1 /*
2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 <http://rt2x00.serialmonkey.com>
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the
18 Free Software Foundation, Inc.,
19 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 */
21
22 /*
23 Module: rt2x00lib
24 Abstract: rt2x00 generic device routines.
25 */
26
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/slab.h>
30 #include <linux/log2.h>
31
32 #include "rt2x00.h"
33 #include "rt2x00lib.h"
34
35 /*
36 * Utility functions.
37 */
rt2x00lib_get_bssidx(struct rt2x00_dev * rt2x00dev,struct ieee80211_vif * vif)38 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
39 struct ieee80211_vif *vif)
40 {
41 /*
42 * When in STA mode, bssidx is always 0 otherwise local_address[5]
43 * contains the bss number, see BSS_ID_MASK comments for details.
44 */
45 if (rt2x00dev->intf_sta_count)
46 return 0;
47 return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1);
48 }
49 EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx);
50
51 /*
52 * Radio control handlers.
53 */
rt2x00lib_enable_radio(struct rt2x00_dev * rt2x00dev)54 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
55 {
56 int status;
57
58 /*
59 * Don't enable the radio twice.
60 * And check if the hardware button has been disabled.
61 */
62 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
63 return 0;
64
65 /*
66 * Initialize all data queues.
67 */
68 rt2x00queue_init_queues(rt2x00dev);
69
70 /*
71 * Enable radio.
72 */
73 status =
74 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
75 if (status)
76 return status;
77
78 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
79
80 rt2x00leds_led_radio(rt2x00dev, true);
81 rt2x00led_led_activity(rt2x00dev, true);
82
83 set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
84
85 /*
86 * Enable queues.
87 */
88 rt2x00queue_start_queues(rt2x00dev);
89 rt2x00link_start_tuner(rt2x00dev);
90 rt2x00link_start_agc(rt2x00dev);
91 if (test_bit(CAPABILITY_VCO_RECALIBRATION, &rt2x00dev->cap_flags))
92 rt2x00link_start_vcocal(rt2x00dev);
93
94 /*
95 * Start watchdog monitoring.
96 */
97 rt2x00link_start_watchdog(rt2x00dev);
98
99 return 0;
100 }
101
rt2x00lib_disable_radio(struct rt2x00_dev * rt2x00dev)102 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
103 {
104 if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
105 return;
106
107 /*
108 * Stop watchdog monitoring.
109 */
110 rt2x00link_stop_watchdog(rt2x00dev);
111
112 /*
113 * Stop all queues
114 */
115 rt2x00link_stop_agc(rt2x00dev);
116 if (test_bit(CAPABILITY_VCO_RECALIBRATION, &rt2x00dev->cap_flags))
117 rt2x00link_stop_vcocal(rt2x00dev);
118 rt2x00link_stop_tuner(rt2x00dev);
119 rt2x00queue_stop_queues(rt2x00dev);
120 rt2x00queue_flush_queues(rt2x00dev, true);
121
122 /*
123 * Disable radio.
124 */
125 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
126 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
127 rt2x00led_led_activity(rt2x00dev, false);
128 rt2x00leds_led_radio(rt2x00dev, false);
129 }
130
rt2x00lib_intf_scheduled_iter(void * data,u8 * mac,struct ieee80211_vif * vif)131 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
132 struct ieee80211_vif *vif)
133 {
134 struct rt2x00_dev *rt2x00dev = data;
135 struct rt2x00_intf *intf = vif_to_intf(vif);
136
137 /*
138 * It is possible the radio was disabled while the work had been
139 * scheduled. If that happens we should return here immediately,
140 * note that in the spinlock protected area above the delayed_flags
141 * have been cleared correctly.
142 */
143 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
144 return;
145
146 if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags))
147 rt2x00queue_update_beacon(rt2x00dev, vif);
148 }
149
rt2x00lib_intf_scheduled(struct work_struct * work)150 static void rt2x00lib_intf_scheduled(struct work_struct *work)
151 {
152 struct rt2x00_dev *rt2x00dev =
153 container_of(work, struct rt2x00_dev, intf_work);
154
155 /*
156 * Iterate over each interface and perform the
157 * requested configurations.
158 */
159 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
160 rt2x00lib_intf_scheduled_iter,
161 rt2x00dev);
162 }
163
rt2x00lib_autowakeup(struct work_struct * work)164 static void rt2x00lib_autowakeup(struct work_struct *work)
165 {
166 struct rt2x00_dev *rt2x00dev =
167 container_of(work, struct rt2x00_dev, autowakeup_work.work);
168
169 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
170 return;
171
172 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
173 ERROR(rt2x00dev, "Device failed to wakeup.\n");
174 clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
175 }
176
177 /*
178 * Interrupt context handlers.
179 */
rt2x00lib_bc_buffer_iter(void * data,u8 * mac,struct ieee80211_vif * vif)180 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
181 struct ieee80211_vif *vif)
182 {
183 struct rt2x00_dev *rt2x00dev = data;
184 struct sk_buff *skb;
185
186 /*
187 * Only AP mode interfaces do broad- and multicast buffering
188 */
189 if (vif->type != NL80211_IFTYPE_AP)
190 return;
191
192 /*
193 * Send out buffered broad- and multicast frames
194 */
195 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
196 while (skb) {
197 rt2x00mac_tx(rt2x00dev->hw, skb);
198 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
199 }
200 }
201
rt2x00lib_beaconupdate_iter(void * data,u8 * mac,struct ieee80211_vif * vif)202 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
203 struct ieee80211_vif *vif)
204 {
205 struct rt2x00_dev *rt2x00dev = data;
206
207 if (vif->type != NL80211_IFTYPE_AP &&
208 vif->type != NL80211_IFTYPE_ADHOC &&
209 vif->type != NL80211_IFTYPE_MESH_POINT &&
210 vif->type != NL80211_IFTYPE_WDS)
211 return;
212
213 /*
214 * Update the beacon without locking. This is safe on PCI devices
215 * as they only update the beacon periodically here. This should
216 * never be called for USB devices.
217 */
218 WARN_ON(rt2x00_is_usb(rt2x00dev));
219 rt2x00queue_update_beacon_locked(rt2x00dev, vif);
220 }
221
rt2x00lib_beacondone(struct rt2x00_dev * rt2x00dev)222 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
223 {
224 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
225 return;
226
227 /* send buffered bc/mc frames out for every bssid */
228 ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
229 rt2x00lib_bc_buffer_iter,
230 rt2x00dev);
231 /*
232 * Devices with pre tbtt interrupt don't need to update the beacon
233 * here as they will fetch the next beacon directly prior to
234 * transmission.
235 */
236 if (test_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags))
237 return;
238
239 /* fetch next beacon */
240 ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
241 rt2x00lib_beaconupdate_iter,
242 rt2x00dev);
243 }
244 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
245
rt2x00lib_pretbtt(struct rt2x00_dev * rt2x00dev)246 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
247 {
248 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
249 return;
250
251 /* fetch next beacon */
252 ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
253 rt2x00lib_beaconupdate_iter,
254 rt2x00dev);
255 }
256 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
257
rt2x00lib_dmastart(struct queue_entry * entry)258 void rt2x00lib_dmastart(struct queue_entry *entry)
259 {
260 set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
261 rt2x00queue_index_inc(entry, Q_INDEX);
262 }
263 EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
264
rt2x00lib_dmadone(struct queue_entry * entry)265 void rt2x00lib_dmadone(struct queue_entry *entry)
266 {
267 set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
268 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
269 rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
270 }
271 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
272
rt2x00lib_txdone(struct queue_entry * entry,struct txdone_entry_desc * txdesc)273 void rt2x00lib_txdone(struct queue_entry *entry,
274 struct txdone_entry_desc *txdesc)
275 {
276 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
277 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
278 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
279 unsigned int header_length, i;
280 u8 rate_idx, rate_flags, retry_rates;
281 u8 skbdesc_flags = skbdesc->flags;
282 bool success;
283
284 /*
285 * Unmap the skb.
286 */
287 rt2x00queue_unmap_skb(entry);
288
289 /*
290 * Remove the extra tx headroom from the skb.
291 */
292 skb_pull(entry->skb, rt2x00dev->ops->extra_tx_headroom);
293
294 /*
295 * Signal that the TX descriptor is no longer in the skb.
296 */
297 skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
298
299 /*
300 * Determine the length of 802.11 header.
301 */
302 header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
303
304 /*
305 * Remove L2 padding which was added during
306 */
307 if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
308 rt2x00queue_remove_l2pad(entry->skb, header_length);
309
310 /*
311 * If the IV/EIV data was stripped from the frame before it was
312 * passed to the hardware, we should now reinsert it again because
313 * mac80211 will expect the same data to be present it the
314 * frame as it was passed to us.
315 */
316 if (test_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags))
317 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
318
319 /*
320 * Send frame to debugfs immediately, after this call is completed
321 * we are going to overwrite the skb->cb array.
322 */
323 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
324
325 /*
326 * Determine if the frame has been successfully transmitted.
327 */
328 success =
329 test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
330 test_bit(TXDONE_UNKNOWN, &txdesc->flags);
331
332 /*
333 * Update TX statistics.
334 */
335 rt2x00dev->link.qual.tx_success += success;
336 rt2x00dev->link.qual.tx_failed += !success;
337
338 rate_idx = skbdesc->tx_rate_idx;
339 rate_flags = skbdesc->tx_rate_flags;
340 retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
341 (txdesc->retry + 1) : 1;
342
343 /*
344 * Initialize TX status
345 */
346 memset(&tx_info->status, 0, sizeof(tx_info->status));
347 tx_info->status.ack_signal = 0;
348
349 /*
350 * Frame was send with retries, hardware tried
351 * different rates to send out the frame, at each
352 * retry it lowered the rate 1 step except when the
353 * lowest rate was used.
354 */
355 for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
356 tx_info->status.rates[i].idx = rate_idx - i;
357 tx_info->status.rates[i].flags = rate_flags;
358
359 if (rate_idx - i == 0) {
360 /*
361 * The lowest rate (index 0) was used until the
362 * number of max retries was reached.
363 */
364 tx_info->status.rates[i].count = retry_rates - i;
365 i++;
366 break;
367 }
368 tx_info->status.rates[i].count = 1;
369 }
370 if (i < (IEEE80211_TX_MAX_RATES - 1))
371 tx_info->status.rates[i].idx = -1; /* terminate */
372
373 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
374 if (success)
375 tx_info->flags |= IEEE80211_TX_STAT_ACK;
376 else
377 rt2x00dev->low_level_stats.dot11ACKFailureCount++;
378 }
379
380 /*
381 * Every single frame has it's own tx status, hence report
382 * every frame as ampdu of size 1.
383 *
384 * TODO: if we can find out how many frames were aggregated
385 * by the hw we could provide the real ampdu_len to mac80211
386 * which would allow the rc algorithm to better decide on
387 * which rates are suitable.
388 */
389 if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
390 tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
391 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
392 tx_info->status.ampdu_len = 1;
393 tx_info->status.ampdu_ack_len = success ? 1 : 0;
394
395 if (!success)
396 tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
397 }
398
399 if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
400 if (success)
401 rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
402 else
403 rt2x00dev->low_level_stats.dot11RTSFailureCount++;
404 }
405
406 /*
407 * Only send the status report to mac80211 when it's a frame
408 * that originated in mac80211. If this was a extra frame coming
409 * through a mac80211 library call (RTS/CTS) then we should not
410 * send the status report back.
411 */
412 if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
413 if (test_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags))
414 ieee80211_tx_status(rt2x00dev->hw, entry->skb);
415 else
416 ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
417 } else
418 dev_kfree_skb_any(entry->skb);
419
420 /*
421 * Make this entry available for reuse.
422 */
423 entry->skb = NULL;
424 entry->flags = 0;
425
426 rt2x00dev->ops->lib->clear_entry(entry);
427
428 rt2x00queue_index_inc(entry, Q_INDEX_DONE);
429
430 /*
431 * If the data queue was below the threshold before the txdone
432 * handler we must make sure the packet queue in the mac80211 stack
433 * is reenabled when the txdone handler has finished. This has to be
434 * serialized with rt2x00mac_tx(), otherwise we can wake up queue
435 * before it was stopped.
436 */
437 spin_lock_bh(&entry->queue->tx_lock);
438 if (!rt2x00queue_threshold(entry->queue))
439 rt2x00queue_unpause_queue(entry->queue);
440 spin_unlock_bh(&entry->queue->tx_lock);
441 }
442 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
443
rt2x00lib_txdone_noinfo(struct queue_entry * entry,u32 status)444 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
445 {
446 struct txdone_entry_desc txdesc;
447
448 txdesc.flags = 0;
449 __set_bit(status, &txdesc.flags);
450 txdesc.retry = 0;
451
452 rt2x00lib_txdone(entry, &txdesc);
453 }
454 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
455
rt2x00lib_find_ie(u8 * data,unsigned int len,u8 ie)456 static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
457 {
458 struct ieee80211_mgmt *mgmt = (void *)data;
459 u8 *pos, *end;
460
461 pos = (u8 *)mgmt->u.beacon.variable;
462 end = data + len;
463 while (pos < end) {
464 if (pos + 2 + pos[1] > end)
465 return NULL;
466
467 if (pos[0] == ie)
468 return pos;
469
470 pos += 2 + pos[1];
471 }
472
473 return NULL;
474 }
475
rt2x00lib_sleep(struct work_struct * work)476 static void rt2x00lib_sleep(struct work_struct *work)
477 {
478 struct rt2x00_dev *rt2x00dev =
479 container_of(work, struct rt2x00_dev, sleep_work);
480
481 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
482 return;
483
484 /*
485 * Check again is powersaving is enabled, to prevent races from delayed
486 * work execution.
487 */
488 if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
489 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
490 IEEE80211_CONF_CHANGE_PS);
491 }
492
rt2x00lib_rxdone_check_ps(struct rt2x00_dev * rt2x00dev,struct sk_buff * skb,struct rxdone_entry_desc * rxdesc)493 static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
494 struct sk_buff *skb,
495 struct rxdone_entry_desc *rxdesc)
496 {
497 struct ieee80211_hdr *hdr = (void *) skb->data;
498 struct ieee80211_tim_ie *tim_ie;
499 u8 *tim;
500 u8 tim_len;
501 bool cam;
502
503 /* If this is not a beacon, or if mac80211 has no powersaving
504 * configured, or if the device is already in powersaving mode
505 * we can exit now. */
506 if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
507 !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
508 return;
509
510 /* min. beacon length + FCS_LEN */
511 if (skb->len <= 40 + FCS_LEN)
512 return;
513
514 /* and only beacons from the associated BSSID, please */
515 if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
516 !rt2x00dev->aid)
517 return;
518
519 rt2x00dev->last_beacon = jiffies;
520
521 tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
522 if (!tim)
523 return;
524
525 if (tim[1] < sizeof(*tim_ie))
526 return;
527
528 tim_len = tim[1];
529 tim_ie = (struct ieee80211_tim_ie *) &tim[2];
530
531 /* Check whenever the PHY can be turned off again. */
532
533 /* 1. What about buffered unicast traffic for our AID? */
534 cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
535
536 /* 2. Maybe the AP wants to send multicast/broadcast data? */
537 cam |= (tim_ie->bitmap_ctrl & 0x01);
538
539 if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
540 queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work);
541 }
542
rt2x00lib_rxdone_read_signal(struct rt2x00_dev * rt2x00dev,struct rxdone_entry_desc * rxdesc)543 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
544 struct rxdone_entry_desc *rxdesc)
545 {
546 struct ieee80211_supported_band *sband;
547 const struct rt2x00_rate *rate;
548 unsigned int i;
549 int signal = rxdesc->signal;
550 int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
551
552 switch (rxdesc->rate_mode) {
553 case RATE_MODE_CCK:
554 case RATE_MODE_OFDM:
555 /*
556 * For non-HT rates the MCS value needs to contain the
557 * actually used rate modulation (CCK or OFDM).
558 */
559 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
560 signal = RATE_MCS(rxdesc->rate_mode, signal);
561
562 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
563 for (i = 0; i < sband->n_bitrates; i++) {
564 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
565 if (((type == RXDONE_SIGNAL_PLCP) &&
566 (rate->plcp == signal)) ||
567 ((type == RXDONE_SIGNAL_BITRATE) &&
568 (rate->bitrate == signal)) ||
569 ((type == RXDONE_SIGNAL_MCS) &&
570 (rate->mcs == signal))) {
571 return i;
572 }
573 }
574 break;
575 case RATE_MODE_HT_MIX:
576 case RATE_MODE_HT_GREENFIELD:
577 if (signal >= 0 && signal <= 76)
578 return signal;
579 break;
580 default:
581 break;
582 }
583
584 WARNING(rt2x00dev, "Frame received with unrecognized signal, "
585 "mode=0x%.4x, signal=0x%.4x, type=%d.\n",
586 rxdesc->rate_mode, signal, type);
587 return 0;
588 }
589
rt2x00lib_rxdone(struct queue_entry * entry)590 void rt2x00lib_rxdone(struct queue_entry *entry)
591 {
592 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
593 struct rxdone_entry_desc rxdesc;
594 struct sk_buff *skb;
595 struct ieee80211_rx_status *rx_status;
596 unsigned int header_length;
597 int rate_idx;
598
599 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
600 !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
601 goto submit_entry;
602
603 if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
604 goto submit_entry;
605
606 /*
607 * Allocate a new sk_buffer. If no new buffer available, drop the
608 * received frame and reuse the existing buffer.
609 */
610 skb = rt2x00queue_alloc_rxskb(entry);
611 if (!skb)
612 goto submit_entry;
613
614 /*
615 * Unmap the skb.
616 */
617 rt2x00queue_unmap_skb(entry);
618
619 /*
620 * Extract the RXD details.
621 */
622 memset(&rxdesc, 0, sizeof(rxdesc));
623 rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
624
625 /*
626 * Check for valid size in case we get corrupted descriptor from
627 * hardware.
628 */
629 if (unlikely(rxdesc.size == 0 ||
630 rxdesc.size > entry->queue->data_size)) {
631 ERROR(rt2x00dev, "Wrong frame size %d max %d.\n",
632 rxdesc.size, entry->queue->data_size);
633 dev_kfree_skb(entry->skb);
634 goto renew_skb;
635 }
636
637 /*
638 * The data behind the ieee80211 header must be
639 * aligned on a 4 byte boundary.
640 */
641 header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
642
643 /*
644 * Hardware might have stripped the IV/EIV/ICV data,
645 * in that case it is possible that the data was
646 * provided separately (through hardware descriptor)
647 * in which case we should reinsert the data into the frame.
648 */
649 if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
650 (rxdesc.flags & RX_FLAG_IV_STRIPPED))
651 rt2x00crypto_rx_insert_iv(entry->skb, header_length,
652 &rxdesc);
653 else if (header_length &&
654 (rxdesc.size > header_length) &&
655 (rxdesc.dev_flags & RXDONE_L2PAD))
656 rt2x00queue_remove_l2pad(entry->skb, header_length);
657
658 /* Trim buffer to correct size */
659 skb_trim(entry->skb, rxdesc.size);
660
661 /*
662 * Translate the signal to the correct bitrate index.
663 */
664 rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
665 if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
666 rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
667 rxdesc.flags |= RX_FLAG_HT;
668
669 /*
670 * Check if this is a beacon, and more frames have been
671 * buffered while we were in powersaving mode.
672 */
673 rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
674
675 /*
676 * Update extra components
677 */
678 rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
679 rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
680 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
681
682 /*
683 * Initialize RX status information, and send frame
684 * to mac80211.
685 */
686 rx_status = IEEE80211_SKB_RXCB(entry->skb);
687 rx_status->mactime = rxdesc.timestamp;
688 rx_status->band = rt2x00dev->curr_band;
689 rx_status->freq = rt2x00dev->curr_freq;
690 rx_status->rate_idx = rate_idx;
691 rx_status->signal = rxdesc.rssi;
692 rx_status->flag = rxdesc.flags;
693 rx_status->antenna = rt2x00dev->link.ant.active.rx;
694
695 ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
696
697 renew_skb:
698 /*
699 * Replace the skb with the freshly allocated one.
700 */
701 entry->skb = skb;
702
703 submit_entry:
704 entry->flags = 0;
705 rt2x00queue_index_inc(entry, Q_INDEX_DONE);
706 if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
707 test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
708 rt2x00dev->ops->lib->clear_entry(entry);
709 }
710 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
711
712 /*
713 * Driver initialization handlers.
714 */
715 const struct rt2x00_rate rt2x00_supported_rates[12] = {
716 {
717 .flags = DEV_RATE_CCK,
718 .bitrate = 10,
719 .ratemask = BIT(0),
720 .plcp = 0x00,
721 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
722 },
723 {
724 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
725 .bitrate = 20,
726 .ratemask = BIT(1),
727 .plcp = 0x01,
728 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
729 },
730 {
731 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
732 .bitrate = 55,
733 .ratemask = BIT(2),
734 .plcp = 0x02,
735 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
736 },
737 {
738 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
739 .bitrate = 110,
740 .ratemask = BIT(3),
741 .plcp = 0x03,
742 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
743 },
744 {
745 .flags = DEV_RATE_OFDM,
746 .bitrate = 60,
747 .ratemask = BIT(4),
748 .plcp = 0x0b,
749 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
750 },
751 {
752 .flags = DEV_RATE_OFDM,
753 .bitrate = 90,
754 .ratemask = BIT(5),
755 .plcp = 0x0f,
756 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
757 },
758 {
759 .flags = DEV_RATE_OFDM,
760 .bitrate = 120,
761 .ratemask = BIT(6),
762 .plcp = 0x0a,
763 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
764 },
765 {
766 .flags = DEV_RATE_OFDM,
767 .bitrate = 180,
768 .ratemask = BIT(7),
769 .plcp = 0x0e,
770 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
771 },
772 {
773 .flags = DEV_RATE_OFDM,
774 .bitrate = 240,
775 .ratemask = BIT(8),
776 .plcp = 0x09,
777 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
778 },
779 {
780 .flags = DEV_RATE_OFDM,
781 .bitrate = 360,
782 .ratemask = BIT(9),
783 .plcp = 0x0d,
784 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
785 },
786 {
787 .flags = DEV_RATE_OFDM,
788 .bitrate = 480,
789 .ratemask = BIT(10),
790 .plcp = 0x08,
791 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
792 },
793 {
794 .flags = DEV_RATE_OFDM,
795 .bitrate = 540,
796 .ratemask = BIT(11),
797 .plcp = 0x0c,
798 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
799 },
800 };
801
rt2x00lib_channel(struct ieee80211_channel * entry,const int channel,const int tx_power,const int value)802 static void rt2x00lib_channel(struct ieee80211_channel *entry,
803 const int channel, const int tx_power,
804 const int value)
805 {
806 /* XXX: this assumption about the band is wrong for 802.11j */
807 entry->band = channel <= 14 ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
808 entry->center_freq = ieee80211_channel_to_frequency(channel,
809 entry->band);
810 entry->hw_value = value;
811 entry->max_power = tx_power;
812 entry->max_antenna_gain = 0xff;
813 }
814
rt2x00lib_rate(struct ieee80211_rate * entry,const u16 index,const struct rt2x00_rate * rate)815 static void rt2x00lib_rate(struct ieee80211_rate *entry,
816 const u16 index, const struct rt2x00_rate *rate)
817 {
818 entry->flags = 0;
819 entry->bitrate = rate->bitrate;
820 entry->hw_value = index;
821 entry->hw_value_short = index;
822
823 if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
824 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
825 }
826
rt2x00lib_probe_hw_modes(struct rt2x00_dev * rt2x00dev,struct hw_mode_spec * spec)827 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
828 struct hw_mode_spec *spec)
829 {
830 struct ieee80211_hw *hw = rt2x00dev->hw;
831 struct ieee80211_channel *channels;
832 struct ieee80211_rate *rates;
833 unsigned int num_rates;
834 unsigned int i;
835
836 num_rates = 0;
837 if (spec->supported_rates & SUPPORT_RATE_CCK)
838 num_rates += 4;
839 if (spec->supported_rates & SUPPORT_RATE_OFDM)
840 num_rates += 8;
841
842 channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL);
843 if (!channels)
844 return -ENOMEM;
845
846 rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL);
847 if (!rates)
848 goto exit_free_channels;
849
850 /*
851 * Initialize Rate list.
852 */
853 for (i = 0; i < num_rates; i++)
854 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
855
856 /*
857 * Initialize Channel list.
858 */
859 for (i = 0; i < spec->num_channels; i++) {
860 rt2x00lib_channel(&channels[i],
861 spec->channels[i].channel,
862 spec->channels_info[i].max_power, i);
863 }
864
865 /*
866 * Intitialize 802.11b, 802.11g
867 * Rates: CCK, OFDM.
868 * Channels: 2.4 GHz
869 */
870 if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
871 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
872 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
873 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
874 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
875 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
876 &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
877 memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
878 &spec->ht, sizeof(spec->ht));
879 }
880
881 /*
882 * Intitialize 802.11a
883 * Rates: OFDM.
884 * Channels: OFDM, UNII, HiperLAN2.
885 */
886 if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
887 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
888 spec->num_channels - 14;
889 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
890 num_rates - 4;
891 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
892 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
893 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
894 &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
895 memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
896 &spec->ht, sizeof(spec->ht));
897 }
898
899 return 0;
900
901 exit_free_channels:
902 kfree(channels);
903 ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
904 return -ENOMEM;
905 }
906
rt2x00lib_remove_hw(struct rt2x00_dev * rt2x00dev)907 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
908 {
909 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
910 ieee80211_unregister_hw(rt2x00dev->hw);
911
912 if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
913 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
914 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
915 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
916 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
917 }
918
919 kfree(rt2x00dev->spec.channels_info);
920 }
921
rt2x00lib_probe_hw(struct rt2x00_dev * rt2x00dev)922 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
923 {
924 struct hw_mode_spec *spec = &rt2x00dev->spec;
925 int status;
926
927 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
928 return 0;
929
930 /*
931 * Initialize HW modes.
932 */
933 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
934 if (status)
935 return status;
936
937 /*
938 * Initialize HW fields.
939 */
940 rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
941
942 /*
943 * Initialize extra TX headroom required.
944 */
945 rt2x00dev->hw->extra_tx_headroom =
946 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
947 rt2x00dev->ops->extra_tx_headroom);
948
949 /*
950 * Take TX headroom required for alignment into account.
951 */
952 if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
953 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
954 else if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags))
955 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
956
957 /*
958 * Tell mac80211 about the size of our private STA structure.
959 */
960 rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta);
961
962 /*
963 * Allocate tx status FIFO for driver use.
964 */
965 if (test_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags)) {
966 /*
967 * Allocate the txstatus fifo. In the worst case the tx
968 * status fifo has to hold the tx status of all entries
969 * in all tx queues. Hence, calculate the kfifo size as
970 * tx_queues * entry_num and round up to the nearest
971 * power of 2.
972 */
973 int kfifo_size =
974 roundup_pow_of_two(rt2x00dev->ops->tx_queues *
975 rt2x00dev->ops->tx->entry_num *
976 sizeof(u32));
977
978 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
979 GFP_KERNEL);
980 if (status)
981 return status;
982 }
983
984 /*
985 * Initialize tasklets if used by the driver. Tasklets are
986 * disabled until the interrupts are turned on. The driver
987 * has to handle that.
988 */
989 #define RT2X00_TASKLET_INIT(taskletname) \
990 if (rt2x00dev->ops->lib->taskletname) { \
991 tasklet_init(&rt2x00dev->taskletname, \
992 rt2x00dev->ops->lib->taskletname, \
993 (unsigned long)rt2x00dev); \
994 }
995
996 RT2X00_TASKLET_INIT(txstatus_tasklet);
997 RT2X00_TASKLET_INIT(pretbtt_tasklet);
998 RT2X00_TASKLET_INIT(tbtt_tasklet);
999 RT2X00_TASKLET_INIT(rxdone_tasklet);
1000 RT2X00_TASKLET_INIT(autowake_tasklet);
1001
1002 #undef RT2X00_TASKLET_INIT
1003
1004 /*
1005 * Register HW.
1006 */
1007 status = ieee80211_register_hw(rt2x00dev->hw);
1008 if (status)
1009 return status;
1010
1011 set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
1012
1013 return 0;
1014 }
1015
1016 /*
1017 * Initialization/uninitialization handlers.
1018 */
rt2x00lib_uninitialize(struct rt2x00_dev * rt2x00dev)1019 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
1020 {
1021 if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1022 return;
1023
1024 /*
1025 * Stop rfkill polling.
1026 */
1027 if (test_bit(REQUIRE_DELAYED_RFKILL, &rt2x00dev->cap_flags))
1028 rt2x00rfkill_unregister(rt2x00dev);
1029
1030 /*
1031 * Allow the HW to uninitialize.
1032 */
1033 rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1034
1035 /*
1036 * Free allocated queue entries.
1037 */
1038 rt2x00queue_uninitialize(rt2x00dev);
1039 }
1040
rt2x00lib_initialize(struct rt2x00_dev * rt2x00dev)1041 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1042 {
1043 int status;
1044
1045 if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1046 return 0;
1047
1048 /*
1049 * Allocate all queue entries.
1050 */
1051 status = rt2x00queue_initialize(rt2x00dev);
1052 if (status)
1053 return status;
1054
1055 /*
1056 * Initialize the device.
1057 */
1058 status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1059 if (status) {
1060 rt2x00queue_uninitialize(rt2x00dev);
1061 return status;
1062 }
1063
1064 set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
1065
1066 /*
1067 * Start rfkill polling.
1068 */
1069 if (test_bit(REQUIRE_DELAYED_RFKILL, &rt2x00dev->cap_flags))
1070 rt2x00rfkill_register(rt2x00dev);
1071
1072 return 0;
1073 }
1074
rt2x00lib_start(struct rt2x00_dev * rt2x00dev)1075 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1076 {
1077 int retval;
1078
1079 if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1080 return 0;
1081
1082 /*
1083 * If this is the first interface which is added,
1084 * we should load the firmware now.
1085 */
1086 retval = rt2x00lib_load_firmware(rt2x00dev);
1087 if (retval)
1088 return retval;
1089
1090 /*
1091 * Initialize the device.
1092 */
1093 retval = rt2x00lib_initialize(rt2x00dev);
1094 if (retval)
1095 return retval;
1096
1097 rt2x00dev->intf_ap_count = 0;
1098 rt2x00dev->intf_sta_count = 0;
1099 rt2x00dev->intf_associated = 0;
1100
1101 /* Enable the radio */
1102 retval = rt2x00lib_enable_radio(rt2x00dev);
1103 if (retval)
1104 return retval;
1105
1106 set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1107
1108 return 0;
1109 }
1110
rt2x00lib_stop(struct rt2x00_dev * rt2x00dev)1111 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1112 {
1113 if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1114 return;
1115
1116 /*
1117 * Perhaps we can add something smarter here,
1118 * but for now just disabling the radio should do.
1119 */
1120 rt2x00lib_disable_radio(rt2x00dev);
1121
1122 rt2x00dev->intf_ap_count = 0;
1123 rt2x00dev->intf_sta_count = 0;
1124 rt2x00dev->intf_associated = 0;
1125 }
1126
1127 /*
1128 * driver allocation handlers.
1129 */
rt2x00lib_probe_dev(struct rt2x00_dev * rt2x00dev)1130 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1131 {
1132 int retval = -ENOMEM;
1133
1134 /*
1135 * Allocate the driver data memory, if necessary.
1136 */
1137 if (rt2x00dev->ops->drv_data_size > 0) {
1138 rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size,
1139 GFP_KERNEL);
1140 if (!rt2x00dev->drv_data) {
1141 retval = -ENOMEM;
1142 goto exit;
1143 }
1144 }
1145
1146 spin_lock_init(&rt2x00dev->irqmask_lock);
1147 mutex_init(&rt2x00dev->csr_mutex);
1148
1149 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1150
1151 /*
1152 * Make room for rt2x00_intf inside the per-interface
1153 * structure ieee80211_vif.
1154 */
1155 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1156
1157 /*
1158 * Determine which operating modes are supported, all modes
1159 * which require beaconing, depend on the availability of
1160 * beacon entries.
1161 */
1162 rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1163 if (rt2x00dev->ops->bcn->entry_num > 0)
1164 rt2x00dev->hw->wiphy->interface_modes |=
1165 BIT(NL80211_IFTYPE_ADHOC) |
1166 BIT(NL80211_IFTYPE_AP) |
1167 #ifdef CONFIG_MAC80211_MESH
1168 BIT(NL80211_IFTYPE_MESH_POINT) |
1169 #endif
1170 BIT(NL80211_IFTYPE_WDS);
1171
1172 /*
1173 * Initialize work.
1174 */
1175 rt2x00dev->workqueue =
1176 alloc_ordered_workqueue(wiphy_name(rt2x00dev->hw->wiphy), 0);
1177 if (!rt2x00dev->workqueue) {
1178 retval = -ENOMEM;
1179 goto exit;
1180 }
1181
1182 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1183 INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
1184 INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep);
1185
1186 /*
1187 * Let the driver probe the device to detect the capabilities.
1188 */
1189 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1190 if (retval) {
1191 ERROR(rt2x00dev, "Failed to allocate device.\n");
1192 goto exit;
1193 }
1194
1195 /*
1196 * Allocate queue array.
1197 */
1198 retval = rt2x00queue_allocate(rt2x00dev);
1199 if (retval)
1200 goto exit;
1201
1202 /*
1203 * Initialize ieee80211 structure.
1204 */
1205 retval = rt2x00lib_probe_hw(rt2x00dev);
1206 if (retval) {
1207 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1208 goto exit;
1209 }
1210
1211 /*
1212 * Register extra components.
1213 */
1214 rt2x00link_register(rt2x00dev);
1215 rt2x00leds_register(rt2x00dev);
1216 rt2x00debug_register(rt2x00dev);
1217
1218 /*
1219 * Start rfkill polling.
1220 */
1221 if (!test_bit(REQUIRE_DELAYED_RFKILL, &rt2x00dev->cap_flags))
1222 rt2x00rfkill_register(rt2x00dev);
1223
1224 return 0;
1225
1226 exit:
1227 rt2x00lib_remove_dev(rt2x00dev);
1228
1229 return retval;
1230 }
1231 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1232
rt2x00lib_remove_dev(struct rt2x00_dev * rt2x00dev)1233 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1234 {
1235 clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1236
1237 /*
1238 * Stop rfkill polling.
1239 */
1240 if (!test_bit(REQUIRE_DELAYED_RFKILL, &rt2x00dev->cap_flags))
1241 rt2x00rfkill_unregister(rt2x00dev);
1242
1243 /*
1244 * Disable radio.
1245 */
1246 rt2x00lib_disable_radio(rt2x00dev);
1247
1248 /*
1249 * Stop all work.
1250 */
1251 cancel_work_sync(&rt2x00dev->intf_work);
1252 cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
1253 cancel_work_sync(&rt2x00dev->sleep_work);
1254 if (rt2x00_is_usb(rt2x00dev)) {
1255 hrtimer_cancel(&rt2x00dev->txstatus_timer);
1256 cancel_work_sync(&rt2x00dev->rxdone_work);
1257 cancel_work_sync(&rt2x00dev->txdone_work);
1258 }
1259 if (rt2x00dev->workqueue)
1260 destroy_workqueue(rt2x00dev->workqueue);
1261
1262 /*
1263 * Free the tx status fifo.
1264 */
1265 kfifo_free(&rt2x00dev->txstatus_fifo);
1266
1267 /*
1268 * Kill the tx status tasklet.
1269 */
1270 tasklet_kill(&rt2x00dev->txstatus_tasklet);
1271 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
1272 tasklet_kill(&rt2x00dev->tbtt_tasklet);
1273 tasklet_kill(&rt2x00dev->rxdone_tasklet);
1274 tasklet_kill(&rt2x00dev->autowake_tasklet);
1275
1276 /*
1277 * Uninitialize device.
1278 */
1279 rt2x00lib_uninitialize(rt2x00dev);
1280
1281 /*
1282 * Free extra components
1283 */
1284 rt2x00debug_deregister(rt2x00dev);
1285 rt2x00leds_unregister(rt2x00dev);
1286
1287 /*
1288 * Free ieee80211_hw memory.
1289 */
1290 rt2x00lib_remove_hw(rt2x00dev);
1291
1292 /*
1293 * Free firmware image.
1294 */
1295 rt2x00lib_free_firmware(rt2x00dev);
1296
1297 /*
1298 * Free queue structures.
1299 */
1300 rt2x00queue_free(rt2x00dev);
1301
1302 /*
1303 * Free the driver data.
1304 */
1305 if (rt2x00dev->drv_data)
1306 kfree(rt2x00dev->drv_data);
1307 }
1308 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1309
1310 /*
1311 * Device state handlers
1312 */
1313 #ifdef CONFIG_PM
rt2x00lib_suspend(struct rt2x00_dev * rt2x00dev,pm_message_t state)1314 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1315 {
1316 NOTICE(rt2x00dev, "Going to sleep.\n");
1317
1318 /*
1319 * Prevent mac80211 from accessing driver while suspended.
1320 */
1321 if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1322 return 0;
1323
1324 /*
1325 * Cleanup as much as possible.
1326 */
1327 rt2x00lib_uninitialize(rt2x00dev);
1328
1329 /*
1330 * Suspend/disable extra components.
1331 */
1332 rt2x00leds_suspend(rt2x00dev);
1333 rt2x00debug_deregister(rt2x00dev);
1334
1335 /*
1336 * Set device mode to sleep for power management,
1337 * on some hardware this call seems to consistently fail.
1338 * From the specifications it is hard to tell why it fails,
1339 * and if this is a "bad thing".
1340 * Overall it is safe to just ignore the failure and
1341 * continue suspending. The only downside is that the
1342 * device will not be in optimal power save mode, but with
1343 * the radio and the other components already disabled the
1344 * device is as good as disabled.
1345 */
1346 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1347 WARNING(rt2x00dev, "Device failed to enter sleep state, "
1348 "continue suspending.\n");
1349
1350 return 0;
1351 }
1352 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1353
rt2x00lib_resume(struct rt2x00_dev * rt2x00dev)1354 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1355 {
1356 NOTICE(rt2x00dev, "Waking up.\n");
1357
1358 /*
1359 * Restore/enable extra components.
1360 */
1361 rt2x00debug_register(rt2x00dev);
1362 rt2x00leds_resume(rt2x00dev);
1363
1364 /*
1365 * We are ready again to receive requests from mac80211.
1366 */
1367 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1368
1369 return 0;
1370 }
1371 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1372 #endif /* CONFIG_PM */
1373
1374 /*
1375 * rt2x00lib module information.
1376 */
1377 MODULE_AUTHOR(DRV_PROJECT);
1378 MODULE_VERSION(DRV_VERSION);
1379 MODULE_DESCRIPTION("rt2x00 library");
1380 MODULE_LICENSE("GPL");
1381