);
1371 
1372 	return retval;
1373 }
1374 
pch_free_dma_buf(struct pch_spi_board_data * board_dat,struct pch_spi_data * data)1375 static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
1376 			     struct pch_spi_data *data)
1377 {
1378 	struct pch_spi_dma_ctrl *dma;
1379 
1380 	dma = &data->dma;
1381 	if (dma->tx_buf_dma)
1382 		dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1383 				  dma->tx_buf_virt, dma->tx_buf_dma);
1384 	if (dma->rx_buf_dma)
1385 		dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1386 				  dma->rx_buf_virt, dma->rx_buf_dma);
1387 	return;
1388 }
1389 
pch_alloc_dma_buf(struct pch_spi_board_data * board_dat,struct pch_spi_data * data)1390 static void pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
1391 			      struct pch_spi_data *data)
1392 {
1393 	struct pch_spi_dma_ctrl *dma;
1394 
1395 	dma = &data->dma;
1396 	/* Get Consistent memory for Tx DMA */
1397 	dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1398 				PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
1399 	/* Get Consistent memory for Rx DMA */
1400 	dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1401 				PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
1402 }
1403 
pch_spi_pd_probe(struct platform_device * plat_dev)1404 static int __devinit pch_spi_pd_probe(struct platform_device *plat_dev)
1405 {
1406 	int ret;
1407 	struct spi_master *master;
1408 	struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1409 	struct pch_spi_data *data;
1410 
1411 	dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
1412 
1413 	master = spi_alloc_master(&board_dat->pdev->dev,
1414 				  sizeof(struct pch_spi_data));
1415 	if (!master) {
1416 		dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
1417 			plat_dev->id);
1418 		return -ENOMEM;
1419 	}
1420 
1421 	data = spi_master_get_devdata(master);
1422 	data->master = master;
1423 
1424 	platform_set_drvdata(plat_dev, data);
1425 
1426 	/* baseaddress + address offset) */
1427 	data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
1428 					 PCH_ADDRESS_SIZE * plat_dev->id;
1429 	data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0) +
1430 					 PCH_ADDRESS_SIZE * plat_dev->id;
1431 	if (!data->io_remap_addr) {
1432 		dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
1433 		ret = -ENOMEM;
1434 		goto err_pci_iomap;
1435 	}
1436 
1437 	dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
1438 		plat_dev->id, data->io_remap_addr);
1439 
1440 	/* initialize members of SPI master */
1441 	master->bus_num = -1;
1442 	master->num_chipselect = PCH_MAX_CS;
1443 	master->setup = pch_spi_setup;
1444 	master->transfer = pch_spi_transfer;
1445 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1446 
1447 	data->board_dat = board_dat;
1448 	data->plat_dev = plat_dev;
1449 	data->n_curnt_chip = 255;
1450 	data->status = STATUS_RUNNING;
1451 	data->ch = plat_dev->id;
1452 	data->use_dma = use_dma;
1453 
1454 	INIT_LIST_HEAD(&data->queue);
1455 	spin_lock_init(&data->lock);
1456 	INIT_WORK(&data->work, pch_spi_process_messages);
1457 	init_waitqueue_head(&data->wait);
1458 
1459 	ret = pch_spi_get_resources(board_dat, data);
1460 	if (ret) {
1461 		dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
1462 		goto err_spi_get_resources;
1463 	}
1464 
1465 	ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
1466 			  IRQF_SHARED, KBUILD_MODNAME, data);
1467 	if (ret) {
1468 		dev_err(&plat_dev->dev,
1469 			"%s request_irq failed\n", __func__);
1470 		goto err_request_irq;
1471 	}
1472 	data->irq_reg_sts = true;
1473 
1474 	pch_spi_set_master_mode(master);
1475 
1476 	ret = spi_register_master(master);
1477 	if (ret != 0) {
1478 		dev_err(&plat_dev->dev,
1479 			"%s spi_register_master FAILED\n", __func__);
1480 		goto err_spi_register_master;
1481 	}
1482 
1483 	if (use_dma) {
1484 		dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
1485 		pch_alloc_dma_buf(board_dat, data);
1486 	}
1487 
1488 	return 0;
1489 
1490 err_spi_register_master:
1491 	free_irq(board_dat->pdev->irq, board_dat);
1492 err_request_irq:
1493 	pch_spi_free_resources(board_dat, data);
1494 err_spi_get_resources:
1495 	pci_iounmap(board_dat->pdev, data->io_remap_addr);
1496 err_pci_iomap:
1497 	spi_master_put(master);
1498 
1499 	return ret;
1500 }
1501 
pch_spi_pd_remove(struct platform_device * plat_dev)1502 static int __devexit pch_spi_pd_remove(struct platform_device *plat_dev)
1503 {
1504 	struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1505 	struct pch_spi_data *data = platform_get_drvdata(plat_dev);
1506 	int count;
1507 	unsigned long flags;
1508 
1509 	dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
1510 		__func__, plat_dev->id, board_dat->pdev->irq);
1511 
1512 	if (use_dma)
1513 		pch_free_dma_buf(board_dat, data);
1514 
1515 	/* check for any pending messages; no action is taken if the queue
1516 	 * is still full; but at least we tried.  Unload anyway */
1517 	count = 500;
1518 	spin_lock_irqsave(&data->lock, flags);
1519 	data->status = STATUS_EXITING;
1520 	while ((list_empty(&data->queue) == 0) && --count) {
1521 		dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
1522 			__func__);
1523 		spin_unlock_irqrestore(&data->lock, flags);
1524 		msleep(PCH_SLEEP_TIME);
1525 		spin_lock_irqsave(&data->lock, flags);
1526 	}
1527 	spin_unlock_irqrestore(&data->lock, flags);
1528 
1529 	pch_spi_free_resources(board_dat, data);
1530 	/* disable interrupts & free IRQ */
1531 	if (data->irq_reg_sts) {
1532 		/* disable interrupts */
1533 		pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1534 		data->irq_reg_sts = false;
1535 		free_irq(board_dat->pdev->irq, data);
1536 	}
1537 
1538 	pci_iounmap(board_dat->pdev, data->io_remap_addr);
1539 	spi_unregister_master(data->master);
1540 	spi_master_put(data->master);
1541 	platform_set_drvdata(plat_dev, NULL);
1542 
1543 	return 0;
1544 }
1545 #ifdef CONFIG_PM
pch_spi_pd_suspend(struct platform_device * pd_dev,pm_message_t state)1546 static int pch_spi_pd_suspend(struct platform_device *pd_dev,
1547 			      pm_message_t state)
1548 {
1549 	u8 count;
1550 	struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1551 	struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1552 
1553 	dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
1554 
1555 	if (!board_dat) {
1556 		dev_err(&pd_dev->dev,
1557 			"%s pci_get_drvdata returned NULL\n", __func__);
1558 		return -EFAULT;
1559 	}
1560 
1561 	/* check if the current message is processed:
1562 	   Only after thats done the transfer will be suspended */
1563 	count = 255;
1564 	while ((--count) > 0) {
1565 		if (!(data->bcurrent_msg_processing))
1566 			break;
1567 		msleep(PCH_SLEEP_TIME);
1568 	}
1569 
1570 	/* Free IRQ */
1571 	if (data->irq_reg_sts) {
1572 		/* disable all interrupts */
1573 		pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1574 		pch_spi_reset(data->master);
1575 		free_irq(board_dat->pdev->irq, data);
1576 
1577 		data->irq_reg_sts = false;
1578 		dev_dbg(&pd_dev->dev,
1579 			"%s free_irq invoked successfully.\n", __func__);
1580 	}
1581 
1582 	return 0;
1583 }
1584 
pch_spi_pd_resume(struct platform_device * pd_dev)1585 static int pch_spi_pd_resume(struct platform_device *pd_dev)
1586 {
1587 	struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1588 	struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1589 	int retval;
1590 
1591 	if (!board_dat) {
1592 		dev_err(&pd_dev->dev,
1593 			"%s pci_get_drvdata returned NULL\n", __func__);
1594 		return -EFAULT;
1595 	}
1596 
1597 	if (!data->irq_reg_sts) {
1598 		/* register IRQ */
1599 		retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
1600 				     IRQF_SHARED, KBUILD_MODNAME, data);
1601 		if (retval < 0) {
1602 			dev_err(&pd_dev->dev,
1603 				"%s request_irq failed\n", __func__);
1604 			return retval;
1605 		}
1606 
1607 		/* reset PCH SPI h/w */
1608 		pch_spi_reset(data->master);
1609 		pch_spi_set_master_mode(data->master);
1610 		data->irq_reg_sts = true;
1611 	}
1612 	return 0;
1613 }
1614 #else
1615 #define pch_spi_pd_suspend NULL
1616 #define pch_spi_pd_resume NULL
1617 #endif
1618 
1619 static struct platform_driver pch_spi_pd_driver = {
1620 	.driver = {
1621 		.name = "pch-spi",
1622 		.owner = THIS_MODULE,
1623 	},
1624 	.probe = pch_spi_pd_probe,
1625 	.remove = __devexit_p(pch_spi_pd_remove),
1626 	.suspend = pch_spi_pd_suspend,
1627 	.resume = pch_spi_pd_resume
1628 };
1629 
pch_spi_probe(struct pci_dev * pdev,const struct pci_device_id * id)1630 static int __devinit pch_spi_probe(struct pci_dev *pdev,
1631 				   const struct pci_device_id *id)
1632 {
1633 	struct pch_spi_board_data *board_dat;
1634 	struct platform_device *pd_dev = NULL;
1635 	int retval;
1636 	int i;
1637 	struct pch_pd_dev_save *pd_dev_save;
1638 
1639 	pd_dev_save = kzalloc(sizeof(struct pch_pd_dev_save), GFP_KERNEL);
1640 	if (!pd_dev_save) {
1641 		dev_err(&pdev->dev, "%s Can't allocate pd_dev_sav\n", __func__);
1642 		return -ENOMEM;
1643 	}
1644 
1645 	board_dat = kzalloc(sizeof(struct pch_spi_board_data), GFP_KERNEL);
1646 	if (!board_dat) {
1647 		dev_err(&pdev->dev, "%s Can't allocate board_dat\n", __func__);
1648 		retval = -ENOMEM;
1649 		goto err_no_mem;
1650 	}
1651 
1652 	retval = pci_request_regions(pdev, KBUILD_MODNAME);
1653 	if (retval) {
1654 		dev_err(&pdev->dev, "%s request_region failed\n", __func__);
1655 		goto pci_request_regions;
1656 	}
1657 
1658 	board_dat->pdev = pdev;
1659 	board_dat->num = id->driver_data;
1660 	pd_dev_save->num = id->driver_data;
1661 	pd_dev_save->board_dat = board_dat;
1662 
1663 	retval = pci_enable_device(pdev);
1664 	if (retval) {
1665 		dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
1666 		goto pci_enable_device;
1667 	}
1668 
1669 	for (i = 0; i < board_dat->num; i++) {
1670 		pd_dev = platform_device_alloc("pch-spi", i);
1671 		if (!pd_dev) {
1672 			dev_err(&pdev->dev, "platform_device_alloc failed\n");
1673 			goto err_platform_device;
1674 		}
1675 		pd_dev_save->pd_save[i] = pd_dev;
1676 		pd_dev->dev.parent = &pdev->dev;
1677 
1678 		retval = platform_device_add_data(pd_dev, board_dat,
1679 						  sizeof(*board_dat));
1680 		if (retval) {
1681 			dev_err(&pdev->dev,
1682 				"platform_device_add_data failed\n");
1683 			platform_device_put(pd_dev);
1684 			goto err_platform_device;
1685 		}
1686 
1687 		retval = platform_device_add(pd_dev);
1688 		if (retval) {
1689 			dev_err(&pdev->dev, "platform_device_add failed\n");
1690 			platform_device_put(pd_dev);
1691 			goto err_platform_device;
1692 		}
1693 	}
1694 
1695 	pci_set_drvdata(pdev, pd_dev_save);
1696 
1697 	return 0;
1698 
1699 err_platform_device:
1700 	pci_disable_device(pdev);
1701 pci_enable_device:
1702 	pci_release_regions(pdev);
1703 pci_request_regions:
1704 	kfree(board_dat);
1705 err_no_mem:
1706 	kfree(pd_dev_save);
1707 
1708 	return retval;
1709 }
1710 
pch_spi_remove(struct pci_dev * pdev)1711 static void __devexit pch_spi_remove(struct pci_dev *pdev)
1712 {
1713 	int i;
1714 	struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1715 
1716 	dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
1717 
1718 	for (i = 0; i < pd_dev_save->num; i++)
1719 		platform_device_unregister(pd_dev_save->pd_save[i]);
1720 
1721 	pci_disable_device(pdev);
1722 	pci_release_regions(pdev);
1723 	kfree(pd_dev_save->board_dat);
1724 	kfree(pd_dev_save);
1725 }
1726 
1727 #ifdef CONFIG_PM
pch_spi_suspend(struct pci_dev * pdev,pm_message_t state)1728 static int pch_spi_suspend(struct pci_dev *pdev, pm_message_t state)
1729 {
1730 	int retval;
1731 	struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1732 
1733 	dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1734 
1735 	pd_dev_save->board_dat->suspend_sts = true;
1736 
1737 	/* save config space */
1738 	retval = pci_save_state(pdev);
1739 	if (retval == 0) {
1740 		pci_enable_wake(pdev, PCI_D3hot, 0);
1741 		pci_disable_device(pdev);
1742 		pci_set_power_state(pdev, PCI_D3hot);
1743 	} else {
1744 		dev_err(&pdev->dev, "%s pci_save_state failed\n", __func__);
1745 	}
1746 
1747 	return retval;
1748 }
1749 
pch_spi_resume(struct pci_dev * pdev)1750 static int pch_spi_resume(struct pci_dev *pdev)
1751 {
1752 	int retval;
1753 	struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1754 	dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1755 
1756 	pci_set_power_state(pdev, PCI_D0);
1757 	pci_restore_state(pdev);
1758 
1759 	retval = pci_enable_device(pdev);
1760 	if (retval < 0) {
1761 		dev_err(&pdev->dev,
1762 			"%s pci_enable_device failed\n", __func__);
1763 	} else {
1764 		pci_enable_wake(pdev, PCI_D3hot, 0);
1765 
1766 		/* set suspend status to false */
1767 		pd_dev_save->board_dat->suspend_sts = false;
1768 	}
1769 
1770 	return retval;
1771 }
1772 #else
1773 #define pch_spi_suspend NULL
1774 #define pch_spi_resume NULL
1775 
1776 #endif
1777 
1778 static struct pci_driver pch_spi_pcidev_driver = {
1779 	.name = "pch_spi",
1780 	.id_table = pch_spi_pcidev_id,
1781 	.probe = pch_spi_probe,
1782 	.remove = pch_spi_remove,
1783 	.suspend = pch_spi_suspend,
1784 	.resume = pch_spi_resume,
1785 };
1786 
pch_spi_init(void)1787 static int __init pch_spi_init(void)
1788 {
1789 	int ret;
1790 	ret = platform_driver_register(&pch_spi_pd_driver);
1791 	if (ret)
1792 		return ret;
1793 
1794 	ret = pci_register_driver(&pch_spi_pcidev_driver);
1795 	if (ret)
1796 		return ret;
1797 
1798 	return 0;
1799 }
1800 module_init(pch_spi_init);
1801 
pch_spi_exit(void)1802 static void __exit pch_spi_exit(void)
1803 {
1804 	pci_unregister_driver(&pch_spi_pcidev_driver);
1805 	platform_driver_unregister(&pch_spi_pd_driver);
1806 }
1807 module_exit(pch_spi_exit);
1808 
1809 module_param(use_dma, int, 0644);
1810 MODULE_PARM_DESC(use_dma,
1811 		 "to use DMA for data transfers pass 1 else 0; default 1");
1812 
1813 MODULE_LICENSE("GPL");
1814 MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver");
1815