1 /******************************************************************************
2 *
3 * Copyright(c) 2009-2012 Realtek Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of version 2 of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
17 *
18 * The full GNU General Public License is included in this distribution in the
19 * file called LICENSE.
20 *
21 * Contact Information:
22 * wlanfae <wlanfae@realtek.com>
23 * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
24 * Hsinchu 300, Taiwan.
25 *
26 * Larry Finger <Larry.Finger@lwfinger.net>
27 *
28 *****************************************************************************/
29
30 #include "../wifi.h"
31 #include "../efuse.h"
32 #include "../base.h"
33 #include "../regd.h"
34 #include "../cam.h"
35 #include "../ps.h"
36 #include "../pci.h"
37 #include "reg.h"
38 #include "def.h"
39 #include "phy.h"
40 #include "dm.h"
41 #include "fw.h"
42 #include "led.h"
43 #include "sw.h"
44 #include "hw.h"
45
rtl92de_read_dword_dbi(struct ieee80211_hw * hw,u16 offset,u8 direct)46 u32 rtl92de_read_dword_dbi(struct ieee80211_hw *hw, u16 offset, u8 direct)
47 {
48 struct rtl_priv *rtlpriv = rtl_priv(hw);
49 u32 value;
50
51 rtl_write_word(rtlpriv, REG_DBI_CTRL, (offset & 0xFFC));
52 rtl_write_byte(rtlpriv, REG_DBI_FLAG, BIT(1) | direct);
53 udelay(10);
54 value = rtl_read_dword(rtlpriv, REG_DBI_RDATA);
55 return value;
56 }
57
rtl92de_write_dword_dbi(struct ieee80211_hw * hw,u16 offset,u32 value,u8 direct)58 void rtl92de_write_dword_dbi(struct ieee80211_hw *hw,
59 u16 offset, u32 value, u8 direct)
60 {
61 struct rtl_priv *rtlpriv = rtl_priv(hw);
62
63 rtl_write_word(rtlpriv, REG_DBI_CTRL, ((offset & 0xFFC) | 0xF000));
64 rtl_write_dword(rtlpriv, REG_DBI_WDATA, value);
65 rtl_write_byte(rtlpriv, REG_DBI_FLAG, BIT(0) | direct);
66 }
67
_rtl92de_set_bcn_ctrl_reg(struct ieee80211_hw * hw,u8 set_bits,u8 clear_bits)68 static void _rtl92de_set_bcn_ctrl_reg(struct ieee80211_hw *hw,
69 u8 set_bits, u8 clear_bits)
70 {
71 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
72 struct rtl_priv *rtlpriv = rtl_priv(hw);
73
74 rtlpci->reg_bcn_ctrl_val |= set_bits;
75 rtlpci->reg_bcn_ctrl_val &= ~clear_bits;
76 rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8) rtlpci->reg_bcn_ctrl_val);
77 }
78
_rtl92de_stop_tx_beacon(struct ieee80211_hw * hw)79 static void _rtl92de_stop_tx_beacon(struct ieee80211_hw *hw)
80 {
81 struct rtl_priv *rtlpriv = rtl_priv(hw);
82 u8 tmp1byte;
83
84 tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
85 rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte & (~BIT(6)));
86 rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0xff);
87 rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0x64);
88 tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
89 tmp1byte &= ~(BIT(0));
90 rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
91 }
92
_rtl92de_resume_tx_beacon(struct ieee80211_hw * hw)93 static void _rtl92de_resume_tx_beacon(struct ieee80211_hw *hw)
94 {
95 struct rtl_priv *rtlpriv = rtl_priv(hw);
96 u8 tmp1byte;
97
98 tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
99 rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte | BIT(6));
100 rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0x0a);
101 rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
102 tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
103 tmp1byte |= BIT(0);
104 rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
105 }
106
_rtl92de_enable_bcn_sub_func(struct ieee80211_hw * hw)107 static void _rtl92de_enable_bcn_sub_func(struct ieee80211_hw *hw)
108 {
109 _rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(1));
110 }
111
_rtl92de_disable_bcn_sub_func(struct ieee80211_hw * hw)112 static void _rtl92de_disable_bcn_sub_func(struct ieee80211_hw *hw)
113 {
114 _rtl92de_set_bcn_ctrl_reg(hw, BIT(1), 0);
115 }
116
rtl92de_get_hw_reg(struct ieee80211_hw * hw,u8 variable,u8 * val)117 void rtl92de_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
118 {
119 struct rtl_priv *rtlpriv = rtl_priv(hw);
120 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
121 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
122
123 switch (variable) {
124 case HW_VAR_RCR:
125 *((u32 *) (val)) = rtlpci->receive_config;
126 break;
127 case HW_VAR_RF_STATE:
128 *((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
129 break;
130 case HW_VAR_FWLPS_RF_ON:{
131 enum rf_pwrstate rfState;
132 u32 val_rcr;
133
134 rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RF_STATE,
135 (u8 *) (&rfState));
136 if (rfState == ERFOFF) {
137 *((bool *) (val)) = true;
138 } else {
139 val_rcr = rtl_read_dword(rtlpriv, REG_RCR);
140 val_rcr &= 0x00070000;
141 if (val_rcr)
142 *((bool *) (val)) = false;
143 else
144 *((bool *) (val)) = true;
145 }
146 break;
147 }
148 case HW_VAR_FW_PSMODE_STATUS:
149 *((bool *) (val)) = ppsc->fw_current_inpsmode;
150 break;
151 case HW_VAR_CORRECT_TSF:{
152 u64 tsf;
153 u32 *ptsf_low = (u32 *)&tsf;
154 u32 *ptsf_high = ((u32 *)&tsf) + 1;
155
156 *ptsf_high = rtl_read_dword(rtlpriv, (REG_TSFTR + 4));
157 *ptsf_low = rtl_read_dword(rtlpriv, REG_TSFTR);
158 *((u64 *) (val)) = tsf;
159 break;
160 }
161 case HW_VAR_INT_MIGRATION:
162 *((bool *)(val)) = rtlpriv->dm.interrupt_migration;
163 break;
164 case HW_VAR_INT_AC:
165 *((bool *)(val)) = rtlpriv->dm.disable_tx_int;
166 break;
167 default:
168 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
169 "switch case not processed\n");
170 break;
171 }
172 }
173
rtl92de_set_hw_reg(struct ieee80211_hw * hw,u8 variable,u8 * val)174 void rtl92de_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
175 {
176 struct rtl_priv *rtlpriv = rtl_priv(hw);
177 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
178 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
179 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
180 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
181 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
182 u8 idx;
183
184 switch (variable) {
185 case HW_VAR_ETHER_ADDR:
186 for (idx = 0; idx < ETH_ALEN; idx++) {
187 rtl_write_byte(rtlpriv, (REG_MACID + idx),
188 val[idx]);
189 }
190 break;
191 case HW_VAR_BASIC_RATE: {
192 u16 rate_cfg = ((u16 *) val)[0];
193 u8 rate_index = 0;
194
195 rate_cfg = rate_cfg & 0x15f;
196 if (mac->vendor == PEER_CISCO &&
197 ((rate_cfg & 0x150) == 0))
198 rate_cfg |= 0x01;
199 rtl_write_byte(rtlpriv, REG_RRSR, rate_cfg & 0xff);
200 rtl_write_byte(rtlpriv, REG_RRSR + 1,
201 (rate_cfg >> 8) & 0xff);
202 while (rate_cfg > 0x1) {
203 rate_cfg = (rate_cfg >> 1);
204 rate_index++;
205 }
206 if (rtlhal->fw_version > 0xe)
207 rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL,
208 rate_index);
209 break;
210 }
211 case HW_VAR_BSSID:
212 for (idx = 0; idx < ETH_ALEN; idx++) {
213 rtl_write_byte(rtlpriv, (REG_BSSID + idx),
214 val[idx]);
215 }
216 break;
217 case HW_VAR_SIFS:
218 rtl_write_byte(rtlpriv, REG_SIFS_CTX + 1, val[0]);
219 rtl_write_byte(rtlpriv, REG_SIFS_TRX + 1, val[1]);
220 rtl_write_byte(rtlpriv, REG_SPEC_SIFS + 1, val[0]);
221 rtl_write_byte(rtlpriv, REG_MAC_SPEC_SIFS + 1, val[0]);
222 if (!mac->ht_enable)
223 rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM,
224 0x0e0e);
225 else
226 rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM,
227 *((u16 *) val));
228 break;
229 case HW_VAR_SLOT_TIME: {
230 u8 e_aci;
231
232 RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
233 "HW_VAR_SLOT_TIME %x\n", val[0]);
234 rtl_write_byte(rtlpriv, REG_SLOT, val[0]);
235 for (e_aci = 0; e_aci < AC_MAX; e_aci++)
236 rtlpriv->cfg->ops->set_hw_reg(hw,
237 HW_VAR_AC_PARAM,
238 (u8 *) (&e_aci));
239 break;
240 }
241 case HW_VAR_ACK_PREAMBLE: {
242 u8 reg_tmp;
243 u8 short_preamble = (bool) (*(u8 *) val);
244
245 reg_tmp = (mac->cur_40_prime_sc) << 5;
246 if (short_preamble)
247 reg_tmp |= 0x80;
248 rtl_write_byte(rtlpriv, REG_RRSR + 2, reg_tmp);
249 break;
250 }
251 case HW_VAR_AMPDU_MIN_SPACE: {
252 u8 min_spacing_to_set;
253 u8 sec_min_space;
254
255 min_spacing_to_set = *((u8 *) val);
256 if (min_spacing_to_set <= 7) {
257 sec_min_space = 0;
258 if (min_spacing_to_set < sec_min_space)
259 min_spacing_to_set = sec_min_space;
260 mac->min_space_cfg = ((mac->min_space_cfg & 0xf8) |
261 min_spacing_to_set);
262 *val = min_spacing_to_set;
263 RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
264 "Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
265 mac->min_space_cfg);
266 rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
267 mac->min_space_cfg);
268 }
269 break;
270 }
271 case HW_VAR_SHORTGI_DENSITY: {
272 u8 density_to_set;
273
274 density_to_set = *((u8 *) val);
275 mac->min_space_cfg = rtlpriv->rtlhal.minspace_cfg;
276 mac->min_space_cfg |= (density_to_set << 3);
277 RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
278 "Set HW_VAR_SHORTGI_DENSITY: %#x\n",
279 mac->min_space_cfg);
280 rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
281 mac->min_space_cfg);
282 break;
283 }
284 case HW_VAR_AMPDU_FACTOR: {
285 u8 factor_toset;
286 u32 regtoSet;
287 u8 *ptmp_byte = NULL;
288 u8 index;
289
290 if (rtlhal->macphymode == DUALMAC_DUALPHY)
291 regtoSet = 0xb9726641;
292 else if (rtlhal->macphymode == DUALMAC_SINGLEPHY)
293 regtoSet = 0x66626641;
294 else
295 regtoSet = 0xb972a841;
296 factor_toset = *((u8 *) val);
297 if (factor_toset <= 3) {
298 factor_toset = (1 << (factor_toset + 2));
299 if (factor_toset > 0xf)
300 factor_toset = 0xf;
301 for (index = 0; index < 4; index++) {
302 ptmp_byte = (u8 *) (®toSet) + index;
303 if ((*ptmp_byte & 0xf0) >
304 (factor_toset << 4))
305 *ptmp_byte = (*ptmp_byte & 0x0f)
306 | (factor_toset << 4);
307 if ((*ptmp_byte & 0x0f) > factor_toset)
308 *ptmp_byte = (*ptmp_byte & 0xf0)
309 | (factor_toset);
310 }
311 rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, regtoSet);
312 RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
313 "Set HW_VAR_AMPDU_FACTOR: %#x\n",
314 factor_toset);
315 }
316 break;
317 }
318 case HW_VAR_AC_PARAM: {
319 u8 e_aci = *((u8 *) val);
320 rtl92d_dm_init_edca_turbo(hw);
321 if (rtlpci->acm_method != eAcmWay2_SW)
322 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ACM_CTRL,
323 (u8 *) (&e_aci));
324 break;
325 }
326 case HW_VAR_ACM_CTRL: {
327 u8 e_aci = *((u8 *) val);
328 union aci_aifsn *p_aci_aifsn =
329 (union aci_aifsn *)(&(mac->ac[0].aifs));
330 u8 acm = p_aci_aifsn->f.acm;
331 u8 acm_ctrl = rtl_read_byte(rtlpriv, REG_ACMHWCTRL);
332
333 acm_ctrl = acm_ctrl | ((rtlpci->acm_method == 2) ? 0x0 : 0x1);
334 if (acm) {
335 switch (e_aci) {
336 case AC0_BE:
337 acm_ctrl |= ACMHW_BEQEN;
338 break;
339 case AC2_VI:
340 acm_ctrl |= ACMHW_VIQEN;
341 break;
342 case AC3_VO:
343 acm_ctrl |= ACMHW_VOQEN;
344 break;
345 default:
346 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
347 "HW_VAR_ACM_CTRL acm set failed: eACI is %d\n",
348 acm);
349 break;
350 }
351 } else {
352 switch (e_aci) {
353 case AC0_BE:
354 acm_ctrl &= (~ACMHW_BEQEN);
355 break;
356 case AC2_VI:
357 acm_ctrl &= (~ACMHW_VIQEN);
358 break;
359 case AC3_VO:
360 acm_ctrl &= (~ACMHW_VOQEN);
361 break;
362 default:
363 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
364 "switch case not processed\n");
365 break;
366 }
367 }
368 RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE,
369 "SetHwReg8190pci(): [HW_VAR_ACM_CTRL] Write 0x%X\n",
370 acm_ctrl);
371 rtl_write_byte(rtlpriv, REG_ACMHWCTRL, acm_ctrl);
372 break;
373 }
374 case HW_VAR_RCR:
375 rtl_write_dword(rtlpriv, REG_RCR, ((u32 *) (val))[0]);
376 rtlpci->receive_config = ((u32 *) (val))[0];
377 break;
378 case HW_VAR_RETRY_LIMIT: {
379 u8 retry_limit = ((u8 *) (val))[0];
380
381 rtl_write_word(rtlpriv, REG_RL,
382 retry_limit << RETRY_LIMIT_SHORT_SHIFT |
383 retry_limit << RETRY_LIMIT_LONG_SHIFT);
384 break;
385 }
386 case HW_VAR_DUAL_TSF_RST:
387 rtl_write_byte(rtlpriv, REG_DUAL_TSF_RST, (BIT(0) | BIT(1)));
388 break;
389 case HW_VAR_EFUSE_BYTES:
390 rtlefuse->efuse_usedbytes = *((u16 *) val);
391 break;
392 case HW_VAR_EFUSE_USAGE:
393 rtlefuse->efuse_usedpercentage = *((u8 *) val);
394 break;
395 case HW_VAR_IO_CMD:
396 rtl92d_phy_set_io_cmd(hw, (*(enum io_type *)val));
397 break;
398 case HW_VAR_WPA_CONFIG:
399 rtl_write_byte(rtlpriv, REG_SECCFG, *((u8 *) val));
400 break;
401 case HW_VAR_SET_RPWM:
402 rtl92d_fill_h2c_cmd(hw, H2C_PWRM, 1, (u8 *) (val));
403 break;
404 case HW_VAR_H2C_FW_PWRMODE:
405 break;
406 case HW_VAR_FW_PSMODE_STATUS:
407 ppsc->fw_current_inpsmode = *((bool *) val);
408 break;
409 case HW_VAR_H2C_FW_JOINBSSRPT: {
410 u8 mstatus = (*(u8 *) val);
411 u8 tmp_regcr, tmp_reg422;
412 bool recover = false;
413
414 if (mstatus == RT_MEDIA_CONNECT) {
415 rtlpriv->cfg->ops->set_hw_reg(hw,
416 HW_VAR_AID, NULL);
417 tmp_regcr = rtl_read_byte(rtlpriv, REG_CR + 1);
418 rtl_write_byte(rtlpriv, REG_CR + 1,
419 (tmp_regcr | BIT(0)));
420 _rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(3));
421 _rtl92de_set_bcn_ctrl_reg(hw, BIT(4), 0);
422 tmp_reg422 = rtl_read_byte(rtlpriv,
423 REG_FWHW_TXQ_CTRL + 2);
424 if (tmp_reg422 & BIT(6))
425 recover = true;
426 rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2,
427 tmp_reg422 & (~BIT(6)));
428 rtl92d_set_fw_rsvdpagepkt(hw, 0);
429 _rtl92de_set_bcn_ctrl_reg(hw, BIT(3), 0);
430 _rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(4));
431 if (recover)
432 rtl_write_byte(rtlpriv,
433 REG_FWHW_TXQ_CTRL + 2,
434 tmp_reg422);
435 rtl_write_byte(rtlpriv, REG_CR + 1,
436 (tmp_regcr & ~(BIT(0))));
437 }
438 rtl92d_set_fw_joinbss_report_cmd(hw, (*(u8 *) val));
439 break;
440 }
441 case HW_VAR_AID: {
442 u16 u2btmp;
443 u2btmp = rtl_read_word(rtlpriv, REG_BCN_PSR_RPT);
444 u2btmp &= 0xC000;
445 rtl_write_word(rtlpriv, REG_BCN_PSR_RPT, (u2btmp |
446 mac->assoc_id));
447 break;
448 }
449 case HW_VAR_CORRECT_TSF: {
450 u8 btype_ibss = ((u8 *) (val))[0];
451
452 if (btype_ibss)
453 _rtl92de_stop_tx_beacon(hw);
454 _rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(3));
455 rtl_write_dword(rtlpriv, REG_TSFTR,
456 (u32) (mac->tsf & 0xffffffff));
457 rtl_write_dword(rtlpriv, REG_TSFTR + 4,
458 (u32) ((mac->tsf >> 32) & 0xffffffff));
459 _rtl92de_set_bcn_ctrl_reg(hw, BIT(3), 0);
460 if (btype_ibss)
461 _rtl92de_resume_tx_beacon(hw);
462
463 break;
464 }
465 case HW_VAR_INT_MIGRATION: {
466 bool int_migration = *(bool *) (val);
467
468 if (int_migration) {
469 /* Set interrupt migration timer and
470 * corresponding Tx/Rx counter.
471 * timer 25ns*0xfa0=100us for 0xf packets.
472 * 0x306:Rx, 0x307:Tx */
473 rtl_write_dword(rtlpriv, REG_INT_MIG, 0xfe000fa0);
474 rtlpriv->dm.interrupt_migration = int_migration;
475 } else {
476 /* Reset all interrupt migration settings. */
477 rtl_write_dword(rtlpriv, REG_INT_MIG, 0);
478 rtlpriv->dm.interrupt_migration = int_migration;
479 }
480 break;
481 }
482 case HW_VAR_INT_AC: {
483 bool disable_ac_int = *((bool *) val);
484
485 /* Disable four ACs interrupts. */
486 if (disable_ac_int) {
487 /* Disable VO, VI, BE and BK four AC interrupts
488 * to gain more efficient CPU utilization.
489 * When extremely highly Rx OK occurs,
490 * we will disable Tx interrupts.
491 */
492 rtlpriv->cfg->ops->update_interrupt_mask(hw, 0,
493 RT_AC_INT_MASKS);
494 rtlpriv->dm.disable_tx_int = disable_ac_int;
495 /* Enable four ACs interrupts. */
496 } else {
497 rtlpriv->cfg->ops->update_interrupt_mask(hw,
498 RT_AC_INT_MASKS, 0);
499 rtlpriv->dm.disable_tx_int = disable_ac_int;
500 }
501 break;
502 }
503 default:
504 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
505 "switch case not processed\n");
506 break;
507 }
508 }
509
_rtl92de_llt_write(struct ieee80211_hw * hw,u32 address,u32 data)510 static bool _rtl92de_llt_write(struct ieee80211_hw *hw, u32 address, u32 data)
511 {
512 struct rtl_priv *rtlpriv = rtl_priv(hw);
513 bool status = true;
514 long count = 0;
515 u32 value = _LLT_INIT_ADDR(address) |
516 _LLT_INIT_DATA(data) | _LLT_OP(_LLT_WRITE_ACCESS);
517
518 rtl_write_dword(rtlpriv, REG_LLT_INIT, value);
519 do {
520 value = rtl_read_dword(rtlpriv, REG_LLT_INIT);
521 if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value))
522 break;
523 if (count > POLLING_LLT_THRESHOLD) {
524 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
525 "Failed to polling write LLT done at address %d!\n",
526 address);
527 status = false;
528 break;
529 }
530 } while (++count);
531 return status;
532 }
533
_rtl92de_llt_table_init(struct ieee80211_hw * hw)534 static bool _rtl92de_llt_table_init(struct ieee80211_hw *hw)
535 {
536 struct rtl_priv *rtlpriv = rtl_priv(hw);
537 unsigned short i;
538 u8 txpktbuf_bndy;
539 u8 maxPage;
540 bool status;
541 u32 value32; /* High+low page number */
542 u8 value8; /* normal page number */
543
544 if (rtlpriv->rtlhal.macphymode == SINGLEMAC_SINGLEPHY) {
545 maxPage = 255;
546 txpktbuf_bndy = 246;
547 value8 = 0;
548 value32 = 0x80bf0d29;
549 } else if (rtlpriv->rtlhal.macphymode != SINGLEMAC_SINGLEPHY) {
550 maxPage = 127;
551 txpktbuf_bndy = 123;
552 value8 = 0;
553 value32 = 0x80750005;
554 }
555
556 /* Set reserved page for each queue */
557 /* 11. RQPN 0x200[31:0] = 0x80BD1C1C */
558 /* load RQPN */
559 rtl_write_byte(rtlpriv, REG_RQPN_NPQ, value8);
560 rtl_write_dword(rtlpriv, REG_RQPN, value32);
561
562 /* 12. TXRKTBUG_PG_BNDY 0x114[31:0] = 0x27FF00F6 */
563 /* TXRKTBUG_PG_BNDY */
564 rtl_write_dword(rtlpriv, REG_TRXFF_BNDY,
565 (rtl_read_word(rtlpriv, REG_TRXFF_BNDY + 2) << 16 |
566 txpktbuf_bndy));
567
568 /* 13. TDECTRL[15:8] 0x209[7:0] = 0xF6 */
569 /* Beacon Head for TXDMA */
570 rtl_write_byte(rtlpriv, REG_TDECTRL + 1, txpktbuf_bndy);
571
572 /* 14. BCNQ_PGBNDY 0x424[7:0] = 0xF6 */
573 /* BCNQ_PGBNDY */
574 rtl_write_byte(rtlpriv, REG_TXPKTBUF_BCNQ_BDNY, txpktbuf_bndy);
575 rtl_write_byte(rtlpriv, REG_TXPKTBUF_MGQ_BDNY, txpktbuf_bndy);
576
577 /* 15. WMAC_LBK_BF_HD 0x45D[7:0] = 0xF6 */
578 /* WMAC_LBK_BF_HD */
579 rtl_write_byte(rtlpriv, 0x45D, txpktbuf_bndy);
580
581 /* Set Tx/Rx page size (Tx must be 128 Bytes, */
582 /* Rx can be 64,128,256,512,1024 bytes) */
583 /* 16. PBP [7:0] = 0x11 */
584 /* TRX page size */
585 rtl_write_byte(rtlpriv, REG_PBP, 0x11);
586
587 /* 17. DRV_INFO_SZ = 0x04 */
588 rtl_write_byte(rtlpriv, REG_RX_DRVINFO_SZ, 0x4);
589
590 /* 18. LLT_table_init(Adapter); */
591 for (i = 0; i < (txpktbuf_bndy - 1); i++) {
592 status = _rtl92de_llt_write(hw, i, i + 1);
593 if (true != status)
594 return status;
595 }
596
597 /* end of list */
598 status = _rtl92de_llt_write(hw, (txpktbuf_bndy - 1), 0xFF);
599 if (true != status)
600 return status;
601
602 /* Make the other pages as ring buffer */
603 /* This ring buffer is used as beacon buffer if we */
604 /* config this MAC as two MAC transfer. */
605 /* Otherwise used as local loopback buffer. */
606 for (i = txpktbuf_bndy; i < maxPage; i++) {
607 status = _rtl92de_llt_write(hw, i, (i + 1));
608 if (true != status)
609 return status;
610 }
611
612 /* Let last entry point to the start entry of ring buffer */
613 status = _rtl92de_llt_write(hw, maxPage, txpktbuf_bndy);
614 if (true != status)
615 return status;
616
617 return true;
618 }
619
_rtl92de_gen_refresh_led_state(struct ieee80211_hw * hw)620 static void _rtl92de_gen_refresh_led_state(struct ieee80211_hw *hw)
621 {
622 struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
623 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
624 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
625 struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0);
626
627 if (rtlpci->up_first_time)
628 return;
629 if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS)
630 rtl92de_sw_led_on(hw, pLed0);
631 else if (ppsc->rfoff_reason == RF_CHANGE_BY_INIT)
632 rtl92de_sw_led_on(hw, pLed0);
633 else
634 rtl92de_sw_led_off(hw, pLed0);
635 }
636
_rtl92de_init_mac(struct ieee80211_hw * hw)637 static bool _rtl92de_init_mac(struct ieee80211_hw *hw)
638 {
639 struct rtl_priv *rtlpriv = rtl_priv(hw);
640 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
641 unsigned char bytetmp;
642 unsigned short wordtmp;
643 u16 retry;
644
645 rtl92d_phy_set_poweron(hw);
646 /* Add for resume sequence of power domain according
647 * to power document V11. Chapter V.11.... */
648 /* 0. RSV_CTRL 0x1C[7:0] = 0x00 */
649 /* unlock ISO/CLK/Power control register */
650 rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x00);
651 rtl_write_byte(rtlpriv, REG_LDOA15_CTRL, 0x05);
652
653 /* 1. AFE_XTAL_CTRL [7:0] = 0x0F enable XTAL */
654 /* 2. SPS0_CTRL 0x11[7:0] = 0x2b enable SPS into PWM mode */
655 /* 3. delay (1ms) this is not necessary when initially power on */
656
657 /* C. Resume Sequence */
658 /* a. SPS0_CTRL 0x11[7:0] = 0x2b */
659 rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x2b);
660
661 /* b. AFE_XTAL_CTRL [7:0] = 0x0F */
662 rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL, 0x0F);
663
664 /* c. DRV runs power on init flow */
665
666 /* auto enable WLAN */
667 /* 4. APS_FSMCO 0x04[8] = 1; wait till 0x04[8] = 0 */
668 /* Power On Reset for MAC Block */
669 bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1) | BIT(0);
670 udelay(2);
671 rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, bytetmp);
672 udelay(2);
673
674 /* 5. Wait while 0x04[8] == 0 goto 2, otherwise goto 1 */
675 bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1);
676 udelay(50);
677 retry = 0;
678 while ((bytetmp & BIT(0)) && retry < 1000) {
679 retry++;
680 bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1);
681 udelay(50);
682 }
683
684 /* Enable Radio off, GPIO, and LED function */
685 /* 6. APS_FSMCO 0x04[15:0] = 0x0012 when enable HWPDN */
686 rtl_write_word(rtlpriv, REG_APS_FSMCO, 0x1012);
687
688 /* release RF digital isolation */
689 /* 7. SYS_ISO_CTRL 0x01[1] = 0x0; */
690 /*Set REG_SYS_ISO_CTRL 0x1=0x82 to prevent wake# problem. */
691 rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x82);
692 udelay(2);
693
694 /* make sure that BB reset OK. */
695 /* rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3); */
696
697 /* Disable REG_CR before enable it to assure reset */
698 rtl_write_word(rtlpriv, REG_CR, 0x0);
699
700 /* Release MAC IO register reset */
701 rtl_write_word(rtlpriv, REG_CR, 0x2ff);
702
703 /* clear stopping tx/rx dma */
704 rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0x0);
705
706 /* rtl_write_word(rtlpriv,REG_CR+2, 0x2); */
707
708 /* System init */
709 /* 18. LLT_table_init(Adapter); */
710 if (!_rtl92de_llt_table_init(hw))
711 return false;
712
713 /* Clear interrupt and enable interrupt */
714 /* 19. HISR 0x124[31:0] = 0xffffffff; */
715 /* HISRE 0x12C[7:0] = 0xFF */
716 rtl_write_dword(rtlpriv, REG_HISR, 0xffffffff);
717 rtl_write_byte(rtlpriv, REG_HISRE, 0xff);
718
719 /* 20. HIMR 0x120[31:0] |= [enable INT mask bit map]; */
720 /* 21. HIMRE 0x128[7:0] = [enable INT mask bit map] */
721 /* The IMR should be enabled later after all init sequence
722 * is finished. */
723
724 /* 22. PCIE configuration space configuration */
725 /* 23. Ensure PCIe Device 0x80[15:0] = 0x0143 (ASPM+CLKREQ), */
726 /* and PCIe gated clock function is enabled. */
727 /* PCIE configuration space will be written after
728 * all init sequence.(Or by BIOS) */
729
730 rtl92d_phy_config_maccoexist_rfpage(hw);
731
732 /* THe below section is not related to power document Vxx . */
733 /* This is only useful for driver and OS setting. */
734 /* -------------------Software Relative Setting---------------------- */
735 wordtmp = rtl_read_word(rtlpriv, REG_TRXDMA_CTRL);
736 wordtmp &= 0xf;
737 wordtmp |= 0xF771;
738 rtl_write_word(rtlpriv, REG_TRXDMA_CTRL, wordtmp);
739
740 /* Reported Tx status from HW for rate adaptive. */
741 /* This should be realtive to power on step 14. But in document V11 */
742 /* still not contain the description.!!! */
743 rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 1, 0x1F);
744
745 /* Set Tx/Rx page size (Tx must be 128 Bytes,
746 * Rx can be 64,128,256,512,1024 bytes) */
747 /* rtl_write_byte(rtlpriv,REG_PBP, 0x11); */
748
749 /* Set RCR register */
750 rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config);
751 /* rtl_write_byte(rtlpriv,REG_RX_DRVINFO_SZ, 4); */
752
753 /* Set TCR register */
754 rtl_write_dword(rtlpriv, REG_TCR, rtlpci->transmit_config);
755
756 /* disable earlymode */
757 rtl_write_byte(rtlpriv, 0x4d0, 0x0);
758
759 /* Set TX/RX descriptor physical address(from OS API). */
760 rtl_write_dword(rtlpriv, REG_BCNQ_DESA,
761 rtlpci->tx_ring[BEACON_QUEUE].dma);
762 rtl_write_dword(rtlpriv, REG_MGQ_DESA, rtlpci->tx_ring[MGNT_QUEUE].dma);
763 rtl_write_dword(rtlpriv, REG_VOQ_DESA, rtlpci->tx_ring[VO_QUEUE].dma);
764 rtl_write_dword(rtlpriv, REG_VIQ_DESA, rtlpci->tx_ring[VI_QUEUE].dma);
765 rtl_write_dword(rtlpriv, REG_BEQ_DESA, rtlpci->tx_ring[BE_QUEUE].dma);
766 rtl_write_dword(rtlpriv, REG_BKQ_DESA, rtlpci->tx_ring[BK_QUEUE].dma);
767 rtl_write_dword(rtlpriv, REG_HQ_DESA, rtlpci->tx_ring[HIGH_QUEUE].dma);
768 /* Set RX Desc Address */
769 rtl_write_dword(rtlpriv, REG_RX_DESA,
770 rtlpci->rx_ring[RX_MPDU_QUEUE].dma);
771
772 /* if we want to support 64 bit DMA, we should set it here,
773 * but now we do not support 64 bit DMA*/
774
775 rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 3, 0x33);
776
777 /* Reset interrupt migration setting when initialization */
778 rtl_write_dword(rtlpriv, REG_INT_MIG, 0);
779
780 /* Reconsider when to do this operation after asking HWSD. */
781 bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL);
782 rtl_write_byte(rtlpriv, REG_APSD_CTRL, bytetmp & ~BIT(6));
783 do {
784 retry++;
785 bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL);
786 } while ((retry < 200) && !(bytetmp & BIT(7)));
787
788 /* After MACIO reset,we must refresh LED state. */
789 _rtl92de_gen_refresh_led_state(hw);
790
791 /* Reset H2C protection register */
792 rtl_write_dword(rtlpriv, REG_MCUTST_1, 0x0);
793
794 return true;
795 }
796
_rtl92de_hw_configure(struct ieee80211_hw * hw)797 static void _rtl92de_hw_configure(struct ieee80211_hw *hw)
798 {
799 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
800 struct rtl_priv *rtlpriv = rtl_priv(hw);
801 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
802 u8 reg_bw_opmode = BW_OPMODE_20MHZ;
803 u32 reg_rrsr;
804
805 reg_rrsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
806 rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL, 0x8);
807 rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode);
808 rtl_write_dword(rtlpriv, REG_RRSR, reg_rrsr);
809 rtl_write_byte(rtlpriv, REG_SLOT, 0x09);
810 rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE, 0x0);
811 rtl_write_word(rtlpriv, REG_FWHW_TXQ_CTRL, 0x1F80);
812 rtl_write_word(rtlpriv, REG_RL, 0x0707);
813 rtl_write_dword(rtlpriv, REG_BAR_MODE_CTRL, 0x02012802);
814 rtl_write_byte(rtlpriv, REG_HWSEQ_CTRL, 0xFF);
815 rtl_write_dword(rtlpriv, REG_DARFRC, 0x01000000);
816 rtl_write_dword(rtlpriv, REG_DARFRC + 4, 0x07060504);
817 rtl_write_dword(rtlpriv, REG_RARFRC, 0x01000000);
818 rtl_write_dword(rtlpriv, REG_RARFRC + 4, 0x07060504);
819 /* Aggregation threshold */
820 if (rtlhal->macphymode == DUALMAC_DUALPHY)
821 rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0xb9726641);
822 else if (rtlhal->macphymode == DUALMAC_SINGLEPHY)
823 rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0x66626641);
824 else
825 rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0xb972a841);
826 rtl_write_byte(rtlpriv, REG_ATIMWND, 0x2);
827 rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0x0a);
828 rtlpci->reg_bcn_ctrl_val = 0x1f;
829 rtl_write_byte(rtlpriv, REG_BCN_CTRL, rtlpci->reg_bcn_ctrl_val);
830 rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
831 rtl_write_byte(rtlpriv, REG_PIFS, 0x1C);
832 rtl_write_byte(rtlpriv, REG_AGGR_BREAK_TIME, 0x16);
833 rtl_write_word(rtlpriv, REG_NAV_PROT_LEN, 0x0020);
834 /* For throughput */
835 rtl_write_word(rtlpriv, REG_FAST_EDCA_CTRL, 0x6666);
836 /* ACKTO for IOT issue. */
837 rtl_write_byte(rtlpriv, REG_ACKTO, 0x40);
838 /* Set Spec SIFS (used in NAV) */
839 rtl_write_word(rtlpriv, REG_SPEC_SIFS, 0x1010);
840 rtl_write_word(rtlpriv, REG_MAC_SPEC_SIFS, 0x1010);
841 /* Set SIFS for CCK */
842 rtl_write_word(rtlpriv, REG_SIFS_CTX, 0x1010);
843 /* Set SIFS for OFDM */
844 rtl_write_word(rtlpriv, REG_SIFS_TRX, 0x1010);
845 /* Set Multicast Address. */
846 rtl_write_dword(rtlpriv, REG_MAR, 0xffffffff);
847 rtl_write_dword(rtlpriv, REG_MAR + 4, 0xffffffff);
848 switch (rtlpriv->phy.rf_type) {
849 case RF_1T2R:
850 case RF_1T1R:
851 rtlhal->minspace_cfg = (MAX_MSS_DENSITY_1T << 3);
852 break;
853 case RF_2T2R:
854 case RF_2T2R_GREEN:
855 rtlhal->minspace_cfg = (MAX_MSS_DENSITY_2T << 3);
856 break;
857 }
858 }
859
_rtl92de_enable_aspm_back_door(struct ieee80211_hw * hw)860 static void _rtl92de_enable_aspm_back_door(struct ieee80211_hw *hw)
861 {
862 struct rtl_priv *rtlpriv = rtl_priv(hw);
863 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
864
865 rtl_write_byte(rtlpriv, 0x34b, 0x93);
866 rtl_write_word(rtlpriv, 0x350, 0x870c);
867 rtl_write_byte(rtlpriv, 0x352, 0x1);
868 if (ppsc->support_backdoor)
869 rtl_write_byte(rtlpriv, 0x349, 0x1b);
870 else
871 rtl_write_byte(rtlpriv, 0x349, 0x03);
872 rtl_write_word(rtlpriv, 0x350, 0x2718);
873 rtl_write_byte(rtlpriv, 0x352, 0x1);
874 }
875
rtl92de_enable_hw_security_config(struct ieee80211_hw * hw)876 void rtl92de_enable_hw_security_config(struct ieee80211_hw *hw)
877 {
878 struct rtl_priv *rtlpriv = rtl_priv(hw);
879 u8 sec_reg_value;
880
881 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
882 "PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
883 rtlpriv->sec.pairwise_enc_algorithm,
884 rtlpriv->sec.group_enc_algorithm);
885 if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
886 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
887 "not open hw encryption\n");
888 return;
889 }
890 sec_reg_value = SCR_TXENCENABLE | SCR_RXENCENABLE;
891 if (rtlpriv->sec.use_defaultkey) {
892 sec_reg_value |= SCR_TXUSEDK;
893 sec_reg_value |= SCR_RXUSEDK;
894 }
895 sec_reg_value |= (SCR_RXBCUSEDK | SCR_TXBCUSEDK);
896 rtl_write_byte(rtlpriv, REG_CR + 1, 0x02);
897 RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
898 "The SECR-value %x\n", sec_reg_value);
899 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
900 }
901
rtl92de_hw_init(struct ieee80211_hw * hw)902 int rtl92de_hw_init(struct ieee80211_hw *hw)
903 {
904 struct rtl_priv *rtlpriv = rtl_priv(hw);
905 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
906 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
907 struct rtl_phy *rtlphy = &(rtlpriv->phy);
908 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
909 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
910 bool rtstatus = true;
911 u8 tmp_u1b;
912 int i;
913 int err;
914 unsigned long flags;
915
916 rtlpci->being_init_adapter = true;
917 rtlpci->init_ready = false;
918 spin_lock_irqsave(&globalmutex_for_power_and_efuse, flags);
919 /* we should do iqk after disable/enable */
920 rtl92d_phy_reset_iqk_result(hw);
921 /* rtlpriv->intf_ops->disable_aspm(hw); */
922 rtstatus = _rtl92de_init_mac(hw);
923 if (!rtstatus) {
924 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Init MAC failed\n");
925 err = 1;
926 spin_unlock_irqrestore(&globalmutex_for_power_and_efuse, flags);
927 return err;
928 }
929 err = rtl92d_download_fw(hw);
930 spin_unlock_irqrestore(&globalmutex_for_power_and_efuse, flags);
931 if (err) {
932 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
933 "Failed to download FW. Init HW without FW..\n");
934 return 1;
935 }
936 rtlhal->last_hmeboxnum = 0;
937 rtlpriv->psc.fw_current_inpsmode = false;
938
939 tmp_u1b = rtl_read_byte(rtlpriv, 0x605);
940 tmp_u1b = tmp_u1b | 0x30;
941 rtl_write_byte(rtlpriv, 0x605, tmp_u1b);
942
943 if (rtlhal->earlymode_enable) {
944 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
945 "EarlyMode Enabled!!!\n");
946
947 tmp_u1b = rtl_read_byte(rtlpriv, 0x4d0);
948 tmp_u1b = tmp_u1b | 0x1f;
949 rtl_write_byte(rtlpriv, 0x4d0, tmp_u1b);
950
951 rtl_write_byte(rtlpriv, 0x4d3, 0x80);
952
953 tmp_u1b = rtl_read_byte(rtlpriv, 0x605);
954 tmp_u1b = tmp_u1b | 0x40;
955 rtl_write_byte(rtlpriv, 0x605, tmp_u1b);
956 }
957
958 if (mac->rdg_en) {
959 rtl_write_byte(rtlpriv, REG_RD_CTRL, 0xff);
960 rtl_write_word(rtlpriv, REG_RD_NAV_NXT, 0x200);
961 rtl_write_byte(rtlpriv, REG_RD_RESP_PKT_TH, 0x05);
962 }
963
964 rtl92d_phy_mac_config(hw);
965 /* because last function modify RCR, so we update
966 * rcr var here, or TP will unstable for receive_config
967 * is wrong, RX RCR_ACRC32 will cause TP unstabel & Rx
968 * RCR_APP_ICV will cause mac80211 unassoc for cisco 1252*/
969 rtlpci->receive_config = rtl_read_dword(rtlpriv, REG_RCR);
970 rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV);
971
972 rtl92d_phy_bb_config(hw);
973
974 rtlphy->rf_mode = RF_OP_BY_SW_3WIRE;
975 /* set before initialize RF */
976 rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0xf);
977
978 /* config RF */
979 rtl92d_phy_rf_config(hw);
980
981 /* After read predefined TXT, we must set BB/MAC/RF
982 * register as our requirement */
983 /* After load BB,RF params,we need do more for 92D. */
984 rtl92d_update_bbrf_configuration(hw);
985 /* set default value after initialize RF, */
986 rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0);
987 rtlphy->rfreg_chnlval[0] = rtl_get_rfreg(hw, (enum radio_path)0,
988 RF_CHNLBW, BRFREGOFFSETMASK);
989 rtlphy->rfreg_chnlval[1] = rtl_get_rfreg(hw, (enum radio_path)1,
990 RF_CHNLBW, BRFREGOFFSETMASK);
991
992 /*---- Set CCK and OFDM Block "ON"----*/
993 if (rtlhal->current_bandtype == BAND_ON_2_4G)
994 rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1);
995 rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1);
996 if (rtlhal->interfaceindex == 0) {
997 /* RFPGA0_ANALOGPARAMETER2: cck clock select,
998 * set to 20MHz by default */
999 rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10) |
1000 BIT(11), 3);
1001 } else {
1002 /* Mac1 */
1003 rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(11) |
1004 BIT(10), 3);
1005 }
1006
1007 _rtl92de_hw_configure(hw);
1008
1009 /* reset hw sec */
1010 rtl_cam_reset_all_entry(hw);
1011 rtl92de_enable_hw_security_config(hw);
1012
1013 /* Read EEPROM TX power index and PHY_REG_PG.txt to capture correct */
1014 /* TX power index for different rate set. */
1015 rtl92d_phy_get_hw_reg_originalvalue(hw);
1016 rtl92d_phy_set_txpower_level(hw, rtlphy->current_channel);
1017
1018 ppsc->rfpwr_state = ERFON;
1019
1020 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR, mac->mac_addr);
1021
1022 _rtl92de_enable_aspm_back_door(hw);
1023 /* rtlpriv->intf_ops->enable_aspm(hw); */
1024
1025 rtl92d_dm_init(hw);
1026 rtlpci->being_init_adapter = false;
1027
1028 if (ppsc->rfpwr_state == ERFON) {
1029 rtl92d_phy_lc_calibrate(hw);
1030 /* 5G and 2.4G must wait sometime to let RF LO ready */
1031 if (rtlhal->macphymode == DUALMAC_DUALPHY) {
1032 u32 tmp_rega;
1033 for (i = 0; i < 10000; i++) {
1034 udelay(MAX_STALL_TIME);
1035
1036 tmp_rega = rtl_get_rfreg(hw,
1037 (enum radio_path)RF90_PATH_A,
1038 0x2a, BMASKDWORD);
1039
1040 if (((tmp_rega & BIT(11)) == BIT(11)))
1041 break;
1042 }
1043 /* check that loop was successful. If not, exit now */
1044 if (i == 10000) {
1045 rtlpci->init_ready = false;
1046 return 1;
1047 }
1048 }
1049 }
1050 rtlpci->init_ready = true;
1051 return err;
1052 }
1053
_rtl92de_read_chip_version(struct ieee80211_hw * hw)1054 static enum version_8192d _rtl92de_read_chip_version(struct ieee80211_hw *hw)
1055 {
1056 struct rtl_priv *rtlpriv = rtl_priv(hw);
1057 enum version_8192d version = VERSION_NORMAL_CHIP_92D_SINGLEPHY;
1058 u32 value32;
1059
1060 value32 = rtl_read_dword(rtlpriv, REG_SYS_CFG);
1061 if (!(value32 & 0x000f0000)) {
1062 version = VERSION_TEST_CHIP_92D_SINGLEPHY;
1063 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "TEST CHIP!!!\n");
1064 } else {
1065 version = VERSION_NORMAL_CHIP_92D_SINGLEPHY;
1066 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Normal CHIP!!!\n");
1067 }
1068 return version;
1069 }
1070
_rtl92de_set_media_status(struct ieee80211_hw * hw,enum nl80211_iftype type)1071 static int _rtl92de_set_media_status(struct ieee80211_hw *hw,
1072 enum nl80211_iftype type)
1073 {
1074 struct rtl_priv *rtlpriv = rtl_priv(hw);
1075 u8 bt_msr = rtl_read_byte(rtlpriv, MSR);
1076 enum led_ctl_mode ledaction = LED_CTL_NO_LINK;
1077 u8 bcnfunc_enable;
1078
1079 bt_msr &= 0xfc;
1080
1081 if (type == NL80211_IFTYPE_UNSPECIFIED ||
1082 type == NL80211_IFTYPE_STATION) {
1083 _rtl92de_stop_tx_beacon(hw);
1084 _rtl92de_enable_bcn_sub_func(hw);
1085 } else if (type == NL80211_IFTYPE_ADHOC ||
1086 type == NL80211_IFTYPE_AP) {
1087 _rtl92de_resume_tx_beacon(hw);
1088 _rtl92de_disable_bcn_sub_func(hw);
1089 } else {
1090 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
1091 "Set HW_VAR_MEDIA_STATUS: No such media status(%x)\n",
1092 type);
1093 }
1094 bcnfunc_enable = rtl_read_byte(rtlpriv, REG_BCN_CTRL);
1095 switch (type) {
1096 case NL80211_IFTYPE_UNSPECIFIED:
1097 bt_msr |= MSR_NOLINK;
1098 ledaction = LED_CTL_LINK;
1099 bcnfunc_enable &= 0xF7;
1100 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1101 "Set Network type to NO LINK!\n");
1102 break;
1103 case NL80211_IFTYPE_ADHOC:
1104 bt_msr |= MSR_ADHOC;
1105 bcnfunc_enable |= 0x08;
1106 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1107 "Set Network type to Ad Hoc!\n");
1108 break;
1109 case NL80211_IFTYPE_STATION:
1110 bt_msr |= MSR_INFRA;
1111 ledaction = LED_CTL_LINK;
1112 bcnfunc_enable &= 0xF7;
1113 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1114 "Set Network type to STA!\n");
1115 break;
1116 case NL80211_IFTYPE_AP:
1117 bt_msr |= MSR_AP;
1118 bcnfunc_enable |= 0x08;
1119 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1120 "Set Network type to AP!\n");
1121 break;
1122 default:
1123 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
1124 "Network type %d not supported!\n", type);
1125 return 1;
1126 break;
1127
1128 }
1129 rtl_write_byte(rtlpriv, REG_CR + 2, bt_msr);
1130 rtlpriv->cfg->ops->led_control(hw, ledaction);
1131 if ((bt_msr & 0xfc) == MSR_AP)
1132 rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x00);
1133 else
1134 rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x66);
1135 return 0;
1136 }
1137
rtl92de_set_check_bssid(struct ieee80211_hw * hw,bool check_bssid)1138 void rtl92de_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid)
1139 {
1140 struct rtl_priv *rtlpriv = rtl_priv(hw);
1141 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1142 u32 reg_rcr = rtlpci->receive_config;
1143
1144 if (rtlpriv->psc.rfpwr_state != ERFON)
1145 return;
1146 if (check_bssid) {
1147 reg_rcr |= (RCR_CBSSID_DATA | RCR_CBSSID_BCN);
1148 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(®_rcr));
1149 _rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(4));
1150 } else if (!check_bssid) {
1151 reg_rcr &= (~(RCR_CBSSID_DATA | RCR_CBSSID_BCN));
1152 _rtl92de_set_bcn_ctrl_reg(hw, BIT(4), 0);
1153 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(®_rcr));
1154 }
1155 }
1156
rtl92de_set_network_type(struct ieee80211_hw * hw,enum nl80211_iftype type)1157 int rtl92de_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type)
1158 {
1159 struct rtl_priv *rtlpriv = rtl_priv(hw);
1160
1161 if (_rtl92de_set_media_status(hw, type))
1162 return -EOPNOTSUPP;
1163
1164 /* check bssid */
1165 if (rtlpriv->mac80211.link_state == MAC80211_LINKED) {
1166 if (type != NL80211_IFTYPE_AP)
1167 rtl92de_set_check_bssid(hw, true);
1168 } else {
1169 rtl92de_set_check_bssid(hw, false);
1170 }
1171 return 0;
1172 }
1173
1174 /* do iqk or reload iqk */
1175 /* windows just rtl92d_phy_reload_iqk_setting in set channel,
1176 * but it's very strict for time sequence so we add
1177 * rtl92d_phy_reload_iqk_setting here */
rtl92d_linked_set_reg(struct ieee80211_hw * hw)1178 void rtl92d_linked_set_reg(struct ieee80211_hw *hw)
1179 {
1180 struct rtl_priv *rtlpriv = rtl_priv(hw);
1181 struct rtl_phy *rtlphy = &(rtlpriv->phy);
1182 u8 indexforchannel;
1183 u8 channel = rtlphy->current_channel;
1184
1185 indexforchannel = rtl92d_get_rightchnlplace_for_iqk(channel);
1186 if (!rtlphy->iqk_matrix_regsetting[indexforchannel].iqk_done) {
1187 RT_TRACE(rtlpriv, COMP_SCAN | COMP_INIT, DBG_DMESG,
1188 "Do IQK for channel:%d\n", channel);
1189 rtl92d_phy_iq_calibrate(hw);
1190 }
1191 }
1192
1193 /* don't set REG_EDCA_BE_PARAM here because
1194 * mac80211 will send pkt when scan */
rtl92de_set_qos(struct ieee80211_hw * hw,int aci)1195 void rtl92de_set_qos(struct ieee80211_hw *hw, int aci)
1196 {
1197 struct rtl_priv *rtlpriv = rtl_priv(hw);
1198 rtl92d_dm_init_edca_turbo(hw);
1199 return;
1200 switch (aci) {
1201 case AC1_BK:
1202 rtl_write_dword(rtlpriv, REG_EDCA_BK_PARAM, 0xa44f);
1203 break;
1204 case AC0_BE:
1205 break;
1206 case AC2_VI:
1207 rtl_write_dword(rtlpriv, REG_EDCA_VI_PARAM, 0x5e4322);
1208 break;
1209 case AC3_VO:
1210 rtl_write_dword(rtlpriv, REG_EDCA_VO_PARAM, 0x2f3222);
1211 break;
1212 default:
1213 RT_ASSERT(false, "invalid aci: %d !\n", aci);
1214 break;
1215 }
1216 }
1217
rtl92de_enable_interrupt(struct ieee80211_hw * hw)1218 void rtl92de_enable_interrupt(struct ieee80211_hw *hw)
1219 {
1220 struct rtl_priv *rtlpriv = rtl_priv(hw);
1221 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1222
1223 rtl_write_dword(rtlpriv, REG_HIMR, rtlpci->irq_mask[0] & 0xFFFFFFFF);
1224 rtl_write_dword(rtlpriv, REG_HIMRE, rtlpci->irq_mask[1] & 0xFFFFFFFF);
1225 }
1226
rtl92de_disable_interrupt(struct ieee80211_hw * hw)1227 void rtl92de_disable_interrupt(struct ieee80211_hw *hw)
1228 {
1229 struct rtl_priv *rtlpriv = rtl_priv(hw);
1230 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1231
1232 rtl_write_dword(rtlpriv, REG_HIMR, IMR8190_DISABLED);
1233 rtl_write_dword(rtlpriv, REG_HIMRE, IMR8190_DISABLED);
1234 synchronize_irq(rtlpci->pdev->irq);
1235 }
1236
_rtl92de_poweroff_adapter(struct ieee80211_hw * hw)1237 static void _rtl92de_poweroff_adapter(struct ieee80211_hw *hw)
1238 {
1239 struct rtl_priv *rtlpriv = rtl_priv(hw);
1240 u8 u1b_tmp;
1241 unsigned long flags;
1242
1243 rtlpriv->intf_ops->enable_aspm(hw);
1244 rtl_write_byte(rtlpriv, REG_RF_CTRL, 0x00);
1245 rtl_set_bbreg(hw, RFPGA0_XCD_RFPARAMETER, BIT(3), 0);
1246 rtl_set_bbreg(hw, RFPGA0_XCD_RFPARAMETER, BIT(15), 0);
1247
1248 /* 0x20:value 05-->04 */
1249 rtl_write_byte(rtlpriv, REG_LDOA15_CTRL, 0x04);
1250
1251 /* ==== Reset digital sequence ====== */
1252 rtl92d_firmware_selfreset(hw);
1253
1254 /* f. SYS_FUNC_EN 0x03[7:0]=0x51 reset MCU, MAC register, DCORE */
1255 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, 0x51);
1256
1257 /* g. MCUFWDL 0x80[1:0]=0 reset MCU ready status */
1258 rtl_write_byte(rtlpriv, REG_MCUFWDL, 0x00);
1259
1260 /* ==== Pull GPIO PIN to balance level and LED control ====== */
1261
1262 /* h. GPIO_PIN_CTRL 0x44[31:0]=0x000 */
1263 rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL, 0x00000000);
1264
1265 /* i. Value = GPIO_PIN_CTRL[7:0] */
1266 u1b_tmp = rtl_read_byte(rtlpriv, REG_GPIO_PIN_CTRL);
1267
1268 /* j. GPIO_PIN_CTRL 0x44[31:0] = 0x00FF0000 | (value <<8); */
1269 /* write external PIN level */
1270 rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL,
1271 0x00FF0000 | (u1b_tmp << 8));
1272
1273 /* k. GPIO_MUXCFG 0x42 [15:0] = 0x0780 */
1274 rtl_write_word(rtlpriv, REG_GPIO_IO_SEL, 0x0790);
1275
1276 /* l. LEDCFG 0x4C[15:0] = 0x8080 */
1277 rtl_write_word(rtlpriv, REG_LEDCFG0, 0x8080);
1278
1279 /* ==== Disable analog sequence === */
1280
1281 /* m. AFE_PLL_CTRL[7:0] = 0x80 disable PLL */
1282 rtl_write_byte(rtlpriv, REG_AFE_PLL_CTRL, 0x80);
1283
1284 /* n. SPS0_CTRL 0x11[7:0] = 0x22 enter PFM mode */
1285 rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x23);
1286
1287 /* o. AFE_XTAL_CTRL 0x24[7:0] = 0x0E disable XTAL, if No BT COEX */
1288 rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL, 0x0e);
1289
1290 /* p. RSV_CTRL 0x1C[7:0] = 0x0E lock ISO/CLK/Power control register */
1291 rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0e);
1292
1293 /* ==== interface into suspend === */
1294
1295 /* q. APS_FSMCO[15:8] = 0x58 PCIe suspend mode */
1296 /* According to power document V11, we need to set this */
1297 /* value as 0x18. Otherwise, we may not L0s sometimes. */
1298 /* This indluences power consumption. Bases on SD1's test, */
1299 /* set as 0x00 do not affect power current. And if it */
1300 /* is set as 0x18, they had ever met auto load fail problem. */
1301 rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, 0x10);
1302
1303 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1304 "In PowerOff,reg0x%x=%X\n",
1305 REG_SPS0_CTRL, rtl_read_byte(rtlpriv, REG_SPS0_CTRL));
1306 /* r. Note: for PCIe interface, PON will not turn */
1307 /* off m-bias and BandGap in PCIe suspend mode. */
1308
1309 /* 0x17[7] 1b': power off in process 0b' : power off over */
1310 if (rtlpriv->rtlhal.macphymode != SINGLEMAC_SINGLEPHY) {
1311 spin_lock_irqsave(&globalmutex_power, flags);
1312 u1b_tmp = rtl_read_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS);
1313 u1b_tmp &= (~BIT(7));
1314 rtl_write_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS, u1b_tmp);
1315 spin_unlock_irqrestore(&globalmutex_power, flags);
1316 }
1317
1318 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "<=======\n");
1319 }
1320
rtl92de_card_disable(struct ieee80211_hw * hw)1321 void rtl92de_card_disable(struct ieee80211_hw *hw)
1322 {
1323 struct rtl_priv *rtlpriv = rtl_priv(hw);
1324 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
1325 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1326 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1327 enum nl80211_iftype opmode;
1328
1329 mac->link_state = MAC80211_NOLINK;
1330 opmode = NL80211_IFTYPE_UNSPECIFIED;
1331 _rtl92de_set_media_status(hw, opmode);
1332
1333 if (rtlpci->driver_is_goingto_unload ||
1334 ppsc->rfoff_reason > RF_CHANGE_BY_PS)
1335 rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
1336 RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
1337 /* Power sequence for each MAC. */
1338 /* a. stop tx DMA */
1339 /* b. close RF */
1340 /* c. clear rx buf */
1341 /* d. stop rx DMA */
1342 /* e. reset MAC */
1343
1344 /* a. stop tx DMA */
1345 rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0xFE);
1346 udelay(50);
1347
1348 /* b. TXPAUSE 0x522[7:0] = 0xFF Pause MAC TX queue */
1349
1350 /* c. ========RF OFF sequence========== */
1351 /* 0x88c[23:20] = 0xf. */
1352 rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0xf);
1353 rtl_set_rfreg(hw, RF90_PATH_A, 0x00, BRFREGOFFSETMASK, 0x00);
1354
1355 /* APSD_CTRL 0x600[7:0] = 0x40 */
1356 rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x40);
1357
1358 /* Close antenna 0,0xc04,0xd04 */
1359 rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, BMASKBYTE0, 0);
1360 rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE, BDWORD, 0);
1361
1362 /* SYS_FUNC_EN 0x02[7:0] = 0xE2 reset BB state machine */
1363 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2);
1364
1365 /* Mac0 can not do Global reset. Mac1 can do. */
1366 /* SYS_FUNC_EN 0x02[7:0] = 0xE0 reset BB state machine */
1367 if (rtlpriv->rtlhal.interfaceindex == 1)
1368 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE0);
1369 udelay(50);
1370
1371 /* d. stop tx/rx dma before disable REG_CR (0x100) to fix */
1372 /* dma hang issue when disable/enable device. */
1373 rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0xff);
1374 udelay(50);
1375 rtl_write_byte(rtlpriv, REG_CR, 0x0);
1376 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "==> Do power off.......\n");
1377 if (rtl92d_phy_check_poweroff(hw))
1378 _rtl92de_poweroff_adapter(hw);
1379 return;
1380 }
1381
rtl92de_interrupt_recognized(struct ieee80211_hw * hw,u32 * p_inta,u32 * p_intb)1382 void rtl92de_interrupt_recognized(struct ieee80211_hw *hw,
1383 u32 *p_inta, u32 *p_intb)
1384 {
1385 struct rtl_priv *rtlpriv = rtl_priv(hw);
1386 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1387
1388 *p_inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0];
1389 rtl_write_dword(rtlpriv, ISR, *p_inta);
1390
1391 /*
1392 * *p_intb = rtl_read_dword(rtlpriv, REG_HISRE) & rtlpci->irq_mask[1];
1393 * rtl_write_dword(rtlpriv, ISR + 4, *p_intb);
1394 */
1395 }
1396
rtl92de_set_beacon_related_registers(struct ieee80211_hw * hw)1397 void rtl92de_set_beacon_related_registers(struct ieee80211_hw *hw)
1398 {
1399 struct rtl_priv *rtlpriv = rtl_priv(hw);
1400 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1401 u16 bcn_interval, atim_window;
1402
1403 bcn_interval = mac->beacon_interval;
1404 atim_window = 2;
1405 /*rtl92de_disable_interrupt(hw); */
1406 rtl_write_word(rtlpriv, REG_ATIMWND, atim_window);
1407 rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
1408 rtl_write_word(rtlpriv, REG_BCNTCFG, 0x660f);
1409 rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_CCK, 0x20);
1410 if (rtlpriv->rtlhal.current_bandtype == BAND_ON_5G)
1411 rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x30);
1412 else
1413 rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x20);
1414 rtl_write_byte(rtlpriv, 0x606, 0x30);
1415 }
1416
rtl92de_set_beacon_interval(struct ieee80211_hw * hw)1417 void rtl92de_set_beacon_interval(struct ieee80211_hw *hw)
1418 {
1419 struct rtl_priv *rtlpriv = rtl_priv(hw);
1420 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1421 u16 bcn_interval = mac->beacon_interval;
1422
1423 RT_TRACE(rtlpriv, COMP_BEACON, DBG_DMESG,
1424 "beacon_interval:%d\n", bcn_interval);
1425 /* rtl92de_disable_interrupt(hw); */
1426 rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
1427 /* rtl92de_enable_interrupt(hw); */
1428 }
1429
rtl92de_update_interrupt_mask(struct ieee80211_hw * hw,u32 add_msr,u32 rm_msr)1430 void rtl92de_update_interrupt_mask(struct ieee80211_hw *hw,
1431 u32 add_msr, u32 rm_msr)
1432 {
1433 struct rtl_priv *rtlpriv = rtl_priv(hw);
1434 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1435
1436 RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD, "add_msr:%x, rm_msr:%x\n",
1437 add_msr, rm_msr);
1438 if (add_msr)
1439 rtlpci->irq_mask[0] |= add_msr;
1440 if (rm_msr)
1441 rtlpci->irq_mask[0] &= (~rm_msr);
1442 rtl92de_disable_interrupt(hw);
1443 rtl92de_enable_interrupt(hw);
1444 }
1445
_rtl92de_readpowervalue_fromprom(struct txpower_info * pwrinfo,u8 * rom_content,bool autoLoadfail)1446 static void _rtl92de_readpowervalue_fromprom(struct txpower_info *pwrinfo,
1447 u8 *rom_content, bool autoLoadfail)
1448 {
1449 u32 rfpath, eeaddr, group, offset1, offset2;
1450 u8 i;
1451
1452 memset(pwrinfo, 0, sizeof(struct txpower_info));
1453 if (autoLoadfail) {
1454 for (group = 0; group < CHANNEL_GROUP_MAX; group++) {
1455 for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
1456 if (group < CHANNEL_GROUP_MAX_2G) {
1457 pwrinfo->cck_index[rfpath][group] =
1458 EEPROM_DEFAULT_TXPOWERLEVEL_2G;
1459 pwrinfo->ht40_1sindex[rfpath][group] =
1460 EEPROM_DEFAULT_TXPOWERLEVEL_2G;
1461 } else {
1462 pwrinfo->ht40_1sindex[rfpath][group] =
1463 EEPROM_DEFAULT_TXPOWERLEVEL_5G;
1464 }
1465 pwrinfo->ht40_2sindexdiff[rfpath][group] =
1466 EEPROM_DEFAULT_HT40_2SDIFF;
1467 pwrinfo->ht20indexdiff[rfpath][group] =
1468 EEPROM_DEFAULT_HT20_DIFF;
1469 pwrinfo->ofdmindexdiff[rfpath][group] =
1470 EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF;
1471 pwrinfo->ht40maxoffset[rfpath][group] =
1472 EEPROM_DEFAULT_HT40_PWRMAXOFFSET;
1473 pwrinfo->ht20maxoffset[rfpath][group] =
1474 EEPROM_DEFAULT_HT20_PWRMAXOFFSET;
1475 }
1476 }
1477 for (i = 0; i < 3; i++) {
1478 pwrinfo->tssi_a[i] = EEPROM_DEFAULT_TSSI;
1479 pwrinfo->tssi_b[i] = EEPROM_DEFAULT_TSSI;
1480 }
1481 return;
1482 }
1483
1484 /* Maybe autoload OK,buf the tx power index value is not filled.
1485 * If we find it, we set it to default value. */
1486 for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
1487 for (group = 0; group < CHANNEL_GROUP_MAX_2G; group++) {
1488 eeaddr = EEPROM_CCK_TX_PWR_INX_2G + (rfpath * 3)
1489 + group;
1490 pwrinfo->cck_index[rfpath][group] =
1491 (rom_content[eeaddr] == 0xFF) ?
1492 (eeaddr > 0x7B ?
1493 EEPROM_DEFAULT_TXPOWERLEVEL_5G :
1494 EEPROM_DEFAULT_TXPOWERLEVEL_2G) :
1495 rom_content[eeaddr];
1496 }
1497 }
1498 for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
1499 for (group = 0; group < CHANNEL_GROUP_MAX; group++) {
1500 offset1 = group / 3;
1501 offset2 = group % 3;
1502 eeaddr = EEPROM_HT40_1S_TX_PWR_INX_2G + (rfpath * 3) +
1503 offset2 + offset1 * 21;
1504 pwrinfo->ht40_1sindex[rfpath][group] =
1505 (rom_content[eeaddr] == 0xFF) ? (eeaddr > 0x7B ?
1506 EEPROM_DEFAULT_TXPOWERLEVEL_5G :
1507 EEPROM_DEFAULT_TXPOWERLEVEL_2G) :
1508 rom_content[eeaddr];
1509 }
1510 }
1511 /* These just for 92D efuse offset. */
1512 for (group = 0; group < CHANNEL_GROUP_MAX; group++) {
1513 for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
1514 int base1 = EEPROM_HT40_2S_TX_PWR_INX_DIFF_2G;
1515
1516 offset1 = group / 3;
1517 offset2 = group % 3;
1518
1519 if (rom_content[base1 + offset2 + offset1 * 21] != 0xFF)
1520 pwrinfo->ht40_2sindexdiff[rfpath][group] =
1521 (rom_content[base1 +
1522 offset2 + offset1 * 21] >> (rfpath * 4))
1523 & 0xF;
1524 else
1525 pwrinfo->ht40_2sindexdiff[rfpath][group] =
1526 EEPROM_DEFAULT_HT40_2SDIFF;
1527 if (rom_content[EEPROM_HT20_TX_PWR_INX_DIFF_2G + offset2
1528 + offset1 * 21] != 0xFF)
1529 pwrinfo->ht20indexdiff[rfpath][group] =
1530 (rom_content[EEPROM_HT20_TX_PWR_INX_DIFF_2G
1531 + offset2 + offset1 * 21] >> (rfpath * 4))
1532 & 0xF;
1533 else
1534 pwrinfo->ht20indexdiff[rfpath][group] =
1535 EEPROM_DEFAULT_HT20_DIFF;
1536 if (rom_content[EEPROM_OFDM_TX_PWR_INX_DIFF_2G + offset2
1537 + offset1 * 21] != 0xFF)
1538 pwrinfo->ofdmindexdiff[rfpath][group] =
1539 (rom_content[EEPROM_OFDM_TX_PWR_INX_DIFF_2G
1540 + offset2 + offset1 * 21] >> (rfpath * 4))
1541 & 0xF;
1542 else
1543 pwrinfo->ofdmindexdiff[rfpath][group] =
1544 EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF;
1545 if (rom_content[EEPROM_HT40_MAX_PWR_OFFSET_2G + offset2
1546 + offset1 * 21] != 0xFF)
1547 pwrinfo->ht40maxoffset[rfpath][group] =
1548 (rom_content[EEPROM_HT40_MAX_PWR_OFFSET_2G
1549 + offset2 + offset1 * 21] >> (rfpath * 4))
1550 & 0xF;
1551 else
1552 pwrinfo->ht40maxoffset[rfpath][group] =
1553 EEPROM_DEFAULT_HT40_PWRMAXOFFSET;
1554 if (rom_content[EEPROM_HT20_MAX_PWR_OFFSET_2G + offset2
1555 + offset1 * 21] != 0xFF)
1556 pwrinfo->ht20maxoffset[rfpath][group] =
1557 (rom_content[EEPROM_HT20_MAX_PWR_OFFSET_2G +
1558 offset2 + offset1 * 21] >> (rfpath * 4)) &
1559 0xF;
1560 else
1561 pwrinfo->ht20maxoffset[rfpath][group] =
1562 EEPROM_DEFAULT_HT20_PWRMAXOFFSET;
1563 }
1564 }
1565 if (rom_content[EEPROM_TSSI_A_5G] != 0xFF) {
1566 /* 5GL */
1567 pwrinfo->tssi_a[0] = rom_content[EEPROM_TSSI_A_5G] & 0x3F;
1568 pwrinfo->tssi_b[0] = rom_content[EEPROM_TSSI_B_5G] & 0x3F;
1569 /* 5GM */
1570 pwrinfo->tssi_a[1] = rom_content[EEPROM_TSSI_AB_5G] & 0x3F;
1571 pwrinfo->tssi_b[1] =
1572 (rom_content[EEPROM_TSSI_AB_5G] & 0xC0) >> 6 |
1573 (rom_content[EEPROM_TSSI_AB_5G + 1] & 0x0F) << 2;
1574 /* 5GH */
1575 pwrinfo->tssi_a[2] = (rom_content[EEPROM_TSSI_AB_5G + 1] &
1576 0xF0) >> 4 |
1577 (rom_content[EEPROM_TSSI_AB_5G + 2] & 0x03) << 4;
1578 pwrinfo->tssi_b[2] = (rom_content[EEPROM_TSSI_AB_5G + 2] &
1579 0xFC) >> 2;
1580 } else {
1581 for (i = 0; i < 3; i++) {
1582 pwrinfo->tssi_a[i] = EEPROM_DEFAULT_TSSI;
1583 pwrinfo->tssi_b[i] = EEPROM_DEFAULT_TSSI;
1584 }
1585 }
1586 }
1587
_rtl92de_read_txpower_info(struct ieee80211_hw * hw,bool autoload_fail,u8 * hwinfo)1588 static void _rtl92de_read_txpower_info(struct ieee80211_hw *hw,
1589 bool autoload_fail, u8 *hwinfo)
1590 {
1591 struct rtl_priv *rtlpriv = rtl_priv(hw);
1592 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1593 struct txpower_info pwrinfo;
1594 u8 tempval[2], i, pwr, diff;
1595 u32 ch, rfPath, group;
1596
1597 _rtl92de_readpowervalue_fromprom(&pwrinfo, hwinfo, autoload_fail);
1598 if (!autoload_fail) {
1599 /* bit0~2 */
1600 rtlefuse->eeprom_regulatory = (hwinfo[EEPROM_RF_OPT1] & 0x7);
1601 rtlefuse->eeprom_thermalmeter =
1602 hwinfo[EEPROM_THERMAL_METER] & 0x1f;
1603 rtlefuse->crystalcap = hwinfo[EEPROM_XTAL_K];
1604 tempval[0] = hwinfo[EEPROM_IQK_DELTA] & 0x03;
1605 tempval[1] = (hwinfo[EEPROM_LCK_DELTA] & 0x0C) >> 2;
1606 rtlefuse->txpwr_fromeprom = true;
1607 if (IS_92D_D_CUT(rtlpriv->rtlhal.version) ||
1608 IS_92D_E_CUT(rtlpriv->rtlhal.version)) {
1609 rtlefuse->internal_pa_5g[0] =
1610 !((hwinfo[EEPROM_TSSI_A_5G] & BIT(6)) >> 6);
1611 rtlefuse->internal_pa_5g[1] =
1612 !((hwinfo[EEPROM_TSSI_B_5G] & BIT(6)) >> 6);
1613 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
1614 "Is D cut,Internal PA0 %d Internal PA1 %d\n",
1615 rtlefuse->internal_pa_5g[0],
1616 rtlefuse->internal_pa_5g[1]);
1617 }
1618 rtlefuse->eeprom_c9 = hwinfo[EEPROM_RF_OPT6];
1619 rtlefuse->eeprom_cc = hwinfo[EEPROM_RF_OPT7];
1620 } else {
1621 rtlefuse->eeprom_regulatory = 0;
1622 rtlefuse->eeprom_thermalmeter = EEPROM_DEFAULT_THERMALMETER;
1623 rtlefuse->crystalcap = EEPROM_DEFAULT_CRYSTALCAP;
1624 tempval[0] = tempval[1] = 3;
1625 }
1626
1627 /* Use default value to fill parameters if
1628 * efuse is not filled on some place. */
1629
1630 /* ThermalMeter from EEPROM */
1631 if (rtlefuse->eeprom_thermalmeter < 0x06 ||
1632 rtlefuse->eeprom_thermalmeter > 0x1c)
1633 rtlefuse->eeprom_thermalmeter = 0x12;
1634 rtlefuse->thermalmeter[0] = rtlefuse->eeprom_thermalmeter;
1635
1636 /* check XTAL_K */
1637 if (rtlefuse->crystalcap == 0xFF)
1638 rtlefuse->crystalcap = 0;
1639 if (rtlefuse->eeprom_regulatory > 3)
1640 rtlefuse->eeprom_regulatory = 0;
1641
1642 for (i = 0; i < 2; i++) {
1643 switch (tempval[i]) {
1644 case 0:
1645 tempval[i] = 5;
1646 break;
1647 case 1:
1648 tempval[i] = 4;
1649 break;
1650 case 2:
1651 tempval[i] = 3;
1652 break;
1653 case 3:
1654 default:
1655 tempval[i] = 0;
1656 break;
1657 }
1658 }
1659
1660 rtlefuse->delta_iqk = tempval[0];
1661 if (tempval[1] > 0)
1662 rtlefuse->delta_lck = tempval[1] - 1;
1663 if (rtlefuse->eeprom_c9 == 0xFF)
1664 rtlefuse->eeprom_c9 = 0x00;
1665 RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD,
1666 "EEPROMRegulatory = 0x%x\n", rtlefuse->eeprom_regulatory);
1667 RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD,
1668 "ThermalMeter = 0x%x\n", rtlefuse->eeprom_thermalmeter);
1669 RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD,
1670 "CrystalCap = 0x%x\n", rtlefuse->crystalcap);
1671 RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD,
1672 "Delta_IQK = 0x%x Delta_LCK = 0x%x\n",
1673 rtlefuse->delta_iqk, rtlefuse->delta_lck);
1674
1675 for (rfPath = 0; rfPath < RF6052_MAX_PATH; rfPath++) {
1676 for (ch = 0; ch < CHANNEL_MAX_NUMBER; ch++) {
1677 group = rtl92d_get_chnlgroup_fromarray((u8) ch);
1678 if (ch < CHANNEL_MAX_NUMBER_2G)
1679 rtlefuse->txpwrlevel_cck[rfPath][ch] =
1680 pwrinfo.cck_index[rfPath][group];
1681 rtlefuse->txpwrlevel_ht40_1s[rfPath][ch] =
1682 pwrinfo.ht40_1sindex[rfPath][group];
1683 rtlefuse->txpwr_ht20diff[rfPath][ch] =
1684 pwrinfo.ht20indexdiff[rfPath][group];
1685 rtlefuse->txpwr_legacyhtdiff[rfPath][ch] =
1686 pwrinfo.ofdmindexdiff[rfPath][group];
1687 rtlefuse->pwrgroup_ht20[rfPath][ch] =
1688 pwrinfo.ht20maxoffset[rfPath][group];
1689 rtlefuse->pwrgroup_ht40[rfPath][ch] =
1690 pwrinfo.ht40maxoffset[rfPath][group];
1691 pwr = pwrinfo.ht40_1sindex[rfPath][group];
1692 diff = pwrinfo.ht40_2sindexdiff[rfPath][group];
1693 rtlefuse->txpwrlevel_ht40_2s[rfPath][ch] =
1694 (pwr > diff) ? (pwr - diff) : 0;
1695 }
1696 }
1697 }
1698
_rtl92de_read_macphymode_from_prom(struct ieee80211_hw * hw,u8 * content)1699 static void _rtl92de_read_macphymode_from_prom(struct ieee80211_hw *hw,
1700 u8 *content)
1701 {
1702 struct rtl_priv *rtlpriv = rtl_priv(hw);
1703 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1704 u8 macphy_crvalue = content[EEPROM_MAC_FUNCTION];
1705
1706 if (macphy_crvalue & BIT(3)) {
1707 rtlhal->macphymode = SINGLEMAC_SINGLEPHY;
1708 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1709 "MacPhyMode SINGLEMAC_SINGLEPHY\n");
1710 } else {
1711 rtlhal->macphymode = DUALMAC_DUALPHY;
1712 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1713 "MacPhyMode DUALMAC_DUALPHY\n");
1714 }
1715 }
1716
_rtl92de_read_macphymode_and_bandtype(struct ieee80211_hw * hw,u8 * content)1717 static void _rtl92de_read_macphymode_and_bandtype(struct ieee80211_hw *hw,
1718 u8 *content)
1719 {
1720 _rtl92de_read_macphymode_from_prom(hw, content);
1721 rtl92d_phy_config_macphymode(hw);
1722 rtl92d_phy_config_macphymode_info(hw);
1723 }
1724
_rtl92de_efuse_update_chip_version(struct ieee80211_hw * hw)1725 static void _rtl92de_efuse_update_chip_version(struct ieee80211_hw *hw)
1726 {
1727 struct rtl_priv *rtlpriv = rtl_priv(hw);
1728 enum version_8192d chipver = rtlpriv->rtlhal.version;
1729 u8 cutvalue[2];
1730 u16 chipvalue;
1731
1732 rtlpriv->intf_ops->read_efuse_byte(hw, EEPROME_CHIP_VERSION_H,
1733 &cutvalue[1]);
1734 rtlpriv->intf_ops->read_efuse_byte(hw, EEPROME_CHIP_VERSION_L,
1735 &cutvalue[0]);
1736 chipvalue = (cutvalue[1] << 8) | cutvalue[0];
1737 switch (chipvalue) {
1738 case 0xAA55:
1739 chipver |= CHIP_92D_C_CUT;
1740 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "C-CUT!!!\n");
1741 break;
1742 case 0x9966:
1743 chipver |= CHIP_92D_D_CUT;
1744 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "D-CUT!!!\n");
1745 break;
1746 default:
1747 chipver |= CHIP_92D_D_CUT;
1748 RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG, "Unkown CUT!\n");
1749 break;
1750 }
1751 rtlpriv->rtlhal.version = chipver;
1752 }
1753
_rtl92de_read_adapter_info(struct ieee80211_hw * hw)1754 static void _rtl92de_read_adapter_info(struct ieee80211_hw *hw)
1755 {
1756 struct rtl_priv *rtlpriv = rtl_priv(hw);
1757 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1758 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1759 u16 i, usvalue;
1760 u8 hwinfo[HWSET_MAX_SIZE];
1761 u16 eeprom_id;
1762 unsigned long flags;
1763
1764 if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) {
1765 spin_lock_irqsave(&globalmutex_for_power_and_efuse, flags);
1766 rtl_efuse_shadow_map_update(hw);
1767 _rtl92de_efuse_update_chip_version(hw);
1768 spin_unlock_irqrestore(&globalmutex_for_power_and_efuse, flags);
1769 memcpy((void *)hwinfo, (void *)&rtlefuse->efuse_map
1770 [EFUSE_INIT_MAP][0],
1771 HWSET_MAX_SIZE);
1772 } else if (rtlefuse->epromtype == EEPROM_93C46) {
1773 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
1774 "RTL819X Not boot from eeprom, check it !!\n");
1775 }
1776 RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "MAP",
1777 hwinfo, HWSET_MAX_SIZE);
1778
1779 eeprom_id = *((u16 *)&hwinfo[0]);
1780 if (eeprom_id != RTL8190_EEPROM_ID) {
1781 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
1782 "EEPROM ID(%#x) is invalid!!\n", eeprom_id);
1783 rtlefuse->autoload_failflag = true;
1784 } else {
1785 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
1786 rtlefuse->autoload_failflag = false;
1787 }
1788 if (rtlefuse->autoload_failflag) {
1789 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
1790 "RTL819X Not boot from eeprom, check it !!\n");
1791 return;
1792 }
1793 rtlefuse->eeprom_oemid = *(u8 *)&hwinfo[EEPROM_CUSTOMER_ID];
1794 _rtl92de_read_macphymode_and_bandtype(hw, hwinfo);
1795
1796 /* VID, DID SE 0xA-D */
1797 rtlefuse->eeprom_vid = *(u16 *)&hwinfo[EEPROM_VID];
1798 rtlefuse->eeprom_did = *(u16 *)&hwinfo[EEPROM_DID];
1799 rtlefuse->eeprom_svid = *(u16 *)&hwinfo[EEPROM_SVID];
1800 rtlefuse->eeprom_smid = *(u16 *)&hwinfo[EEPROM_SMID];
1801 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "EEPROMId = 0x%4x\n", eeprom_id);
1802 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1803 "EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid);
1804 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1805 "EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did);
1806 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1807 "EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid);
1808 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1809 "EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid);
1810
1811 /* Read Permanent MAC address */
1812 if (rtlhal->interfaceindex == 0) {
1813 for (i = 0; i < 6; i += 2) {
1814 usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR_MAC0_92D + i];
1815 *((u16 *) (&rtlefuse->dev_addr[i])) = usvalue;
1816 }
1817 } else {
1818 for (i = 0; i < 6; i += 2) {
1819 usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR_MAC1_92D + i];
1820 *((u16 *) (&rtlefuse->dev_addr[i])) = usvalue;
1821 }
1822 }
1823 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR,
1824 rtlefuse->dev_addr);
1825 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr);
1826 _rtl92de_read_txpower_info(hw, rtlefuse->autoload_failflag, hwinfo);
1827
1828 /* Read Channel Plan */
1829 switch (rtlhal->bandset) {
1830 case BAND_ON_2_4G:
1831 rtlefuse->channel_plan = COUNTRY_CODE_TELEC;
1832 break;
1833 case BAND_ON_5G:
1834 rtlefuse->channel_plan = COUNTRY_CODE_FCC;
1835 break;
1836 case BAND_ON_BOTH:
1837 rtlefuse->channel_plan = COUNTRY_CODE_FCC;
1838 break;
1839 default:
1840 rtlefuse->channel_plan = COUNTRY_CODE_FCC;
1841 break;
1842 }
1843 rtlefuse->eeprom_version = *(u16 *)&hwinfo[EEPROM_VERSION];
1844 rtlefuse->txpwr_fromeprom = true;
1845 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1846 "EEPROM Customer ID: 0x%2x\n", rtlefuse->eeprom_oemid);
1847 }
1848
rtl92de_read_eeprom_info(struct ieee80211_hw * hw)1849 void rtl92de_read_eeprom_info(struct ieee80211_hw *hw)
1850 {
1851 struct rtl_priv *rtlpriv = rtl_priv(hw);
1852 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1853 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1854 u8 tmp_u1b;
1855
1856 rtlhal->version = _rtl92de_read_chip_version(hw);
1857 tmp_u1b = rtl_read_byte(rtlpriv, REG_9346CR);
1858 rtlefuse->autoload_status = tmp_u1b;
1859 if (tmp_u1b & BIT(4)) {
1860 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n");
1861 rtlefuse->epromtype = EEPROM_93C46;
1862 } else {
1863 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n");
1864 rtlefuse->epromtype = EEPROM_BOOT_EFUSE;
1865 }
1866 if (tmp_u1b & BIT(5)) {
1867 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
1868
1869 rtlefuse->autoload_failflag = false;
1870 _rtl92de_read_adapter_info(hw);
1871 } else {
1872 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Autoload ERR!!\n");
1873 }
1874 return;
1875 }
1876
rtl92de_update_hal_rate_table(struct ieee80211_hw * hw,struct ieee80211_sta * sta)1877 static void rtl92de_update_hal_rate_table(struct ieee80211_hw *hw,
1878 struct ieee80211_sta *sta)
1879 {
1880 struct rtl_priv *rtlpriv = rtl_priv(hw);
1881 struct rtl_phy *rtlphy = &(rtlpriv->phy);
1882 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1883 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1884 u32 ratr_value;
1885 u8 ratr_index = 0;
1886 u8 nmode = mac->ht_enable;
1887 u8 mimo_ps = IEEE80211_SMPS_OFF;
1888 u16 shortgi_rate;
1889 u32 tmp_ratr_value;
1890 u8 curtxbw_40mhz = mac->bw_40;
1891 u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
1892 1 : 0;
1893 u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
1894 1 : 0;
1895 enum wireless_mode wirelessmode = mac->mode;
1896
1897 if (rtlhal->current_bandtype == BAND_ON_5G)
1898 ratr_value = sta->supp_rates[1] << 4;
1899 else
1900 ratr_value = sta->supp_rates[0];
1901 ratr_value |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
1902 sta->ht_cap.mcs.rx_mask[0] << 12);
1903 switch (wirelessmode) {
1904 case WIRELESS_MODE_A:
1905 ratr_value &= 0x00000FF0;
1906 break;
1907 case WIRELESS_MODE_B:
1908 if (ratr_value & 0x0000000c)
1909 ratr_value &= 0x0000000d;
1910 else
1911 ratr_value &= 0x0000000f;
1912 break;
1913 case WIRELESS_MODE_G:
1914 ratr_value &= 0x00000FF5;
1915 break;
1916 case WIRELESS_MODE_N_24G:
1917 case WIRELESS_MODE_N_5G:
1918 nmode = 1;
1919 if (mimo_ps == IEEE80211_SMPS_STATIC) {
1920 ratr_value &= 0x0007F005;
1921 } else {
1922 u32 ratr_mask;
1923
1924 if (get_rf_type(rtlphy) == RF_1T2R ||
1925 get_rf_type(rtlphy) == RF_1T1R) {
1926 ratr_mask = 0x000ff005;
1927 } else {
1928 ratr_mask = 0x0f0ff005;
1929 }
1930
1931 ratr_value &= ratr_mask;
1932 }
1933 break;
1934 default:
1935 if (rtlphy->rf_type == RF_1T2R)
1936 ratr_value &= 0x000ff0ff;
1937 else
1938 ratr_value &= 0x0f0ff0ff;
1939
1940 break;
1941 }
1942 ratr_value &= 0x0FFFFFFF;
1943 if (nmode && ((curtxbw_40mhz && curshortgi_40mhz) ||
1944 (!curtxbw_40mhz && curshortgi_20mhz))) {
1945 ratr_value |= 0x10000000;
1946 tmp_ratr_value = (ratr_value >> 12);
1947 for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
1948 if ((1 << shortgi_rate) & tmp_ratr_value)
1949 break;
1950 }
1951 shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
1952 (shortgi_rate << 4) | (shortgi_rate);
1953 }
1954 rtl_write_dword(rtlpriv, REG_ARFR0 + ratr_index * 4, ratr_value);
1955 RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, "%x\n",
1956 rtl_read_dword(rtlpriv, REG_ARFR0));
1957 }
1958
rtl92de_update_hal_rate_mask(struct ieee80211_hw * hw,struct ieee80211_sta * sta,u8 rssi_level)1959 static void rtl92de_update_hal_rate_mask(struct ieee80211_hw *hw,
1960 struct ieee80211_sta *sta, u8 rssi_level)
1961 {
1962 struct rtl_priv *rtlpriv = rtl_priv(hw);
1963 struct rtl_phy *rtlphy = &(rtlpriv->phy);
1964 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1965 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1966 struct rtl_sta_info *sta_entry = NULL;
1967 u32 ratr_bitmap;
1968 u8 ratr_index;
1969 u8 curtxbw_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40)
1970 ? 1 : 0;
1971 u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
1972 1 : 0;
1973 u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
1974 1 : 0;
1975 enum wireless_mode wirelessmode = 0;
1976 bool shortgi = false;
1977 u32 value[2];
1978 u8 macid = 0;
1979 u8 mimo_ps = IEEE80211_SMPS_OFF;
1980
1981 sta_entry = (struct rtl_sta_info *) sta->drv_priv;
1982 mimo_ps = sta_entry->mimo_ps;
1983 wirelessmode = sta_entry->wireless_mode;
1984 if (mac->opmode == NL80211_IFTYPE_STATION)
1985 curtxbw_40mhz = mac->bw_40;
1986 else if (mac->opmode == NL80211_IFTYPE_AP ||
1987 mac->opmode == NL80211_IFTYPE_ADHOC)
1988 macid = sta->aid + 1;
1989
1990 if (rtlhal->current_bandtype == BAND_ON_5G)
1991 ratr_bitmap = sta->supp_rates[1] << 4;
1992 else
1993 ratr_bitmap = sta->supp_rates[0];
1994 ratr_bitmap |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
1995 sta->ht_cap.mcs.rx_mask[0] << 12);
1996 switch (wirelessmode) {
1997 case WIRELESS_MODE_B:
1998 ratr_index = RATR_INX_WIRELESS_B;
1999 if (ratr_bitmap & 0x0000000c)
2000 ratr_bitmap &= 0x0000000d;
2001 else
2002 ratr_bitmap &= 0x0000000f;
2003 break;
2004 case WIRELESS_MODE_G:
2005 ratr_index = RATR_INX_WIRELESS_GB;
2006
2007 if (rssi_level == 1)
2008 ratr_bitmap &= 0x00000f00;
2009 else if (rssi_level == 2)
2010 ratr_bitmap &= 0x00000ff0;
2011 else
2012 ratr_bitmap &= 0x00000ff5;
2013 break;
2014 case WIRELESS_MODE_A:
2015 ratr_index = RATR_INX_WIRELESS_G;
2016 ratr_bitmap &= 0x00000ff0;
2017 break;
2018 case WIRELESS_MODE_N_24G:
2019 case WIRELESS_MODE_N_5G:
2020 if (wirelessmode == WIRELESS_MODE_N_24G)
2021 ratr_index = RATR_INX_WIRELESS_NGB;
2022 else
2023 ratr_index = RATR_INX_WIRELESS_NG;
2024 if (mimo_ps == IEEE80211_SMPS_STATIC) {
2025 if (rssi_level == 1)
2026 ratr_bitmap &= 0x00070000;
2027 else if (rssi_level == 2)
2028 ratr_bitmap &= 0x0007f000;
2029 else
2030 ratr_bitmap &= 0x0007f005;
2031 } else {
2032 if (rtlphy->rf_type == RF_1T2R ||
2033 rtlphy->rf_type == RF_1T1R) {
2034 if (curtxbw_40mhz) {
2035 if (rssi_level == 1)
2036 ratr_bitmap &= 0x000f0000;
2037 else if (rssi_level == 2)
2038 ratr_bitmap &= 0x000ff000;
2039 else
2040 ratr_bitmap &= 0x000ff015;
2041 } else {
2042 if (rssi_level == 1)
2043 ratr_bitmap &= 0x000f0000;
2044 else if (rssi_level == 2)
2045 ratr_bitmap &= 0x000ff000;
2046 else
2047 ratr_bitmap &= 0x000ff005;
2048 }
2049 } else {
2050 if (curtxbw_40mhz) {
2051 if (rssi_level == 1)
2052 ratr_bitmap &= 0x0f0f0000;
2053 else if (rssi_level == 2)
2054 ratr_bitmap &= 0x0f0ff000;
2055 else
2056 ratr_bitmap &= 0x0f0ff015;
2057 } else {
2058 if (rssi_level == 1)
2059 ratr_bitmap &= 0x0f0f0000;
2060 else if (rssi_level == 2)
2061 ratr_bitmap &= 0x0f0ff000;
2062 else
2063 ratr_bitmap &= 0x0f0ff005;
2064 }
2065 }
2066 }
2067 if ((curtxbw_40mhz && curshortgi_40mhz) ||
2068 (!curtxbw_40mhz && curshortgi_20mhz)) {
2069
2070 if (macid == 0)
2071 shortgi = true;
2072 else if (macid == 1)
2073 shortgi = false;
2074 }
2075 break;
2076 default:
2077 ratr_index = RATR_INX_WIRELESS_NGB;
2078
2079 if (rtlphy->rf_type == RF_1T2R)
2080 ratr_bitmap &= 0x000ff0ff;
2081 else
2082 ratr_bitmap &= 0x0f0ff0ff;
2083 break;
2084 }
2085
2086 value[0] = (ratr_bitmap & 0x0fffffff) | (ratr_index << 28);
2087 value[1] = macid | (shortgi ? 0x20 : 0x00) | 0x80;
2088 RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG,
2089 "ratr_bitmap :%x value0:%x value1:%x\n",
2090 ratr_bitmap, value[0], value[1]);
2091 rtl92d_fill_h2c_cmd(hw, H2C_RA_MASK, 5, (u8 *) value);
2092 if (macid != 0)
2093 sta_entry->ratr_index = ratr_index;
2094 }
2095
rtl92de_update_hal_rate_tbl(struct ieee80211_hw * hw,struct ieee80211_sta * sta,u8 rssi_level)2096 void rtl92de_update_hal_rate_tbl(struct ieee80211_hw *hw,
2097 struct ieee80211_sta *sta, u8 rssi_level)
2098 {
2099 struct rtl_priv *rtlpriv = rtl_priv(hw);
2100
2101 if (rtlpriv->dm.useramask)
2102 rtl92de_update_hal_rate_mask(hw, sta, rssi_level);
2103 else
2104 rtl92de_update_hal_rate_table(hw, sta);
2105 }
2106
rtl92de_update_channel_access_setting(struct ieee80211_hw * hw)2107 void rtl92de_update_channel_access_setting(struct ieee80211_hw *hw)
2108 {
2109 struct rtl_priv *rtlpriv = rtl_priv(hw);
2110 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2111 u16 sifs_timer;
2112
2113 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME,
2114 (u8 *)&mac->slot_time);
2115 if (!mac->ht_enable)
2116 sifs_timer = 0x0a0a;
2117 else
2118 sifs_timer = 0x1010;
2119 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
2120 }
2121
rtl92de_gpio_radio_on_off_checking(struct ieee80211_hw * hw,u8 * valid)2122 bool rtl92de_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid)
2123 {
2124 struct rtl_priv *rtlpriv = rtl_priv(hw);
2125 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
2126 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2127 enum rf_pwrstate e_rfpowerstate_toset;
2128 u8 u1tmp;
2129 bool actuallyset = false;
2130 unsigned long flag;
2131
2132 if (rtlpci->being_init_adapter)
2133 return false;
2134 if (ppsc->swrf_processing)
2135 return false;
2136 spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2137 if (ppsc->rfchange_inprogress) {
2138 spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2139 return false;
2140 } else {
2141 ppsc->rfchange_inprogress = true;
2142 spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2143 }
2144 rtl_write_byte(rtlpriv, REG_MAC_PINMUX_CFG, rtl_read_byte(rtlpriv,
2145 REG_MAC_PINMUX_CFG) & ~(BIT(3)));
2146 u1tmp = rtl_read_byte(rtlpriv, REG_GPIO_IO_SEL);
2147 e_rfpowerstate_toset = (u1tmp & BIT(3)) ? ERFON : ERFOFF;
2148 if (ppsc->hwradiooff && (e_rfpowerstate_toset == ERFON)) {
2149 RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
2150 "GPIOChangeRF - HW Radio ON, RF ON\n");
2151 e_rfpowerstate_toset = ERFON;
2152 ppsc->hwradiooff = false;
2153 actuallyset = true;
2154 } else if (!ppsc->hwradiooff && (e_rfpowerstate_toset == ERFOFF)) {
2155 RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
2156 "GPIOChangeRF - HW Radio OFF, RF OFF\n");
2157 e_rfpowerstate_toset = ERFOFF;
2158 ppsc->hwradiooff = true;
2159 actuallyset = true;
2160 }
2161 if (actuallyset) {
2162 spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2163 ppsc->rfchange_inprogress = false;
2164 spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2165 } else {
2166 if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC)
2167 RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
2168 spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2169 ppsc->rfchange_inprogress = false;
2170 spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2171 }
2172 *valid = 1;
2173 return !ppsc->hwradiooff;
2174 }
2175
rtl92de_set_key(struct ieee80211_hw * hw,u32 key_index,u8 * p_macaddr,bool is_group,u8 enc_algo,bool is_wepkey,bool clear_all)2176 void rtl92de_set_key(struct ieee80211_hw *hw, u32 key_index,
2177 u8 *p_macaddr, bool is_group, u8 enc_algo,
2178 bool is_wepkey, bool clear_all)
2179 {
2180 struct rtl_priv *rtlpriv = rtl_priv(hw);
2181 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2182 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
2183 u8 *macaddr = p_macaddr;
2184 u32 entry_id;
2185 bool is_pairwise = false;
2186 static u8 cam_const_addr[4][6] = {
2187 {0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
2188 {0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
2189 {0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
2190 {0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
2191 };
2192 static u8 cam_const_broad[] = {
2193 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
2194 };
2195
2196 if (clear_all) {
2197 u8 idx;
2198 u8 cam_offset = 0;
2199 u8 clear_number = 5;
2200 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n");
2201 for (idx = 0; idx < clear_number; idx++) {
2202 rtl_cam_mark_invalid(hw, cam_offset + idx);
2203 rtl_cam_empty_entry(hw, cam_offset + idx);
2204
2205 if (idx < 5) {
2206 memset(rtlpriv->sec.key_buf[idx], 0,
2207 MAX_KEY_LEN);
2208 rtlpriv->sec.key_len[idx] = 0;
2209 }
2210 }
2211 } else {
2212 switch (enc_algo) {
2213 case WEP40_ENCRYPTION:
2214 enc_algo = CAM_WEP40;
2215 break;
2216 case WEP104_ENCRYPTION:
2217 enc_algo = CAM_WEP104;
2218 break;
2219 case TKIP_ENCRYPTION:
2220 enc_algo = CAM_TKIP;
2221 break;
2222 case AESCCMP_ENCRYPTION:
2223 enc_algo = CAM_AES;
2224 break;
2225 default:
2226 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
2227 "switch case not processed\n");
2228 enc_algo = CAM_TKIP;
2229 break;
2230 }
2231 if (is_wepkey || rtlpriv->sec.use_defaultkey) {
2232 macaddr = cam_const_addr[key_index];
2233 entry_id = key_index;
2234 } else {
2235 if (is_group) {
2236 macaddr = cam_const_broad;
2237 entry_id = key_index;
2238 } else {
2239 if (mac->opmode == NL80211_IFTYPE_AP) {
2240 entry_id = rtl_cam_get_free_entry(hw,
2241 p_macaddr);
2242 if (entry_id >= TOTAL_CAM_ENTRY) {
2243 RT_TRACE(rtlpriv, COMP_SEC,
2244 DBG_EMERG,
2245 "Can not find free hw security cam entry\n");
2246 return;
2247 }
2248 } else {
2249 entry_id = CAM_PAIRWISE_KEY_POSITION;
2250 }
2251 key_index = PAIRWISE_KEYIDX;
2252 is_pairwise = true;
2253 }
2254 }
2255 if (rtlpriv->sec.key_len[key_index] == 0) {
2256 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2257 "delete one entry, entry_id is %d\n",
2258 entry_id);
2259 if (mac->opmode == NL80211_IFTYPE_AP)
2260 rtl_cam_del_entry(hw, p_macaddr);
2261 rtl_cam_delete_one_entry(hw, p_macaddr, entry_id);
2262 } else {
2263 RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
2264 "The insert KEY length is %d\n",
2265 rtlpriv->sec.key_len[PAIRWISE_KEYIDX]);
2266 RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
2267 "The insert KEY is %x %x\n",
2268 rtlpriv->sec.key_buf[0][0],
2269 rtlpriv->sec.key_buf[0][1]);
2270 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2271 "add one entry\n");
2272 if (is_pairwise) {
2273 RT_PRINT_DATA(rtlpriv, COMP_SEC, DBG_LOUD,
2274 "Pairwise Key content",
2275 rtlpriv->sec.pairwise_key,
2276 rtlpriv->
2277 sec.key_len[PAIRWISE_KEYIDX]);
2278 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2279 "set Pairwise key\n");
2280 rtl_cam_add_one_entry(hw, macaddr, key_index,
2281 entry_id, enc_algo,
2282 CAM_CONFIG_NO_USEDK,
2283 rtlpriv->
2284 sec.key_buf[key_index]);
2285 } else {
2286 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2287 "set group key\n");
2288 if (mac->opmode == NL80211_IFTYPE_ADHOC) {
2289 rtl_cam_add_one_entry(hw,
2290 rtlefuse->dev_addr,
2291 PAIRWISE_KEYIDX,
2292 CAM_PAIRWISE_KEY_POSITION,
2293 enc_algo, CAM_CONFIG_NO_USEDK,
2294 rtlpriv->sec.key_buf[entry_id]);
2295 }
2296 rtl_cam_add_one_entry(hw, macaddr, key_index,
2297 entry_id, enc_algo,
2298 CAM_CONFIG_NO_USEDK,
2299 rtlpriv->sec.key_buf
2300 [entry_id]);
2301 }
2302 }
2303 }
2304 }
2305
rtl92de_suspend(struct ieee80211_hw * hw)2306 void rtl92de_suspend(struct ieee80211_hw *hw)
2307 {
2308 struct rtl_priv *rtlpriv = rtl_priv(hw);
2309
2310 rtlpriv->rtlhal.macphyctl_reg = rtl_read_byte(rtlpriv,
2311 REG_MAC_PHY_CTRL_NORMAL);
2312 }
2313
rtl92de_resume(struct ieee80211_hw * hw)2314 void rtl92de_resume(struct ieee80211_hw *hw)
2315 {
2316 struct rtl_priv *rtlpriv = rtl_priv(hw);
2317
2318 rtl_write_byte(rtlpriv, REG_MAC_PHY_CTRL_NORMAL,
2319 rtlpriv->rtlhal.macphyctl_reg);
2320 }
2321