1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <asm/unaligned.h>
18 #include "hw.h"
19 #include "ar9002_phy.h"
20 
21 #define SIZE_EEPROM_AR9287 (sizeof(struct ar9287_eeprom) / sizeof(u16))
22 
ath9k_hw_ar9287_get_eeprom_ver(struct ath_hw * ah)23 static int ath9k_hw_ar9287_get_eeprom_ver(struct ath_hw *ah)
24 {
25 	return (ah->eeprom.map9287.baseEepHeader.version >> 12) & 0xF;
26 }
27 
ath9k_hw_ar9287_get_eeprom_rev(struct ath_hw * ah)28 static int ath9k_hw_ar9287_get_eeprom_rev(struct ath_hw *ah)
29 {
30 	return (ah->eeprom.map9287.baseEepHeader.version) & 0xFFF;
31 }
32 
__ath9k_hw_ar9287_fill_eeprom(struct ath_hw * ah)33 static bool __ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah)
34 {
35 	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
36 	struct ath_common *common = ath9k_hw_common(ah);
37 	u16 *eep_data;
38 	int addr, eep_start_loc = AR9287_EEP_START_LOC;
39 	eep_data = (u16 *)eep;
40 
41 	for (addr = 0; addr < SIZE_EEPROM_AR9287; addr++) {
42 		if (!ath9k_hw_nvram_read(common, addr + eep_start_loc,
43 					 eep_data)) {
44 			ath_dbg(common, EEPROM,
45 				"Unable to read eeprom region\n");
46 			return false;
47 		}
48 		eep_data++;
49 	}
50 
51 	return true;
52 }
53 
__ath9k_hw_usb_ar9287_fill_eeprom(struct ath_hw * ah)54 static bool __ath9k_hw_usb_ar9287_fill_eeprom(struct ath_hw *ah)
55 {
56 	u16 *eep_data = (u16 *)&ah->eeprom.map9287;
57 
58 	ath9k_hw_usb_gen_fill_eeprom(ah, eep_data,
59 				     AR9287_HTC_EEP_START_LOC,
60 				     SIZE_EEPROM_AR9287);
61 	return true;
62 }
63 
ath9k_hw_ar9287_fill_eeprom(struct ath_hw * ah)64 static bool ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah)
65 {
66 	struct ath_common *common = ath9k_hw_common(ah);
67 
68 	if (!ath9k_hw_use_flash(ah)) {
69 		ath_dbg(common, EEPROM, "Reading from EEPROM, not flash\n");
70 	}
71 
72 	if (common->bus_ops->ath_bus_type == ATH_USB)
73 		return __ath9k_hw_usb_ar9287_fill_eeprom(ah);
74 	else
75 		return __ath9k_hw_ar9287_fill_eeprom(ah);
76 }
77 
78 #if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
ar9287_dump_modal_eeprom(char * buf,u32 len,u32 size,struct modal_eep_ar9287_header * modal_hdr)79 static u32 ar9287_dump_modal_eeprom(char *buf, u32 len, u32 size,
80 				    struct modal_eep_ar9287_header *modal_hdr)
81 {
82 	PR_EEP("Chain0 Ant. Control", modal_hdr->antCtrlChain[0]);
83 	PR_EEP("Chain1 Ant. Control", modal_hdr->antCtrlChain[1]);
84 	PR_EEP("Ant. Common Control", modal_hdr->antCtrlCommon);
85 	PR_EEP("Chain0 Ant. Gain", modal_hdr->antennaGainCh[0]);
86 	PR_EEP("Chain1 Ant. Gain", modal_hdr->antennaGainCh[1]);
87 	PR_EEP("Switch Settle", modal_hdr->switchSettling);
88 	PR_EEP("Chain0 TxRxAtten", modal_hdr->txRxAttenCh[0]);
89 	PR_EEP("Chain1 TxRxAtten", modal_hdr->txRxAttenCh[1]);
90 	PR_EEP("Chain0 RxTxMargin", modal_hdr->rxTxMarginCh[0]);
91 	PR_EEP("Chain1 RxTxMargin", modal_hdr->rxTxMarginCh[1]);
92 	PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
93 	PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
94 	PR_EEP("txEndToRxOn", modal_hdr->txEndToRxOn);
95 	PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
96 	PR_EEP("CCA Threshold)", modal_hdr->thresh62);
97 	PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
98 	PR_EEP("Chain1 NF Threshold", modal_hdr->noiseFloorThreshCh[1]);
99 	PR_EEP("xpdGain", modal_hdr->xpdGain);
100 	PR_EEP("External PD", modal_hdr->xpd);
101 	PR_EEP("Chain0 I Coefficient", modal_hdr->iqCalICh[0]);
102 	PR_EEP("Chain1 I Coefficient", modal_hdr->iqCalICh[1]);
103 	PR_EEP("Chain0 Q Coefficient", modal_hdr->iqCalQCh[0]);
104 	PR_EEP("Chain1 Q Coefficient", modal_hdr->iqCalQCh[1]);
105 	PR_EEP("pdGainOverlap", modal_hdr->pdGainOverlap);
106 	PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
107 	PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
108 	PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
109 	PR_EEP("HT40 Power Inc.", modal_hdr->ht40PowerIncForPdadc);
110 	PR_EEP("Chain0 bswAtten", modal_hdr->bswAtten[0]);
111 	PR_EEP("Chain1 bswAtten", modal_hdr->bswAtten[1]);
112 	PR_EEP("Chain0 bswMargin", modal_hdr->bswMargin[0]);
113 	PR_EEP("Chain1 bswMargin", modal_hdr->bswMargin[1]);
114 	PR_EEP("HT40 Switch Settle", modal_hdr->swSettleHt40);
115 	PR_EEP("AR92x7 Version", modal_hdr->version);
116 	PR_EEP("DriverBias1", modal_hdr->db1);
117 	PR_EEP("DriverBias2", modal_hdr->db1);
118 	PR_EEP("CCK OutputBias", modal_hdr->ob_cck);
119 	PR_EEP("PSK OutputBias", modal_hdr->ob_psk);
120 	PR_EEP("QAM OutputBias", modal_hdr->ob_qam);
121 	PR_EEP("PAL_OFF OutputBias", modal_hdr->ob_pal_off);
122 
123 	return len;
124 }
125 
ath9k_hw_ar9287_dump_eeprom(struct ath_hw * ah,bool dump_base_hdr,u8 * buf,u32 len,u32 size)126 static u32 ath9k_hw_ar9287_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
127 				       u8 *buf, u32 len, u32 size)
128 {
129 	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
130 	struct base_eep_ar9287_header *pBase = &eep->baseEepHeader;
131 
132 	if (!dump_base_hdr) {
133 		len += snprintf(buf + len, size - len,
134 				"%20s :\n", "2GHz modal Header");
135 		len += ar9287_dump_modal_eeprom(buf, len, size,
136 						&eep->modalHeader);
137 		goto out;
138 	}
139 
140 	PR_EEP("Major Version", pBase->version >> 12);
141 	PR_EEP("Minor Version", pBase->version & 0xFFF);
142 	PR_EEP("Checksum", pBase->checksum);
143 	PR_EEP("Length", pBase->length);
144 	PR_EEP("RegDomain1", pBase->regDmn[0]);
145 	PR_EEP("RegDomain2", pBase->regDmn[1]);
146 	PR_EEP("TX Mask", pBase->txMask);
147 	PR_EEP("RX Mask", pBase->rxMask);
148 	PR_EEP("Allow 5GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11A));
149 	PR_EEP("Allow 2GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11G));
150 	PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags &
151 					AR5416_OPFLAGS_N_2G_HT20));
152 	PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags &
153 					AR5416_OPFLAGS_N_2G_HT40));
154 	PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags &
155 					AR5416_OPFLAGS_N_5G_HT20));
156 	PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags &
157 					AR5416_OPFLAGS_N_5G_HT40));
158 	PR_EEP("Big Endian", !!(pBase->eepMisc & 0x01));
159 	PR_EEP("Cal Bin Major Ver", (pBase->binBuildNumber >> 24) & 0xFF);
160 	PR_EEP("Cal Bin Minor Ver", (pBase->binBuildNumber >> 16) & 0xFF);
161 	PR_EEP("Cal Bin Build", (pBase->binBuildNumber >> 8) & 0xFF);
162 	PR_EEP("Power Table Offset", pBase->pwrTableOffset);
163 	PR_EEP("OpenLoop Power Ctrl", pBase->openLoopPwrCntl);
164 
165 	len += snprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
166 			pBase->macAddr);
167 
168 out:
169 	if (len > size)
170 		len = size;
171 
172 	return len;
173 }
174 #else
ath9k_hw_ar9287_dump_eeprom(struct ath_hw * ah,bool dump_base_hdr,u8 * buf,u32 len,u32 size)175 static u32 ath9k_hw_ar9287_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
176 				       u8 *buf, u32 len, u32 size)
177 {
178 	return 0;
179 }
180 #endif
181 
182 
ath9k_hw_ar9287_check_eeprom(struct ath_hw * ah)183 static int ath9k_hw_ar9287_check_eeprom(struct ath_hw *ah)
184 {
185 	u32 sum = 0, el, integer;
186 	u16 temp, word, magic, magic2, *eepdata;
187 	int i, addr;
188 	bool need_swap = false;
189 	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
190 	struct ath_common *common = ath9k_hw_common(ah);
191 
192 	if (!ath9k_hw_use_flash(ah)) {
193 		if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET,
194 					 &magic)) {
195 			ath_err(common, "Reading Magic # failed\n");
196 			return false;
197 		}
198 
199 		ath_dbg(common, EEPROM, "Read Magic = 0x%04X\n", magic);
200 
201 		if (magic != AR5416_EEPROM_MAGIC) {
202 			magic2 = swab16(magic);
203 
204 			if (magic2 == AR5416_EEPROM_MAGIC) {
205 				need_swap = true;
206 				eepdata = (u16 *)(&ah->eeprom);
207 
208 				for (addr = 0; addr < SIZE_EEPROM_AR9287; addr++) {
209 					temp = swab16(*eepdata);
210 					*eepdata = temp;
211 					eepdata++;
212 				}
213 			} else {
214 				ath_err(common,
215 					"Invalid EEPROM Magic. Endianness mismatch.\n");
216 				return -EINVAL;
217 			}
218 		}
219 	}
220 
221 	ath_dbg(common, EEPROM, "need_swap = %s\n",
222 		need_swap ? "True" : "False");
223 
224 	if (need_swap)
225 		el = swab16(ah->eeprom.map9287.baseEepHeader.length);
226 	else
227 		el = ah->eeprom.map9287.baseEepHeader.length;
228 
229 	if (el > sizeof(struct ar9287_eeprom))
230 		el = sizeof(struct ar9287_eeprom) / sizeof(u16);
231 	else
232 		el = el / sizeof(u16);
233 
234 	eepdata = (u16 *)(&ah->eeprom);
235 
236 	for (i = 0; i < el; i++)
237 		sum ^= *eepdata++;
238 
239 	if (need_swap) {
240 		word = swab16(eep->baseEepHeader.length);
241 		eep->baseEepHeader.length = word;
242 
243 		word = swab16(eep->baseEepHeader.checksum);
244 		eep->baseEepHeader.checksum = word;
245 
246 		word = swab16(eep->baseEepHeader.version);
247 		eep->baseEepHeader.version = word;
248 
249 		word = swab16(eep->baseEepHeader.regDmn[0]);
250 		eep->baseEepHeader.regDmn[0] = word;
251 
252 		word = swab16(eep->baseEepHeader.regDmn[1]);
253 		eep->baseEepHeader.regDmn[1] = word;
254 
255 		word = swab16(eep->baseEepHeader.rfSilent);
256 		eep->baseEepHeader.rfSilent = word;
257 
258 		word = swab16(eep->baseEepHeader.blueToothOptions);
259 		eep->baseEepHeader.blueToothOptions = word;
260 
261 		word = swab16(eep->baseEepHeader.deviceCap);
262 		eep->baseEepHeader.deviceCap = word;
263 
264 		integer = swab32(eep->modalHeader.antCtrlCommon);
265 		eep->modalHeader.antCtrlCommon = integer;
266 
267 		for (i = 0; i < AR9287_MAX_CHAINS; i++) {
268 			integer = swab32(eep->modalHeader.antCtrlChain[i]);
269 			eep->modalHeader.antCtrlChain[i] = integer;
270 		}
271 
272 		for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
273 			word = swab16(eep->modalHeader.spurChans[i].spurChan);
274 			eep->modalHeader.spurChans[i].spurChan = word;
275 		}
276 	}
277 
278 	if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR9287_EEP_VER
279 	    || ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
280 		ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
281 			sum, ah->eep_ops->get_eeprom_ver(ah));
282 		return -EINVAL;
283 	}
284 
285 	return 0;
286 }
287 
ath9k_hw_ar9287_get_eeprom(struct ath_hw * ah,enum eeprom_param param)288 static u32 ath9k_hw_ar9287_get_eeprom(struct ath_hw *ah,
289 				      enum eeprom_param param)
290 {
291 	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
292 	struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
293 	struct base_eep_ar9287_header *pBase = &eep->baseEepHeader;
294 	u16 ver_minor;
295 
296 	ver_minor = pBase->version & AR9287_EEP_VER_MINOR_MASK;
297 
298 	switch (param) {
299 	case EEP_NFTHRESH_2:
300 		return pModal->noiseFloorThreshCh[0];
301 	case EEP_MAC_LSW:
302 		return get_unaligned_be16(pBase->macAddr);
303 	case EEP_MAC_MID:
304 		return get_unaligned_be16(pBase->macAddr + 2);
305 	case EEP_MAC_MSW:
306 		return get_unaligned_be16(pBase->macAddr + 4);
307 	case EEP_REG_0:
308 		return pBase->regDmn[0];
309 	case EEP_OP_CAP:
310 		return pBase->deviceCap;
311 	case EEP_OP_MODE:
312 		return pBase->opCapFlags;
313 	case EEP_RF_SILENT:
314 		return pBase->rfSilent;
315 	case EEP_MINOR_REV:
316 		return ver_minor;
317 	case EEP_TX_MASK:
318 		return pBase->txMask;
319 	case EEP_RX_MASK:
320 		return pBase->rxMask;
321 	case EEP_DEV_TYPE:
322 		return pBase->deviceType;
323 	case EEP_OL_PWRCTRL:
324 		return pBase->openLoopPwrCntl;
325 	case EEP_TEMPSENSE_SLOPE:
326 		if (ver_minor >= AR9287_EEP_MINOR_VER_2)
327 			return pBase->tempSensSlope;
328 		else
329 			return 0;
330 	case EEP_TEMPSENSE_SLOPE_PAL_ON:
331 		if (ver_minor >= AR9287_EEP_MINOR_VER_3)
332 			return pBase->tempSensSlopePalOn;
333 		else
334 			return 0;
335 	case EEP_ANTENNA_GAIN_2G:
336 		return max_t(u8, pModal->antennaGainCh[0],
337 				 pModal->antennaGainCh[1]);
338 	default:
339 		return 0;
340 	}
341 }
342 
ar9287_eeprom_get_tx_gain_index(struct ath_hw * ah,struct ath9k_channel * chan,struct cal_data_op_loop_ar9287 * pRawDatasetOpLoop,u8 * pCalChans,u16 availPiers,int8_t * pPwr)343 static void ar9287_eeprom_get_tx_gain_index(struct ath_hw *ah,
344 			    struct ath9k_channel *chan,
345 			    struct cal_data_op_loop_ar9287 *pRawDatasetOpLoop,
346 			    u8 *pCalChans,  u16 availPiers, int8_t *pPwr)
347 {
348 	u16 idxL = 0, idxR = 0, numPiers;
349 	bool match;
350 	struct chan_centers centers;
351 
352 	ath9k_hw_get_channel_centers(ah, chan, &centers);
353 
354 	for (numPiers = 0; numPiers < availPiers; numPiers++) {
355 		if (pCalChans[numPiers] == AR5416_BCHAN_UNUSED)
356 			break;
357 	}
358 
359 	match = ath9k_hw_get_lower_upper_index(
360 		(u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
361 		pCalChans, numPiers, &idxL, &idxR);
362 
363 	if (match) {
364 		*pPwr = (int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0];
365 	} else {
366 		*pPwr = ((int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0] +
367 			 (int8_t) pRawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
368 	}
369 
370 }
371 
ar9287_eeprom_olpc_set_pdadcs(struct ath_hw * ah,int32_t txPower,u16 chain)372 static void ar9287_eeprom_olpc_set_pdadcs(struct ath_hw *ah,
373 					  int32_t txPower, u16 chain)
374 {
375 	u32 tmpVal;
376 	u32 a;
377 
378 	/* Enable OLPC for chain 0 */
379 
380 	tmpVal = REG_READ(ah, 0xa270);
381 	tmpVal = tmpVal & 0xFCFFFFFF;
382 	tmpVal = tmpVal | (0x3 << 24);
383 	REG_WRITE(ah, 0xa270, tmpVal);
384 
385 	/* Enable OLPC for chain 1 */
386 
387 	tmpVal = REG_READ(ah, 0xb270);
388 	tmpVal = tmpVal & 0xFCFFFFFF;
389 	tmpVal = tmpVal | (0x3 << 24);
390 	REG_WRITE(ah, 0xb270, tmpVal);
391 
392 	/* Write the OLPC ref power for chain 0 */
393 
394 	if (chain == 0) {
395 		tmpVal = REG_READ(ah, 0xa398);
396 		tmpVal = tmpVal & 0xff00ffff;
397 		a = (txPower)&0xff;
398 		tmpVal = tmpVal | (a << 16);
399 		REG_WRITE(ah, 0xa398, tmpVal);
400 	}
401 
402 	/* Write the OLPC ref power for chain 1 */
403 
404 	if (chain == 1) {
405 		tmpVal = REG_READ(ah, 0xb398);
406 		tmpVal = tmpVal & 0xff00ffff;
407 		a = (txPower)&0xff;
408 		tmpVal = tmpVal | (a << 16);
409 		REG_WRITE(ah, 0xb398, tmpVal);
410 	}
411 }
412 
ath9k_hw_set_ar9287_power_cal_table(struct ath_hw * ah,struct ath9k_channel * chan)413 static void ath9k_hw_set_ar9287_power_cal_table(struct ath_hw *ah,
414 						struct ath9k_channel *chan)
415 {
416 	struct cal_data_per_freq_ar9287 *pRawDataset;
417 	struct cal_data_op_loop_ar9287 *pRawDatasetOpenLoop;
418 	u8 *pCalBChans = NULL;
419 	u16 pdGainOverlap_t2;
420 	u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
421 	u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
422 	u16 numPiers = 0, i, j;
423 	u16 numXpdGain, xpdMask;
424 	u16 xpdGainValues[AR5416_NUM_PD_GAINS] = {0, 0, 0, 0};
425 	u32 reg32, regOffset, regChainOffset, regval;
426 	int16_t diff = 0;
427 	struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
428 
429 	xpdMask = pEepData->modalHeader.xpdGain;
430 
431 	if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
432 	    AR9287_EEP_MINOR_VER_2)
433 		pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
434 	else
435 		pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
436 					    AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
437 
438 	if (IS_CHAN_2GHZ(chan)) {
439 		pCalBChans = pEepData->calFreqPier2G;
440 		numPiers = AR9287_NUM_2G_CAL_PIERS;
441 		if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
442 			pRawDatasetOpenLoop =
443 			(struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[0];
444 			ah->initPDADC = pRawDatasetOpenLoop->vpdPdg[0][0];
445 		}
446 	}
447 
448 	numXpdGain = 0;
449 
450 	/* Calculate the value of xpdgains from the xpdGain Mask */
451 	for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
452 		if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
453 			if (numXpdGain >= AR5416_NUM_PD_GAINS)
454 				break;
455 			xpdGainValues[numXpdGain] =
456 				(u16)(AR5416_PD_GAINS_IN_MASK-i);
457 			numXpdGain++;
458 		}
459 	}
460 
461 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
462 		      (numXpdGain - 1) & 0x3);
463 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
464 		      xpdGainValues[0]);
465 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
466 		      xpdGainValues[1]);
467 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
468 		      xpdGainValues[2]);
469 
470 	for (i = 0; i < AR9287_MAX_CHAINS; i++)	{
471 		regChainOffset = i * 0x1000;
472 
473 		if (pEepData->baseEepHeader.txMask & (1 << i)) {
474 			pRawDatasetOpenLoop =
475 			(struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[i];
476 
477 			if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
478 				int8_t txPower;
479 				ar9287_eeprom_get_tx_gain_index(ah, chan,
480 							pRawDatasetOpenLoop,
481 							pCalBChans, numPiers,
482 							&txPower);
483 				ar9287_eeprom_olpc_set_pdadcs(ah, txPower, i);
484 			} else {
485 				pRawDataset =
486 					(struct cal_data_per_freq_ar9287 *)
487 					pEepData->calPierData2G[i];
488 
489 				ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
490 							   pRawDataset,
491 							   pCalBChans, numPiers,
492 							   pdGainOverlap_t2,
493 							   gainBoundaries,
494 							   pdadcValues,
495 							   numXpdGain);
496 			}
497 
498 			ENABLE_REGWRITE_BUFFER(ah);
499 
500 			if (i == 0) {
501 				if (!ath9k_hw_ar9287_get_eeprom(ah,
502 							EEP_OL_PWRCTRL)) {
503 
504 					regval = SM(pdGainOverlap_t2,
505 						    AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
506 						| SM(gainBoundaries[0],
507 						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
508 						| SM(gainBoundaries[1],
509 						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
510 						| SM(gainBoundaries[2],
511 						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
512 						| SM(gainBoundaries[3],
513 						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4);
514 
515 					REG_WRITE(ah,
516 						  AR_PHY_TPCRG5 + regChainOffset,
517 						  regval);
518 				}
519 			}
520 
521 			if ((int32_t)AR9287_PWR_TABLE_OFFSET_DB !=
522 			    pEepData->baseEepHeader.pwrTableOffset) {
523 				diff = (u16)(pEepData->baseEepHeader.pwrTableOffset -
524 					     (int32_t)AR9287_PWR_TABLE_OFFSET_DB);
525 				diff *= 2;
526 
527 				for (j = 0; j < ((u16)AR5416_NUM_PDADC_VALUES-diff); j++)
528 					pdadcValues[j] = pdadcValues[j+diff];
529 
530 				for (j = (u16)(AR5416_NUM_PDADC_VALUES-diff);
531 				     j < AR5416_NUM_PDADC_VALUES; j++)
532 					pdadcValues[j] =
533 					  pdadcValues[AR5416_NUM_PDADC_VALUES-diff];
534 			}
535 
536 			if (!ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
537 				regOffset = AR_PHY_BASE +
538 					(672 << 2) + regChainOffset;
539 
540 				for (j = 0; j < 32; j++) {
541 					reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
542 
543 					REG_WRITE(ah, regOffset, reg32);
544 					regOffset += 4;
545 				}
546 			}
547 			REGWRITE_BUFFER_FLUSH(ah);
548 		}
549 	}
550 }
551 
ath9k_hw_set_ar9287_power_per_rate_table(struct ath_hw * ah,struct ath9k_channel * chan,int16_t * ratesArray,u16 cfgCtl,u16 antenna_reduction,u16 powerLimit)552 static void ath9k_hw_set_ar9287_power_per_rate_table(struct ath_hw *ah,
553 						     struct ath9k_channel *chan,
554 						     int16_t *ratesArray,
555 						     u16 cfgCtl,
556 						     u16 antenna_reduction,
557 						     u16 powerLimit)
558 {
559 #define CMP_CTL \
560 	(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
561 	 pEepData->ctlIndex[i])
562 
563 #define CMP_NO_CTL \
564 	(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
565 	 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
566 
567 #define REDUCE_SCALED_POWER_BY_TWO_CHAIN     6
568 #define REDUCE_SCALED_POWER_BY_THREE_CHAIN   10
569 
570 	u16 twiceMaxEdgePower;
571 	int i;
572 	struct cal_ctl_data_ar9287 *rep;
573 	struct cal_target_power_leg targetPowerOfdm = {0, {0, 0, 0, 0} },
574 				    targetPowerCck = {0, {0, 0, 0, 0} };
575 	struct cal_target_power_leg targetPowerOfdmExt = {0, {0, 0, 0, 0} },
576 				    targetPowerCckExt = {0, {0, 0, 0, 0} };
577 	struct cal_target_power_ht targetPowerHt20,
578 				    targetPowerHt40 = {0, {0, 0, 0, 0} };
579 	u16 scaledPower = 0, minCtlPower;
580 	static const u16 ctlModesFor11g[] = {
581 		CTL_11B, CTL_11G, CTL_2GHT20,
582 		CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
583 	};
584 	u16 numCtlModes = 0;
585 	const u16 *pCtlMode = NULL;
586 	u16 ctlMode, freq;
587 	struct chan_centers centers;
588 	int tx_chainmask;
589 	u16 twiceMinEdgePower;
590 	struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
591 	tx_chainmask = ah->txchainmask;
592 
593 	ath9k_hw_get_channel_centers(ah, chan, &centers);
594 	scaledPower = powerLimit - antenna_reduction;
595 
596 	/*
597 	 * Reduce scaled Power by number of chains active
598 	 * to get the per chain tx power level.
599 	 */
600 	switch (ar5416_get_ntxchains(tx_chainmask)) {
601 	case 1:
602 		break;
603 	case 2:
604 		if (scaledPower > REDUCE_SCALED_POWER_BY_TWO_CHAIN)
605 			scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
606 		else
607 			scaledPower = 0;
608 		break;
609 	case 3:
610 		if (scaledPower > REDUCE_SCALED_POWER_BY_THREE_CHAIN)
611 			scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
612 		else
613 			scaledPower = 0;
614 		break;
615 	}
616 	scaledPower = max((u16)0, scaledPower);
617 
618 	/*
619 	 * Get TX power from EEPROM.
620 	 */
621 	if (IS_CHAN_2GHZ(chan))	{
622 		/* CTL_11B, CTL_11G, CTL_2GHT20 */
623 		numCtlModes =
624 			ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
625 
626 		pCtlMode = ctlModesFor11g;
627 
628 		ath9k_hw_get_legacy_target_powers(ah, chan,
629 						  pEepData->calTargetPowerCck,
630 						  AR9287_NUM_2G_CCK_TARGET_POWERS,
631 						  &targetPowerCck, 4, false);
632 		ath9k_hw_get_legacy_target_powers(ah, chan,
633 						  pEepData->calTargetPower2G,
634 						  AR9287_NUM_2G_20_TARGET_POWERS,
635 						  &targetPowerOfdm, 4, false);
636 		ath9k_hw_get_target_powers(ah, chan,
637 					   pEepData->calTargetPower2GHT20,
638 					   AR9287_NUM_2G_20_TARGET_POWERS,
639 					   &targetPowerHt20, 8, false);
640 
641 		if (IS_CHAN_HT40(chan))	{
642 			/* All 2G CTLs */
643 			numCtlModes = ARRAY_SIZE(ctlModesFor11g);
644 			ath9k_hw_get_target_powers(ah, chan,
645 						   pEepData->calTargetPower2GHT40,
646 						   AR9287_NUM_2G_40_TARGET_POWERS,
647 						   &targetPowerHt40, 8, true);
648 			ath9k_hw_get_legacy_target_powers(ah, chan,
649 						  pEepData->calTargetPowerCck,
650 						  AR9287_NUM_2G_CCK_TARGET_POWERS,
651 						  &targetPowerCckExt, 4, true);
652 			ath9k_hw_get_legacy_target_powers(ah, chan,
653 						  pEepData->calTargetPower2G,
654 						  AR9287_NUM_2G_20_TARGET_POWERS,
655 						  &targetPowerOfdmExt, 4, true);
656 		}
657 	}
658 
659 	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
660 		bool isHt40CtlMode =
661 			(pCtlMode[ctlMode] == CTL_2GHT40) ? true : false;
662 
663 		if (isHt40CtlMode)
664 			freq = centers.synth_center;
665 		else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
666 			freq = centers.ext_center;
667 		else
668 			freq = centers.ctl_center;
669 
670 		twiceMaxEdgePower = MAX_RATE_POWER;
671 		/* Walk through the CTL indices stored in EEPROM */
672 		for (i = 0; (i < AR9287_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
673 			struct cal_ctl_edges *pRdEdgesPower;
674 
675 			/*
676 			 * Compare test group from regulatory channel list
677 			 * with test mode from pCtlMode list
678 			 */
679 			if (CMP_CTL || CMP_NO_CTL) {
680 				rep = &(pEepData->ctlData[i]);
681 				pRdEdgesPower =
682 				rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1];
683 
684 				twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
685 								pRdEdgesPower,
686 								IS_CHAN_2GHZ(chan),
687 								AR5416_NUM_BAND_EDGES);
688 
689 				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
690 					twiceMaxEdgePower = min(twiceMaxEdgePower,
691 								twiceMinEdgePower);
692 				} else {
693 					twiceMaxEdgePower = twiceMinEdgePower;
694 					break;
695 				}
696 			}
697 		}
698 
699 		minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
700 
701 		/* Apply ctl mode to correct target power set */
702 		switch (pCtlMode[ctlMode]) {
703 		case CTL_11B:
704 			for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
705 				targetPowerCck.tPow2x[i] =
706 					(u8)min((u16)targetPowerCck.tPow2x[i],
707 						minCtlPower);
708 			}
709 			break;
710 		case CTL_11A:
711 		case CTL_11G:
712 			for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
713 				targetPowerOfdm.tPow2x[i] =
714 					(u8)min((u16)targetPowerOfdm.tPow2x[i],
715 						minCtlPower);
716 			}
717 			break;
718 		case CTL_5GHT20:
719 		case CTL_2GHT20:
720 			for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
721 				targetPowerHt20.tPow2x[i] =
722 					(u8)min((u16)targetPowerHt20.tPow2x[i],
723 						minCtlPower);
724 			}
725 			break;
726 		case CTL_11B_EXT:
727 			targetPowerCckExt.tPow2x[0] =
728 				(u8)min((u16)targetPowerCckExt.tPow2x[0],
729 					minCtlPower);
730 			break;
731 		case CTL_11A_EXT:
732 		case CTL_11G_EXT:
733 			targetPowerOfdmExt.tPow2x[0] =
734 				(u8)min((u16)targetPowerOfdmExt.tPow2x[0],
735 					minCtlPower);
736 			break;
737 		case CTL_5GHT40:
738 		case CTL_2GHT40:
739 			for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
740 				targetPowerHt40.tPow2x[i] =
741 					(u8)min((u16)targetPowerHt40.tPow2x[i],
742 						minCtlPower);
743 			}
744 			break;
745 		default:
746 			break;
747 		}
748 	}
749 
750 	/* Now set the rates array */
751 
752 	ratesArray[rate6mb] =
753 	ratesArray[rate9mb] =
754 	ratesArray[rate12mb] =
755 	ratesArray[rate18mb] =
756 	ratesArray[rate24mb] = targetPowerOfdm.tPow2x[0];
757 
758 	ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
759 	ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
760 	ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
761 	ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
762 
763 	for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
764 		ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
765 
766 	if (IS_CHAN_2GHZ(chan))	{
767 		ratesArray[rate1l] = targetPowerCck.tPow2x[0];
768 		ratesArray[rate2s] =
769 		ratesArray[rate2l] = targetPowerCck.tPow2x[1];
770 		ratesArray[rate5_5s] =
771 		ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
772 		ratesArray[rate11s] =
773 		ratesArray[rate11l] = targetPowerCck.tPow2x[3];
774 	}
775 	if (IS_CHAN_HT40(chan))	{
776 		for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++)
777 			ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i];
778 
779 		ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
780 		ratesArray[rateDupCck]  = targetPowerHt40.tPow2x[0];
781 		ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
782 
783 		if (IS_CHAN_2GHZ(chan))
784 			ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
785 	}
786 
787 #undef CMP_CTL
788 #undef CMP_NO_CTL
789 #undef REDUCE_SCALED_POWER_BY_TWO_CHAIN
790 #undef REDUCE_SCALED_POWER_BY_THREE_CHAIN
791 }
792 
ath9k_hw_ar9287_set_txpower(struct ath_hw * ah,struct ath9k_channel * chan,u16 cfgCtl,u8 twiceAntennaReduction,u8 powerLimit,bool test)793 static void ath9k_hw_ar9287_set_txpower(struct ath_hw *ah,
794 					struct ath9k_channel *chan, u16 cfgCtl,
795 					u8 twiceAntennaReduction,
796 					u8 powerLimit, bool test)
797 {
798 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
799 	struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
800 	struct modal_eep_ar9287_header *pModal = &pEepData->modalHeader;
801 	int16_t ratesArray[Ar5416RateSize];
802 	u8 ht40PowerIncForPdadc = 2;
803 	int i;
804 
805 	memset(ratesArray, 0, sizeof(ratesArray));
806 
807 	if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
808 	    AR9287_EEP_MINOR_VER_2)
809 		ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
810 
811 	ath9k_hw_set_ar9287_power_per_rate_table(ah, chan,
812 						 &ratesArray[0], cfgCtl,
813 						 twiceAntennaReduction,
814 						 powerLimit);
815 
816 	ath9k_hw_set_ar9287_power_cal_table(ah, chan);
817 
818 	regulatory->max_power_level = 0;
819 	for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
820 		if (ratesArray[i] > MAX_RATE_POWER)
821 			ratesArray[i] = MAX_RATE_POWER;
822 
823 		if (ratesArray[i] > regulatory->max_power_level)
824 			regulatory->max_power_level = ratesArray[i];
825 	}
826 
827 	ath9k_hw_update_regulatory_maxpower(ah);
828 
829 	if (test)
830 		return;
831 
832 	for (i = 0; i < Ar5416RateSize; i++)
833 		ratesArray[i] -= AR9287_PWR_TABLE_OFFSET_DB * 2;
834 
835 	ENABLE_REGWRITE_BUFFER(ah);
836 
837 	/* OFDM power per rate */
838 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
839 		  ATH9K_POW_SM(ratesArray[rate18mb], 24)
840 		  | ATH9K_POW_SM(ratesArray[rate12mb], 16)
841 		  | ATH9K_POW_SM(ratesArray[rate9mb], 8)
842 		  | ATH9K_POW_SM(ratesArray[rate6mb], 0));
843 
844 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
845 		  ATH9K_POW_SM(ratesArray[rate54mb], 24)
846 		  | ATH9K_POW_SM(ratesArray[rate48mb], 16)
847 		  | ATH9K_POW_SM(ratesArray[rate36mb], 8)
848 		  | ATH9K_POW_SM(ratesArray[rate24mb], 0));
849 
850 	/* CCK power per rate */
851 	if (IS_CHAN_2GHZ(chan))	{
852 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
853 			  ATH9K_POW_SM(ratesArray[rate2s], 24)
854 			  | ATH9K_POW_SM(ratesArray[rate2l], 16)
855 			  | ATH9K_POW_SM(ratesArray[rateXr], 8)
856 			  | ATH9K_POW_SM(ratesArray[rate1l], 0));
857 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
858 			  ATH9K_POW_SM(ratesArray[rate11s], 24)
859 			  | ATH9K_POW_SM(ratesArray[rate11l], 16)
860 			  | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
861 			  | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
862 	}
863 
864 	/* HT20 power per rate */
865 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
866 		  ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
867 		  | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
868 		  | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
869 		  | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
870 
871 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
872 		  ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
873 		  | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
874 		  | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
875 		  | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
876 
877 	/* HT40 power per rate */
878 	if (IS_CHAN_HT40(chan))	{
879 		if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
880 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
881 				  ATH9K_POW_SM(ratesArray[rateHt40_3], 24)
882 				  | ATH9K_POW_SM(ratesArray[rateHt40_2], 16)
883 				  | ATH9K_POW_SM(ratesArray[rateHt40_1], 8)
884 				  | ATH9K_POW_SM(ratesArray[rateHt40_0], 0));
885 
886 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
887 				  ATH9K_POW_SM(ratesArray[rateHt40_7], 24)
888 				  | ATH9K_POW_SM(ratesArray[rateHt40_6], 16)
889 				  | ATH9K_POW_SM(ratesArray[rateHt40_5], 8)
890 				  | ATH9K_POW_SM(ratesArray[rateHt40_4], 0));
891 		} else {
892 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
893 				  ATH9K_POW_SM(ratesArray[rateHt40_3] +
894 					       ht40PowerIncForPdadc, 24)
895 				  | ATH9K_POW_SM(ratesArray[rateHt40_2] +
896 						 ht40PowerIncForPdadc, 16)
897 				  | ATH9K_POW_SM(ratesArray[rateHt40_1] +
898 						 ht40PowerIncForPdadc, 8)
899 				  | ATH9K_POW_SM(ratesArray[rateHt40_0] +
900 						 ht40PowerIncForPdadc, 0));
901 
902 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
903 				  ATH9K_POW_SM(ratesArray[rateHt40_7] +
904 					       ht40PowerIncForPdadc, 24)
905 				  | ATH9K_POW_SM(ratesArray[rateHt40_6] +
906 						 ht40PowerIncForPdadc, 16)
907 				  | ATH9K_POW_SM(ratesArray[rateHt40_5] +
908 						 ht40PowerIncForPdadc, 8)
909 				  | ATH9K_POW_SM(ratesArray[rateHt40_4] +
910 						 ht40PowerIncForPdadc, 0));
911 		}
912 
913 		/* Dup/Ext power per rate */
914 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
915 			  ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
916 			  | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
917 			  | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
918 			  | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
919 	}
920 	REGWRITE_BUFFER_FLUSH(ah);
921 }
922 
ath9k_hw_ar9287_set_board_values(struct ath_hw * ah,struct ath9k_channel * chan)923 static void ath9k_hw_ar9287_set_board_values(struct ath_hw *ah,
924 					     struct ath9k_channel *chan)
925 {
926 	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
927 	struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
928 	u32 regChainOffset, regval;
929 	u8 txRxAttenLocal;
930 	int i;
931 
932 	pModal = &eep->modalHeader;
933 
934 	REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
935 
936 	for (i = 0; i < AR9287_MAX_CHAINS; i++)	{
937 		regChainOffset = i * 0x1000;
938 
939 		REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
940 			  pModal->antCtrlChain[i]);
941 
942 		REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
943 			  (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset)
944 			   & ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
945 			       AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
946 			  SM(pModal->iqCalICh[i],
947 			     AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
948 			  SM(pModal->iqCalQCh[i],
949 			     AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
950 
951 		txRxAttenLocal = pModal->txRxAttenCh[i];
952 
953 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
954 			      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
955 			      pModal->bswMargin[i]);
956 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
957 			      AR_PHY_GAIN_2GHZ_XATTEN1_DB,
958 			      pModal->bswAtten[i]);
959 		REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
960 			      AR9280_PHY_RXGAIN_TXRX_ATTEN,
961 			      txRxAttenLocal);
962 		REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
963 			      AR9280_PHY_RXGAIN_TXRX_MARGIN,
964 			      pModal->rxTxMarginCh[i]);
965 	}
966 
967 
968 	if (IS_CHAN_HT40(chan))
969 		REG_RMW_FIELD(ah, AR_PHY_SETTLING,
970 			      AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
971 	else
972 		REG_RMW_FIELD(ah, AR_PHY_SETTLING,
973 			      AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
974 
975 	REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
976 		      AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
977 
978 	REG_WRITE(ah, AR_PHY_RF_CTL4,
979 		  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
980 		  | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
981 		  | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
982 		  | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
983 
984 	REG_RMW_FIELD(ah, AR_PHY_RF_CTL3,
985 		      AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
986 
987 	REG_RMW_FIELD(ah, AR_PHY_CCA,
988 		      AR9280_PHY_CCA_THRESH62, pModal->thresh62);
989 	REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
990 		      AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62);
991 
992 	regval = REG_READ(ah, AR9287_AN_RF2G3_CH0);
993 	regval &= ~(AR9287_AN_RF2G3_DB1 |
994 		    AR9287_AN_RF2G3_DB2 |
995 		    AR9287_AN_RF2G3_OB_CCK |
996 		    AR9287_AN_RF2G3_OB_PSK |
997 		    AR9287_AN_RF2G3_OB_QAM |
998 		    AR9287_AN_RF2G3_OB_PAL_OFF);
999 	regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
1000 		   SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
1001 		   SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
1002 		   SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
1003 		   SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
1004 		   SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
1005 
1006 	ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH0, regval);
1007 
1008 	regval = REG_READ(ah, AR9287_AN_RF2G3_CH1);
1009 	regval &= ~(AR9287_AN_RF2G3_DB1 |
1010 		    AR9287_AN_RF2G3_DB2 |
1011 		    AR9287_AN_RF2G3_OB_CCK |
1012 		    AR9287_AN_RF2G3_OB_PSK |
1013 		    AR9287_AN_RF2G3_OB_QAM |
1014 		    AR9287_AN_RF2G3_OB_PAL_OFF);
1015 	regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
1016 		   SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
1017 		   SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
1018 		   SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
1019 		   SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
1020 		   SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
1021 
1022 	ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH1, regval);
1023 
1024 	REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
1025 		      AR_PHY_TX_END_DATA_START, pModal->txFrameToDataStart);
1026 	REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
1027 		      AR_PHY_TX_END_PA_ON, pModal->txFrameToPaOn);
1028 
1029 	ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TOP2,
1030 				  AR9287_AN_TOP2_XPABIAS_LVL,
1031 				  AR9287_AN_TOP2_XPABIAS_LVL_S,
1032 				  pModal->xpaBiasLvl);
1033 }
1034 
ath9k_hw_ar9287_get_spur_channel(struct ath_hw * ah,u16 i,bool is2GHz)1035 static u16 ath9k_hw_ar9287_get_spur_channel(struct ath_hw *ah,
1036 					    u16 i, bool is2GHz)
1037 {
1038 #define EEP_MAP9287_SPURCHAN \
1039 	(ah->eeprom.map9287.modalHeader.spurChans[i].spurChan)
1040 
1041 	struct ath_common *common = ath9k_hw_common(ah);
1042 	u16 spur_val = AR_NO_SPUR;
1043 
1044 	ath_dbg(common, ANI, "Getting spur idx:%d is2Ghz:%d val:%x\n",
1045 		i, is2GHz, ah->config.spurchans[i][is2GHz]);
1046 
1047 	switch (ah->config.spurmode) {
1048 	case SPUR_DISABLE:
1049 		break;
1050 	case SPUR_ENABLE_IOCTL:
1051 		spur_val = ah->config.spurchans[i][is2GHz];
1052 		ath_dbg(common, ANI, "Getting spur val from new loc. %d\n",
1053 			spur_val);
1054 		break;
1055 	case SPUR_ENABLE_EEPROM:
1056 		spur_val = EEP_MAP9287_SPURCHAN;
1057 		break;
1058 	}
1059 
1060 	return spur_val;
1061 
1062 #undef EEP_MAP9287_SPURCHAN
1063 }
1064 
1065 const struct eeprom_ops eep_ar9287_ops = {
1066 	.check_eeprom		= ath9k_hw_ar9287_check_eeprom,
1067 	.get_eeprom		= ath9k_hw_ar9287_get_eeprom,
1068 	.fill_eeprom		= ath9k_hw_ar9287_fill_eeprom,
1069 	.dump_eeprom		= ath9k_hw_ar9287_dump_eeprom,
1070 	.get_eeprom_ver		= ath9k_hw_ar9287_get_eeprom_ver,
1071 	.get_eeprom_rev		= ath9k_hw_ar9287_get_eeprom_rev,
1072 	.set_board_values	= ath9k_hw_ar9287_set_board_values,
1073 	.set_txpower		= ath9k_hw_ar9287_set_txpower,
1074 	.get_spur_channel	= ath9k_hw_ar9287_get_spur_channel
1075 };
1076