1 /*
2 * Atheros CARL9170 driver
3 *
4 * mac80211 interaction code
5 *
6 * Copyright 2008, Johannes Berg <johannes@sipsolutions.net>
7 * Copyright 2009, 2010, Christian Lamparter <chunkeey@googlemail.com>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; see the file COPYING. If not, see
21 * http://www.gnu.org/licenses/.
22 *
23 * This file incorporates work covered by the following copyright and
24 * permission notice:
25 * Copyright (c) 2007-2008 Atheros Communications, Inc.
26 *
27 * Permission to use, copy, modify, and/or distribute this software for any
28 * purpose with or without fee is hereby granted, provided that the above
29 * copyright notice and this permission notice appear in all copies.
30 *
31 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
32 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
33 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
34 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
35 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
36 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
37 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
38 */
39
40 #include <linux/init.h>
41 #include <linux/slab.h>
42 #include <linux/module.h>
43 #include <linux/etherdevice.h>
44 #include <linux/random.h>
45 #include <net/mac80211.h>
46 #include <net/cfg80211.h>
47 #include "hw.h"
48 #include "carl9170.h"
49 #include "cmd.h"
50
51 static bool modparam_nohwcrypt;
52 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
53 MODULE_PARM_DESC(nohwcrypt, "Disable hardware crypto offload.");
54
55 int modparam_noht;
56 module_param_named(noht, modparam_noht, int, S_IRUGO);
57 MODULE_PARM_DESC(noht, "Disable MPDU aggregation.");
58
59 #define RATE(_bitrate, _hw_rate, _txpidx, _flags) { \
60 .bitrate = (_bitrate), \
61 .flags = (_flags), \
62 .hw_value = (_hw_rate) | (_txpidx) << 4, \
63 }
64
65 struct ieee80211_rate __carl9170_ratetable[] = {
66 RATE(10, 0, 0, 0),
67 RATE(20, 1, 1, IEEE80211_RATE_SHORT_PREAMBLE),
68 RATE(55, 2, 2, IEEE80211_RATE_SHORT_PREAMBLE),
69 RATE(110, 3, 3, IEEE80211_RATE_SHORT_PREAMBLE),
70 RATE(60, 0xb, 0, 0),
71 RATE(90, 0xf, 0, 0),
72 RATE(120, 0xa, 0, 0),
73 RATE(180, 0xe, 0, 0),
74 RATE(240, 0x9, 0, 0),
75 RATE(360, 0xd, 1, 0),
76 RATE(480, 0x8, 2, 0),
77 RATE(540, 0xc, 3, 0),
78 };
79 #undef RATE
80
81 #define carl9170_g_ratetable (__carl9170_ratetable + 0)
82 #define carl9170_g_ratetable_size 12
83 #define carl9170_a_ratetable (__carl9170_ratetable + 4)
84 #define carl9170_a_ratetable_size 8
85
86 /*
87 * NB: The hw_value is used as an index into the carl9170_phy_freq_params
88 * array in phy.c so that we don't have to do frequency lookups!
89 */
90 #define CHAN(_freq, _idx) { \
91 .center_freq = (_freq), \
92 .hw_value = (_idx), \
93 .max_power = 18, /* XXX */ \
94 }
95
96 static struct ieee80211_channel carl9170_2ghz_chantable[] = {
97 CHAN(2412, 0),
98 CHAN(2417, 1),
99 CHAN(2422, 2),
100 CHAN(2427, 3),
101 CHAN(2432, 4),
102 CHAN(2437, 5),
103 CHAN(2442, 6),
104 CHAN(2447, 7),
105 CHAN(2452, 8),
106 CHAN(2457, 9),
107 CHAN(2462, 10),
108 CHAN(2467, 11),
109 CHAN(2472, 12),
110 CHAN(2484, 13),
111 };
112
113 static struct ieee80211_channel carl9170_5ghz_chantable[] = {
114 CHAN(4920, 14),
115 CHAN(4940, 15),
116 CHAN(4960, 16),
117 CHAN(4980, 17),
118 CHAN(5040, 18),
119 CHAN(5060, 19),
120 CHAN(5080, 20),
121 CHAN(5180, 21),
122 CHAN(5200, 22),
123 CHAN(5220, 23),
124 CHAN(5240, 24),
125 CHAN(5260, 25),
126 CHAN(5280, 26),
127 CHAN(5300, 27),
128 CHAN(5320, 28),
129 CHAN(5500, 29),
130 CHAN(5520, 30),
131 CHAN(5540, 31),
132 CHAN(5560, 32),
133 CHAN(5580, 33),
134 CHAN(5600, 34),
135 CHAN(5620, 35),
136 CHAN(5640, 36),
137 CHAN(5660, 37),
138 CHAN(5680, 38),
139 CHAN(5700, 39),
140 CHAN(5745, 40),
141 CHAN(5765, 41),
142 CHAN(5785, 42),
143 CHAN(5805, 43),
144 CHAN(5825, 44),
145 CHAN(5170, 45),
146 CHAN(5190, 46),
147 CHAN(5210, 47),
148 CHAN(5230, 48),
149 };
150 #undef CHAN
151
152 #define CARL9170_HT_CAP \
153 { \
154 .ht_supported = true, \
155 .cap = IEEE80211_HT_CAP_MAX_AMSDU | \
156 IEEE80211_HT_CAP_SUP_WIDTH_20_40 | \
157 IEEE80211_HT_CAP_SGI_40 | \
158 IEEE80211_HT_CAP_DSSSCCK40 | \
159 IEEE80211_HT_CAP_SM_PS, \
160 .ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K, \
161 .ampdu_density = IEEE80211_HT_MPDU_DENSITY_8, \
162 .mcs = { \
163 .rx_mask = { 0xff, 0xff, 0, 0, 0x1, 0, 0, 0, 0, 0, }, \
164 .rx_highest = cpu_to_le16(300), \
165 .tx_params = IEEE80211_HT_MCS_TX_DEFINED, \
166 }, \
167 }
168
169 static struct ieee80211_supported_band carl9170_band_2GHz = {
170 .channels = carl9170_2ghz_chantable,
171 .n_channels = ARRAY_SIZE(carl9170_2ghz_chantable),
172 .bitrates = carl9170_g_ratetable,
173 .n_bitrates = carl9170_g_ratetable_size,
174 .ht_cap = CARL9170_HT_CAP,
175 };
176
177 static struct ieee80211_supported_band carl9170_band_5GHz = {
178 .channels = carl9170_5ghz_chantable,
179 .n_channels = ARRAY_SIZE(carl9170_5ghz_chantable),
180 .bitrates = carl9170_a_ratetable,
181 .n_bitrates = carl9170_a_ratetable_size,
182 .ht_cap = CARL9170_HT_CAP,
183 };
184
carl9170_ampdu_gc(struct ar9170 * ar)185 static void carl9170_ampdu_gc(struct ar9170 *ar)
186 {
187 struct carl9170_sta_tid *tid_info;
188 LIST_HEAD(tid_gc);
189
190 rcu_read_lock();
191 list_for_each_entry_rcu(tid_info, &ar->tx_ampdu_list, list) {
192 spin_lock_bh(&ar->tx_ampdu_list_lock);
193 if (tid_info->state == CARL9170_TID_STATE_SHUTDOWN) {
194 tid_info->state = CARL9170_TID_STATE_KILLED;
195 list_del_rcu(&tid_info->list);
196 ar->tx_ampdu_list_len--;
197 list_add_tail(&tid_info->tmp_list, &tid_gc);
198 }
199 spin_unlock_bh(&ar->tx_ampdu_list_lock);
200
201 }
202 rcu_assign_pointer(ar->tx_ampdu_iter, tid_info);
203 rcu_read_unlock();
204
205 synchronize_rcu();
206
207 while (!list_empty(&tid_gc)) {
208 struct sk_buff *skb;
209 tid_info = list_first_entry(&tid_gc, struct carl9170_sta_tid,
210 tmp_list);
211
212 while ((skb = __skb_dequeue(&tid_info->queue)))
213 carl9170_tx_status(ar, skb, false);
214
215 list_del_init(&tid_info->tmp_list);
216 kfree(tid_info);
217 }
218 }
219
carl9170_flush(struct ar9170 * ar,bool drop_queued)220 static void carl9170_flush(struct ar9170 *ar, bool drop_queued)
221 {
222 if (drop_queued) {
223 int i;
224
225 /*
226 * We can only drop frames which have not been uploaded
227 * to the device yet.
228 */
229
230 for (i = 0; i < ar->hw->queues; i++) {
231 struct sk_buff *skb;
232
233 while ((skb = skb_dequeue(&ar->tx_pending[i]))) {
234 struct ieee80211_tx_info *info;
235
236 info = IEEE80211_SKB_CB(skb);
237 if (info->flags & IEEE80211_TX_CTL_AMPDU)
238 atomic_dec(&ar->tx_ampdu_upload);
239
240 carl9170_tx_status(ar, skb, false);
241 }
242 }
243 }
244
245 /* Wait for all other outstanding frames to timeout. */
246 if (atomic_read(&ar->tx_total_queued))
247 WARN_ON(wait_for_completion_timeout(&ar->tx_flush, HZ) == 0);
248 }
249
carl9170_flush_ba(struct ar9170 * ar)250 static void carl9170_flush_ba(struct ar9170 *ar)
251 {
252 struct sk_buff_head free;
253 struct carl9170_sta_tid *tid_info;
254 struct sk_buff *skb;
255
256 __skb_queue_head_init(&free);
257
258 rcu_read_lock();
259 spin_lock_bh(&ar->tx_ampdu_list_lock);
260 list_for_each_entry_rcu(tid_info, &ar->tx_ampdu_list, list) {
261 if (tid_info->state > CARL9170_TID_STATE_SUSPEND) {
262 tid_info->state = CARL9170_TID_STATE_SUSPEND;
263
264 spin_lock(&tid_info->lock);
265 while ((skb = __skb_dequeue(&tid_info->queue)))
266 __skb_queue_tail(&free, skb);
267 spin_unlock(&tid_info->lock);
268 }
269 }
270 spin_unlock_bh(&ar->tx_ampdu_list_lock);
271 rcu_read_unlock();
272
273 while ((skb = __skb_dequeue(&free)))
274 carl9170_tx_status(ar, skb, false);
275 }
276
carl9170_zap_queues(struct ar9170 * ar)277 static void carl9170_zap_queues(struct ar9170 *ar)
278 {
279 struct carl9170_vif_info *cvif;
280 unsigned int i;
281
282 carl9170_ampdu_gc(ar);
283
284 carl9170_flush_ba(ar);
285 carl9170_flush(ar, true);
286
287 for (i = 0; i < ar->hw->queues; i++) {
288 spin_lock_bh(&ar->tx_status[i].lock);
289 while (!skb_queue_empty(&ar->tx_status[i])) {
290 struct sk_buff *skb;
291
292 skb = skb_peek(&ar->tx_status[i]);
293 carl9170_tx_get_skb(skb);
294 spin_unlock_bh(&ar->tx_status[i].lock);
295 carl9170_tx_drop(ar, skb);
296 spin_lock_bh(&ar->tx_status[i].lock);
297 carl9170_tx_put_skb(skb);
298 }
299 spin_unlock_bh(&ar->tx_status[i].lock);
300 }
301
302 BUILD_BUG_ON(CARL9170_NUM_TX_LIMIT_SOFT < 1);
303 BUILD_BUG_ON(CARL9170_NUM_TX_LIMIT_HARD < CARL9170_NUM_TX_LIMIT_SOFT);
304 BUILD_BUG_ON(CARL9170_NUM_TX_LIMIT_HARD >= CARL9170_BAW_BITS);
305
306 /* reinitialize queues statistics */
307 memset(&ar->tx_stats, 0, sizeof(ar->tx_stats));
308 for (i = 0; i < ar->hw->queues; i++)
309 ar->tx_stats[i].limit = CARL9170_NUM_TX_LIMIT_HARD;
310
311 for (i = 0; i < DIV_ROUND_UP(ar->fw.mem_blocks, BITS_PER_LONG); i++)
312 ar->mem_bitmap[i] = 0;
313
314 rcu_read_lock();
315 list_for_each_entry_rcu(cvif, &ar->vif_list, list) {
316 spin_lock_bh(&ar->beacon_lock);
317 dev_kfree_skb_any(cvif->beacon);
318 cvif->beacon = NULL;
319 spin_unlock_bh(&ar->beacon_lock);
320 }
321 rcu_read_unlock();
322
323 atomic_set(&ar->tx_ampdu_upload, 0);
324 atomic_set(&ar->tx_ampdu_scheduler, 0);
325 atomic_set(&ar->tx_total_pending, 0);
326 atomic_set(&ar->tx_total_queued, 0);
327 atomic_set(&ar->mem_free_blocks, ar->fw.mem_blocks);
328 }
329
330 #define CARL9170_FILL_QUEUE(queue, ai_fs, cwmin, cwmax, _txop) \
331 do { \
332 queue.aifs = ai_fs; \
333 queue.cw_min = cwmin; \
334 queue.cw_max = cwmax; \
335 queue.txop = _txop; \
336 } while (0)
337
carl9170_op_start(struct ieee80211_hw * hw)338 static int carl9170_op_start(struct ieee80211_hw *hw)
339 {
340 struct ar9170 *ar = hw->priv;
341 int err, i;
342
343 mutex_lock(&ar->mutex);
344
345 carl9170_zap_queues(ar);
346
347 /* reset QoS defaults */
348 CARL9170_FILL_QUEUE(ar->edcf[AR9170_TXQ_VO], 2, 3, 7, 47);
349 CARL9170_FILL_QUEUE(ar->edcf[AR9170_TXQ_VI], 2, 7, 15, 94);
350 CARL9170_FILL_QUEUE(ar->edcf[AR9170_TXQ_BE], 3, 15, 1023, 0);
351 CARL9170_FILL_QUEUE(ar->edcf[AR9170_TXQ_BK], 7, 15, 1023, 0);
352 CARL9170_FILL_QUEUE(ar->edcf[AR9170_TXQ_SPECIAL], 2, 3, 7, 0);
353
354 ar->current_factor = ar->current_density = -1;
355 /* "The first key is unique." */
356 ar->usedkeys = 1;
357 ar->filter_state = 0;
358 ar->ps.last_action = jiffies;
359 ar->ps.last_slept = jiffies;
360 ar->erp_mode = CARL9170_ERP_AUTO;
361 ar->rx_software_decryption = false;
362 ar->disable_offload = false;
363
364 for (i = 0; i < ar->hw->queues; i++) {
365 ar->queue_stop_timeout[i] = jiffies;
366 ar->max_queue_stop_timeout[i] = 0;
367 }
368
369 atomic_set(&ar->mem_allocs, 0);
370
371 err = carl9170_usb_open(ar);
372 if (err)
373 goto out;
374
375 err = carl9170_init_mac(ar);
376 if (err)
377 goto out;
378
379 err = carl9170_set_qos(ar);
380 if (err)
381 goto out;
382
383 if (ar->fw.rx_filter) {
384 err = carl9170_rx_filter(ar, CARL9170_RX_FILTER_OTHER_RA |
385 CARL9170_RX_FILTER_CTL_OTHER | CARL9170_RX_FILTER_BAD);
386 if (err)
387 goto out;
388 }
389
390 err = carl9170_write_reg(ar, AR9170_MAC_REG_DMA_TRIGGER,
391 AR9170_DMA_TRIGGER_RXQ);
392 if (err)
393 goto out;
394
395 /* Clear key-cache */
396 for (i = 0; i < AR9170_CAM_MAX_USER + 4; i++) {
397 err = carl9170_upload_key(ar, i, NULL, AR9170_ENC_ALG_NONE,
398 0, NULL, 0);
399 if (err)
400 goto out;
401
402 err = carl9170_upload_key(ar, i, NULL, AR9170_ENC_ALG_NONE,
403 1, NULL, 0);
404 if (err)
405 goto out;
406
407 if (i < AR9170_CAM_MAX_USER) {
408 err = carl9170_disable_key(ar, i);
409 if (err)
410 goto out;
411 }
412 }
413
414 carl9170_set_state_when(ar, CARL9170_IDLE, CARL9170_STARTED);
415
416 ieee80211_queue_delayed_work(ar->hw, &ar->stat_work,
417 round_jiffies(msecs_to_jiffies(CARL9170_STAT_WORK)));
418
419 ieee80211_wake_queues(ar->hw);
420 err = 0;
421
422 out:
423 mutex_unlock(&ar->mutex);
424 return err;
425 }
426
carl9170_cancel_worker(struct ar9170 * ar)427 static void carl9170_cancel_worker(struct ar9170 *ar)
428 {
429 cancel_delayed_work_sync(&ar->stat_work);
430 cancel_delayed_work_sync(&ar->tx_janitor);
431 #ifdef CONFIG_CARL9170_LEDS
432 cancel_delayed_work_sync(&ar->led_work);
433 #endif /* CONFIG_CARL9170_LEDS */
434 cancel_work_sync(&ar->ps_work);
435 cancel_work_sync(&ar->ping_work);
436 cancel_work_sync(&ar->ampdu_work);
437 }
438
carl9170_op_stop(struct ieee80211_hw * hw)439 static void carl9170_op_stop(struct ieee80211_hw *hw)
440 {
441 struct ar9170 *ar = hw->priv;
442
443 carl9170_set_state_when(ar, CARL9170_STARTED, CARL9170_IDLE);
444
445 ieee80211_stop_queues(ar->hw);
446
447 mutex_lock(&ar->mutex);
448 if (IS_ACCEPTING_CMD(ar)) {
449 RCU_INIT_POINTER(ar->beacon_iter, NULL);
450
451 carl9170_led_set_state(ar, 0);
452
453 /* stop DMA */
454 carl9170_write_reg(ar, AR9170_MAC_REG_DMA_TRIGGER, 0);
455 carl9170_usb_stop(ar);
456 }
457
458 carl9170_zap_queues(ar);
459 mutex_unlock(&ar->mutex);
460
461 carl9170_cancel_worker(ar);
462 }
463
carl9170_restart_work(struct work_struct * work)464 static void carl9170_restart_work(struct work_struct *work)
465 {
466 struct ar9170 *ar = container_of(work, struct ar9170,
467 restart_work);
468 int err;
469
470 ar->usedkeys = 0;
471 ar->filter_state = 0;
472 carl9170_cancel_worker(ar);
473
474 mutex_lock(&ar->mutex);
475 err = carl9170_usb_restart(ar);
476 if (net_ratelimit()) {
477 if (err) {
478 dev_err(&ar->udev->dev, "Failed to restart device "
479 " (%d).\n", err);
480 } else {
481 dev_info(&ar->udev->dev, "device restarted "
482 "successfully.\n");
483 }
484 }
485
486 carl9170_zap_queues(ar);
487 mutex_unlock(&ar->mutex);
488 if (!err) {
489 ar->restart_counter++;
490 atomic_set(&ar->pending_restarts, 0);
491
492 ieee80211_restart_hw(ar->hw);
493 } else {
494 /*
495 * The reset was unsuccessful and the device seems to
496 * be dead. But there's still one option: a low-level
497 * usb subsystem reset...
498 */
499
500 carl9170_usb_reset(ar);
501 }
502 }
503
carl9170_restart(struct ar9170 * ar,const enum carl9170_restart_reasons r)504 void carl9170_restart(struct ar9170 *ar, const enum carl9170_restart_reasons r)
505 {
506 carl9170_set_state_when(ar, CARL9170_STARTED, CARL9170_IDLE);
507
508 /*
509 * Sometimes, an error can trigger several different reset events.
510 * By ignoring these *surplus* reset events, the device won't be
511 * killed again, right after it has recovered.
512 */
513 if (atomic_inc_return(&ar->pending_restarts) > 1) {
514 dev_dbg(&ar->udev->dev, "ignoring restart (%d)\n", r);
515 return;
516 }
517
518 ieee80211_stop_queues(ar->hw);
519
520 dev_err(&ar->udev->dev, "restart device (%d)\n", r);
521
522 if (!WARN_ON(r == CARL9170_RR_NO_REASON) ||
523 !WARN_ON(r >= __CARL9170_RR_LAST))
524 ar->last_reason = r;
525
526 if (!ar->registered)
527 return;
528
529 if (IS_ACCEPTING_CMD(ar) && !ar->needs_full_reset)
530 ieee80211_queue_work(ar->hw, &ar->restart_work);
531 else
532 carl9170_usb_reset(ar);
533
534 /*
535 * At this point, the device instance might have vanished/disabled.
536 * So, don't put any code which access the ar9170 struct
537 * without proper protection.
538 */
539 }
540
carl9170_ping_work(struct work_struct * work)541 static void carl9170_ping_work(struct work_struct *work)
542 {
543 struct ar9170 *ar = container_of(work, struct ar9170, ping_work);
544 int err;
545
546 if (!IS_STARTED(ar))
547 return;
548
549 mutex_lock(&ar->mutex);
550 err = carl9170_echo_test(ar, 0xdeadbeef);
551 if (err)
552 carl9170_restart(ar, CARL9170_RR_UNRESPONSIVE_DEVICE);
553 mutex_unlock(&ar->mutex);
554 }
555
carl9170_init_interface(struct ar9170 * ar,struct ieee80211_vif * vif)556 static int carl9170_init_interface(struct ar9170 *ar,
557 struct ieee80211_vif *vif)
558 {
559 struct ath_common *common = &ar->common;
560 int err;
561
562 if (!vif) {
563 WARN_ON_ONCE(IS_STARTED(ar));
564 return 0;
565 }
566
567 memcpy(common->macaddr, vif->addr, ETH_ALEN);
568
569 if (modparam_nohwcrypt ||
570 ((vif->type != NL80211_IFTYPE_STATION) &&
571 (vif->type != NL80211_IFTYPE_AP))) {
572 ar->rx_software_decryption = true;
573 ar->disable_offload = true;
574 }
575
576 err = carl9170_set_operating_mode(ar);
577 return err;
578 }
579
carl9170_op_add_interface(struct ieee80211_hw * hw,struct ieee80211_vif * vif)580 static int carl9170_op_add_interface(struct ieee80211_hw *hw,
581 struct ieee80211_vif *vif)
582 {
583 struct carl9170_vif_info *vif_priv = (void *) vif->drv_priv;
584 struct ieee80211_vif *main_vif;
585 struct ar9170 *ar = hw->priv;
586 int vif_id = -1, err = 0;
587
588 mutex_lock(&ar->mutex);
589 rcu_read_lock();
590 if (vif_priv->active) {
591 /*
592 * Skip the interface structure initialization,
593 * if the vif survived the _restart call.
594 */
595 vif_id = vif_priv->id;
596 vif_priv->enable_beacon = false;
597
598 spin_lock_bh(&ar->beacon_lock);
599 dev_kfree_skb_any(vif_priv->beacon);
600 vif_priv->beacon = NULL;
601 spin_unlock_bh(&ar->beacon_lock);
602
603 goto init;
604 }
605
606 main_vif = carl9170_get_main_vif(ar);
607
608 if (main_vif) {
609 switch (main_vif->type) {
610 case NL80211_IFTYPE_STATION:
611 if (vif->type == NL80211_IFTYPE_STATION)
612 break;
613
614 err = -EBUSY;
615 rcu_read_unlock();
616
617 goto unlock;
618
619 case NL80211_IFTYPE_AP:
620 if ((vif->type == NL80211_IFTYPE_STATION) ||
621 (vif->type == NL80211_IFTYPE_WDS) ||
622 (vif->type == NL80211_IFTYPE_AP))
623 break;
624
625 err = -EBUSY;
626 rcu_read_unlock();
627 goto unlock;
628
629 default:
630 rcu_read_unlock();
631 goto unlock;
632 }
633 }
634
635 vif_id = bitmap_find_free_region(&ar->vif_bitmap, ar->fw.vif_num, 0);
636
637 if (vif_id < 0) {
638 rcu_read_unlock();
639
640 err = -ENOSPC;
641 goto unlock;
642 }
643
644 BUG_ON(ar->vif_priv[vif_id].id != vif_id);
645
646 vif_priv->active = true;
647 vif_priv->id = vif_id;
648 vif_priv->enable_beacon = false;
649 ar->vifs++;
650 list_add_tail_rcu(&vif_priv->list, &ar->vif_list);
651 rcu_assign_pointer(ar->vif_priv[vif_id].vif, vif);
652
653 init:
654 if (carl9170_get_main_vif(ar) == vif) {
655 rcu_assign_pointer(ar->beacon_iter, vif_priv);
656 rcu_read_unlock();
657
658 err = carl9170_init_interface(ar, vif);
659 if (err)
660 goto unlock;
661 } else {
662 rcu_read_unlock();
663 err = carl9170_mod_virtual_mac(ar, vif_id, vif->addr);
664
665 if (err)
666 goto unlock;
667 }
668
669 if (ar->fw.tx_seq_table) {
670 err = carl9170_write_reg(ar, ar->fw.tx_seq_table + vif_id * 4,
671 0);
672 if (err)
673 goto unlock;
674 }
675
676 unlock:
677 if (err && (vif_id >= 0)) {
678 vif_priv->active = false;
679 bitmap_release_region(&ar->vif_bitmap, vif_id, 0);
680 ar->vifs--;
681 RCU_INIT_POINTER(ar->vif_priv[vif_id].vif, NULL);
682 list_del_rcu(&vif_priv->list);
683 mutex_unlock(&ar->mutex);
684 synchronize_rcu();
685 } else {
686 if (ar->vifs > 1)
687 ar->ps.off_override |= PS_OFF_VIF;
688
689 mutex_unlock(&ar->mutex);
690 }
691
692 return err;
693 }
694
carl9170_op_remove_interface(struct ieee80211_hw * hw,struct ieee80211_vif * vif)695 static void carl9170_op_remove_interface(struct ieee80211_hw *hw,
696 struct ieee80211_vif *vif)
697 {
698 struct carl9170_vif_info *vif_priv = (void *) vif->drv_priv;
699 struct ieee80211_vif *main_vif;
700 struct ar9170 *ar = hw->priv;
701 unsigned int id;
702
703 mutex_lock(&ar->mutex);
704
705 if (WARN_ON_ONCE(!vif_priv->active))
706 goto unlock;
707
708 ar->vifs--;
709
710 rcu_read_lock();
711 main_vif = carl9170_get_main_vif(ar);
712
713 id = vif_priv->id;
714
715 vif_priv->active = false;
716 WARN_ON(vif_priv->enable_beacon);
717 vif_priv->enable_beacon = false;
718 list_del_rcu(&vif_priv->list);
719 RCU_INIT_POINTER(ar->vif_priv[id].vif, NULL);
720
721 if (vif == main_vif) {
722 rcu_read_unlock();
723
724 if (ar->vifs) {
725 WARN_ON(carl9170_init_interface(ar,
726 carl9170_get_main_vif(ar)));
727 } else {
728 carl9170_set_operating_mode(ar);
729 }
730 } else {
731 rcu_read_unlock();
732
733 WARN_ON(carl9170_mod_virtual_mac(ar, id, NULL));
734 }
735
736 carl9170_update_beacon(ar, false);
737 carl9170_flush_cab(ar, id);
738
739 spin_lock_bh(&ar->beacon_lock);
740 dev_kfree_skb_any(vif_priv->beacon);
741 vif_priv->beacon = NULL;
742 spin_unlock_bh(&ar->beacon_lock);
743
744 bitmap_release_region(&ar->vif_bitmap, id, 0);
745
746 carl9170_set_beacon_timers(ar);
747
748 if (ar->vifs == 1)
749 ar->ps.off_override &= ~PS_OFF_VIF;
750
751 unlock:
752 mutex_unlock(&ar->mutex);
753
754 synchronize_rcu();
755 }
756
carl9170_ps_check(struct ar9170 * ar)757 void carl9170_ps_check(struct ar9170 *ar)
758 {
759 ieee80211_queue_work(ar->hw, &ar->ps_work);
760 }
761
762 /* caller must hold ar->mutex */
carl9170_ps_update(struct ar9170 * ar)763 static int carl9170_ps_update(struct ar9170 *ar)
764 {
765 bool ps = false;
766 int err = 0;
767
768 if (!ar->ps.off_override)
769 ps = (ar->hw->conf.flags & IEEE80211_CONF_PS);
770
771 if (ps != ar->ps.state) {
772 err = carl9170_powersave(ar, ps);
773 if (err)
774 return err;
775
776 if (ar->ps.state && !ps) {
777 ar->ps.sleep_ms = jiffies_to_msecs(jiffies -
778 ar->ps.last_action);
779 }
780
781 if (ps)
782 ar->ps.last_slept = jiffies;
783
784 ar->ps.last_action = jiffies;
785 ar->ps.state = ps;
786 }
787
788 return 0;
789 }
790
carl9170_ps_work(struct work_struct * work)791 static void carl9170_ps_work(struct work_struct *work)
792 {
793 struct ar9170 *ar = container_of(work, struct ar9170,
794 ps_work);
795 mutex_lock(&ar->mutex);
796 if (IS_STARTED(ar))
797 WARN_ON_ONCE(carl9170_ps_update(ar) != 0);
798 mutex_unlock(&ar->mutex);
799 }
800
carl9170_update_survey(struct ar9170 * ar,bool flush,bool noise)801 static int carl9170_update_survey(struct ar9170 *ar, bool flush, bool noise)
802 {
803 int err;
804
805 if (noise) {
806 err = carl9170_get_noisefloor(ar);
807 if (err)
808 return err;
809 }
810
811 if (ar->fw.hw_counters) {
812 err = carl9170_collect_tally(ar);
813 if (err)
814 return err;
815 }
816
817 if (flush)
818 memset(&ar->tally, 0, sizeof(ar->tally));
819
820 return 0;
821 }
822
carl9170_stat_work(struct work_struct * work)823 static void carl9170_stat_work(struct work_struct *work)
824 {
825 struct ar9170 *ar = container_of(work, struct ar9170, stat_work.work);
826 int err;
827
828 mutex_lock(&ar->mutex);
829 err = carl9170_update_survey(ar, false, true);
830 mutex_unlock(&ar->mutex);
831
832 if (err)
833 return;
834
835 ieee80211_queue_delayed_work(ar->hw, &ar->stat_work,
836 round_jiffies(msecs_to_jiffies(CARL9170_STAT_WORK)));
837 }
838
carl9170_op_config(struct ieee80211_hw * hw,u32 changed)839 static int carl9170_op_config(struct ieee80211_hw *hw, u32 changed)
840 {
841 struct ar9170 *ar = hw->priv;
842 int err = 0;
843
844 mutex_lock(&ar->mutex);
845 if (changed & IEEE80211_CONF_CHANGE_LISTEN_INTERVAL) {
846 /* TODO */
847 err = 0;
848 }
849
850 if (changed & IEEE80211_CONF_CHANGE_PS) {
851 err = carl9170_ps_update(ar);
852 if (err)
853 goto out;
854 }
855
856 if (changed & IEEE80211_CONF_CHANGE_SMPS) {
857 /* TODO */
858 err = 0;
859 }
860
861 if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
862 /* adjust slot time for 5 GHz */
863 err = carl9170_set_slot_time(ar);
864 if (err)
865 goto out;
866
867 err = carl9170_update_survey(ar, true, false);
868 if (err)
869 goto out;
870
871 err = carl9170_set_channel(ar, hw->conf.channel,
872 hw->conf.channel_type, CARL9170_RFI_NONE);
873 if (err)
874 goto out;
875
876 err = carl9170_update_survey(ar, false, true);
877 if (err)
878 goto out;
879
880 err = carl9170_set_dyn_sifs_ack(ar);
881 if (err)
882 goto out;
883
884 err = carl9170_set_rts_cts_rate(ar);
885 if (err)
886 goto out;
887 }
888
889 if (changed & IEEE80211_CONF_CHANGE_POWER) {
890 err = carl9170_set_mac_tpc(ar, ar->hw->conf.channel);
891 if (err)
892 goto out;
893 }
894
895 out:
896 mutex_unlock(&ar->mutex);
897 return err;
898 }
899
carl9170_op_prepare_multicast(struct ieee80211_hw * hw,struct netdev_hw_addr_list * mc_list)900 static u64 carl9170_op_prepare_multicast(struct ieee80211_hw *hw,
901 struct netdev_hw_addr_list *mc_list)
902 {
903 struct netdev_hw_addr *ha;
904 u64 mchash;
905
906 /* always get broadcast frames */
907 mchash = 1ULL << (0xff >> 2);
908
909 netdev_hw_addr_list_for_each(ha, mc_list)
910 mchash |= 1ULL << (ha->addr[5] >> 2);
911
912 return mchash;
913 }
914
carl9170_op_configure_filter(struct ieee80211_hw * hw,unsigned int changed_flags,unsigned int * new_flags,u64 multicast)915 static void carl9170_op_configure_filter(struct ieee80211_hw *hw,
916 unsigned int changed_flags,
917 unsigned int *new_flags,
918 u64 multicast)
919 {
920 struct ar9170 *ar = hw->priv;
921
922 /* mask supported flags */
923 *new_flags &= FIF_ALLMULTI | ar->rx_filter_caps;
924
925 if (!IS_ACCEPTING_CMD(ar))
926 return;
927
928 mutex_lock(&ar->mutex);
929
930 ar->filter_state = *new_flags;
931 /*
932 * We can support more by setting the sniffer bit and
933 * then checking the error flags, later.
934 */
935
936 if (*new_flags & FIF_ALLMULTI)
937 multicast = ~0ULL;
938
939 if (multicast != ar->cur_mc_hash)
940 WARN_ON(carl9170_update_multicast(ar, multicast));
941
942 if (changed_flags & (FIF_OTHER_BSS | FIF_PROMISC_IN_BSS)) {
943 ar->sniffer_enabled = !!(*new_flags &
944 (FIF_OTHER_BSS | FIF_PROMISC_IN_BSS));
945
946 WARN_ON(carl9170_set_operating_mode(ar));
947 }
948
949 if (ar->fw.rx_filter && changed_flags & ar->rx_filter_caps) {
950 u32 rx_filter = 0;
951
952 if (!(*new_flags & (FIF_FCSFAIL | FIF_PLCPFAIL)))
953 rx_filter |= CARL9170_RX_FILTER_BAD;
954
955 if (!(*new_flags & FIF_CONTROL))
956 rx_filter |= CARL9170_RX_FILTER_CTL_OTHER;
957
958 if (!(*new_flags & FIF_PSPOLL))
959 rx_filter |= CARL9170_RX_FILTER_CTL_PSPOLL;
960
961 if (!(*new_flags & (FIF_OTHER_BSS | FIF_PROMISC_IN_BSS))) {
962 rx_filter |= CARL9170_RX_FILTER_OTHER_RA;
963 rx_filter |= CARL9170_RX_FILTER_DECRY_FAIL;
964 }
965
966 WARN_ON(carl9170_rx_filter(ar, rx_filter));
967 }
968
969 mutex_unlock(&ar->mutex);
970 }
971
972
carl9170_op_bss_info_changed(struct ieee80211_hw * hw,struct ieee80211_vif * vif,struct ieee80211_bss_conf * bss_conf,u32 changed)973 static void carl9170_op_bss_info_changed(struct ieee80211_hw *hw,
974 struct ieee80211_vif *vif,
975 struct ieee80211_bss_conf *bss_conf,
976 u32 changed)
977 {
978 struct ar9170 *ar = hw->priv;
979 struct ath_common *common = &ar->common;
980 int err = 0;
981 struct carl9170_vif_info *vif_priv;
982 struct ieee80211_vif *main_vif;
983
984 mutex_lock(&ar->mutex);
985 vif_priv = (void *) vif->drv_priv;
986 main_vif = carl9170_get_main_vif(ar);
987 if (WARN_ON(!main_vif))
988 goto out;
989
990 if (changed & BSS_CHANGED_BEACON_ENABLED) {
991 struct carl9170_vif_info *iter;
992 int i = 0;
993
994 vif_priv->enable_beacon = bss_conf->enable_beacon;
995 rcu_read_lock();
996 list_for_each_entry_rcu(iter, &ar->vif_list, list) {
997 if (iter->active && iter->enable_beacon)
998 i++;
999
1000 }
1001 rcu_read_unlock();
1002
1003 ar->beacon_enabled = i;
1004 }
1005
1006 if (changed & BSS_CHANGED_BEACON) {
1007 err = carl9170_update_beacon(ar, false);
1008 if (err)
1009 goto out;
1010 }
1011
1012 if (changed & (BSS_CHANGED_BEACON_ENABLED | BSS_CHANGED_BEACON |
1013 BSS_CHANGED_BEACON_INT)) {
1014
1015 if (main_vif != vif) {
1016 bss_conf->beacon_int = main_vif->bss_conf.beacon_int;
1017 bss_conf->dtim_period = main_vif->bss_conf.dtim_period;
1018 }
1019
1020 /*
1021 * Therefore a hard limit for the broadcast traffic should
1022 * prevent false alarms.
1023 */
1024 if (vif->type != NL80211_IFTYPE_STATION &&
1025 (bss_conf->beacon_int * bss_conf->dtim_period >=
1026 (CARL9170_QUEUE_STUCK_TIMEOUT / 2))) {
1027 err = -EINVAL;
1028 goto out;
1029 }
1030
1031 err = carl9170_set_beacon_timers(ar);
1032 if (err)
1033 goto out;
1034 }
1035
1036 if (changed & BSS_CHANGED_HT) {
1037 /* TODO */
1038 err = 0;
1039 if (err)
1040 goto out;
1041 }
1042
1043 if (main_vif != vif)
1044 goto out;
1045
1046 /*
1047 * The following settings can only be changed by the
1048 * master interface.
1049 */
1050
1051 if (changed & BSS_CHANGED_BSSID) {
1052 memcpy(common->curbssid, bss_conf->bssid, ETH_ALEN);
1053 err = carl9170_set_operating_mode(ar);
1054 if (err)
1055 goto out;
1056 }
1057
1058 if (changed & BSS_CHANGED_ASSOC) {
1059 ar->common.curaid = bss_conf->aid;
1060 err = carl9170_set_beacon_timers(ar);
1061 if (err)
1062 goto out;
1063 }
1064
1065 if (changed & BSS_CHANGED_ERP_SLOT) {
1066 err = carl9170_set_slot_time(ar);
1067 if (err)
1068 goto out;
1069 }
1070
1071 if (changed & BSS_CHANGED_BASIC_RATES) {
1072 err = carl9170_set_mac_rates(ar);
1073 if (err)
1074 goto out;
1075 }
1076
1077 out:
1078 WARN_ON_ONCE(err && IS_STARTED(ar));
1079 mutex_unlock(&ar->mutex);
1080 }
1081
carl9170_op_get_tsf(struct ieee80211_hw * hw,struct ieee80211_vif * vif)1082 static u64 carl9170_op_get_tsf(struct ieee80211_hw *hw,
1083 struct ieee80211_vif *vif)
1084 {
1085 struct ar9170 *ar = hw->priv;
1086 struct carl9170_tsf_rsp tsf;
1087 int err;
1088
1089 mutex_lock(&ar->mutex);
1090 err = carl9170_exec_cmd(ar, CARL9170_CMD_READ_TSF,
1091 0, NULL, sizeof(tsf), &tsf);
1092 mutex_unlock(&ar->mutex);
1093 if (WARN_ON(err))
1094 return 0;
1095
1096 return le64_to_cpu(tsf.tsf_64);
1097 }
1098
carl9170_op_set_key(struct ieee80211_hw * hw,enum set_key_cmd cmd,struct ieee80211_vif * vif,struct ieee80211_sta * sta,struct ieee80211_key_conf * key)1099 static int carl9170_op_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
1100 struct ieee80211_vif *vif,
1101 struct ieee80211_sta *sta,
1102 struct ieee80211_key_conf *key)
1103 {
1104 struct ar9170 *ar = hw->priv;
1105 int err = 0, i;
1106 u8 ktype;
1107
1108 if (ar->disable_offload || !vif)
1109 return -EOPNOTSUPP;
1110
1111 /*
1112 * We have to fall back to software encryption, whenever
1113 * the user choose to participates in an IBSS or is connected
1114 * to more than one network.
1115 *
1116 * This is very unfortunate, because some machines cannot handle
1117 * the high througput speed in 802.11n networks.
1118 */
1119
1120 if (!is_main_vif(ar, vif)) {
1121 mutex_lock(&ar->mutex);
1122 goto err_softw;
1123 }
1124
1125 /*
1126 * While the hardware supports *catch-all* key, for offloading
1127 * group-key en-/de-cryption. The way of how the hardware
1128 * decides which keyId maps to which key, remains a mystery...
1129 */
1130 if ((vif->type != NL80211_IFTYPE_STATION &&
1131 vif->type != NL80211_IFTYPE_ADHOC) &&
1132 !(key->flags & IEEE80211_KEY_FLAG_PAIRWISE))
1133 return -EOPNOTSUPP;
1134
1135 switch (key->cipher) {
1136 case WLAN_CIPHER_SUITE_WEP40:
1137 ktype = AR9170_ENC_ALG_WEP64;
1138 break;
1139 case WLAN_CIPHER_SUITE_WEP104:
1140 ktype = AR9170_ENC_ALG_WEP128;
1141 break;
1142 case WLAN_CIPHER_SUITE_TKIP:
1143 ktype = AR9170_ENC_ALG_TKIP;
1144 break;
1145 case WLAN_CIPHER_SUITE_CCMP:
1146 ktype = AR9170_ENC_ALG_AESCCMP;
1147 break;
1148 default:
1149 return -EOPNOTSUPP;
1150 }
1151
1152 mutex_lock(&ar->mutex);
1153 if (cmd == SET_KEY) {
1154 if (!IS_STARTED(ar)) {
1155 err = -EOPNOTSUPP;
1156 goto out;
1157 }
1158
1159 if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
1160 sta = NULL;
1161
1162 i = 64 + key->keyidx;
1163 } else {
1164 for (i = 0; i < 64; i++)
1165 if (!(ar->usedkeys & BIT(i)))
1166 break;
1167 if (i == 64)
1168 goto err_softw;
1169 }
1170
1171 key->hw_key_idx = i;
1172
1173 err = carl9170_upload_key(ar, i, sta ? sta->addr : NULL,
1174 ktype, 0, key->key,
1175 min_t(u8, 16, key->keylen));
1176 if (err)
1177 goto out;
1178
1179 if (key->cipher == WLAN_CIPHER_SUITE_TKIP) {
1180 err = carl9170_upload_key(ar, i, sta ? sta->addr :
1181 NULL, ktype, 1,
1182 key->key + 16, 16);
1183 if (err)
1184 goto out;
1185
1186 /*
1187 * hardware is not capable generating MMIC
1188 * of fragmented frames!
1189 */
1190 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
1191 }
1192
1193 if (i < 64)
1194 ar->usedkeys |= BIT(i);
1195
1196 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
1197 } else {
1198 if (!IS_STARTED(ar)) {
1199 /* The device is gone... together with the key ;-) */
1200 err = 0;
1201 goto out;
1202 }
1203
1204 if (key->hw_key_idx < 64) {
1205 ar->usedkeys &= ~BIT(key->hw_key_idx);
1206 } else {
1207 err = carl9170_upload_key(ar, key->hw_key_idx, NULL,
1208 AR9170_ENC_ALG_NONE, 0,
1209 NULL, 0);
1210 if (err)
1211 goto out;
1212
1213 if (key->cipher == WLAN_CIPHER_SUITE_TKIP) {
1214 err = carl9170_upload_key(ar, key->hw_key_idx,
1215 NULL,
1216 AR9170_ENC_ALG_NONE,
1217 1, NULL, 0);
1218 if (err)
1219 goto out;
1220 }
1221
1222 }
1223
1224 err = carl9170_disable_key(ar, key->hw_key_idx);
1225 if (err)
1226 goto out;
1227 }
1228
1229 out:
1230 mutex_unlock(&ar->mutex);
1231 return err;
1232
1233 err_softw:
1234 if (!ar->rx_software_decryption) {
1235 ar->rx_software_decryption = true;
1236 carl9170_set_operating_mode(ar);
1237 }
1238 mutex_unlock(&ar->mutex);
1239 return -ENOSPC;
1240 }
1241
carl9170_op_sta_add(struct ieee80211_hw * hw,struct ieee80211_vif * vif,struct ieee80211_sta * sta)1242 static int carl9170_op_sta_add(struct ieee80211_hw *hw,
1243 struct ieee80211_vif *vif,
1244 struct ieee80211_sta *sta)
1245 {
1246 struct carl9170_sta_info *sta_info = (void *) sta->drv_priv;
1247 unsigned int i;
1248
1249 atomic_set(&sta_info->pending_frames, 0);
1250
1251 if (sta->ht_cap.ht_supported) {
1252 if (sta->ht_cap.ampdu_density > 6) {
1253 /*
1254 * HW does support 16us AMPDU density.
1255 * No HT-Xmit for station.
1256 */
1257
1258 return 0;
1259 }
1260
1261 for (i = 0; i < CARL9170_NUM_TID; i++)
1262 RCU_INIT_POINTER(sta_info->agg[i], NULL);
1263
1264 sta_info->ampdu_max_len = 1 << (3 + sta->ht_cap.ampdu_factor);
1265 sta_info->ht_sta = true;
1266 }
1267
1268 return 0;
1269 }
1270
carl9170_op_sta_remove(struct ieee80211_hw * hw,struct ieee80211_vif * vif,struct ieee80211_sta * sta)1271 static int carl9170_op_sta_remove(struct ieee80211_hw *hw,
1272 struct ieee80211_vif *vif,
1273 struct ieee80211_sta *sta)
1274 {
1275 struct ar9170 *ar = hw->priv;
1276 struct carl9170_sta_info *sta_info = (void *) sta->drv_priv;
1277 unsigned int i;
1278 bool cleanup = false;
1279
1280 if (sta->ht_cap.ht_supported) {
1281
1282 sta_info->ht_sta = false;
1283
1284 rcu_read_lock();
1285 for (i = 0; i < CARL9170_NUM_TID; i++) {
1286 struct carl9170_sta_tid *tid_info;
1287
1288 tid_info = rcu_dereference(sta_info->agg[i]);
1289 RCU_INIT_POINTER(sta_info->agg[i], NULL);
1290
1291 if (!tid_info)
1292 continue;
1293
1294 spin_lock_bh(&ar->tx_ampdu_list_lock);
1295 if (tid_info->state > CARL9170_TID_STATE_SHUTDOWN)
1296 tid_info->state = CARL9170_TID_STATE_SHUTDOWN;
1297 spin_unlock_bh(&ar->tx_ampdu_list_lock);
1298 cleanup = true;
1299 }
1300 rcu_read_unlock();
1301
1302 if (cleanup)
1303 carl9170_ampdu_gc(ar);
1304 }
1305
1306 return 0;
1307 }
1308
carl9170_op_conf_tx(struct ieee80211_hw * hw,struct ieee80211_vif * vif,u16 queue,const struct ieee80211_tx_queue_params * param)1309 static int carl9170_op_conf_tx(struct ieee80211_hw *hw,
1310 struct ieee80211_vif *vif, u16 queue,
1311 const struct ieee80211_tx_queue_params *param)
1312 {
1313 struct ar9170 *ar = hw->priv;
1314 int ret;
1315
1316 mutex_lock(&ar->mutex);
1317 if (queue < ar->hw->queues) {
1318 memcpy(&ar->edcf[ar9170_qmap[queue]], param, sizeof(*param));
1319 ret = carl9170_set_qos(ar);
1320 } else {
1321 ret = -EINVAL;
1322 }
1323
1324 mutex_unlock(&ar->mutex);
1325 return ret;
1326 }
1327
carl9170_ampdu_work(struct work_struct * work)1328 static void carl9170_ampdu_work(struct work_struct *work)
1329 {
1330 struct ar9170 *ar = container_of(work, struct ar9170,
1331 ampdu_work);
1332
1333 if (!IS_STARTED(ar))
1334 return;
1335
1336 mutex_lock(&ar->mutex);
1337 carl9170_ampdu_gc(ar);
1338 mutex_unlock(&ar->mutex);
1339 }
1340
carl9170_op_ampdu_action(struct ieee80211_hw * hw,struct ieee80211_vif * vif,enum ieee80211_ampdu_mlme_action action,struct ieee80211_sta * sta,u16 tid,u16 * ssn,u8 buf_size)1341 static int carl9170_op_ampdu_action(struct ieee80211_hw *hw,
1342 struct ieee80211_vif *vif,
1343 enum ieee80211_ampdu_mlme_action action,
1344 struct ieee80211_sta *sta,
1345 u16 tid, u16 *ssn, u8 buf_size)
1346 {
1347 struct ar9170 *ar = hw->priv;
1348 struct carl9170_sta_info *sta_info = (void *) sta->drv_priv;
1349 struct carl9170_sta_tid *tid_info;
1350
1351 if (modparam_noht)
1352 return -EOPNOTSUPP;
1353
1354 switch (action) {
1355 case IEEE80211_AMPDU_TX_START:
1356 if (!sta_info->ht_sta)
1357 return -EOPNOTSUPP;
1358
1359 rcu_read_lock();
1360 if (rcu_dereference(sta_info->agg[tid])) {
1361 rcu_read_unlock();
1362 return -EBUSY;
1363 }
1364
1365 tid_info = kzalloc(sizeof(struct carl9170_sta_tid),
1366 GFP_ATOMIC);
1367 if (!tid_info) {
1368 rcu_read_unlock();
1369 return -ENOMEM;
1370 }
1371
1372 tid_info->hsn = tid_info->bsn = tid_info->snx = (*ssn);
1373 tid_info->state = CARL9170_TID_STATE_PROGRESS;
1374 tid_info->tid = tid;
1375 tid_info->max = sta_info->ampdu_max_len;
1376
1377 INIT_LIST_HEAD(&tid_info->list);
1378 INIT_LIST_HEAD(&tid_info->tmp_list);
1379 skb_queue_head_init(&tid_info->queue);
1380 spin_lock_init(&tid_info->lock);
1381
1382 spin_lock_bh(&ar->tx_ampdu_list_lock);
1383 ar->tx_ampdu_list_len++;
1384 list_add_tail_rcu(&tid_info->list, &ar->tx_ampdu_list);
1385 rcu_assign_pointer(sta_info->agg[tid], tid_info);
1386 spin_unlock_bh(&ar->tx_ampdu_list_lock);
1387 rcu_read_unlock();
1388
1389 ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, tid);
1390 break;
1391
1392 case IEEE80211_AMPDU_TX_STOP:
1393 rcu_read_lock();
1394 tid_info = rcu_dereference(sta_info->agg[tid]);
1395 if (tid_info) {
1396 spin_lock_bh(&ar->tx_ampdu_list_lock);
1397 if (tid_info->state > CARL9170_TID_STATE_SHUTDOWN)
1398 tid_info->state = CARL9170_TID_STATE_SHUTDOWN;
1399 spin_unlock_bh(&ar->tx_ampdu_list_lock);
1400 }
1401
1402 RCU_INIT_POINTER(sta_info->agg[tid], NULL);
1403 rcu_read_unlock();
1404
1405 ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid);
1406 ieee80211_queue_work(ar->hw, &ar->ampdu_work);
1407 break;
1408
1409 case IEEE80211_AMPDU_TX_OPERATIONAL:
1410 rcu_read_lock();
1411 tid_info = rcu_dereference(sta_info->agg[tid]);
1412
1413 sta_info->stats[tid].clear = true;
1414 sta_info->stats[tid].req = false;
1415
1416 if (tid_info) {
1417 bitmap_zero(tid_info->bitmap, CARL9170_BAW_SIZE);
1418 tid_info->state = CARL9170_TID_STATE_IDLE;
1419 }
1420 rcu_read_unlock();
1421
1422 if (WARN_ON_ONCE(!tid_info))
1423 return -EFAULT;
1424
1425 break;
1426
1427 case IEEE80211_AMPDU_RX_START:
1428 case IEEE80211_AMPDU_RX_STOP:
1429 /* Handled by hardware */
1430 break;
1431
1432 default:
1433 return -EOPNOTSUPP;
1434 }
1435
1436 return 0;
1437 }
1438
1439 #ifdef CONFIG_CARL9170_WPC
carl9170_register_wps_button(struct ar9170 * ar)1440 static int carl9170_register_wps_button(struct ar9170 *ar)
1441 {
1442 struct input_dev *input;
1443 int err;
1444
1445 if (!(ar->features & CARL9170_WPS_BUTTON))
1446 return 0;
1447
1448 input = input_allocate_device();
1449 if (!input)
1450 return -ENOMEM;
1451
1452 snprintf(ar->wps.name, sizeof(ar->wps.name), "%s WPS Button",
1453 wiphy_name(ar->hw->wiphy));
1454
1455 snprintf(ar->wps.phys, sizeof(ar->wps.phys),
1456 "ieee80211/%s/input0", wiphy_name(ar->hw->wiphy));
1457
1458 input->name = ar->wps.name;
1459 input->phys = ar->wps.phys;
1460 input->id.bustype = BUS_USB;
1461 input->dev.parent = &ar->hw->wiphy->dev;
1462
1463 input_set_capability(input, EV_KEY, KEY_WPS_BUTTON);
1464
1465 err = input_register_device(input);
1466 if (err) {
1467 input_free_device(input);
1468 return err;
1469 }
1470
1471 ar->wps.pbc = input;
1472 return 0;
1473 }
1474 #endif /* CONFIG_CARL9170_WPC */
1475
1476 #ifdef CONFIG_CARL9170_HWRNG
carl9170_rng_get(struct ar9170 * ar)1477 static int carl9170_rng_get(struct ar9170 *ar)
1478 {
1479
1480 #define RW (CARL9170_MAX_CMD_PAYLOAD_LEN / sizeof(u32))
1481 #define RB (CARL9170_MAX_CMD_PAYLOAD_LEN)
1482
1483 static const __le32 rng_load[RW] = {
1484 [0 ... (RW - 1)] = cpu_to_le32(AR9170_RAND_REG_NUM)};
1485
1486 u32 buf[RW];
1487
1488 unsigned int i, off = 0, transfer, count;
1489 int err;
1490
1491 BUILD_BUG_ON(RB > CARL9170_MAX_CMD_PAYLOAD_LEN);
1492
1493 if (!IS_ACCEPTING_CMD(ar) || !ar->rng.initialized)
1494 return -EAGAIN;
1495
1496 count = ARRAY_SIZE(ar->rng.cache);
1497 while (count) {
1498 err = carl9170_exec_cmd(ar, CARL9170_CMD_RREG,
1499 RB, (u8 *) rng_load,
1500 RB, (u8 *) buf);
1501 if (err)
1502 return err;
1503
1504 transfer = min_t(unsigned int, count, RW);
1505 for (i = 0; i < transfer; i++)
1506 ar->rng.cache[off + i] = buf[i];
1507
1508 off += transfer;
1509 count -= transfer;
1510 }
1511
1512 ar->rng.cache_idx = 0;
1513
1514 #undef RW
1515 #undef RB
1516 return 0;
1517 }
1518
carl9170_rng_read(struct hwrng * rng,u32 * data)1519 static int carl9170_rng_read(struct hwrng *rng, u32 *data)
1520 {
1521 struct ar9170 *ar = (struct ar9170 *)rng->priv;
1522 int ret = -EIO;
1523
1524 mutex_lock(&ar->mutex);
1525 if (ar->rng.cache_idx >= ARRAY_SIZE(ar->rng.cache)) {
1526 ret = carl9170_rng_get(ar);
1527 if (ret) {
1528 mutex_unlock(&ar->mutex);
1529 return ret;
1530 }
1531 }
1532
1533 *data = ar->rng.cache[ar->rng.cache_idx++];
1534 mutex_unlock(&ar->mutex);
1535
1536 return sizeof(u16);
1537 }
1538
carl9170_unregister_hwrng(struct ar9170 * ar)1539 static void carl9170_unregister_hwrng(struct ar9170 *ar)
1540 {
1541 if (ar->rng.initialized) {
1542 hwrng_unregister(&ar->rng.rng);
1543 ar->rng.initialized = false;
1544 }
1545 }
1546
carl9170_register_hwrng(struct ar9170 * ar)1547 static int carl9170_register_hwrng(struct ar9170 *ar)
1548 {
1549 int err;
1550
1551 snprintf(ar->rng.name, ARRAY_SIZE(ar->rng.name),
1552 "%s_%s", KBUILD_MODNAME, wiphy_name(ar->hw->wiphy));
1553 ar->rng.rng.name = ar->rng.name;
1554 ar->rng.rng.data_read = carl9170_rng_read;
1555 ar->rng.rng.priv = (unsigned long)ar;
1556
1557 if (WARN_ON(ar->rng.initialized))
1558 return -EALREADY;
1559
1560 err = hwrng_register(&ar->rng.rng);
1561 if (err) {
1562 dev_err(&ar->udev->dev, "Failed to register the random "
1563 "number generator (%d)\n", err);
1564 return err;
1565 }
1566
1567 ar->rng.initialized = true;
1568
1569 err = carl9170_rng_get(ar);
1570 if (err) {
1571 carl9170_unregister_hwrng(ar);
1572 return err;
1573 }
1574
1575 return 0;
1576 }
1577 #endif /* CONFIG_CARL9170_HWRNG */
1578
carl9170_op_get_survey(struct ieee80211_hw * hw,int idx,struct survey_info * survey)1579 static int carl9170_op_get_survey(struct ieee80211_hw *hw, int idx,
1580 struct survey_info *survey)
1581 {
1582 struct ar9170 *ar = hw->priv;
1583 struct ieee80211_channel *chan;
1584 struct ieee80211_supported_band *band;
1585 int err, b, i;
1586
1587 chan = ar->channel;
1588 if (!chan)
1589 return -ENODEV;
1590
1591 if (idx == chan->hw_value) {
1592 mutex_lock(&ar->mutex);
1593 err = carl9170_update_survey(ar, false, true);
1594 mutex_unlock(&ar->mutex);
1595 if (err)
1596 return err;
1597 }
1598
1599 for (b = 0; b < IEEE80211_NUM_BANDS; b++) {
1600 band = ar->hw->wiphy->bands[b];
1601
1602 if (!band)
1603 continue;
1604
1605 for (i = 0; i < band->n_channels; i++) {
1606 if (band->channels[i].hw_value == idx) {
1607 chan = &band->channels[i];
1608 goto found;
1609 }
1610 }
1611 }
1612 return -ENOENT;
1613
1614 found:
1615 memcpy(survey, &ar->survey[idx], sizeof(*survey));
1616
1617 survey->channel = chan;
1618 survey->filled = SURVEY_INFO_NOISE_DBM;
1619
1620 if (ar->channel == chan)
1621 survey->filled |= SURVEY_INFO_IN_USE;
1622
1623 if (ar->fw.hw_counters) {
1624 survey->filled |= SURVEY_INFO_CHANNEL_TIME |
1625 SURVEY_INFO_CHANNEL_TIME_BUSY |
1626 SURVEY_INFO_CHANNEL_TIME_TX;
1627 }
1628
1629 return 0;
1630 }
1631
carl9170_op_flush(struct ieee80211_hw * hw,bool drop)1632 static void carl9170_op_flush(struct ieee80211_hw *hw, bool drop)
1633 {
1634 struct ar9170 *ar = hw->priv;
1635 unsigned int vid;
1636
1637 mutex_lock(&ar->mutex);
1638 for_each_set_bit(vid, &ar->vif_bitmap, ar->fw.vif_num)
1639 carl9170_flush_cab(ar, vid);
1640
1641 carl9170_flush(ar, drop);
1642 mutex_unlock(&ar->mutex);
1643 }
1644
carl9170_op_get_stats(struct ieee80211_hw * hw,struct ieee80211_low_level_stats * stats)1645 static int carl9170_op_get_stats(struct ieee80211_hw *hw,
1646 struct ieee80211_low_level_stats *stats)
1647 {
1648 struct ar9170 *ar = hw->priv;
1649
1650 memset(stats, 0, sizeof(*stats));
1651 stats->dot11ACKFailureCount = ar->tx_ack_failures;
1652 stats->dot11FCSErrorCount = ar->tx_fcs_errors;
1653 return 0;
1654 }
1655
carl9170_op_sta_notify(struct ieee80211_hw * hw,struct ieee80211_vif * vif,enum sta_notify_cmd cmd,struct ieee80211_sta * sta)1656 static void carl9170_op_sta_notify(struct ieee80211_hw *hw,
1657 struct ieee80211_vif *vif,
1658 enum sta_notify_cmd cmd,
1659 struct ieee80211_sta *sta)
1660 {
1661 struct carl9170_sta_info *sta_info = (void *) sta->drv_priv;
1662
1663 switch (cmd) {
1664 case STA_NOTIFY_SLEEP:
1665 sta_info->sleeping = true;
1666 if (atomic_read(&sta_info->pending_frames))
1667 ieee80211_sta_block_awake(hw, sta, true);
1668 break;
1669
1670 case STA_NOTIFY_AWAKE:
1671 sta_info->sleeping = false;
1672 break;
1673 }
1674 }
1675
carl9170_tx_frames_pending(struct ieee80211_hw * hw)1676 static bool carl9170_tx_frames_pending(struct ieee80211_hw *hw)
1677 {
1678 struct ar9170 *ar = hw->priv;
1679
1680 return !!atomic_read(&ar->tx_total_queued);
1681 }
1682
1683 static const struct ieee80211_ops carl9170_ops = {
1684 .start = carl9170_op_start,
1685 .stop = carl9170_op_stop,
1686 .tx = carl9170_op_tx,
1687 .flush = carl9170_op_flush,
1688 .add_interface = carl9170_op_add_interface,
1689 .remove_interface = carl9170_op_remove_interface,
1690 .config = carl9170_op_config,
1691 .prepare_multicast = carl9170_op_prepare_multicast,
1692 .configure_filter = carl9170_op_configure_filter,
1693 .conf_tx = carl9170_op_conf_tx,
1694 .bss_info_changed = carl9170_op_bss_info_changed,
1695 .get_tsf = carl9170_op_get_tsf,
1696 .set_key = carl9170_op_set_key,
1697 .sta_add = carl9170_op_sta_add,
1698 .sta_remove = carl9170_op_sta_remove,
1699 .sta_notify = carl9170_op_sta_notify,
1700 .get_survey = carl9170_op_get_survey,
1701 .get_stats = carl9170_op_get_stats,
1702 .ampdu_action = carl9170_op_ampdu_action,
1703 .tx_frames_pending = carl9170_tx_frames_pending,
1704 };
1705
carl9170_alloc(size_t priv_size)1706 void *carl9170_alloc(size_t priv_size)
1707 {
1708 struct ieee80211_hw *hw;
1709 struct ar9170 *ar;
1710 struct sk_buff *skb;
1711 int i;
1712
1713 /*
1714 * this buffer is used for rx stream reconstruction.
1715 * Under heavy load this device (or the transport layer?)
1716 * tends to split the streams into separate rx descriptors.
1717 */
1718
1719 skb = __dev_alloc_skb(AR9170_RX_STREAM_MAX_SIZE, GFP_KERNEL);
1720 if (!skb)
1721 goto err_nomem;
1722
1723 hw = ieee80211_alloc_hw(priv_size, &carl9170_ops);
1724 if (!hw)
1725 goto err_nomem;
1726
1727 ar = hw->priv;
1728 ar->hw = hw;
1729 ar->rx_failover = skb;
1730
1731 memset(&ar->rx_plcp, 0, sizeof(struct ar9170_rx_head));
1732 ar->rx_has_plcp = false;
1733
1734 /*
1735 * Here's a hidden pitfall!
1736 *
1737 * All 4 AC queues work perfectly well under _legacy_ operation.
1738 * However as soon as aggregation is enabled, the traffic flow
1739 * gets very bumpy. Therefore we have to _switch_ to a
1740 * software AC with a single HW queue.
1741 */
1742 hw->queues = __AR9170_NUM_TXQ;
1743
1744 mutex_init(&ar->mutex);
1745 spin_lock_init(&ar->beacon_lock);
1746 spin_lock_init(&ar->cmd_lock);
1747 spin_lock_init(&ar->tx_stats_lock);
1748 spin_lock_init(&ar->tx_ampdu_list_lock);
1749 spin_lock_init(&ar->mem_lock);
1750 spin_lock_init(&ar->state_lock);
1751 atomic_set(&ar->pending_restarts, 0);
1752 ar->vifs = 0;
1753 for (i = 0; i < ar->hw->queues; i++) {
1754 skb_queue_head_init(&ar->tx_status[i]);
1755 skb_queue_head_init(&ar->tx_pending[i]);
1756 }
1757 INIT_WORK(&ar->ps_work, carl9170_ps_work);
1758 INIT_WORK(&ar->ping_work, carl9170_ping_work);
1759 INIT_WORK(&ar->restart_work, carl9170_restart_work);
1760 INIT_WORK(&ar->ampdu_work, carl9170_ampdu_work);
1761 INIT_DELAYED_WORK(&ar->stat_work, carl9170_stat_work);
1762 INIT_DELAYED_WORK(&ar->tx_janitor, carl9170_tx_janitor);
1763 INIT_LIST_HEAD(&ar->tx_ampdu_list);
1764 rcu_assign_pointer(ar->tx_ampdu_iter,
1765 (struct carl9170_sta_tid *) &ar->tx_ampdu_list);
1766
1767 bitmap_zero(&ar->vif_bitmap, ar->fw.vif_num);
1768 INIT_LIST_HEAD(&ar->vif_list);
1769 init_completion(&ar->tx_flush);
1770
1771 /* firmware decides which modes we support */
1772 hw->wiphy->interface_modes = 0;
1773
1774 hw->flags |= IEEE80211_HW_RX_INCLUDES_FCS |
1775 IEEE80211_HW_REPORTS_TX_ACK_STATUS |
1776 IEEE80211_HW_SUPPORTS_PS |
1777 IEEE80211_HW_PS_NULLFUNC_STACK |
1778 IEEE80211_HW_NEED_DTIM_PERIOD |
1779 IEEE80211_HW_SIGNAL_DBM;
1780
1781 if (!modparam_noht) {
1782 /*
1783 * see the comment above, why we allow the user
1784 * to disable HT by a module parameter.
1785 */
1786 hw->flags |= IEEE80211_HW_AMPDU_AGGREGATION;
1787 }
1788
1789 hw->extra_tx_headroom = sizeof(struct _carl9170_tx_superframe);
1790 hw->sta_data_size = sizeof(struct carl9170_sta_info);
1791 hw->vif_data_size = sizeof(struct carl9170_vif_info);
1792
1793 hw->max_rates = CARL9170_TX_MAX_RATES;
1794 hw->max_rate_tries = CARL9170_TX_USER_RATE_TRIES;
1795
1796 for (i = 0; i < ARRAY_SIZE(ar->noise); i++)
1797 ar->noise[i] = -95; /* ATH_DEFAULT_NOISE_FLOOR */
1798
1799 hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
1800
1801 /* As IBSS Encryption is software-based, IBSS RSN is supported. */
1802 hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
1803 return ar;
1804
1805 err_nomem:
1806 kfree_skb(skb);
1807 return ERR_PTR(-ENOMEM);
1808 }
1809
carl9170_read_eeprom(struct ar9170 * ar)1810 static int carl9170_read_eeprom(struct ar9170 *ar)
1811 {
1812 #define RW 8 /* number of words to read at once */
1813 #define RB (sizeof(u32) * RW)
1814 u8 *eeprom = (void *)&ar->eeprom;
1815 __le32 offsets[RW];
1816 int i, j, err;
1817
1818 BUILD_BUG_ON(sizeof(ar->eeprom) & 3);
1819
1820 BUILD_BUG_ON(RB > CARL9170_MAX_CMD_LEN - 4);
1821 #ifndef __CHECKER__
1822 /* don't want to handle trailing remains */
1823 BUILD_BUG_ON(sizeof(ar->eeprom) % RB);
1824 #endif
1825
1826 for (i = 0; i < sizeof(ar->eeprom) / RB; i++) {
1827 for (j = 0; j < RW; j++)
1828 offsets[j] = cpu_to_le32(AR9170_EEPROM_START +
1829 RB * i + 4 * j);
1830
1831 err = carl9170_exec_cmd(ar, CARL9170_CMD_RREG,
1832 RB, (u8 *) &offsets,
1833 RB, eeprom + RB * i);
1834 if (err)
1835 return err;
1836 }
1837
1838 #undef RW
1839 #undef RB
1840 return 0;
1841 }
1842
carl9170_parse_eeprom(struct ar9170 * ar)1843 static int carl9170_parse_eeprom(struct ar9170 *ar)
1844 {
1845 struct ath_regulatory *regulatory = &ar->common.regulatory;
1846 unsigned int rx_streams, tx_streams, tx_params = 0;
1847 int bands = 0;
1848 int chans = 0;
1849
1850 if (ar->eeprom.length == cpu_to_le16(0xffff))
1851 return -ENODATA;
1852
1853 rx_streams = hweight8(ar->eeprom.rx_mask);
1854 tx_streams = hweight8(ar->eeprom.tx_mask);
1855
1856 if (rx_streams != tx_streams) {
1857 tx_params = IEEE80211_HT_MCS_TX_RX_DIFF;
1858
1859 WARN_ON(!(tx_streams >= 1 && tx_streams <=
1860 IEEE80211_HT_MCS_TX_MAX_STREAMS));
1861
1862 tx_params = (tx_streams - 1) <<
1863 IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT;
1864
1865 carl9170_band_2GHz.ht_cap.mcs.tx_params |= tx_params;
1866 carl9170_band_5GHz.ht_cap.mcs.tx_params |= tx_params;
1867 }
1868
1869 if (ar->eeprom.operating_flags & AR9170_OPFLAG_2GHZ) {
1870 ar->hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
1871 &carl9170_band_2GHz;
1872 chans += carl9170_band_2GHz.n_channels;
1873 bands++;
1874 }
1875 if (ar->eeprom.operating_flags & AR9170_OPFLAG_5GHZ) {
1876 ar->hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
1877 &carl9170_band_5GHz;
1878 chans += carl9170_band_5GHz.n_channels;
1879 bands++;
1880 }
1881
1882 if (!bands)
1883 return -EINVAL;
1884
1885 ar->survey = kzalloc(sizeof(struct survey_info) * chans, GFP_KERNEL);
1886 if (!ar->survey)
1887 return -ENOMEM;
1888 ar->num_channels = chans;
1889
1890 /*
1891 * I measured this, a bandswitch takes roughly
1892 * 135 ms and a frequency switch about 80.
1893 *
1894 * FIXME: measure these values again once EEPROM settings
1895 * are used, that will influence them!
1896 */
1897 if (bands == 2)
1898 ar->hw->channel_change_time = 135 * 1000;
1899 else
1900 ar->hw->channel_change_time = 80 * 1000;
1901
1902 regulatory->current_rd = le16_to_cpu(ar->eeprom.reg_domain[0]);
1903
1904 /* second part of wiphy init */
1905 SET_IEEE80211_PERM_ADDR(ar->hw, ar->eeprom.mac_address);
1906
1907 return 0;
1908 }
1909
carl9170_reg_notifier(struct wiphy * wiphy,struct regulatory_request * request)1910 static int carl9170_reg_notifier(struct wiphy *wiphy,
1911 struct regulatory_request *request)
1912 {
1913 struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
1914 struct ar9170 *ar = hw->priv;
1915
1916 return ath_reg_notifier_apply(wiphy, request, &ar->common.regulatory);
1917 }
1918
carl9170_register(struct ar9170 * ar)1919 int carl9170_register(struct ar9170 *ar)
1920 {
1921 struct ath_regulatory *regulatory = &ar->common.regulatory;
1922 int err = 0, i;
1923
1924 if (WARN_ON(ar->mem_bitmap))
1925 return -EINVAL;
1926
1927 ar->mem_bitmap = kzalloc(roundup(ar->fw.mem_blocks, BITS_PER_LONG) *
1928 sizeof(unsigned long), GFP_KERNEL);
1929
1930 if (!ar->mem_bitmap)
1931 return -ENOMEM;
1932
1933 /* try to read EEPROM, init MAC addr */
1934 err = carl9170_read_eeprom(ar);
1935 if (err)
1936 return err;
1937
1938 err = carl9170_parse_eeprom(ar);
1939 if (err)
1940 return err;
1941
1942 err = ath_regd_init(regulatory, ar->hw->wiphy,
1943 carl9170_reg_notifier);
1944 if (err)
1945 return err;
1946
1947 if (modparam_noht) {
1948 carl9170_band_2GHz.ht_cap.ht_supported = false;
1949 carl9170_band_5GHz.ht_cap.ht_supported = false;
1950 }
1951
1952 for (i = 0; i < ar->fw.vif_num; i++) {
1953 ar->vif_priv[i].id = i;
1954 ar->vif_priv[i].vif = NULL;
1955 }
1956
1957 err = ieee80211_register_hw(ar->hw);
1958 if (err)
1959 return err;
1960
1961 /* mac80211 interface is now registered */
1962 ar->registered = true;
1963
1964 if (!ath_is_world_regd(regulatory))
1965 regulatory_hint(ar->hw->wiphy, regulatory->alpha2);
1966
1967 #ifdef CONFIG_CARL9170_DEBUGFS
1968 carl9170_debugfs_register(ar);
1969 #endif /* CONFIG_CARL9170_DEBUGFS */
1970
1971 err = carl9170_led_init(ar);
1972 if (err)
1973 goto err_unreg;
1974
1975 #ifdef CONFIG_CARL9170_LEDS
1976 err = carl9170_led_register(ar);
1977 if (err)
1978 goto err_unreg;
1979 #endif /* CONFIG_CARL9170_LEDS */
1980
1981 #ifdef CONFIG_CARL9170_WPC
1982 err = carl9170_register_wps_button(ar);
1983 if (err)
1984 goto err_unreg;
1985 #endif /* CONFIG_CARL9170_WPC */
1986
1987 #ifdef CONFIG_CARL9170_HWRNG
1988 err = carl9170_register_hwrng(ar);
1989 if (err)
1990 goto err_unreg;
1991 #endif /* CONFIG_CARL9170_HWRNG */
1992
1993 dev_info(&ar->udev->dev, "Atheros AR9170 is registered as '%s'\n",
1994 wiphy_name(ar->hw->wiphy));
1995
1996 return 0;
1997
1998 err_unreg:
1999 carl9170_unregister(ar);
2000 return err;
2001 }
2002
carl9170_unregister(struct ar9170 * ar)2003 void carl9170_unregister(struct ar9170 *ar)
2004 {
2005 if (!ar->registered)
2006 return;
2007
2008 ar->registered = false;
2009
2010 #ifdef CONFIG_CARL9170_LEDS
2011 carl9170_led_unregister(ar);
2012 #endif /* CONFIG_CARL9170_LEDS */
2013
2014 #ifdef CONFIG_CARL9170_DEBUGFS
2015 carl9170_debugfs_unregister(ar);
2016 #endif /* CONFIG_CARL9170_DEBUGFS */
2017
2018 #ifdef CONFIG_CARL9170_WPC
2019 if (ar->wps.pbc) {
2020 input_unregister_device(ar->wps.pbc);
2021 ar->wps.pbc = NULL;
2022 }
2023 #endif /* CONFIG_CARL9170_WPC */
2024
2025 #ifdef CONFIG_CARL9170_HWRNG
2026 carl9170_unregister_hwrng(ar);
2027 #endif /* CONFIG_CARL9170_HWRNG */
2028
2029 carl9170_cancel_worker(ar);
2030 cancel_work_sync(&ar->restart_work);
2031
2032 ieee80211_unregister_hw(ar->hw);
2033 }
2034
carl9170_free(struct ar9170 * ar)2035 void carl9170_free(struct ar9170 *ar)
2036 {
2037 WARN_ON(ar->registered);
2038 WARN_ON(IS_INITIALIZED(ar));
2039
2040 kfree_skb(ar->rx_failover);
2041 ar->rx_failover = NULL;
2042
2043 kfree(ar->mem_bitmap);
2044 ar->mem_bitmap = NULL;
2045
2046 kfree(ar->survey);
2047 ar->survey = NULL;
2048
2049 mutex_destroy(&ar->mutex);
2050
2051 ieee80211_free_hw(ar->hw);
2052 }
2053