1 /*
2  * rtc-ds1305.c -- driver for DS1305 and DS1306 SPI RTC chips
3  *
4  * Copyright (C) 2008 David Brownell
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  */
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/bcd.h>
14 #include <linux/slab.h>
15 #include <linux/rtc.h>
16 #include <linux/workqueue.h>
17 
18 #include <linux/spi/spi.h>
19 #include <linux/spi/ds1305.h>
20 #include <linux/module.h>
21 
22 
23 /*
24  * Registers ... mask DS1305_WRITE into register address to write,
25  * otherwise you're reading it.  All non-bitmask values are BCD.
26  */
27 #define DS1305_WRITE		0x80
28 
29 
30 /* RTC date/time ... the main special cases are that we:
31  *  - Need fancy "hours" encoding in 12hour mode
32  *  - Don't rely on the "day-of-week" field (or tm_wday)
33  *  - Are a 21st-century clock (2000 <= year < 2100)
34  */
35 #define DS1305_RTC_LEN		7		/* bytes for RTC regs */
36 
37 #define DS1305_SEC		0x00		/* register addresses */
38 #define DS1305_MIN		0x01
39 #define DS1305_HOUR		0x02
40 #	define DS1305_HR_12		0x40	/* set == 12 hr mode */
41 #	define DS1305_HR_PM		0x20	/* set == PM (12hr mode) */
42 #define DS1305_WDAY		0x03
43 #define DS1305_MDAY		0x04
44 #define DS1305_MON		0x05
45 #define DS1305_YEAR		0x06
46 
47 
48 /* The two alarms have only sec/min/hour/wday fields (ALM_LEN).
49  * DS1305_ALM_DISABLE disables a match field (some combos are bad).
50  *
51  * NOTE that since we don't use WDAY, we limit ourselves to alarms
52  * only one day into the future (vs potentially up to a week).
53  *
54  * NOTE ALSO that while we could generate once-a-second IRQs (UIE), we
55  * don't currently support them.  We'd either need to do it only when
56  * no alarm is pending (not the standard model), or to use the second
57  * alarm (implying that this is a DS1305 not DS1306, *and* that either
58  * it's wired up a second IRQ we know, or that INTCN is set)
59  */
60 #define DS1305_ALM_LEN		4		/* bytes for ALM regs */
61 #define DS1305_ALM_DISABLE	0x80
62 
63 #define DS1305_ALM0(r)		(0x07 + (r))	/* register addresses */
64 #define DS1305_ALM1(r)		(0x0b + (r))
65 
66 
67 /* three control registers */
68 #define DS1305_CONTROL_LEN	3		/* bytes of control regs */
69 
70 #define DS1305_CONTROL		0x0f		/* register addresses */
71 #	define DS1305_nEOSC		0x80	/* low enables oscillator */
72 #	define DS1305_WP		0x40	/* write protect */
73 #	define DS1305_INTCN		0x04	/* clear == only int0 used */
74 #	define DS1306_1HZ		0x04	/* enable 1Hz output */
75 #	define DS1305_AEI1		0x02	/* enable ALM1 IRQ */
76 #	define DS1305_AEI0		0x01	/* enable ALM0 IRQ */
77 #define DS1305_STATUS		0x10
78 /* status has just AEIx bits, mirrored as IRQFx */
79 #define DS1305_TRICKLE		0x11
80 /* trickle bits are defined in <linux/spi/ds1305.h> */
81 
82 /* a bunch of NVRAM */
83 #define DS1305_NVRAM_LEN	96		/* bytes of NVRAM */
84 
85 #define DS1305_NVRAM		0x20		/* register addresses */
86 
87 
88 struct ds1305 {
89 	struct spi_device	*spi;
90 	struct rtc_device	*rtc;
91 
92 	struct work_struct	work;
93 
94 	unsigned long		flags;
95 #define FLAG_EXITING	0
96 
97 	bool			hr12;
98 	u8			ctrl[DS1305_CONTROL_LEN];
99 };
100 
101 
102 /*----------------------------------------------------------------------*/
103 
104 /*
105  * Utilities ...  tolerate 12-hour AM/PM notation in case of non-Linux
106  * software (like a bootloader) which may require it.
107  */
108 
bcd2hour(u8 bcd)109 static unsigned bcd2hour(u8 bcd)
110 {
111 	if (bcd & DS1305_HR_12) {
112 		unsigned	hour = 0;
113 
114 		bcd &= ~DS1305_HR_12;
115 		if (bcd & DS1305_HR_PM) {
116 			hour = 12;
117 			bcd &= ~DS1305_HR_PM;
118 		}
119 		hour += bcd2bin(bcd);
120 		return hour - 1;
121 	}
122 	return bcd2bin(bcd);
123 }
124 
hour2bcd(bool hr12,int hour)125 static u8 hour2bcd(bool hr12, int hour)
126 {
127 	if (hr12) {
128 		hour++;
129 		if (hour <= 12)
130 			return DS1305_HR_12 | bin2bcd(hour);
131 		hour -= 12;
132 		return DS1305_HR_12 | DS1305_HR_PM | bin2bcd(hour);
133 	}
134 	return bin2bcd(hour);
135 }
136 
137 /*----------------------------------------------------------------------*/
138 
139 /*
140  * Interface to RTC framework
141  */
142 
ds1305_alarm_irq_enable(struct device * dev,unsigned int enabled)143 static int ds1305_alarm_irq_enable(struct device *dev, unsigned int enabled)
144 {
145 	struct ds1305	*ds1305 = dev_get_drvdata(dev);
146 	u8		buf[2];
147 	long		err = -EINVAL;
148 
149 	buf[0] = DS1305_WRITE | DS1305_CONTROL;
150 	buf[1] = ds1305->ctrl[0];
151 
152 	if (enabled) {
153 		if (ds1305->ctrl[0] & DS1305_AEI0)
154 			goto done;
155 		buf[1] |= DS1305_AEI0;
156 	} else {
157 		if (!(buf[1] & DS1305_AEI0))
158 			goto done;
159 		buf[1] &= ~DS1305_AEI0;
160 	}
161 	err = spi_write_then_read(ds1305->spi, buf, sizeof buf, NULL, 0);
162 	if (err >= 0)
163 		ds1305->ctrl[0] = buf[1];
164 done:
165 	return err;
166 
167 }
168 
169 
170 /*
171  * Get/set of date and time is pretty normal.
172  */
173 
ds1305_get_time(struct device * dev,struct rtc_time * time)174 static int ds1305_get_time(struct device *dev, struct rtc_time *time)
175 {
176 	struct ds1305	*ds1305 = dev_get_drvdata(dev);
177 	u8		addr = DS1305_SEC;
178 	u8		buf[DS1305_RTC_LEN];
179 	int		status;
180 
181 	/* Use write-then-read to get all the date/time registers
182 	 * since dma from stack is nonportable
183 	 */
184 	status = spi_write_then_read(ds1305->spi, &addr, sizeof addr,
185 			buf, sizeof buf);
186 	if (status < 0)
187 		return status;
188 
189 	dev_vdbg(dev, "%s: %02x %02x %02x, %02x %02x %02x %02x\n",
190 		"read", buf[0], buf[1], buf[2], buf[3],
191 		buf[4], buf[5], buf[6]);
192 
193 	/* Decode the registers */
194 	time->tm_sec = bcd2bin(buf[DS1305_SEC]);
195 	time->tm_min = bcd2bin(buf[DS1305_MIN]);
196 	time->tm_hour = bcd2hour(buf[DS1305_HOUR]);
197 	time->tm_wday = buf[DS1305_WDAY] - 1;
198 	time->tm_mday = bcd2bin(buf[DS1305_MDAY]);
199 	time->tm_mon = bcd2bin(buf[DS1305_MON]) - 1;
200 	time->tm_year = bcd2bin(buf[DS1305_YEAR]) + 100;
201 
202 	dev_vdbg(dev, "%s secs=%d, mins=%d, "
203 		"hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
204 		"read", time->tm_sec, time->tm_min,
205 		time->tm_hour, time->tm_mday,
206 		time->tm_mon, time->tm_year, time->tm_wday);
207 
208 	/* Time may not be set */
209 	return rtc_valid_tm(time);
210 }
211 
ds1305_set_time(struct device * dev,struct rtc_time * time)212 static int ds1305_set_time(struct device *dev, struct rtc_time *time)
213 {
214 	struct ds1305	*ds1305 = dev_get_drvdata(dev);
215 	u8		buf[1 + DS1305_RTC_LEN];
216 	u8		*bp = buf;
217 
218 	dev_vdbg(dev, "%s secs=%d, mins=%d, "
219 		"hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
220 		"write", time->tm_sec, time->tm_min,
221 		time->tm_hour, time->tm_mday,
222 		time->tm_mon, time->tm_year, time->tm_wday);
223 
224 	/* Write registers starting at the first time/date address. */
225 	*bp++ = DS1305_WRITE | DS1305_SEC;
226 
227 	*bp++ = bin2bcd(time->tm_sec);
228 	*bp++ = bin2bcd(time->tm_min);
229 	*bp++ = hour2bcd(ds1305->hr12, time->tm_hour);
230 	*bp++ = (time->tm_wday < 7) ? (time->tm_wday + 1) : 1;
231 	*bp++ = bin2bcd(time->tm_mday);
232 	*bp++ = bin2bcd(time->tm_mon + 1);
233 	*bp++ = bin2bcd(time->tm_year - 100);
234 
235 	dev_dbg(dev, "%s: %02x %02x %02x, %02x %02x %02x %02x\n",
236 		"write", buf[1], buf[2], buf[3],
237 		buf[4], buf[5], buf[6], buf[7]);
238 
239 	/* use write-then-read since dma from stack is nonportable */
240 	return spi_write_then_read(ds1305->spi, buf, sizeof buf,
241 			NULL, 0);
242 }
243 
244 /*
245  * Get/set of alarm is a bit funky:
246  *
247  * - First there's the inherent raciness of getting the (partitioned)
248  *   status of an alarm that could trigger while we're reading parts
249  *   of that status.
250  *
251  * - Second there's its limited range (we could increase it a bit by
252  *   relying on WDAY), which means it will easily roll over.
253  *
254  * - Third there's the choice of two alarms and alarm signals.
255  *   Here we use ALM0 and expect that nINT0 (open drain) is used;
256  *   that's the only real option for DS1306 runtime alarms, and is
257  *   natural on DS1305.
258  *
259  * - Fourth, there's also ALM1, and a second interrupt signal:
260  *     + On DS1305 ALM1 uses nINT1 (when INTCN=1) else nINT0;
261  *     + On DS1306 ALM1 only uses INT1 (an active high pulse)
262  *       and it won't work when VCC1 is active.
263  *
264  *   So to be most general, we should probably set both alarms to the
265  *   same value, letting ALM1 be the wakeup event source on DS1306
266  *   and handling several wiring options on DS1305.
267  *
268  * - Fifth, we support the polled mode (as well as possible; why not?)
269  *   even when no interrupt line is wired to an IRQ.
270  */
271 
272 /*
273  * Context: caller holds rtc->ops_lock (to protect ds1305->ctrl)
274  */
ds1305_get_alarm(struct device * dev,struct rtc_wkalrm * alm)275 static int ds1305_get_alarm(struct device *dev, struct rtc_wkalrm *alm)
276 {
277 	struct ds1305	*ds1305 = dev_get_drvdata(dev);
278 	struct spi_device *spi = ds1305->spi;
279 	u8		addr;
280 	int		status;
281 	u8		buf[DS1305_ALM_LEN];
282 
283 	/* Refresh control register cache BEFORE reading ALM0 registers,
284 	 * since reading alarm registers acks any pending IRQ.  That
285 	 * makes returning "pending" status a bit of a lie, but that bit
286 	 * of EFI status is at best fragile anyway (given IRQ handlers).
287 	 */
288 	addr = DS1305_CONTROL;
289 	status = spi_write_then_read(spi, &addr, sizeof addr,
290 			ds1305->ctrl, sizeof ds1305->ctrl);
291 	if (status < 0)
292 		return status;
293 
294 	alm->enabled = !!(ds1305->ctrl[0] & DS1305_AEI0);
295 	alm->pending = !!(ds1305->ctrl[1] & DS1305_AEI0);
296 
297 	/* get and check ALM0 registers */
298 	addr = DS1305_ALM0(DS1305_SEC);
299 	status = spi_write_then_read(spi, &addr, sizeof addr,
300 			buf, sizeof buf);
301 	if (status < 0)
302 		return status;
303 
304 	dev_vdbg(dev, "%s: %02x %02x %02x %02x\n",
305 		"alm0 read", buf[DS1305_SEC], buf[DS1305_MIN],
306 		buf[DS1305_HOUR], buf[DS1305_WDAY]);
307 
308 	if ((DS1305_ALM_DISABLE & buf[DS1305_SEC])
309 			|| (DS1305_ALM_DISABLE & buf[DS1305_MIN])
310 			|| (DS1305_ALM_DISABLE & buf[DS1305_HOUR]))
311 		return -EIO;
312 
313 	/* Stuff these values into alm->time and let RTC framework code
314 	 * fill in the rest ... and also handle rollover to tomorrow when
315 	 * that's needed.
316 	 */
317 	alm->time.tm_sec = bcd2bin(buf[DS1305_SEC]);
318 	alm->time.tm_min = bcd2bin(buf[DS1305_MIN]);
319 	alm->time.tm_hour = bcd2hour(buf[DS1305_HOUR]);
320 	alm->time.tm_mday = -1;
321 	alm->time.tm_mon = -1;
322 	alm->time.tm_year = -1;
323 	/* next three fields are unused by Linux */
324 	alm->time.tm_wday = -1;
325 	alm->time.tm_mday = -1;
326 	alm->time.tm_isdst = -1;
327 
328 	return 0;
329 }
330 
331 /*
332  * Context: caller holds rtc->ops_lock (to protect ds1305->ctrl)
333  */
ds1305_set_alarm(struct device * dev,struct rtc_wkalrm * alm)334 static int ds1305_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
335 {
336 	struct ds1305	*ds1305 = dev_get_drvdata(dev);
337 	struct spi_device *spi = ds1305->spi;
338 	unsigned long	now, later;
339 	struct rtc_time	tm;
340 	int		status;
341 	u8		buf[1 + DS1305_ALM_LEN];
342 
343 	/* convert desired alarm to time_t */
344 	status = rtc_tm_to_time(&alm->time, &later);
345 	if (status < 0)
346 		return status;
347 
348 	/* Read current time as time_t */
349 	status = ds1305_get_time(dev, &tm);
350 	if (status < 0)
351 		return status;
352 	status = rtc_tm_to_time(&tm, &now);
353 	if (status < 0)
354 		return status;
355 
356 	/* make sure alarm fires within the next 24 hours */
357 	if (later <= now)
358 		return -EINVAL;
359 	if ((later - now) > 24 * 60 * 60)
360 		return -EDOM;
361 
362 	/* disable alarm if needed */
363 	if (ds1305->ctrl[0] & DS1305_AEI0) {
364 		ds1305->ctrl[0] &= ~DS1305_AEI0;
365 
366 		buf[0] = DS1305_WRITE | DS1305_CONTROL;
367 		buf[1] = ds1305->ctrl[0];
368 		status = spi_write_then_read(ds1305->spi, buf, 2, NULL, 0);
369 		if (status < 0)
370 			return status;
371 	}
372 
373 	/* write alarm */
374 	buf[0] = DS1305_WRITE | DS1305_ALM0(DS1305_SEC);
375 	buf[1 + DS1305_SEC] = bin2bcd(alm->time.tm_sec);
376 	buf[1 + DS1305_MIN] = bin2bcd(alm->time.tm_min);
377 	buf[1 + DS1305_HOUR] = hour2bcd(ds1305->hr12, alm->time.tm_hour);
378 	buf[1 + DS1305_WDAY] = DS1305_ALM_DISABLE;
379 
380 	dev_dbg(dev, "%s: %02x %02x %02x %02x\n",
381 		"alm0 write", buf[1 + DS1305_SEC], buf[1 + DS1305_MIN],
382 		buf[1 + DS1305_HOUR], buf[1 + DS1305_WDAY]);
383 
384 	status = spi_write_then_read(spi, buf, sizeof buf, NULL, 0);
385 	if (status < 0)
386 		return status;
387 
388 	/* enable alarm if requested */
389 	if (alm->enabled) {
390 		ds1305->ctrl[0] |= DS1305_AEI0;
391 
392 		buf[0] = DS1305_WRITE | DS1305_CONTROL;
393 		buf[1] = ds1305->ctrl[0];
394 		status = spi_write_then_read(ds1305->spi, buf, 2, NULL, 0);
395 	}
396 
397 	return status;
398 }
399 
400 #ifdef CONFIG_PROC_FS
401 
ds1305_proc(struct device * dev,struct seq_file * seq)402 static int ds1305_proc(struct device *dev, struct seq_file *seq)
403 {
404 	struct ds1305	*ds1305 = dev_get_drvdata(dev);
405 	char		*diodes = "no";
406 	char		*resistors = "";
407 
408 	/* ctrl[2] is treated as read-only; no locking needed */
409 	if ((ds1305->ctrl[2] & 0xf0) == DS1305_TRICKLE_MAGIC) {
410 		switch (ds1305->ctrl[2] & 0x0c) {
411 		case DS1305_TRICKLE_DS2:
412 			diodes = "2 diodes, ";
413 			break;
414 		case DS1305_TRICKLE_DS1:
415 			diodes = "1 diode, ";
416 			break;
417 		default:
418 			goto done;
419 		}
420 		switch (ds1305->ctrl[2] & 0x03) {
421 		case DS1305_TRICKLE_2K:
422 			resistors = "2k Ohm";
423 			break;
424 		case DS1305_TRICKLE_4K:
425 			resistors = "4k Ohm";
426 			break;
427 		case DS1305_TRICKLE_8K:
428 			resistors = "8k Ohm";
429 			break;
430 		default:
431 			diodes = "no";
432 			break;
433 		}
434 	}
435 
436 done:
437 	return seq_printf(seq,
438 			"trickle_charge\t: %s%s\n",
439 			diodes, resistors);
440 }
441 
442 #else
443 #define ds1305_proc	NULL
444 #endif
445 
446 static const struct rtc_class_ops ds1305_ops = {
447 	.read_time	= ds1305_get_time,
448 	.set_time	= ds1305_set_time,
449 	.read_alarm	= ds1305_get_alarm,
450 	.set_alarm	= ds1305_set_alarm,
451 	.proc		= ds1305_proc,
452 	.alarm_irq_enable = ds1305_alarm_irq_enable,
453 };
454 
ds1305_work(struct work_struct * work)455 static void ds1305_work(struct work_struct *work)
456 {
457 	struct ds1305	*ds1305 = container_of(work, struct ds1305, work);
458 	struct mutex	*lock = &ds1305->rtc->ops_lock;
459 	struct spi_device *spi = ds1305->spi;
460 	u8		buf[3];
461 	int		status;
462 
463 	/* lock to protect ds1305->ctrl */
464 	mutex_lock(lock);
465 
466 	/* Disable the IRQ, and clear its status ... for now, we "know"
467 	 * that if more than one alarm is active, they're in sync.
468 	 * Note that reading ALM data registers also clears IRQ status.
469 	 */
470 	ds1305->ctrl[0] &= ~(DS1305_AEI1 | DS1305_AEI0);
471 	ds1305->ctrl[1] = 0;
472 
473 	buf[0] = DS1305_WRITE | DS1305_CONTROL;
474 	buf[1] = ds1305->ctrl[0];
475 	buf[2] = 0;
476 
477 	status = spi_write_then_read(spi, buf, sizeof buf,
478 			NULL, 0);
479 	if (status < 0)
480 		dev_dbg(&spi->dev, "clear irq --> %d\n", status);
481 
482 	mutex_unlock(lock);
483 
484 	if (!test_bit(FLAG_EXITING, &ds1305->flags))
485 		enable_irq(spi->irq);
486 
487 	rtc_update_irq(ds1305->rtc, 1, RTC_AF | RTC_IRQF);
488 }
489 
490 /*
491  * This "real" IRQ handler hands off to a workqueue mostly to allow
492  * mutex locking for ds1305->ctrl ... unlike I2C, we could issue async
493  * I/O requests in IRQ context (to clear the IRQ status).
494  */
ds1305_irq(int irq,void * p)495 static irqreturn_t ds1305_irq(int irq, void *p)
496 {
497 	struct ds1305		*ds1305 = p;
498 
499 	disable_irq(irq);
500 	schedule_work(&ds1305->work);
501 	return IRQ_HANDLED;
502 }
503 
504 /*----------------------------------------------------------------------*/
505 
506 /*
507  * Interface for NVRAM
508  */
509 
msg_init(struct spi_message * m,struct spi_transfer * x,u8 * addr,size_t count,char * tx,char * rx)510 static void msg_init(struct spi_message *m, struct spi_transfer *x,
511 		u8 *addr, size_t count, char *tx, char *rx)
512 {
513 	spi_message_init(m);
514 	memset(x, 0, 2 * sizeof(*x));
515 
516 	x->tx_buf = addr;
517 	x->len = 1;
518 	spi_message_add_tail(x, m);
519 
520 	x++;
521 
522 	x->tx_buf = tx;
523 	x->rx_buf = rx;
524 	x->len = count;
525 	spi_message_add_tail(x, m);
526 }
527 
528 static ssize_t
ds1305_nvram_read(struct file * filp,struct kobject * kobj,struct bin_attribute * attr,char * buf,loff_t off,size_t count)529 ds1305_nvram_read(struct file *filp, struct kobject *kobj,
530 		struct bin_attribute *attr,
531 		char *buf, loff_t off, size_t count)
532 {
533 	struct spi_device	*spi;
534 	u8			addr;
535 	struct spi_message	m;
536 	struct spi_transfer	x[2];
537 	int			status;
538 
539 	spi = container_of(kobj, struct spi_device, dev.kobj);
540 
541 	if (unlikely(off >= DS1305_NVRAM_LEN))
542 		return 0;
543 	if (count >= DS1305_NVRAM_LEN)
544 		count = DS1305_NVRAM_LEN;
545 	if ((off + count) > DS1305_NVRAM_LEN)
546 		count = DS1305_NVRAM_LEN - off;
547 	if (unlikely(!count))
548 		return count;
549 
550 	addr = DS1305_NVRAM + off;
551 	msg_init(&m, x, &addr, count, NULL, buf);
552 
553 	status = spi_sync(spi, &m);
554 	if (status < 0)
555 		dev_err(&spi->dev, "nvram %s error %d\n", "read", status);
556 	return (status < 0) ? status : count;
557 }
558 
559 static ssize_t
ds1305_nvram_write(struct file * filp,struct kobject * kobj,struct bin_attribute * attr,char * buf,loff_t off,size_t count)560 ds1305_nvram_write(struct file *filp, struct kobject *kobj,
561 		struct bin_attribute *attr,
562 		char *buf, loff_t off, size_t count)
563 {
564 	struct spi_device	*spi;
565 	u8			addr;
566 	struct spi_message	m;
567 	struct spi_transfer	x[2];
568 	int			status;
569 
570 	spi = container_of(kobj, struct spi_device, dev.kobj);
571 
572 	if (unlikely(off >= DS1305_NVRAM_LEN))
573 		return -EFBIG;
574 	if (count >= DS1305_NVRAM_LEN)
575 		count = DS1305_NVRAM_LEN;
576 	if ((off + count) > DS1305_NVRAM_LEN)
577 		count = DS1305_NVRAM_LEN - off;
578 	if (unlikely(!count))
579 		return count;
580 
581 	addr = (DS1305_WRITE | DS1305_NVRAM) + off;
582 	msg_init(&m, x, &addr, count, buf, NULL);
583 
584 	status = spi_sync(spi, &m);
585 	if (status < 0)
586 		dev_err(&spi->dev, "nvram %s error %d\n", "write", status);
587 	return (status < 0) ? status : count;
588 }
589 
590 static struct bin_attribute nvram = {
591 	.attr.name	= "nvram",
592 	.attr.mode	= S_IRUGO | S_IWUSR,
593 	.read		= ds1305_nvram_read,
594 	.write		= ds1305_nvram_write,
595 	.size		= DS1305_NVRAM_LEN,
596 };
597 
598 /*----------------------------------------------------------------------*/
599 
600 /*
601  * Interface to SPI stack
602  */
603 
ds1305_probe(struct spi_device * spi)604 static int __devinit ds1305_probe(struct spi_device *spi)
605 {
606 	struct ds1305			*ds1305;
607 	int				status;
608 	u8				addr, value;
609 	struct ds1305_platform_data	*pdata = spi->dev.platform_data;
610 	bool				write_ctrl = false;
611 
612 	/* Sanity check board setup data.  This may be hooked up
613 	 * in 3wire mode, but we don't care.  Note that unless
614 	 * there's an inverter in place, this needs SPI_CS_HIGH!
615 	 */
616 	if ((spi->bits_per_word && spi->bits_per_word != 8)
617 			|| (spi->max_speed_hz > 2000000)
618 			|| !(spi->mode & SPI_CPHA))
619 		return -EINVAL;
620 
621 	/* set up driver data */
622 	ds1305 = kzalloc(sizeof *ds1305, GFP_KERNEL);
623 	if (!ds1305)
624 		return -ENOMEM;
625 	ds1305->spi = spi;
626 	spi_set_drvdata(spi, ds1305);
627 
628 	/* read and cache control registers */
629 	addr = DS1305_CONTROL;
630 	status = spi_write_then_read(spi, &addr, sizeof addr,
631 			ds1305->ctrl, sizeof ds1305->ctrl);
632 	if (status < 0) {
633 		dev_dbg(&spi->dev, "can't %s, %d\n",
634 				"read", status);
635 		goto fail0;
636 	}
637 
638 	dev_dbg(&spi->dev, "ctrl %s: %02x %02x %02x\n",
639 			"read", ds1305->ctrl[0],
640 			ds1305->ctrl[1], ds1305->ctrl[2]);
641 
642 	/* Sanity check register values ... partially compensating for the
643 	 * fact that SPI has no device handshake.  A pullup on MISO would
644 	 * make these tests fail; but not all systems will have one.  If
645 	 * some register is neither 0x00 nor 0xff, a chip is likely there.
646 	 */
647 	if ((ds1305->ctrl[0] & 0x38) != 0 || (ds1305->ctrl[1] & 0xfc) != 0) {
648 		dev_dbg(&spi->dev, "RTC chip is not present\n");
649 		status = -ENODEV;
650 		goto fail0;
651 	}
652 	if (ds1305->ctrl[2] == 0)
653 		dev_dbg(&spi->dev, "chip may not be present\n");
654 
655 	/* enable writes if needed ... if we were paranoid it would
656 	 * make sense to enable them only when absolutely necessary.
657 	 */
658 	if (ds1305->ctrl[0] & DS1305_WP) {
659 		u8		buf[2];
660 
661 		ds1305->ctrl[0] &= ~DS1305_WP;
662 
663 		buf[0] = DS1305_WRITE | DS1305_CONTROL;
664 		buf[1] = ds1305->ctrl[0];
665 		status = spi_write_then_read(spi, buf, sizeof buf, NULL, 0);
666 
667 		dev_dbg(&spi->dev, "clear WP --> %d\n", status);
668 		if (status < 0)
669 			goto fail0;
670 	}
671 
672 	/* on DS1305, maybe start oscillator; like most low power
673 	 * oscillators, it may take a second to stabilize
674 	 */
675 	if (ds1305->ctrl[0] & DS1305_nEOSC) {
676 		ds1305->ctrl[0] &= ~DS1305_nEOSC;
677 		write_ctrl = true;
678 		dev_warn(&spi->dev, "SET TIME!\n");
679 	}
680 
681 	/* ack any pending IRQs */
682 	if (ds1305->ctrl[1]) {
683 		ds1305->ctrl[1] = 0;
684 		write_ctrl = true;
685 	}
686 
687 	/* this may need one-time (re)init */
688 	if (pdata) {
689 		/* maybe enable trickle charge */
690 		if (((ds1305->ctrl[2] & 0xf0) != DS1305_TRICKLE_MAGIC)) {
691 			ds1305->ctrl[2] = DS1305_TRICKLE_MAGIC
692 						| pdata->trickle;
693 			write_ctrl = true;
694 		}
695 
696 		/* on DS1306, configure 1 Hz signal */
697 		if (pdata->is_ds1306) {
698 			if (pdata->en_1hz) {
699 				if (!(ds1305->ctrl[0] & DS1306_1HZ)) {
700 					ds1305->ctrl[0] |= DS1306_1HZ;
701 					write_ctrl = true;
702 				}
703 			} else {
704 				if (ds1305->ctrl[0] & DS1306_1HZ) {
705 					ds1305->ctrl[0] &= ~DS1306_1HZ;
706 					write_ctrl = true;
707 				}
708 			}
709 		}
710 	}
711 
712 	if (write_ctrl) {
713 		u8		buf[4];
714 
715 		buf[0] = DS1305_WRITE | DS1305_CONTROL;
716 		buf[1] = ds1305->ctrl[0];
717 		buf[2] = ds1305->ctrl[1];
718 		buf[3] = ds1305->ctrl[2];
719 		status = spi_write_then_read(spi, buf, sizeof buf, NULL, 0);
720 		if (status < 0) {
721 			dev_dbg(&spi->dev, "can't %s, %d\n",
722 					"write", status);
723 			goto fail0;
724 		}
725 
726 		dev_dbg(&spi->dev, "ctrl %s: %02x %02x %02x\n",
727 				"write", ds1305->ctrl[0],
728 				ds1305->ctrl[1], ds1305->ctrl[2]);
729 	}
730 
731 	/* see if non-Linux software set up AM/PM mode */
732 	addr = DS1305_HOUR;
733 	status = spi_write_then_read(spi, &addr, sizeof addr,
734 				&value, sizeof value);
735 	if (status < 0) {
736 		dev_dbg(&spi->dev, "read HOUR --> %d\n", status);
737 		goto fail0;
738 	}
739 
740 	ds1305->hr12 = (DS1305_HR_12 & value) != 0;
741 	if (ds1305->hr12)
742 		dev_dbg(&spi->dev, "AM/PM\n");
743 
744 	/* register RTC ... from here on, ds1305->ctrl needs locking */
745 	ds1305->rtc = rtc_device_register("ds1305", &spi->dev,
746 			&ds1305_ops, THIS_MODULE);
747 	if (IS_ERR(ds1305->rtc)) {
748 		status = PTR_ERR(ds1305->rtc);
749 		dev_dbg(&spi->dev, "register rtc --> %d\n", status);
750 		goto fail0;
751 	}
752 
753 	/* Maybe set up alarm IRQ; be ready to handle it triggering right
754 	 * away.  NOTE that we don't share this.  The signal is active low,
755 	 * and we can't ack it before a SPI message delay.  We temporarily
756 	 * disable the IRQ until it's acked, which lets us work with more
757 	 * IRQ trigger modes (not all IRQ controllers can do falling edge).
758 	 */
759 	if (spi->irq) {
760 		INIT_WORK(&ds1305->work, ds1305_work);
761 		status = request_irq(spi->irq, ds1305_irq,
762 				0, dev_name(&ds1305->rtc->dev), ds1305);
763 		if (status < 0) {
764 			dev_dbg(&spi->dev, "request_irq %d --> %d\n",
765 					spi->irq, status);
766 			goto fail1;
767 		}
768 
769 		device_set_wakeup_capable(&spi->dev, 1);
770 	}
771 
772 	/* export NVRAM */
773 	status = sysfs_create_bin_file(&spi->dev.kobj, &nvram);
774 	if (status < 0) {
775 		dev_dbg(&spi->dev, "register nvram --> %d\n", status);
776 		goto fail2;
777 	}
778 
779 	return 0;
780 
781 fail2:
782 	free_irq(spi->irq, ds1305);
783 fail1:
784 	rtc_device_unregister(ds1305->rtc);
785 fail0:
786 	kfree(ds1305);
787 	return status;
788 }
789 
ds1305_remove(struct spi_device * spi)790 static int __devexit ds1305_remove(struct spi_device *spi)
791 {
792 	struct ds1305 *ds1305 = spi_get_drvdata(spi);
793 
794 	sysfs_remove_bin_file(&spi->dev.kobj, &nvram);
795 
796 	/* carefully shut down irq and workqueue, if present */
797 	if (spi->irq) {
798 		set_bit(FLAG_EXITING, &ds1305->flags);
799 		free_irq(spi->irq, ds1305);
800 		cancel_work_sync(&ds1305->work);
801 	}
802 
803 	rtc_device_unregister(ds1305->rtc);
804 	spi_set_drvdata(spi, NULL);
805 	kfree(ds1305);
806 	return 0;
807 }
808 
809 static struct spi_driver ds1305_driver = {
810 	.driver.name	= "rtc-ds1305",
811 	.driver.owner	= THIS_MODULE,
812 	.probe		= ds1305_probe,
813 	.remove		= __devexit_p(ds1305_remove),
814 	/* REVISIT add suspend/resume */
815 };
816 
817 module_spi_driver(ds1305_driver);
818 
819 MODULE_DESCRIPTION("RTC driver for DS1305 and DS1306 chips");
820 MODULE_LICENSE("GPL");
821 MODULE_ALIAS("spi:rtc-ds1305");
822