1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 /**
18  * DOC: Programming Atheros 802.11n analog front end radios
19  *
20  * AR5416 MAC based PCI devices and AR518 MAC based PCI-Express
21  * devices have either an external AR2133 analog front end radio for single
22  * band 2.4 GHz communication or an AR5133 analog front end radio for dual
23  * band 2.4 GHz / 5 GHz communication.
24  *
25  * All devices after the AR5416 and AR5418 family starting with the AR9280
26  * have their analog front radios, MAC/BB and host PCIe/USB interface embedded
27  * into a single-chip and require less programming.
28  *
29  * The following single-chips exist with a respective embedded radio:
30  *
31  * AR9280 - 11n dual-band 2x2 MIMO for PCIe
32  * AR9281 - 11n single-band 1x2 MIMO for PCIe
33  * AR9285 - 11n single-band 1x1 for PCIe
34  * AR9287 - 11n single-band 2x2 MIMO for PCIe
35  *
36  * AR9220 - 11n dual-band 2x2 MIMO for PCI
37  * AR9223 - 11n single-band 2x2 MIMO for PCI
38  *
39  * AR9287 - 11n single-band 1x1 MIMO for USB
40  */
41 
42 #include "hw.h"
43 #include "ar9002_phy.h"
44 
45 /**
46  * ar9002_hw_set_channel - set channel on single-chip device
47  * @ah: atheros hardware structure
48  * @chan:
49  *
50  * This is the function to change channel on single-chip devices, that is
51  * all devices after ar9280.
52  *
53  * This function takes the channel value in MHz and sets
54  * hardware channel value. Assumes writes have been enabled to analog bus.
55  *
56  * Actual Expression,
57  *
58  * For 2GHz channel,
59  * Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
60  * (freq_ref = 40MHz)
61  *
62  * For 5GHz channel,
63  * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10)
64  * (freq_ref = 40MHz/(24>>amodeRefSel))
65  */
ar9002_hw_set_channel(struct ath_hw * ah,struct ath9k_channel * chan)66 static int ar9002_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
67 {
68 	u16 bMode, fracMode, aModeRefSel = 0;
69 	u32 freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0;
70 	struct chan_centers centers;
71 	u32 refDivA = 24;
72 
73 	ath9k_hw_get_channel_centers(ah, chan, &centers);
74 	freq = centers.synth_center;
75 
76 	reg32 = REG_READ(ah, AR_PHY_SYNTH_CONTROL);
77 	reg32 &= 0xc0000000;
78 
79 	if (freq < 4800) { /* 2 GHz, fractional mode */
80 		u32 txctl;
81 		int regWrites = 0;
82 
83 		bMode = 1;
84 		fracMode = 1;
85 		aModeRefSel = 0;
86 		channelSel = CHANSEL_2G(freq);
87 
88 		if (AR_SREV_9287_11_OR_LATER(ah)) {
89 			if (freq == 2484) {
90 				/* Enable channel spreading for channel 14 */
91 				REG_WRITE_ARRAY(&ah->iniCckfirJapan2484,
92 						1, regWrites);
93 			} else {
94 				REG_WRITE_ARRAY(&ah->iniCckfirNormal,
95 						1, regWrites);
96 			}
97 		} else {
98 			txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
99 			if (freq == 2484) {
100 				/* Enable channel spreading for channel 14 */
101 				REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
102 					  txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
103 			} else {
104 				REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
105 					  txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
106 			}
107 		}
108 	} else {
109 		bMode = 0;
110 		fracMode = 0;
111 
112 		switch (ah->eep_ops->get_eeprom(ah, EEP_FRAC_N_5G)) {
113 		case 0:
114 			if (IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan))
115 				aModeRefSel = 0;
116 			else if ((freq % 20) == 0)
117 				aModeRefSel = 3;
118 			else if ((freq % 10) == 0)
119 				aModeRefSel = 2;
120 			if (aModeRefSel)
121 				break;
122 		case 1:
123 		default:
124 			aModeRefSel = 0;
125 			/*
126 			 * Enable 2G (fractional) mode for channels
127 			 * which are 5MHz spaced.
128 			 */
129 			fracMode = 1;
130 			refDivA = 1;
131 			channelSel = CHANSEL_5G(freq);
132 
133 			/* RefDivA setting */
134 			ath9k_hw_analog_shift_rmw(ah, AR_AN_SYNTH9,
135 				      AR_AN_SYNTH9_REFDIVA,
136 				      AR_AN_SYNTH9_REFDIVA_S, refDivA);
137 
138 		}
139 
140 		if (!fracMode) {
141 			ndiv = (freq * (refDivA >> aModeRefSel)) / 60;
142 			channelSel = ndiv & 0x1ff;
143 			channelFrac = (ndiv & 0xfffffe00) * 2;
144 			channelSel = (channelSel << 17) | channelFrac;
145 		}
146 	}
147 
148 	reg32 = reg32 |
149 	    (bMode << 29) |
150 	    (fracMode << 28) | (aModeRefSel << 26) | (channelSel);
151 
152 	REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);
153 
154 	ah->curchan = chan;
155 	ah->curchan_rad_index = -1;
156 
157 	return 0;
158 }
159 
160 /**
161  * ar9002_hw_spur_mitigate - convert baseband spur frequency
162  * @ah: atheros hardware structure
163  * @chan:
164  *
165  * For single-chip solutions. Converts to baseband spur frequency given the
166  * input channel frequency and compute register settings below.
167  */
ar9002_hw_spur_mitigate(struct ath_hw * ah,struct ath9k_channel * chan)168 static void ar9002_hw_spur_mitigate(struct ath_hw *ah,
169 				    struct ath9k_channel *chan)
170 {
171 	int bb_spur = AR_NO_SPUR;
172 	int freq;
173 	int bin, cur_bin;
174 	int bb_spur_off, spur_subchannel_sd;
175 	int spur_freq_sd;
176 	int spur_delta_phase;
177 	int denominator;
178 	int upper, lower, cur_vit_mask;
179 	int tmp, newVal;
180 	int i;
181 	static const int pilot_mask_reg[4] = {
182 		AR_PHY_TIMING7, AR_PHY_TIMING8,
183 		AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
184 	};
185 	static const int chan_mask_reg[4] = {
186 		AR_PHY_TIMING9, AR_PHY_TIMING10,
187 		AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
188 	};
189 	static const int inc[4] = { 0, 100, 0, 0 };
190 	struct chan_centers centers;
191 
192 	int8_t mask_m[123];
193 	int8_t mask_p[123];
194 	int8_t mask_amt;
195 	int tmp_mask;
196 	int cur_bb_spur;
197 	bool is2GHz = IS_CHAN_2GHZ(chan);
198 
199 	memset(&mask_m, 0, sizeof(int8_t) * 123);
200 	memset(&mask_p, 0, sizeof(int8_t) * 123);
201 
202 	ath9k_hw_get_channel_centers(ah, chan, &centers);
203 	freq = centers.synth_center;
204 
205 	ah->config.spurmode = SPUR_ENABLE_EEPROM;
206 	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
207 		cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
208 
209 		if (AR_NO_SPUR == cur_bb_spur)
210 			break;
211 
212 		if (is2GHz)
213 			cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
214 		else
215 			cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
216 
217 		cur_bb_spur = cur_bb_spur - freq;
218 
219 		if (IS_CHAN_HT40(chan)) {
220 			if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
221 			    (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
222 				bb_spur = cur_bb_spur;
223 				break;
224 			}
225 		} else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
226 			   (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
227 			bb_spur = cur_bb_spur;
228 			break;
229 		}
230 	}
231 
232 	if (AR_NO_SPUR == bb_spur) {
233 		REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
234 			    AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
235 		return;
236 	} else {
237 		REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
238 			    AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
239 	}
240 
241 	bin = bb_spur * 320;
242 
243 	tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
244 
245 	ENABLE_REGWRITE_BUFFER(ah);
246 
247 	newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
248 			AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
249 			AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
250 			AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
251 	REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);
252 
253 	newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
254 		  AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
255 		  AR_PHY_SPUR_REG_MASK_RATE_SELECT |
256 		  AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
257 		  SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
258 	REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
259 
260 	if (IS_CHAN_HT40(chan)) {
261 		if (bb_spur < 0) {
262 			spur_subchannel_sd = 1;
263 			bb_spur_off = bb_spur + 10;
264 		} else {
265 			spur_subchannel_sd = 0;
266 			bb_spur_off = bb_spur - 10;
267 		}
268 	} else {
269 		spur_subchannel_sd = 0;
270 		bb_spur_off = bb_spur;
271 	}
272 
273 	if (IS_CHAN_HT40(chan))
274 		spur_delta_phase =
275 			((bb_spur * 262144) /
276 			 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
277 	else
278 		spur_delta_phase =
279 			((bb_spur * 524288) /
280 			 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
281 
282 	denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
283 	spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
284 
285 	newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
286 		  SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
287 		  SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
288 	REG_WRITE(ah, AR_PHY_TIMING11, newVal);
289 
290 	newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
291 	REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
292 
293 	cur_bin = -6000;
294 	upper = bin + 100;
295 	lower = bin - 100;
296 
297 	for (i = 0; i < 4; i++) {
298 		int pilot_mask = 0;
299 		int chan_mask = 0;
300 		int bp = 0;
301 		for (bp = 0; bp < 30; bp++) {
302 			if ((cur_bin > lower) && (cur_bin < upper)) {
303 				pilot_mask = pilot_mask | 0x1 << bp;
304 				chan_mask = chan_mask | 0x1 << bp;
305 			}
306 			cur_bin += 100;
307 		}
308 		cur_bin += inc[i];
309 		REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
310 		REG_WRITE(ah, chan_mask_reg[i], chan_mask);
311 	}
312 
313 	cur_vit_mask = 6100;
314 	upper = bin + 120;
315 	lower = bin - 120;
316 
317 	for (i = 0; i < 123; i++) {
318 		if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
319 
320 			/* workaround for gcc bug #37014 */
321 			volatile int tmp_v = abs(cur_vit_mask - bin);
322 
323 			if (tmp_v < 75)
324 				mask_amt = 1;
325 			else
326 				mask_amt = 0;
327 			if (cur_vit_mask < 0)
328 				mask_m[abs(cur_vit_mask / 100)] = mask_amt;
329 			else
330 				mask_p[cur_vit_mask / 100] = mask_amt;
331 		}
332 		cur_vit_mask -= 100;
333 	}
334 
335 	tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
336 		| (mask_m[48] << 26) | (mask_m[49] << 24)
337 		| (mask_m[50] << 22) | (mask_m[51] << 20)
338 		| (mask_m[52] << 18) | (mask_m[53] << 16)
339 		| (mask_m[54] << 14) | (mask_m[55] << 12)
340 		| (mask_m[56] << 10) | (mask_m[57] << 8)
341 		| (mask_m[58] << 6) | (mask_m[59] << 4)
342 		| (mask_m[60] << 2) | (mask_m[61] << 0);
343 	REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
344 	REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
345 
346 	tmp_mask = (mask_m[31] << 28)
347 		| (mask_m[32] << 26) | (mask_m[33] << 24)
348 		| (mask_m[34] << 22) | (mask_m[35] << 20)
349 		| (mask_m[36] << 18) | (mask_m[37] << 16)
350 		| (mask_m[48] << 14) | (mask_m[39] << 12)
351 		| (mask_m[40] << 10) | (mask_m[41] << 8)
352 		| (mask_m[42] << 6) | (mask_m[43] << 4)
353 		| (mask_m[44] << 2) | (mask_m[45] << 0);
354 	REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
355 	REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
356 
357 	tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
358 		| (mask_m[18] << 26) | (mask_m[18] << 24)
359 		| (mask_m[20] << 22) | (mask_m[20] << 20)
360 		| (mask_m[22] << 18) | (mask_m[22] << 16)
361 		| (mask_m[24] << 14) | (mask_m[24] << 12)
362 		| (mask_m[25] << 10) | (mask_m[26] << 8)
363 		| (mask_m[27] << 6) | (mask_m[28] << 4)
364 		| (mask_m[29] << 2) | (mask_m[30] << 0);
365 	REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
366 	REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
367 
368 	tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
369 		| (mask_m[2] << 26) | (mask_m[3] << 24)
370 		| (mask_m[4] << 22) | (mask_m[5] << 20)
371 		| (mask_m[6] << 18) | (mask_m[7] << 16)
372 		| (mask_m[8] << 14) | (mask_m[9] << 12)
373 		| (mask_m[10] << 10) | (mask_m[11] << 8)
374 		| (mask_m[12] << 6) | (mask_m[13] << 4)
375 		| (mask_m[14] << 2) | (mask_m[15] << 0);
376 	REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
377 	REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
378 
379 	tmp_mask = (mask_p[15] << 28)
380 		| (mask_p[14] << 26) | (mask_p[13] << 24)
381 		| (mask_p[12] << 22) | (mask_p[11] << 20)
382 		| (mask_p[10] << 18) | (mask_p[9] << 16)
383 		| (mask_p[8] << 14) | (mask_p[7] << 12)
384 		| (mask_p[6] << 10) | (mask_p[5] << 8)
385 		| (mask_p[4] << 6) | (mask_p[3] << 4)
386 		| (mask_p[2] << 2) | (mask_p[1] << 0);
387 	REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
388 	REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
389 
390 	tmp_mask = (mask_p[30] << 28)
391 		| (mask_p[29] << 26) | (mask_p[28] << 24)
392 		| (mask_p[27] << 22) | (mask_p[26] << 20)
393 		| (mask_p[25] << 18) | (mask_p[24] << 16)
394 		| (mask_p[23] << 14) | (mask_p[22] << 12)
395 		| (mask_p[21] << 10) | (mask_p[20] << 8)
396 		| (mask_p[19] << 6) | (mask_p[18] << 4)
397 		| (mask_p[17] << 2) | (mask_p[16] << 0);
398 	REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
399 	REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
400 
401 	tmp_mask = (mask_p[45] << 28)
402 		| (mask_p[44] << 26) | (mask_p[43] << 24)
403 		| (mask_p[42] << 22) | (mask_p[41] << 20)
404 		| (mask_p[40] << 18) | (mask_p[39] << 16)
405 		| (mask_p[38] << 14) | (mask_p[37] << 12)
406 		| (mask_p[36] << 10) | (mask_p[35] << 8)
407 		| (mask_p[34] << 6) | (mask_p[33] << 4)
408 		| (mask_p[32] << 2) | (mask_p[31] << 0);
409 	REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
410 	REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
411 
412 	tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
413 		| (mask_p[59] << 26) | (mask_p[58] << 24)
414 		| (mask_p[57] << 22) | (mask_p[56] << 20)
415 		| (mask_p[55] << 18) | (mask_p[54] << 16)
416 		| (mask_p[53] << 14) | (mask_p[52] << 12)
417 		| (mask_p[51] << 10) | (mask_p[50] << 8)
418 		| (mask_p[49] << 6) | (mask_p[48] << 4)
419 		| (mask_p[47] << 2) | (mask_p[46] << 0);
420 	REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
421 	REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
422 
423 	REGWRITE_BUFFER_FLUSH(ah);
424 }
425 
ar9002_olc_init(struct ath_hw * ah)426 static void ar9002_olc_init(struct ath_hw *ah)
427 {
428 	u32 i;
429 
430 	if (!OLC_FOR_AR9280_20_LATER)
431 		return;
432 
433 	if (OLC_FOR_AR9287_10_LATER) {
434 		REG_SET_BIT(ah, AR_PHY_TX_PWRCTRL9,
435 				AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL);
436 		ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TXPC0,
437 				AR9287_AN_TXPC0_TXPCMODE,
438 				AR9287_AN_TXPC0_TXPCMODE_S,
439 				AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE);
440 		udelay(100);
441 	} else {
442 		for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
443 			ah->originalGain[i] =
444 				MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
445 						AR_PHY_TX_GAIN);
446 		ah->PDADCdelta = 0;
447 	}
448 }
449 
ar9002_hw_compute_pll_control(struct ath_hw * ah,struct ath9k_channel * chan)450 static u32 ar9002_hw_compute_pll_control(struct ath_hw *ah,
451 					 struct ath9k_channel *chan)
452 {
453 	int ref_div = 5;
454 	int pll_div = 0x2c;
455 	u32 pll;
456 
457 	if (chan && IS_CHAN_5GHZ(chan) && !IS_CHAN_A_FAST_CLOCK(ah, chan)) {
458 		if (AR_SREV_9280_20(ah)) {
459 			ref_div = 10;
460 			pll_div = 0x50;
461 		} else {
462 			pll_div = 0x28;
463 		}
464 	}
465 
466 	pll = SM(ref_div, AR_RTC_9160_PLL_REFDIV);
467 	pll |= SM(pll_div, AR_RTC_9160_PLL_DIV);
468 
469 	if (chan && IS_CHAN_HALF_RATE(chan))
470 		pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
471 	else if (chan && IS_CHAN_QUARTER_RATE(chan))
472 		pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
473 
474 	return pll;
475 }
476 
ar9002_hw_do_getnf(struct ath_hw * ah,int16_t nfarray[NUM_NF_READINGS])477 static void ar9002_hw_do_getnf(struct ath_hw *ah,
478 			      int16_t nfarray[NUM_NF_READINGS])
479 {
480 	int16_t nf;
481 
482 	nf = MS(REG_READ(ah, AR_PHY_CCA), AR9280_PHY_MINCCA_PWR);
483 	nfarray[0] = sign_extend32(nf, 8);
484 
485 	nf = MS(REG_READ(ah, AR_PHY_EXT_CCA), AR9280_PHY_EXT_MINCCA_PWR);
486 	if (IS_CHAN_HT40(ah->curchan))
487 		nfarray[3] = sign_extend32(nf, 8);
488 
489 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
490 		return;
491 
492 	nf = MS(REG_READ(ah, AR_PHY_CH1_CCA), AR9280_PHY_CH1_MINCCA_PWR);
493 	nfarray[1] = sign_extend32(nf, 8);
494 
495 	nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR9280_PHY_CH1_EXT_MINCCA_PWR);
496 	if (IS_CHAN_HT40(ah->curchan))
497 		nfarray[4] = sign_extend32(nf, 8);
498 }
499 
ar9002_hw_set_nf_limits(struct ath_hw * ah)500 static void ar9002_hw_set_nf_limits(struct ath_hw *ah)
501 {
502 	if (AR_SREV_9285(ah)) {
503 		ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9285_2GHZ;
504 		ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9285_2GHZ;
505 		ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9285_2GHZ;
506 	} else if (AR_SREV_9287(ah)) {
507 		ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9287_2GHZ;
508 		ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9287_2GHZ;
509 		ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9287_2GHZ;
510 	} else if (AR_SREV_9271(ah)) {
511 		ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9271_2GHZ;
512 		ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9271_2GHZ;
513 		ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9271_2GHZ;
514 	} else {
515 		ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9280_2GHZ;
516 		ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9280_2GHZ;
517 		ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9280_2GHZ;
518 		ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9280_5GHZ;
519 		ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9280_5GHZ;
520 		ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9280_5GHZ;
521 	}
522 }
523 
ar9002_hw_antdiv_comb_conf_get(struct ath_hw * ah,struct ath_hw_antcomb_conf * antconf)524 static void ar9002_hw_antdiv_comb_conf_get(struct ath_hw *ah,
525 				   struct ath_hw_antcomb_conf *antconf)
526 {
527 	u32 regval;
528 
529 	regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
530 	antconf->main_lna_conf = (regval & AR_PHY_9285_ANT_DIV_MAIN_LNACONF) >>
531 				  AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S;
532 	antconf->alt_lna_conf = (regval & AR_PHY_9285_ANT_DIV_ALT_LNACONF) >>
533 				 AR_PHY_9285_ANT_DIV_ALT_LNACONF_S;
534 	antconf->fast_div_bias = (regval & AR_PHY_9285_FAST_DIV_BIAS) >>
535 				  AR_PHY_9285_FAST_DIV_BIAS_S;
536 	antconf->lna1_lna2_delta = -3;
537 	antconf->div_group = 0;
538 }
539 
ar9002_hw_antdiv_comb_conf_set(struct ath_hw * ah,struct ath_hw_antcomb_conf * antconf)540 static void ar9002_hw_antdiv_comb_conf_set(struct ath_hw *ah,
541 				   struct ath_hw_antcomb_conf *antconf)
542 {
543 	u32 regval;
544 
545 	regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
546 	regval &= ~(AR_PHY_9285_ANT_DIV_MAIN_LNACONF |
547 		    AR_PHY_9285_ANT_DIV_ALT_LNACONF |
548 		    AR_PHY_9285_FAST_DIV_BIAS);
549 	regval |= ((antconf->main_lna_conf << AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S)
550 		   & AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
551 	regval |= ((antconf->alt_lna_conf << AR_PHY_9285_ANT_DIV_ALT_LNACONF_S)
552 		   & AR_PHY_9285_ANT_DIV_ALT_LNACONF);
553 	regval |= ((antconf->fast_div_bias << AR_PHY_9285_FAST_DIV_BIAS_S)
554 		   & AR_PHY_9285_FAST_DIV_BIAS);
555 
556 	REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regval);
557 }
558 
ar9002_hw_attach_phy_ops(struct ath_hw * ah)559 void ar9002_hw_attach_phy_ops(struct ath_hw *ah)
560 {
561 	struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
562 	struct ath_hw_ops *ops = ath9k_hw_ops(ah);
563 
564 	priv_ops->set_rf_regs = NULL;
565 	priv_ops->rf_alloc_ext_banks = NULL;
566 	priv_ops->rf_free_ext_banks = NULL;
567 	priv_ops->rf_set_freq = ar9002_hw_set_channel;
568 	priv_ops->spur_mitigate_freq = ar9002_hw_spur_mitigate;
569 	priv_ops->olc_init = ar9002_olc_init;
570 	priv_ops->compute_pll_control = ar9002_hw_compute_pll_control;
571 	priv_ops->do_getnf = ar9002_hw_do_getnf;
572 
573 	ops->antdiv_comb_conf_get = ar9002_hw_antdiv_comb_conf_get;
574 	ops->antdiv_comb_conf_set = ar9002_hw_antdiv_comb_conf_set;
575 
576 	ar9002_hw_set_nf_limits(ah);
577 }
578