1 /*
2 	Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 	Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 	<http://rt2x00.serialmonkey.com>
5 
6 	This program is free software; you can redistribute it and/or modify
7 	it under the terms of the GNU General Public License as published by
8 	the Free Software Foundation; either version 2 of the License, or
9 	(at your option) any later version.
10 
11 	This program is distributed in the hope that it will be useful,
12 	but WITHOUT ANY WARRANTY; without even the implied warranty of
13 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 	GNU General Public License for more details.
15 
16 	You should have received a copy of the GNU General Public License
17 	along with this program; if not, write to the
18 	Free Software Foundation, Inc.,
19 	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20  */
21 
22 /*
23 	Module: rt2x00lib
24 	Abstract: rt2x00 generic device routines.
25  */
26 
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/slab.h>
30 #include <linux/log2.h>
31 
32 #include "rt2x00.h"
33 #include "rt2x00lib.h"
34 
35 /*
36  * Utility functions.
37  */
rt2x00lib_get_bssidx(struct rt2x00_dev * rt2x00dev,struct ieee80211_vif * vif)38 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
39 			 struct ieee80211_vif *vif)
40 {
41 	/*
42 	 * When in STA mode, bssidx is always 0 otherwise local_address[5]
43 	 * contains the bss number, see BSS_ID_MASK comments for details.
44 	 */
45 	if (rt2x00dev->intf_sta_count)
46 		return 0;
47 	return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1);
48 }
49 EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx);
50 
51 /*
52  * Radio control handlers.
53  */
rt2x00lib_enable_radio(struct rt2x00_dev * rt2x00dev)54 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
55 {
56 	int status;
57 
58 	/*
59 	 * Don't enable the radio twice.
60 	 * And check if the hardware button has been disabled.
61 	 */
62 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
63 		return 0;
64 
65 	/*
66 	 * Initialize all data queues.
67 	 */
68 	rt2x00queue_init_queues(rt2x00dev);
69 
70 	/*
71 	 * Enable radio.
72 	 */
73 	status =
74 	    rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
75 	if (status)
76 		return status;
77 
78 	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
79 
80 	rt2x00leds_led_radio(rt2x00dev, true);
81 	rt2x00led_led_activity(rt2x00dev, true);
82 
83 	set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
84 
85 	/*
86 	 * Enable queues.
87 	 */
88 	rt2x00queue_start_queues(rt2x00dev);
89 	rt2x00link_start_tuner(rt2x00dev);
90 	rt2x00link_start_agc(rt2x00dev);
91 	if (test_bit(CAPABILITY_VCO_RECALIBRATION, &rt2x00dev->cap_flags))
92 		rt2x00link_start_vcocal(rt2x00dev);
93 
94 	/*
95 	 * Start watchdog monitoring.
96 	 */
97 	rt2x00link_start_watchdog(rt2x00dev);
98 
99 	return 0;
100 }
101 
rt2x00lib_disable_radio(struct rt2x00_dev * rt2x00dev)102 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
103 {
104 	if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
105 		return;
106 
107 	/*
108 	 * Stop watchdog monitoring.
109 	 */
110 	rt2x00link_stop_watchdog(rt2x00dev);
111 
112 	/*
113 	 * Stop all queues
114 	 */
115 	rt2x00link_stop_agc(rt2x00dev);
116 	if (test_bit(CAPABILITY_VCO_RECALIBRATION, &rt2x00dev->cap_flags))
117 		rt2x00link_stop_vcocal(rt2x00dev);
118 	rt2x00link_stop_tuner(rt2x00dev);
119 	rt2x00queue_stop_queues(rt2x00dev);
120 	rt2x00queue_flush_queues(rt2x00dev, true);
121 
122 	/*
123 	 * Disable radio.
124 	 */
125 	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
126 	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
127 	rt2x00led_led_activity(rt2x00dev, false);
128 	rt2x00leds_led_radio(rt2x00dev, false);
129 }
130 
rt2x00lib_intf_scheduled_iter(void * data,u8 * mac,struct ieee80211_vif * vif)131 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
132 					  struct ieee80211_vif *vif)
133 {
134 	struct rt2x00_dev *rt2x00dev = data;
135 	struct rt2x00_intf *intf = vif_to_intf(vif);
136 
137 	/*
138 	 * It is possible the radio was disabled while the work had been
139 	 * scheduled. If that happens we should return here immediately,
140 	 * note that in the spinlock protected area above the delayed_flags
141 	 * have been cleared correctly.
142 	 */
143 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
144 		return;
145 
146 	if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags))
147 		rt2x00queue_update_beacon(rt2x00dev, vif);
148 }
149 
rt2x00lib_intf_scheduled(struct work_struct * work)150 static void rt2x00lib_intf_scheduled(struct work_struct *work)
151 {
152 	struct rt2x00_dev *rt2x00dev =
153 	    container_of(work, struct rt2x00_dev, intf_work);
154 
155 	/*
156 	 * Iterate over each interface and perform the
157 	 * requested configurations.
158 	 */
159 	ieee80211_iterate_active_interfaces(rt2x00dev->hw,
160 					    rt2x00lib_intf_scheduled_iter,
161 					    rt2x00dev);
162 }
163 
rt2x00lib_autowakeup(struct work_struct * work)164 static void rt2x00lib_autowakeup(struct work_struct *work)
165 {
166 	struct rt2x00_dev *rt2x00dev =
167 	    container_of(work, struct rt2x00_dev, autowakeup_work.work);
168 
169 	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
170 		return;
171 
172 	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
173 		ERROR(rt2x00dev, "Device failed to wakeup.\n");
174 	clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
175 }
176 
177 /*
178  * Interrupt context handlers.
179  */
rt2x00lib_bc_buffer_iter(void * data,u8 * mac,struct ieee80211_vif * vif)180 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
181 				     struct ieee80211_vif *vif)
182 {
183 	struct rt2x00_dev *rt2x00dev = data;
184 	struct sk_buff *skb;
185 
186 	/*
187 	 * Only AP mode interfaces do broad- and multicast buffering
188 	 */
189 	if (vif->type != NL80211_IFTYPE_AP)
190 		return;
191 
192 	/*
193 	 * Send out buffered broad- and multicast frames
194 	 */
195 	skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
196 	while (skb) {
197 		rt2x00mac_tx(rt2x00dev->hw, skb);
198 		skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
199 	}
200 }
201 
rt2x00lib_beaconupdate_iter(void * data,u8 * mac,struct ieee80211_vif * vif)202 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
203 					struct ieee80211_vif *vif)
204 {
205 	struct rt2x00_dev *rt2x00dev = data;
206 
207 	if (vif->type != NL80211_IFTYPE_AP &&
208 	    vif->type != NL80211_IFTYPE_ADHOC &&
209 	    vif->type != NL80211_IFTYPE_MESH_POINT &&
210 	    vif->type != NL80211_IFTYPE_WDS)
211 		return;
212 
213 	/*
214 	 * Update the beacon without locking. This is safe on PCI devices
215 	 * as they only update the beacon periodically here. This should
216 	 * never be called for USB devices.
217 	 */
218 	WARN_ON(rt2x00_is_usb(rt2x00dev));
219 	rt2x00queue_update_beacon_locked(rt2x00dev, vif);
220 }
221 
rt2x00lib_beacondone(struct rt2x00_dev * rt2x00dev)222 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
223 {
224 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
225 		return;
226 
227 	/* send buffered bc/mc frames out for every bssid */
228 	ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
229 						   rt2x00lib_bc_buffer_iter,
230 						   rt2x00dev);
231 	/*
232 	 * Devices with pre tbtt interrupt don't need to update the beacon
233 	 * here as they will fetch the next beacon directly prior to
234 	 * transmission.
235 	 */
236 	if (test_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags))
237 		return;
238 
239 	/* fetch next beacon */
240 	ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
241 						   rt2x00lib_beaconupdate_iter,
242 						   rt2x00dev);
243 }
244 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
245 
rt2x00lib_pretbtt(struct rt2x00_dev * rt2x00dev)246 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
247 {
248 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
249 		return;
250 
251 	/* fetch next beacon */
252 	ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
253 						   rt2x00lib_beaconupdate_iter,
254 						   rt2x00dev);
255 }
256 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
257 
rt2x00lib_dmastart(struct queue_entry * entry)258 void rt2x00lib_dmastart(struct queue_entry *entry)
259 {
260 	set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
261 	rt2x00queue_index_inc(entry, Q_INDEX);
262 }
263 EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
264 
rt2x00lib_dmadone(struct queue_entry * entry)265 void rt2x00lib_dmadone(struct queue_entry *entry)
266 {
267 	set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
268 	clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
269 	rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
270 }
271 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
272 
rt2x00lib_txdone(struct queue_entry * entry,struct txdone_entry_desc * txdesc)273 void rt2x00lib_txdone(struct queue_entry *entry,
274 		      struct txdone_entry_desc *txdesc)
275 {
276 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
277 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
278 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
279 	unsigned int header_length, i;
280 	u8 rate_idx, rate_flags, retry_rates;
281 	u8 skbdesc_flags = skbdesc->flags;
282 	bool success;
283 
284 	/*
285 	 * Unmap the skb.
286 	 */
287 	rt2x00queue_unmap_skb(entry);
288 
289 	/*
290 	 * Remove the extra tx headroom from the skb.
291 	 */
292 	skb_pull(entry->skb, rt2x00dev->ops->extra_tx_headroom);
293 
294 	/*
295 	 * Signal that the TX descriptor is no longer in the skb.
296 	 */
297 	skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
298 
299 	/*
300 	 * Determine the length of 802.11 header.
301 	 */
302 	header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
303 
304 	/*
305 	 * Remove L2 padding which was added during
306 	 */
307 	if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
308 		rt2x00queue_remove_l2pad(entry->skb, header_length);
309 
310 	/*
311 	 * If the IV/EIV data was stripped from the frame before it was
312 	 * passed to the hardware, we should now reinsert it again because
313 	 * mac80211 will expect the same data to be present it the
314 	 * frame as it was passed to us.
315 	 */
316 	if (test_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags))
317 		rt2x00crypto_tx_insert_iv(entry->skb, header_length);
318 
319 	/*
320 	 * Send frame to debugfs immediately, after this call is completed
321 	 * we are going to overwrite the skb->cb array.
322 	 */
323 	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
324 
325 	/*
326 	 * Determine if the frame has been successfully transmitted.
327 	 */
328 	success =
329 	    test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
330 	    test_bit(TXDONE_UNKNOWN, &txdesc->flags);
331 
332 	/*
333 	 * Update TX statistics.
334 	 */
335 	rt2x00dev->link.qual.tx_success += success;
336 	rt2x00dev->link.qual.tx_failed += !success;
337 
338 	rate_idx = skbdesc->tx_rate_idx;
339 	rate_flags = skbdesc->tx_rate_flags;
340 	retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
341 	    (txdesc->retry + 1) : 1;
342 
343 	/*
344 	 * Initialize TX status
345 	 */
346 	memset(&tx_info->status, 0, sizeof(tx_info->status));
347 	tx_info->status.ack_signal = 0;
348 
349 	/*
350 	 * Frame was send with retries, hardware tried
351 	 * different rates to send out the frame, at each
352 	 * retry it lowered the rate 1 step except when the
353 	 * lowest rate was used.
354 	 */
355 	for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
356 		tx_info->status.rates[i].idx = rate_idx - i;
357 		tx_info->status.rates[i].flags = rate_flags;
358 
359 		if (rate_idx - i == 0) {
360 			/*
361 			 * The lowest rate (index 0) was used until the
362 			 * number of max retries was reached.
363 			 */
364 			tx_info->status.rates[i].count = retry_rates - i;
365 			i++;
366 			break;
367 		}
368 		tx_info->status.rates[i].count = 1;
369 	}
370 	if (i < (IEEE80211_TX_MAX_RATES - 1))
371 		tx_info->status.rates[i].idx = -1; /* terminate */
372 
373 	if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
374 		if (success)
375 			tx_info->flags |= IEEE80211_TX_STAT_ACK;
376 		else
377 			rt2x00dev->low_level_stats.dot11ACKFailureCount++;
378 	}
379 
380 	/*
381 	 * Every single frame has it's own tx status, hence report
382 	 * every frame as ampdu of size 1.
383 	 *
384 	 * TODO: if we can find out how many frames were aggregated
385 	 * by the hw we could provide the real ampdu_len to mac80211
386 	 * which would allow the rc algorithm to better decide on
387 	 * which rates are suitable.
388 	 */
389 	if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
390 	    tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
391 		tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
392 		tx_info->status.ampdu_len = 1;
393 		tx_info->status.ampdu_ack_len = success ? 1 : 0;
394 
395 		if (!success)
396 			tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
397 	}
398 
399 	if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
400 		if (success)
401 			rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
402 		else
403 			rt2x00dev->low_level_stats.dot11RTSFailureCount++;
404 	}
405 
406 	/*
407 	 * Only send the status report to mac80211 when it's a frame
408 	 * that originated in mac80211. If this was a extra frame coming
409 	 * through a mac80211 library call (RTS/CTS) then we should not
410 	 * send the status report back.
411 	 */
412 	if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
413 		if (test_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags))
414 			ieee80211_tx_status(rt2x00dev->hw, entry->skb);
415 		else
416 			ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
417 	} else
418 		dev_kfree_skb_any(entry->skb);
419 
420 	/*
421 	 * Make this entry available for reuse.
422 	 */
423 	entry->skb = NULL;
424 	entry->flags = 0;
425 
426 	rt2x00dev->ops->lib->clear_entry(entry);
427 
428 	rt2x00queue_index_inc(entry, Q_INDEX_DONE);
429 
430 	/*
431 	 * If the data queue was below the threshold before the txdone
432 	 * handler we must make sure the packet queue in the mac80211 stack
433 	 * is reenabled when the txdone handler has finished. This has to be
434 	 * serialized with rt2x00mac_tx(), otherwise we can wake up queue
435 	 * before it was stopped.
436 	 */
437 	spin_lock_bh(&entry->queue->tx_lock);
438 	if (!rt2x00queue_threshold(entry->queue))
439 		rt2x00queue_unpause_queue(entry->queue);
440 	spin_unlock_bh(&entry->queue->tx_lock);
441 }
442 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
443 
rt2x00lib_txdone_noinfo(struct queue_entry * entry,u32 status)444 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
445 {
446 	struct txdone_entry_desc txdesc;
447 
448 	txdesc.flags = 0;
449 	__set_bit(status, &txdesc.flags);
450 	txdesc.retry = 0;
451 
452 	rt2x00lib_txdone(entry, &txdesc);
453 }
454 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
455 
rt2x00lib_find_ie(u8 * data,unsigned int len,u8 ie)456 static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
457 {
458 	struct ieee80211_mgmt *mgmt = (void *)data;
459 	u8 *pos, *end;
460 
461 	pos = (u8 *)mgmt->u.beacon.variable;
462 	end = data + len;
463 	while (pos < end) {
464 		if (pos + 2 + pos[1] > end)
465 			return NULL;
466 
467 		if (pos[0] == ie)
468 			return pos;
469 
470 		pos += 2 + pos[1];
471 	}
472 
473 	return NULL;
474 }
475 
rt2x00lib_sleep(struct work_struct * work)476 static void rt2x00lib_sleep(struct work_struct *work)
477 {
478 	struct rt2x00_dev *rt2x00dev =
479 	    container_of(work, struct rt2x00_dev, sleep_work);
480 
481 	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
482 		return;
483 
484 	/*
485 	 * Check again is powersaving is enabled, to prevent races from delayed
486 	 * work execution.
487 	 */
488 	if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
489 		rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
490 				 IEEE80211_CONF_CHANGE_PS);
491 }
492 
rt2x00lib_rxdone_check_ps(struct rt2x00_dev * rt2x00dev,struct sk_buff * skb,struct rxdone_entry_desc * rxdesc)493 static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
494 				      struct sk_buff *skb,
495 				      struct rxdone_entry_desc *rxdesc)
496 {
497 	struct ieee80211_hdr *hdr = (void *) skb->data;
498 	struct ieee80211_tim_ie *tim_ie;
499 	u8 *tim;
500 	u8 tim_len;
501 	bool cam;
502 
503 	/* If this is not a beacon, or if mac80211 has no powersaving
504 	 * configured, or if the device is already in powersaving mode
505 	 * we can exit now. */
506 	if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
507 		   !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
508 		return;
509 
510 	/* min. beacon length + FCS_LEN */
511 	if (skb->len <= 40 + FCS_LEN)
512 		return;
513 
514 	/* and only beacons from the associated BSSID, please */
515 	if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
516 	    !rt2x00dev->aid)
517 		return;
518 
519 	rt2x00dev->last_beacon = jiffies;
520 
521 	tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
522 	if (!tim)
523 		return;
524 
525 	if (tim[1] < sizeof(*tim_ie))
526 		return;
527 
528 	tim_len = tim[1];
529 	tim_ie = (struct ieee80211_tim_ie *) &tim[2];
530 
531 	/* Check whenever the PHY can be turned off again. */
532 
533 	/* 1. What about buffered unicast traffic for our AID? */
534 	cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
535 
536 	/* 2. Maybe the AP wants to send multicast/broadcast data? */
537 	cam |= (tim_ie->bitmap_ctrl & 0x01);
538 
539 	if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
540 		queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work);
541 }
542 
rt2x00lib_rxdone_read_signal(struct rt2x00_dev * rt2x00dev,struct rxdone_entry_desc * rxdesc)543 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
544 					struct rxdone_entry_desc *rxdesc)
545 {
546 	struct ieee80211_supported_band *sband;
547 	const struct rt2x00_rate *rate;
548 	unsigned int i;
549 	int signal = rxdesc->signal;
550 	int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
551 
552 	switch (rxdesc->rate_mode) {
553 	case RATE_MODE_CCK:
554 	case RATE_MODE_OFDM:
555 		/*
556 		 * For non-HT rates the MCS value needs to contain the
557 		 * actually used rate modulation (CCK or OFDM).
558 		 */
559 		if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
560 			signal = RATE_MCS(rxdesc->rate_mode, signal);
561 
562 		sband = &rt2x00dev->bands[rt2x00dev->curr_band];
563 		for (i = 0; i < sband->n_bitrates; i++) {
564 			rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
565 			if (((type == RXDONE_SIGNAL_PLCP) &&
566 			     (rate->plcp == signal)) ||
567 			    ((type == RXDONE_SIGNAL_BITRATE) &&
568 			      (rate->bitrate == signal)) ||
569 			    ((type == RXDONE_SIGNAL_MCS) &&
570 			      (rate->mcs == signal))) {
571 				return i;
572 			}
573 		}
574 		break;
575 	case RATE_MODE_HT_MIX:
576 	case RATE_MODE_HT_GREENFIELD:
577 		if (signal >= 0 && signal <= 76)
578 			return signal;
579 		break;
580 	default:
581 		break;
582 	}
583 
584 	WARNING(rt2x00dev, "Frame received with unrecognized signal, "
585 		"mode=0x%.4x, signal=0x%.4x, type=%d.\n",
586 		rxdesc->rate_mode, signal, type);
587 	return 0;
588 }
589 
rt2x00lib_rxdone(struct queue_entry * entry)590 void rt2x00lib_rxdone(struct queue_entry *entry)
591 {
592 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
593 	struct rxdone_entry_desc rxdesc;
594 	struct sk_buff *skb;
595 	struct ieee80211_rx_status *rx_status;
596 	unsigned int header_length;
597 	int rate_idx;
598 
599 	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
600 	    !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
601 		goto submit_entry;
602 
603 	if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
604 		goto submit_entry;
605 
606 	/*
607 	 * Allocate a new sk_buffer. If no new buffer available, drop the
608 	 * received frame and reuse the existing buffer.
609 	 */
610 	skb = rt2x00queue_alloc_rxskb(entry);
611 	if (!skb)
612 		goto submit_entry;
613 
614 	/*
615 	 * Unmap the skb.
616 	 */
617 	rt2x00queue_unmap_skb(entry);
618 
619 	/*
620 	 * Extract the RXD details.
621 	 */
622 	memset(&rxdesc, 0, sizeof(rxdesc));
623 	rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
624 
625 	/*
626 	 * Check for valid size in case we get corrupted descriptor from
627 	 * hardware.
628 	 */
629 	if (unlikely(rxdesc.size == 0 ||
630 		     rxdesc.size > entry->queue->data_size)) {
631 		ERROR(rt2x00dev, "Wrong frame size %d max %d.\n",
632 			rxdesc.size, entry->queue->data_size);
633 		dev_kfree_skb(entry->skb);
634 		goto renew_skb;
635 	}
636 
637 	/*
638 	 * The data behind the ieee80211 header must be
639 	 * aligned on a 4 byte boundary.
640 	 */
641 	header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
642 
643 	/*
644 	 * Hardware might have stripped the IV/EIV/ICV data,
645 	 * in that case it is possible that the data was
646 	 * provided separately (through hardware descriptor)
647 	 * in which case we should reinsert the data into the frame.
648 	 */
649 	if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
650 	    (rxdesc.flags & RX_FLAG_IV_STRIPPED))
651 		rt2x00crypto_rx_insert_iv(entry->skb, header_length,
652 					  &rxdesc);
653 	else if (header_length &&
654 		 (rxdesc.size > header_length) &&
655 		 (rxdesc.dev_flags & RXDONE_L2PAD))
656 		rt2x00queue_remove_l2pad(entry->skb, header_length);
657 
658 	/* Trim buffer to correct size */
659 	skb_trim(entry->skb, rxdesc.size);
660 
661 	/*
662 	 * Translate the signal to the correct bitrate index.
663 	 */
664 	rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
665 	if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
666 	    rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
667 		rxdesc.flags |= RX_FLAG_HT;
668 
669 	/*
670 	 * Check if this is a beacon, and more frames have been
671 	 * buffered while we were in powersaving mode.
672 	 */
673 	rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
674 
675 	/*
676 	 * Update extra components
677 	 */
678 	rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
679 	rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
680 	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
681 
682 	/*
683 	 * Initialize RX status information, and send frame
684 	 * to mac80211.
685 	 */
686 	rx_status = IEEE80211_SKB_RXCB(entry->skb);
687 	rx_status->mactime = rxdesc.timestamp;
688 	rx_status->band = rt2x00dev->curr_band;
689 	rx_status->freq = rt2x00dev->curr_freq;
690 	rx_status->rate_idx = rate_idx;
691 	rx_status->signal = rxdesc.rssi;
692 	rx_status->flag = rxdesc.flags;
693 	rx_status->antenna = rt2x00dev->link.ant.active.rx;
694 
695 	ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
696 
697 renew_skb:
698 	/*
699 	 * Replace the skb with the freshly allocated one.
700 	 */
701 	entry->skb = skb;
702 
703 submit_entry:
704 	entry->flags = 0;
705 	rt2x00queue_index_inc(entry, Q_INDEX_DONE);
706 	if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
707 	    test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
708 		rt2x00dev->ops->lib->clear_entry(entry);
709 }
710 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
711 
712 /*
713  * Driver initialization handlers.
714  */
715 const struct rt2x00_rate rt2x00_supported_rates[12] = {
716 	{
717 		.flags = DEV_RATE_CCK,
718 		.bitrate = 10,
719 		.ratemask = BIT(0),
720 		.plcp = 0x00,
721 		.mcs = RATE_MCS(RATE_MODE_CCK, 0),
722 	},
723 	{
724 		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
725 		.bitrate = 20,
726 		.ratemask = BIT(1),
727 		.plcp = 0x01,
728 		.mcs = RATE_MCS(RATE_MODE_CCK, 1),
729 	},
730 	{
731 		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
732 		.bitrate = 55,
733 		.ratemask = BIT(2),
734 		.plcp = 0x02,
735 		.mcs = RATE_MCS(RATE_MODE_CCK, 2),
736 	},
737 	{
738 		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
739 		.bitrate = 110,
740 		.ratemask = BIT(3),
741 		.plcp = 0x03,
742 		.mcs = RATE_MCS(RATE_MODE_CCK, 3),
743 	},
744 	{
745 		.flags = DEV_RATE_OFDM,
746 		.bitrate = 60,
747 		.ratemask = BIT(4),
748 		.plcp = 0x0b,
749 		.mcs = RATE_MCS(RATE_MODE_OFDM, 0),
750 	},
751 	{
752 		.flags = DEV_RATE_OFDM,
753 		.bitrate = 90,
754 		.ratemask = BIT(5),
755 		.plcp = 0x0f,
756 		.mcs = RATE_MCS(RATE_MODE_OFDM, 1),
757 	},
758 	{
759 		.flags = DEV_RATE_OFDM,
760 		.bitrate = 120,
761 		.ratemask = BIT(6),
762 		.plcp = 0x0a,
763 		.mcs = RATE_MCS(RATE_MODE_OFDM, 2),
764 	},
765 	{
766 		.flags = DEV_RATE_OFDM,
767 		.bitrate = 180,
768 		.ratemask = BIT(7),
769 		.plcp = 0x0e,
770 		.mcs = RATE_MCS(RATE_MODE_OFDM, 3),
771 	},
772 	{
773 		.flags = DEV_RATE_OFDM,
774 		.bitrate = 240,
775 		.ratemask = BIT(8),
776 		.plcp = 0x09,
777 		.mcs = RATE_MCS(RATE_MODE_OFDM, 4),
778 	},
779 	{
780 		.flags = DEV_RATE_OFDM,
781 		.bitrate = 360,
782 		.ratemask = BIT(9),
783 		.plcp = 0x0d,
784 		.mcs = RATE_MCS(RATE_MODE_OFDM, 5),
785 	},
786 	{
787 		.flags = DEV_RATE_OFDM,
788 		.bitrate = 480,
789 		.ratemask = BIT(10),
790 		.plcp = 0x08,
791 		.mcs = RATE_MCS(RATE_MODE_OFDM, 6),
792 	},
793 	{
794 		.flags = DEV_RATE_OFDM,
795 		.bitrate = 540,
796 		.ratemask = BIT(11),
797 		.plcp = 0x0c,
798 		.mcs = RATE_MCS(RATE_MODE_OFDM, 7),
799 	},
800 };
801 
rt2x00lib_channel(struct ieee80211_channel * entry,const int channel,const int tx_power,const int value)802 static void rt2x00lib_channel(struct ieee80211_channel *entry,
803 			      const int channel, const int tx_power,
804 			      const int value)
805 {
806 	/* XXX: this assumption about the band is wrong for 802.11j */
807 	entry->band = channel <= 14 ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
808 	entry->center_freq = ieee80211_channel_to_frequency(channel,
809 							    entry->band);
810 	entry->hw_value = value;
811 	entry->max_power = tx_power;
812 	entry->max_antenna_gain = 0xff;
813 }
814 
rt2x00lib_rate(struct ieee80211_rate * entry,const u16 index,const struct rt2x00_rate * rate)815 static void rt2x00lib_rate(struct ieee80211_rate *entry,
816 			   const u16 index, const struct rt2x00_rate *rate)
817 {
818 	entry->flags = 0;
819 	entry->bitrate = rate->bitrate;
820 	entry->hw_value = index;
821 	entry->hw_value_short = index;
822 
823 	if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
824 		entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
825 }
826 
rt2x00lib_probe_hw_modes(struct rt2x00_dev * rt2x00dev,struct hw_mode_spec * spec)827 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
828 				    struct hw_mode_spec *spec)
829 {
830 	struct ieee80211_hw *hw = rt2x00dev->hw;
831 	struct ieee80211_channel *channels;
832 	struct ieee80211_rate *rates;
833 	unsigned int num_rates;
834 	unsigned int i;
835 
836 	num_rates = 0;
837 	if (spec->supported_rates & SUPPORT_RATE_CCK)
838 		num_rates += 4;
839 	if (spec->supported_rates & SUPPORT_RATE_OFDM)
840 		num_rates += 8;
841 
842 	channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL);
843 	if (!channels)
844 		return -ENOMEM;
845 
846 	rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL);
847 	if (!rates)
848 		goto exit_free_channels;
849 
850 	/*
851 	 * Initialize Rate list.
852 	 */
853 	for (i = 0; i < num_rates; i++)
854 		rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
855 
856 	/*
857 	 * Initialize Channel list.
858 	 */
859 	for (i = 0; i < spec->num_channels; i++) {
860 		rt2x00lib_channel(&channels[i],
861 				  spec->channels[i].channel,
862 				  spec->channels_info[i].max_power, i);
863 	}
864 
865 	/*
866 	 * Intitialize 802.11b, 802.11g
867 	 * Rates: CCK, OFDM.
868 	 * Channels: 2.4 GHz
869 	 */
870 	if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
871 		rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
872 		rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
873 		rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
874 		rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
875 		hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
876 		    &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
877 		memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
878 		       &spec->ht, sizeof(spec->ht));
879 	}
880 
881 	/*
882 	 * Intitialize 802.11a
883 	 * Rates: OFDM.
884 	 * Channels: OFDM, UNII, HiperLAN2.
885 	 */
886 	if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
887 		rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
888 		    spec->num_channels - 14;
889 		rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
890 		    num_rates - 4;
891 		rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
892 		rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
893 		hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
894 		    &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
895 		memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
896 		       &spec->ht, sizeof(spec->ht));
897 	}
898 
899 	return 0;
900 
901  exit_free_channels:
902 	kfree(channels);
903 	ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
904 	return -ENOMEM;
905 }
906 
rt2x00lib_remove_hw(struct rt2x00_dev * rt2x00dev)907 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
908 {
909 	if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
910 		ieee80211_unregister_hw(rt2x00dev->hw);
911 
912 	if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
913 		kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
914 		kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
915 		rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
916 		rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
917 	}
918 
919 	kfree(rt2x00dev->spec.channels_info);
920 }
921 
rt2x00lib_probe_hw(struct rt2x00_dev * rt2x00dev)922 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
923 {
924 	struct hw_mode_spec *spec = &rt2x00dev->spec;
925 	int status;
926 
927 	if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
928 		return 0;
929 
930 	/*
931 	 * Initialize HW modes.
932 	 */
933 	status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
934 	if (status)
935 		return status;
936 
937 	/*
938 	 * Initialize HW fields.
939 	 */
940 	rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
941 
942 	/*
943 	 * Initialize extra TX headroom required.
944 	 */
945 	rt2x00dev->hw->extra_tx_headroom =
946 		max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
947 		      rt2x00dev->ops->extra_tx_headroom);
948 
949 	/*
950 	 * Take TX headroom required for alignment into account.
951 	 */
952 	if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
953 		rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
954 	else if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags))
955 		rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
956 
957 	/*
958 	 * Tell mac80211 about the size of our private STA structure.
959 	 */
960 	rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta);
961 
962 	/*
963 	 * Allocate tx status FIFO for driver use.
964 	 */
965 	if (test_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags)) {
966 		/*
967 		 * Allocate the txstatus fifo. In the worst case the tx
968 		 * status fifo has to hold the tx status of all entries
969 		 * in all tx queues. Hence, calculate the kfifo size as
970 		 * tx_queues * entry_num and round up to the nearest
971 		 * power of 2.
972 		 */
973 		int kfifo_size =
974 			roundup_pow_of_two(rt2x00dev->ops->tx_queues *
975 					   rt2x00dev->ops->tx->entry_num *
976 					   sizeof(u32));
977 
978 		status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
979 				     GFP_KERNEL);
980 		if (status)
981 			return status;
982 	}
983 
984 	/*
985 	 * Initialize tasklets if used by the driver. Tasklets are
986 	 * disabled until the interrupts are turned on. The driver
987 	 * has to handle that.
988 	 */
989 #define RT2X00_TASKLET_INIT(taskletname) \
990 	if (rt2x00dev->ops->lib->taskletname) { \
991 		tasklet_init(&rt2x00dev->taskletname, \
992 			     rt2x00dev->ops->lib->taskletname, \
993 			     (unsigned long)rt2x00dev); \
994 	}
995 
996 	RT2X00_TASKLET_INIT(txstatus_tasklet);
997 	RT2X00_TASKLET_INIT(pretbtt_tasklet);
998 	RT2X00_TASKLET_INIT(tbtt_tasklet);
999 	RT2X00_TASKLET_INIT(rxdone_tasklet);
1000 	RT2X00_TASKLET_INIT(autowake_tasklet);
1001 
1002 #undef RT2X00_TASKLET_INIT
1003 
1004 	/*
1005 	 * Register HW.
1006 	 */
1007 	status = ieee80211_register_hw(rt2x00dev->hw);
1008 	if (status)
1009 		return status;
1010 
1011 	set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
1012 
1013 	return 0;
1014 }
1015 
1016 /*
1017  * Initialization/uninitialization handlers.
1018  */
rt2x00lib_uninitialize(struct rt2x00_dev * rt2x00dev)1019 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
1020 {
1021 	if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1022 		return;
1023 
1024 	/*
1025 	 * Stop rfkill polling.
1026 	 */
1027 	if (test_bit(REQUIRE_DELAYED_RFKILL, &rt2x00dev->cap_flags))
1028 		rt2x00rfkill_unregister(rt2x00dev);
1029 
1030 	/*
1031 	 * Allow the HW to uninitialize.
1032 	 */
1033 	rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1034 
1035 	/*
1036 	 * Free allocated queue entries.
1037 	 */
1038 	rt2x00queue_uninitialize(rt2x00dev);
1039 }
1040 
rt2x00lib_initialize(struct rt2x00_dev * rt2x00dev)1041 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1042 {
1043 	int status;
1044 
1045 	if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1046 		return 0;
1047 
1048 	/*
1049 	 * Allocate all queue entries.
1050 	 */
1051 	status = rt2x00queue_initialize(rt2x00dev);
1052 	if (status)
1053 		return status;
1054 
1055 	/*
1056 	 * Initialize the device.
1057 	 */
1058 	status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1059 	if (status) {
1060 		rt2x00queue_uninitialize(rt2x00dev);
1061 		return status;
1062 	}
1063 
1064 	set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
1065 
1066 	/*
1067 	 * Start rfkill polling.
1068 	 */
1069 	if (test_bit(REQUIRE_DELAYED_RFKILL, &rt2x00dev->cap_flags))
1070 		rt2x00rfkill_register(rt2x00dev);
1071 
1072 	return 0;
1073 }
1074 
rt2x00lib_start(struct rt2x00_dev * rt2x00dev)1075 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1076 {
1077 	int retval;
1078 
1079 	if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1080 		return 0;
1081 
1082 	/*
1083 	 * If this is the first interface which is added,
1084 	 * we should load the firmware now.
1085 	 */
1086 	retval = rt2x00lib_load_firmware(rt2x00dev);
1087 	if (retval)
1088 		return retval;
1089 
1090 	/*
1091 	 * Initialize the device.
1092 	 */
1093 	retval = rt2x00lib_initialize(rt2x00dev);
1094 	if (retval)
1095 		return retval;
1096 
1097 	rt2x00dev->intf_ap_count = 0;
1098 	rt2x00dev->intf_sta_count = 0;
1099 	rt2x00dev->intf_associated = 0;
1100 
1101 	/* Enable the radio */
1102 	retval = rt2x00lib_enable_radio(rt2x00dev);
1103 	if (retval)
1104 		return retval;
1105 
1106 	set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1107 
1108 	return 0;
1109 }
1110 
rt2x00lib_stop(struct rt2x00_dev * rt2x00dev)1111 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1112 {
1113 	if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1114 		return;
1115 
1116 	/*
1117 	 * Perhaps we can add something smarter here,
1118 	 * but for now just disabling the radio should do.
1119 	 */
1120 	rt2x00lib_disable_radio(rt2x00dev);
1121 
1122 	rt2x00dev->intf_ap_count = 0;
1123 	rt2x00dev->intf_sta_count = 0;
1124 	rt2x00dev->intf_associated = 0;
1125 }
1126 
1127 /*
1128  * driver allocation handlers.
1129  */
rt2x00lib_probe_dev(struct rt2x00_dev * rt2x00dev)1130 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1131 {
1132 	int retval = -ENOMEM;
1133 
1134 	/*
1135 	 * Allocate the driver data memory, if necessary.
1136 	 */
1137 	if (rt2x00dev->ops->drv_data_size > 0) {
1138 		rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size,
1139 			                      GFP_KERNEL);
1140 		if (!rt2x00dev->drv_data) {
1141 			retval = -ENOMEM;
1142 			goto exit;
1143 		}
1144 	}
1145 
1146 	spin_lock_init(&rt2x00dev->irqmask_lock);
1147 	mutex_init(&rt2x00dev->csr_mutex);
1148 
1149 	set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1150 
1151 	/*
1152 	 * Make room for rt2x00_intf inside the per-interface
1153 	 * structure ieee80211_vif.
1154 	 */
1155 	rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1156 
1157 	/*
1158 	 * Determine which operating modes are supported, all modes
1159 	 * which require beaconing, depend on the availability of
1160 	 * beacon entries.
1161 	 */
1162 	rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1163 	if (rt2x00dev->ops->bcn->entry_num > 0)
1164 		rt2x00dev->hw->wiphy->interface_modes |=
1165 		    BIT(NL80211_IFTYPE_ADHOC) |
1166 		    BIT(NL80211_IFTYPE_AP) |
1167 #ifdef CONFIG_MAC80211_MESH
1168 		    BIT(NL80211_IFTYPE_MESH_POINT) |
1169 #endif
1170 		    BIT(NL80211_IFTYPE_WDS);
1171 
1172 	/*
1173 	 * Initialize work.
1174 	 */
1175 	rt2x00dev->workqueue =
1176 	    alloc_ordered_workqueue(wiphy_name(rt2x00dev->hw->wiphy), 0);
1177 	if (!rt2x00dev->workqueue) {
1178 		retval = -ENOMEM;
1179 		goto exit;
1180 	}
1181 
1182 	INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1183 	INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
1184 	INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep);
1185 
1186 	/*
1187 	 * Let the driver probe the device to detect the capabilities.
1188 	 */
1189 	retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1190 	if (retval) {
1191 		ERROR(rt2x00dev, "Failed to allocate device.\n");
1192 		goto exit;
1193 	}
1194 
1195 	/*
1196 	 * Allocate queue array.
1197 	 */
1198 	retval = rt2x00queue_allocate(rt2x00dev);
1199 	if (retval)
1200 		goto exit;
1201 
1202 	/*
1203 	 * Initialize ieee80211 structure.
1204 	 */
1205 	retval = rt2x00lib_probe_hw(rt2x00dev);
1206 	if (retval) {
1207 		ERROR(rt2x00dev, "Failed to initialize hw.\n");
1208 		goto exit;
1209 	}
1210 
1211 	/*
1212 	 * Register extra components.
1213 	 */
1214 	rt2x00link_register(rt2x00dev);
1215 	rt2x00leds_register(rt2x00dev);
1216 	rt2x00debug_register(rt2x00dev);
1217 
1218 	/*
1219 	 * Start rfkill polling.
1220 	 */
1221 	if (!test_bit(REQUIRE_DELAYED_RFKILL, &rt2x00dev->cap_flags))
1222 		rt2x00rfkill_register(rt2x00dev);
1223 
1224 	return 0;
1225 
1226 exit:
1227 	rt2x00lib_remove_dev(rt2x00dev);
1228 
1229 	return retval;
1230 }
1231 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1232 
rt2x00lib_remove_dev(struct rt2x00_dev * rt2x00dev)1233 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1234 {
1235 	clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1236 
1237 	/*
1238 	 * Stop rfkill polling.
1239 	 */
1240 	if (!test_bit(REQUIRE_DELAYED_RFKILL, &rt2x00dev->cap_flags))
1241 		rt2x00rfkill_unregister(rt2x00dev);
1242 
1243 	/*
1244 	 * Disable radio.
1245 	 */
1246 	rt2x00lib_disable_radio(rt2x00dev);
1247 
1248 	/*
1249 	 * Stop all work.
1250 	 */
1251 	cancel_work_sync(&rt2x00dev->intf_work);
1252 	cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
1253 	cancel_work_sync(&rt2x00dev->sleep_work);
1254 	if (rt2x00_is_usb(rt2x00dev)) {
1255 		hrtimer_cancel(&rt2x00dev->txstatus_timer);
1256 		cancel_work_sync(&rt2x00dev->rxdone_work);
1257 		cancel_work_sync(&rt2x00dev->txdone_work);
1258 	}
1259 	if (rt2x00dev->workqueue)
1260 		destroy_workqueue(rt2x00dev->workqueue);
1261 
1262 	/*
1263 	 * Free the tx status fifo.
1264 	 */
1265 	kfifo_free(&rt2x00dev->txstatus_fifo);
1266 
1267 	/*
1268 	 * Kill the tx status tasklet.
1269 	 */
1270 	tasklet_kill(&rt2x00dev->txstatus_tasklet);
1271 	tasklet_kill(&rt2x00dev->pretbtt_tasklet);
1272 	tasklet_kill(&rt2x00dev->tbtt_tasklet);
1273 	tasklet_kill(&rt2x00dev->rxdone_tasklet);
1274 	tasklet_kill(&rt2x00dev->autowake_tasklet);
1275 
1276 	/*
1277 	 * Uninitialize device.
1278 	 */
1279 	rt2x00lib_uninitialize(rt2x00dev);
1280 
1281 	/*
1282 	 * Free extra components
1283 	 */
1284 	rt2x00debug_deregister(rt2x00dev);
1285 	rt2x00leds_unregister(rt2x00dev);
1286 
1287 	/*
1288 	 * Free ieee80211_hw memory.
1289 	 */
1290 	rt2x00lib_remove_hw(rt2x00dev);
1291 
1292 	/*
1293 	 * Free firmware image.
1294 	 */
1295 	rt2x00lib_free_firmware(rt2x00dev);
1296 
1297 	/*
1298 	 * Free queue structures.
1299 	 */
1300 	rt2x00queue_free(rt2x00dev);
1301 
1302 	/*
1303 	 * Free the driver data.
1304 	 */
1305 	if (rt2x00dev->drv_data)
1306 		kfree(rt2x00dev->drv_data);
1307 }
1308 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1309 
1310 /*
1311  * Device state handlers
1312  */
1313 #ifdef CONFIG_PM
rt2x00lib_suspend(struct rt2x00_dev * rt2x00dev,pm_message_t state)1314 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1315 {
1316 	NOTICE(rt2x00dev, "Going to sleep.\n");
1317 
1318 	/*
1319 	 * Prevent mac80211 from accessing driver while suspended.
1320 	 */
1321 	if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1322 		return 0;
1323 
1324 	/*
1325 	 * Cleanup as much as possible.
1326 	 */
1327 	rt2x00lib_uninitialize(rt2x00dev);
1328 
1329 	/*
1330 	 * Suspend/disable extra components.
1331 	 */
1332 	rt2x00leds_suspend(rt2x00dev);
1333 	rt2x00debug_deregister(rt2x00dev);
1334 
1335 	/*
1336 	 * Set device mode to sleep for power management,
1337 	 * on some hardware this call seems to consistently fail.
1338 	 * From the specifications it is hard to tell why it fails,
1339 	 * and if this is a "bad thing".
1340 	 * Overall it is safe to just ignore the failure and
1341 	 * continue suspending. The only downside is that the
1342 	 * device will not be in optimal power save mode, but with
1343 	 * the radio and the other components already disabled the
1344 	 * device is as good as disabled.
1345 	 */
1346 	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1347 		WARNING(rt2x00dev, "Device failed to enter sleep state, "
1348 			"continue suspending.\n");
1349 
1350 	return 0;
1351 }
1352 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1353 
rt2x00lib_resume(struct rt2x00_dev * rt2x00dev)1354 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1355 {
1356 	NOTICE(rt2x00dev, "Waking up.\n");
1357 
1358 	/*
1359 	 * Restore/enable extra components.
1360 	 */
1361 	rt2x00debug_register(rt2x00dev);
1362 	rt2x00leds_resume(rt2x00dev);
1363 
1364 	/*
1365 	 * We are ready again to receive requests from mac80211.
1366 	 */
1367 	set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1368 
1369 	return 0;
1370 }
1371 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1372 #endif /* CONFIG_PM */
1373 
1374 /*
1375  * rt2x00lib module information.
1376  */
1377 MODULE_AUTHOR(DRV_PROJECT);
1378 MODULE_VERSION(DRV_VERSION);
1379 MODULE_DESCRIPTION("rt2x00 library");
1380 MODULE_LICENSE("GPL");
1381