1 /* epic100.c: A SMC 83c170 EPIC/100 Fast Ethernet driver for Linux. */
2 /*
3 Written/copyright 1997-2001 by Donald Becker.
4
5 This software may be used and distributed according to the terms of
6 the GNU General Public License (GPL), incorporated herein by reference.
7 Drivers based on or derived from this code fall under the GPL and must
8 retain the authorship, copyright and license notice. This file is not
9 a complete program and may only be used when the entire operating
10 system is licensed under the GPL.
11
12 This driver is for the SMC83c170/175 "EPIC" series, as used on the
13 SMC EtherPower II 9432 PCI adapter, and several CardBus cards.
14
15 The author may be reached as becker@scyld.com, or C/O
16 Scyld Computing Corporation
17 410 Severn Ave., Suite 210
18 Annapolis MD 21403
19
20 Information and updates available at
21 http://www.scyld.com/network/epic100.html
22 [this link no longer provides anything useful -jgarzik]
23
24 ---------------------------------------------------------------------
25
26 */
27
28 #define DRV_NAME "epic100"
29 #define DRV_VERSION "2.1"
30 #define DRV_RELDATE "Sept 11, 2006"
31
32 /* The user-configurable values.
33 These may be modified when a driver module is loaded.*/
34
35 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
36
37 /* Used to pass the full-duplex flag, etc. */
38 #define MAX_UNITS 8 /* More are supported, limit only on options */
39 static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
40 static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
41
42 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
43 Setting to > 1518 effectively disables this feature. */
44 static int rx_copybreak;
45
46 /* Operational parameters that are set at compile time. */
47
48 /* Keep the ring sizes a power of two for operational efficiency.
49 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
50 Making the Tx ring too large decreases the effectiveness of channel
51 bonding and packet priority.
52 There are no ill effects from too-large receive rings. */
53 #define TX_RING_SIZE 256
54 #define TX_QUEUE_LEN 240 /* Limit ring entries actually used. */
55 #define RX_RING_SIZE 256
56 #define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct epic_tx_desc)
57 #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct epic_rx_desc)
58
59 /* Operational parameters that usually are not changed. */
60 /* Time in jiffies before concluding the transmitter is hung. */
61 #define TX_TIMEOUT (2*HZ)
62
63 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
64
65 /* Bytes transferred to chip before transmission starts. */
66 /* Initial threshold, increased on underflow, rounded down to 4 byte units. */
67 #define TX_FIFO_THRESH 256
68 #define RX_FIFO_THRESH 1 /* 0-3, 0==32, 64,96, or 3==128 bytes */
69
70 #include <linux/module.h>
71 #include <linux/kernel.h>
72 #include <linux/string.h>
73 #include <linux/timer.h>
74 #include <linux/errno.h>
75 #include <linux/ioport.h>
76 #include <linux/interrupt.h>
77 #include <linux/pci.h>
78 #include <linux/delay.h>
79 #include <linux/netdevice.h>
80 #include <linux/etherdevice.h>
81 #include <linux/skbuff.h>
82 #include <linux/init.h>
83 #include <linux/spinlock.h>
84 #include <linux/ethtool.h>
85 #include <linux/mii.h>
86 #include <linux/crc32.h>
87 #include <linux/bitops.h>
88 #include <asm/io.h>
89 #include <asm/uaccess.h>
90 #include <asm/byteorder.h>
91
92 /* These identify the driver base version and may not be removed. */
93 static char version[] __devinitdata =
94 DRV_NAME ".c:v1.11 1/7/2001 Written by Donald Becker <becker@scyld.com>\n";
95 static char version2[] __devinitdata =
96 " (unofficial 2.4.x kernel port, version " DRV_VERSION ", " DRV_RELDATE ")\n";
97
98 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
99 MODULE_DESCRIPTION("SMC 83c170 EPIC series Ethernet driver");
100 MODULE_LICENSE("GPL");
101
102 module_param(debug, int, 0);
103 module_param(rx_copybreak, int, 0);
104 module_param_array(options, int, NULL, 0);
105 module_param_array(full_duplex, int, NULL, 0);
106 MODULE_PARM_DESC(debug, "EPIC/100 debug level (0-5)");
107 MODULE_PARM_DESC(options, "EPIC/100: Bits 0-3: media type, bit 4: full duplex");
108 MODULE_PARM_DESC(rx_copybreak, "EPIC/100 copy breakpoint for copy-only-tiny-frames");
109 MODULE_PARM_DESC(full_duplex, "EPIC/100 full duplex setting(s) (1)");
110
111 /*
112 Theory of Operation
113
114 I. Board Compatibility
115
116 This device driver is designed for the SMC "EPIC/100", the SMC
117 single-chip Ethernet controllers for PCI. This chip is used on
118 the SMC EtherPower II boards.
119
120 II. Board-specific settings
121
122 PCI bus devices are configured by the system at boot time, so no jumpers
123 need to be set on the board. The system BIOS will assign the
124 PCI INTA signal to a (preferably otherwise unused) system IRQ line.
125 Note: Kernel versions earlier than 1.3.73 do not support shared PCI
126 interrupt lines.
127
128 III. Driver operation
129
130 IIIa. Ring buffers
131
132 IVb. References
133
134 http://www.smsc.com/media/Downloads_Public/discontinued/83c171.pdf
135 http://www.smsc.com/media/Downloads_Public/discontinued/83c175.pdf
136 http://scyld.com/expert/NWay.html
137 http://www.national.com/pf/DP/DP83840A.html
138
139 IVc. Errata
140
141 */
142
143
144 enum chip_capability_flags { MII_PWRDWN=1, TYPE2_INTR=2, NO_MII=4 };
145
146 #define EPIC_TOTAL_SIZE 0x100
147 #define USE_IO_OPS 1
148
149 typedef enum {
150 SMSC_83C170_0,
151 SMSC_83C170,
152 SMSC_83C175,
153 } chip_t;
154
155
156 struct epic_chip_info {
157 const char *name;
158 int drv_flags; /* Driver use, intended as capability flags. */
159 };
160
161
162 /* indexed by chip_t */
163 static const struct epic_chip_info pci_id_tbl[] = {
164 { "SMSC EPIC/100 83c170", TYPE2_INTR | NO_MII | MII_PWRDWN },
165 { "SMSC EPIC/100 83c170", TYPE2_INTR },
166 { "SMSC EPIC/C 83c175", TYPE2_INTR | MII_PWRDWN },
167 };
168
169
170 static DEFINE_PCI_DEVICE_TABLE(epic_pci_tbl) = {
171 { 0x10B8, 0x0005, 0x1092, 0x0AB4, 0, 0, SMSC_83C170_0 },
172 { 0x10B8, 0x0005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, SMSC_83C170 },
173 { 0x10B8, 0x0006, PCI_ANY_ID, PCI_ANY_ID,
174 PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, SMSC_83C175 },
175 { 0,}
176 };
177 MODULE_DEVICE_TABLE (pci, epic_pci_tbl);
178
179
180 #ifndef USE_IO_OPS
181 #undef inb
182 #undef inw
183 #undef inl
184 #undef outb
185 #undef outw
186 #undef outl
187 #define inb readb
188 #define inw readw
189 #define inl readl
190 #define outb writeb
191 #define outw writew
192 #define outl writel
193 #endif
194
195 /* Offsets to registers, using the (ugh) SMC names. */
196 enum epic_registers {
197 COMMAND=0, INTSTAT=4, INTMASK=8, GENCTL=0x0C, NVCTL=0x10, EECTL=0x14,
198 PCIBurstCnt=0x18,
199 TEST1=0x1C, CRCCNT=0x20, ALICNT=0x24, MPCNT=0x28, /* Rx error counters. */
200 MIICtrl=0x30, MIIData=0x34, MIICfg=0x38,
201 LAN0=64, /* MAC address. */
202 MC0=80, /* Multicast filter table. */
203 RxCtrl=96, TxCtrl=112, TxSTAT=0x74,
204 PRxCDAR=0x84, RxSTAT=0xA4, EarlyRx=0xB0, PTxCDAR=0xC4, TxThresh=0xDC,
205 };
206
207 /* Interrupt register bits, using my own meaningful names. */
208 enum IntrStatus {
209 TxIdle=0x40000, RxIdle=0x20000, IntrSummary=0x010000,
210 PCIBusErr170=0x7000, PCIBusErr175=0x1000, PhyEvent175=0x8000,
211 RxStarted=0x0800, RxEarlyWarn=0x0400, CntFull=0x0200, TxUnderrun=0x0100,
212 TxEmpty=0x0080, TxDone=0x0020, RxError=0x0010,
213 RxOverflow=0x0008, RxFull=0x0004, RxHeader=0x0002, RxDone=0x0001,
214 };
215 enum CommandBits {
216 StopRx=1, StartRx=2, TxQueued=4, RxQueued=8,
217 StopTxDMA=0x20, StopRxDMA=0x40, RestartTx=0x80,
218 };
219
220 #define EpicRemoved 0xffffffff /* Chip failed or removed (CardBus) */
221
222 #define EpicNapiEvent (TxEmpty | TxDone | \
223 RxDone | RxStarted | RxEarlyWarn | RxOverflow | RxFull)
224 #define EpicNormalEvent (0x0000ffff & ~EpicNapiEvent)
225
226 static const u16 media2miictl[16] = {
227 0, 0x0C00, 0x0C00, 0x2000, 0x0100, 0x2100, 0, 0,
228 0, 0, 0, 0, 0, 0, 0, 0 };
229
230 /*
231 * The EPIC100 Rx and Tx buffer descriptors. Note that these
232 * really ARE host-endian; it's not a misannotation. We tell
233 * the card to byteswap them internally on big-endian hosts -
234 * look for #ifdef __BIG_ENDIAN in epic_open().
235 */
236
237 struct epic_tx_desc {
238 u32 txstatus;
239 u32 bufaddr;
240 u32 buflength;
241 u32 next;
242 };
243
244 struct epic_rx_desc {
245 u32 rxstatus;
246 u32 bufaddr;
247 u32 buflength;
248 u32 next;
249 };
250
251 enum desc_status_bits {
252 DescOwn=0x8000,
253 };
254
255 #define PRIV_ALIGN 15 /* Required alignment mask */
256 struct epic_private {
257 struct epic_rx_desc *rx_ring;
258 struct epic_tx_desc *tx_ring;
259 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
260 struct sk_buff* tx_skbuff[TX_RING_SIZE];
261 /* The addresses of receive-in-place skbuffs. */
262 struct sk_buff* rx_skbuff[RX_RING_SIZE];
263
264 dma_addr_t tx_ring_dma;
265 dma_addr_t rx_ring_dma;
266
267 /* Ring pointers. */
268 spinlock_t lock; /* Group with Tx control cache line. */
269 spinlock_t napi_lock;
270 struct napi_struct napi;
271 unsigned int reschedule_in_poll;
272 unsigned int cur_tx, dirty_tx;
273
274 unsigned int cur_rx, dirty_rx;
275 u32 irq_mask;
276 unsigned int rx_buf_sz; /* Based on MTU+slack. */
277
278 struct pci_dev *pci_dev; /* PCI bus location. */
279 int chip_id, chip_flags;
280
281 struct timer_list timer; /* Media selection timer. */
282 int tx_threshold;
283 unsigned char mc_filter[8];
284 signed char phys[4]; /* MII device addresses. */
285 u16 advertising; /* NWay media advertisement */
286 int mii_phy_cnt;
287 struct mii_if_info mii;
288 unsigned int tx_full:1; /* The Tx queue is full. */
289 unsigned int default_port:4; /* Last dev->if_port value. */
290 };
291
292 static int epic_open(struct net_device *dev);
293 static int read_eeprom(long ioaddr, int location);
294 static int mdio_read(struct net_device *dev, int phy_id, int location);
295 static void mdio_write(struct net_device *dev, int phy_id, int loc, int val);
296 static void epic_restart(struct net_device *dev);
297 static void epic_timer(unsigned long data);
298 static void epic_tx_timeout(struct net_device *dev);
299 static void epic_init_ring(struct net_device *dev);
300 static netdev_tx_t epic_start_xmit(struct sk_buff *skb,
301 struct net_device *dev);
302 static int epic_rx(struct net_device *dev, int budget);
303 static int epic_poll(struct napi_struct *napi, int budget);
304 static irqreturn_t epic_interrupt(int irq, void *dev_instance);
305 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
306 static const struct ethtool_ops netdev_ethtool_ops;
307 static int epic_close(struct net_device *dev);
308 static struct net_device_stats *epic_get_stats(struct net_device *dev);
309 static void set_rx_mode(struct net_device *dev);
310
311 static const struct net_device_ops epic_netdev_ops = {
312 .ndo_open = epic_open,
313 .ndo_stop = epic_close,
314 .ndo_start_xmit = epic_start_xmit,
315 .ndo_tx_timeout = epic_tx_timeout,
316 .ndo_get_stats = epic_get_stats,
317 .ndo_set_rx_mode = set_rx_mode,
318 .ndo_do_ioctl = netdev_ioctl,
319 .ndo_change_mtu = eth_change_mtu,
320 .ndo_set_mac_address = eth_mac_addr,
321 .ndo_validate_addr = eth_validate_addr,
322 };
323
epic_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)324 static int __devinit epic_init_one (struct pci_dev *pdev,
325 const struct pci_device_id *ent)
326 {
327 static int card_idx = -1;
328 long ioaddr;
329 int chip_idx = (int) ent->driver_data;
330 int irq;
331 struct net_device *dev;
332 struct epic_private *ep;
333 int i, ret, option = 0, duplex = 0;
334 void *ring_space;
335 dma_addr_t ring_dma;
336
337 /* when built into the kernel, we only print version if device is found */
338 #ifndef MODULE
339 static int printed_version;
340 if (!printed_version++)
341 printk(KERN_INFO "%s%s", version, version2);
342 #endif
343
344 card_idx++;
345
346 ret = pci_enable_device(pdev);
347 if (ret)
348 goto out;
349 irq = pdev->irq;
350
351 if (pci_resource_len(pdev, 0) < EPIC_TOTAL_SIZE) {
352 dev_err(&pdev->dev, "no PCI region space\n");
353 ret = -ENODEV;
354 goto err_out_disable;
355 }
356
357 pci_set_master(pdev);
358
359 ret = pci_request_regions(pdev, DRV_NAME);
360 if (ret < 0)
361 goto err_out_disable;
362
363 ret = -ENOMEM;
364
365 dev = alloc_etherdev(sizeof (*ep));
366 if (!dev)
367 goto err_out_free_res;
368
369 SET_NETDEV_DEV(dev, &pdev->dev);
370
371 #ifdef USE_IO_OPS
372 ioaddr = pci_resource_start (pdev, 0);
373 #else
374 ioaddr = pci_resource_start (pdev, 1);
375 ioaddr = (long) pci_ioremap_bar(pdev, 1);
376 if (!ioaddr) {
377 dev_err(&pdev->dev, "ioremap failed\n");
378 goto err_out_free_netdev;
379 }
380 #endif
381
382 pci_set_drvdata(pdev, dev);
383 ep = netdev_priv(dev);
384 ep->mii.dev = dev;
385 ep->mii.mdio_read = mdio_read;
386 ep->mii.mdio_write = mdio_write;
387 ep->mii.phy_id_mask = 0x1f;
388 ep->mii.reg_num_mask = 0x1f;
389
390 ring_space = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
391 if (!ring_space)
392 goto err_out_iounmap;
393 ep->tx_ring = ring_space;
394 ep->tx_ring_dma = ring_dma;
395
396 ring_space = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
397 if (!ring_space)
398 goto err_out_unmap_tx;
399 ep->rx_ring = ring_space;
400 ep->rx_ring_dma = ring_dma;
401
402 if (dev->mem_start) {
403 option = dev->mem_start;
404 duplex = (dev->mem_start & 16) ? 1 : 0;
405 } else if (card_idx >= 0 && card_idx < MAX_UNITS) {
406 if (options[card_idx] >= 0)
407 option = options[card_idx];
408 if (full_duplex[card_idx] >= 0)
409 duplex = full_duplex[card_idx];
410 }
411
412 dev->base_addr = ioaddr;
413 dev->irq = irq;
414
415 spin_lock_init(&ep->lock);
416 spin_lock_init(&ep->napi_lock);
417 ep->reschedule_in_poll = 0;
418
419 /* Bring the chip out of low-power mode. */
420 outl(0x4200, ioaddr + GENCTL);
421 /* Magic?! If we don't set this bit the MII interface won't work. */
422 /* This magic is documented in SMSC app note 7.15 */
423 for (i = 16; i > 0; i--)
424 outl(0x0008, ioaddr + TEST1);
425
426 /* Turn on the MII transceiver. */
427 outl(0x12, ioaddr + MIICfg);
428 if (chip_idx == 1)
429 outl((inl(ioaddr + NVCTL) & ~0x003C) | 0x4800, ioaddr + NVCTL);
430 outl(0x0200, ioaddr + GENCTL);
431
432 /* Note: the '175 does not have a serial EEPROM. */
433 for (i = 0; i < 3; i++)
434 ((__le16 *)dev->dev_addr)[i] = cpu_to_le16(inw(ioaddr + LAN0 + i*4));
435
436 if (debug > 2) {
437 dev_printk(KERN_DEBUG, &pdev->dev, "EEPROM contents:\n");
438 for (i = 0; i < 64; i++)
439 printk(" %4.4x%s", read_eeprom(ioaddr, i),
440 i % 16 == 15 ? "\n" : "");
441 }
442
443 ep->pci_dev = pdev;
444 ep->chip_id = chip_idx;
445 ep->chip_flags = pci_id_tbl[chip_idx].drv_flags;
446 ep->irq_mask =
447 (ep->chip_flags & TYPE2_INTR ? PCIBusErr175 : PCIBusErr170)
448 | CntFull | TxUnderrun | EpicNapiEvent;
449
450 /* Find the connected MII xcvrs.
451 Doing this in open() would allow detecting external xcvrs later, but
452 takes much time and no cards have external MII. */
453 {
454 int phy, phy_idx = 0;
455 for (phy = 1; phy < 32 && phy_idx < sizeof(ep->phys); phy++) {
456 int mii_status = mdio_read(dev, phy, MII_BMSR);
457 if (mii_status != 0xffff && mii_status != 0x0000) {
458 ep->phys[phy_idx++] = phy;
459 dev_info(&pdev->dev,
460 "MII transceiver #%d control "
461 "%4.4x status %4.4x.\n",
462 phy, mdio_read(dev, phy, 0), mii_status);
463 }
464 }
465 ep->mii_phy_cnt = phy_idx;
466 if (phy_idx != 0) {
467 phy = ep->phys[0];
468 ep->mii.advertising = mdio_read(dev, phy, MII_ADVERTISE);
469 dev_info(&pdev->dev,
470 "Autonegotiation advertising %4.4x link "
471 "partner %4.4x.\n",
472 ep->mii.advertising, mdio_read(dev, phy, 5));
473 } else if ( ! (ep->chip_flags & NO_MII)) {
474 dev_warn(&pdev->dev,
475 "***WARNING***: No MII transceiver found!\n");
476 /* Use the known PHY address of the EPII. */
477 ep->phys[0] = 3;
478 }
479 ep->mii.phy_id = ep->phys[0];
480 }
481
482 /* Turn off the MII xcvr (175 only!), leave the chip in low-power mode. */
483 if (ep->chip_flags & MII_PWRDWN)
484 outl(inl(ioaddr + NVCTL) & ~0x483C, ioaddr + NVCTL);
485 outl(0x0008, ioaddr + GENCTL);
486
487 /* The lower four bits are the media type. */
488 if (duplex) {
489 ep->mii.force_media = ep->mii.full_duplex = 1;
490 dev_info(&pdev->dev, "Forced full duplex requested.\n");
491 }
492 dev->if_port = ep->default_port = option;
493
494 /* The Epic-specific entries in the device structure. */
495 dev->netdev_ops = &epic_netdev_ops;
496 dev->ethtool_ops = &netdev_ethtool_ops;
497 dev->watchdog_timeo = TX_TIMEOUT;
498 netif_napi_add(dev, &ep->napi, epic_poll, 64);
499
500 ret = register_netdev(dev);
501 if (ret < 0)
502 goto err_out_unmap_rx;
503
504 printk(KERN_INFO "%s: %s at %#lx, IRQ %d, %pM\n",
505 dev->name, pci_id_tbl[chip_idx].name, ioaddr, dev->irq,
506 dev->dev_addr);
507
508 out:
509 return ret;
510
511 err_out_unmap_rx:
512 pci_free_consistent(pdev, RX_TOTAL_SIZE, ep->rx_ring, ep->rx_ring_dma);
513 err_out_unmap_tx:
514 pci_free_consistent(pdev, TX_TOTAL_SIZE, ep->tx_ring, ep->tx_ring_dma);
515 err_out_iounmap:
516 #ifndef USE_IO_OPS
517 iounmap(ioaddr);
518 err_out_free_netdev:
519 #endif
520 free_netdev(dev);
521 err_out_free_res:
522 pci_release_regions(pdev);
523 err_out_disable:
524 pci_disable_device(pdev);
525 goto out;
526 }
527
528 /* Serial EEPROM section. */
529
530 /* EEPROM_Ctrl bits. */
531 #define EE_SHIFT_CLK 0x04 /* EEPROM shift clock. */
532 #define EE_CS 0x02 /* EEPROM chip select. */
533 #define EE_DATA_WRITE 0x08 /* EEPROM chip data in. */
534 #define EE_WRITE_0 0x01
535 #define EE_WRITE_1 0x09
536 #define EE_DATA_READ 0x10 /* EEPROM chip data out. */
537 #define EE_ENB (0x0001 | EE_CS)
538
539 /* Delay between EEPROM clock transitions.
540 This serves to flush the operation to the PCI bus.
541 */
542
543 #define eeprom_delay() inl(ee_addr)
544
545 /* The EEPROM commands include the alway-set leading bit. */
546 #define EE_WRITE_CMD (5 << 6)
547 #define EE_READ64_CMD (6 << 6)
548 #define EE_READ256_CMD (6 << 8)
549 #define EE_ERASE_CMD (7 << 6)
550
epic_disable_int(struct net_device * dev,struct epic_private * ep)551 static void epic_disable_int(struct net_device *dev, struct epic_private *ep)
552 {
553 long ioaddr = dev->base_addr;
554
555 outl(0x00000000, ioaddr + INTMASK);
556 }
557
__epic_pci_commit(long ioaddr)558 static inline void __epic_pci_commit(long ioaddr)
559 {
560 #ifndef USE_IO_OPS
561 inl(ioaddr + INTMASK);
562 #endif
563 }
564
epic_napi_irq_off(struct net_device * dev,struct epic_private * ep)565 static inline void epic_napi_irq_off(struct net_device *dev,
566 struct epic_private *ep)
567 {
568 long ioaddr = dev->base_addr;
569
570 outl(ep->irq_mask & ~EpicNapiEvent, ioaddr + INTMASK);
571 __epic_pci_commit(ioaddr);
572 }
573
epic_napi_irq_on(struct net_device * dev,struct epic_private * ep)574 static inline void epic_napi_irq_on(struct net_device *dev,
575 struct epic_private *ep)
576 {
577 long ioaddr = dev->base_addr;
578
579 /* No need to commit possible posted write */
580 outl(ep->irq_mask | EpicNapiEvent, ioaddr + INTMASK);
581 }
582
read_eeprom(long ioaddr,int location)583 static int __devinit read_eeprom(long ioaddr, int location)
584 {
585 int i;
586 int retval = 0;
587 long ee_addr = ioaddr + EECTL;
588 int read_cmd = location |
589 (inl(ee_addr) & 0x40 ? EE_READ64_CMD : EE_READ256_CMD);
590
591 outl(EE_ENB & ~EE_CS, ee_addr);
592 outl(EE_ENB, ee_addr);
593
594 /* Shift the read command bits out. */
595 for (i = 12; i >= 0; i--) {
596 short dataval = (read_cmd & (1 << i)) ? EE_WRITE_1 : EE_WRITE_0;
597 outl(EE_ENB | dataval, ee_addr);
598 eeprom_delay();
599 outl(EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
600 eeprom_delay();
601 }
602 outl(EE_ENB, ee_addr);
603
604 for (i = 16; i > 0; i--) {
605 outl(EE_ENB | EE_SHIFT_CLK, ee_addr);
606 eeprom_delay();
607 retval = (retval << 1) | ((inl(ee_addr) & EE_DATA_READ) ? 1 : 0);
608 outl(EE_ENB, ee_addr);
609 eeprom_delay();
610 }
611
612 /* Terminate the EEPROM access. */
613 outl(EE_ENB & ~EE_CS, ee_addr);
614 return retval;
615 }
616
617 #define MII_READOP 1
618 #define MII_WRITEOP 2
mdio_read(struct net_device * dev,int phy_id,int location)619 static int mdio_read(struct net_device *dev, int phy_id, int location)
620 {
621 long ioaddr = dev->base_addr;
622 int read_cmd = (phy_id << 9) | (location << 4) | MII_READOP;
623 int i;
624
625 outl(read_cmd, ioaddr + MIICtrl);
626 /* Typical operation takes 25 loops. */
627 for (i = 400; i > 0; i--) {
628 barrier();
629 if ((inl(ioaddr + MIICtrl) & MII_READOP) == 0) {
630 /* Work around read failure bug. */
631 if (phy_id == 1 && location < 6 &&
632 inw(ioaddr + MIIData) == 0xffff) {
633 outl(read_cmd, ioaddr + MIICtrl);
634 continue;
635 }
636 return inw(ioaddr + MIIData);
637 }
638 }
639 return 0xffff;
640 }
641
mdio_write(struct net_device * dev,int phy_id,int loc,int value)642 static void mdio_write(struct net_device *dev, int phy_id, int loc, int value)
643 {
644 long ioaddr = dev->base_addr;
645 int i;
646
647 outw(value, ioaddr + MIIData);
648 outl((phy_id << 9) | (loc << 4) | MII_WRITEOP, ioaddr + MIICtrl);
649 for (i = 10000; i > 0; i--) {
650 barrier();
651 if ((inl(ioaddr + MIICtrl) & MII_WRITEOP) == 0)
652 break;
653 }
654 }
655
656
epic_open(struct net_device * dev)657 static int epic_open(struct net_device *dev)
658 {
659 struct epic_private *ep = netdev_priv(dev);
660 long ioaddr = dev->base_addr;
661 int i;
662 int retval;
663
664 /* Soft reset the chip. */
665 outl(0x4001, ioaddr + GENCTL);
666
667 napi_enable(&ep->napi);
668 if ((retval = request_irq(dev->irq, epic_interrupt, IRQF_SHARED, dev->name, dev))) {
669 napi_disable(&ep->napi);
670 return retval;
671 }
672
673 epic_init_ring(dev);
674
675 outl(0x4000, ioaddr + GENCTL);
676 /* This magic is documented in SMSC app note 7.15 */
677 for (i = 16; i > 0; i--)
678 outl(0x0008, ioaddr + TEST1);
679
680 /* Pull the chip out of low-power mode, enable interrupts, and set for
681 PCI read multiple. The MIIcfg setting and strange write order are
682 required by the details of which bits are reset and the transceiver
683 wiring on the Ositech CardBus card.
684 */
685 #if 0
686 outl(dev->if_port == 1 ? 0x13 : 0x12, ioaddr + MIICfg);
687 #endif
688 if (ep->chip_flags & MII_PWRDWN)
689 outl((inl(ioaddr + NVCTL) & ~0x003C) | 0x4800, ioaddr + NVCTL);
690
691 /* Tell the chip to byteswap descriptors on big-endian hosts */
692 #ifdef __BIG_ENDIAN
693 outl(0x4432 | (RX_FIFO_THRESH<<8), ioaddr + GENCTL);
694 inl(ioaddr + GENCTL);
695 outl(0x0432 | (RX_FIFO_THRESH<<8), ioaddr + GENCTL);
696 #else
697 outl(0x4412 | (RX_FIFO_THRESH<<8), ioaddr + GENCTL);
698 inl(ioaddr + GENCTL);
699 outl(0x0412 | (RX_FIFO_THRESH<<8), ioaddr + GENCTL);
700 #endif
701
702 udelay(20); /* Looks like EPII needs that if you want reliable RX init. FIXME: pci posting bug? */
703
704 for (i = 0; i < 3; i++)
705 outl(le16_to_cpu(((__le16*)dev->dev_addr)[i]), ioaddr + LAN0 + i*4);
706
707 ep->tx_threshold = TX_FIFO_THRESH;
708 outl(ep->tx_threshold, ioaddr + TxThresh);
709
710 if (media2miictl[dev->if_port & 15]) {
711 if (ep->mii_phy_cnt)
712 mdio_write(dev, ep->phys[0], MII_BMCR, media2miictl[dev->if_port&15]);
713 if (dev->if_port == 1) {
714 if (debug > 1)
715 printk(KERN_INFO "%s: Using the 10base2 transceiver, MII "
716 "status %4.4x.\n",
717 dev->name, mdio_read(dev, ep->phys[0], MII_BMSR));
718 }
719 } else {
720 int mii_lpa = mdio_read(dev, ep->phys[0], MII_LPA);
721 if (mii_lpa != 0xffff) {
722 if ((mii_lpa & LPA_100FULL) || (mii_lpa & 0x01C0) == LPA_10FULL)
723 ep->mii.full_duplex = 1;
724 else if (! (mii_lpa & LPA_LPACK))
725 mdio_write(dev, ep->phys[0], MII_BMCR, BMCR_ANENABLE|BMCR_ANRESTART);
726 if (debug > 1)
727 printk(KERN_INFO "%s: Setting %s-duplex based on MII xcvr %d"
728 " register read of %4.4x.\n", dev->name,
729 ep->mii.full_duplex ? "full" : "half",
730 ep->phys[0], mii_lpa);
731 }
732 }
733
734 outl(ep->mii.full_duplex ? 0x7F : 0x79, ioaddr + TxCtrl);
735 outl(ep->rx_ring_dma, ioaddr + PRxCDAR);
736 outl(ep->tx_ring_dma, ioaddr + PTxCDAR);
737
738 /* Start the chip's Rx process. */
739 set_rx_mode(dev);
740 outl(StartRx | RxQueued, ioaddr + COMMAND);
741
742 netif_start_queue(dev);
743
744 /* Enable interrupts by setting the interrupt mask. */
745 outl((ep->chip_flags & TYPE2_INTR ? PCIBusErr175 : PCIBusErr170)
746 | CntFull | TxUnderrun
747 | RxError | RxHeader | EpicNapiEvent, ioaddr + INTMASK);
748
749 if (debug > 1)
750 printk(KERN_DEBUG "%s: epic_open() ioaddr %lx IRQ %d status %4.4x "
751 "%s-duplex.\n",
752 dev->name, ioaddr, dev->irq, (int)inl(ioaddr + GENCTL),
753 ep->mii.full_duplex ? "full" : "half");
754
755 /* Set the timer to switch to check for link beat and perhaps switch
756 to an alternate media type. */
757 init_timer(&ep->timer);
758 ep->timer.expires = jiffies + 3*HZ;
759 ep->timer.data = (unsigned long)dev;
760 ep->timer.function = epic_timer; /* timer handler */
761 add_timer(&ep->timer);
762
763 return 0;
764 }
765
766 /* Reset the chip to recover from a PCI transaction error.
767 This may occur at interrupt time. */
epic_pause(struct net_device * dev)768 static void epic_pause(struct net_device *dev)
769 {
770 long ioaddr = dev->base_addr;
771
772 netif_stop_queue (dev);
773
774 /* Disable interrupts by clearing the interrupt mask. */
775 outl(0x00000000, ioaddr + INTMASK);
776 /* Stop the chip's Tx and Rx DMA processes. */
777 outw(StopRx | StopTxDMA | StopRxDMA, ioaddr + COMMAND);
778
779 /* Update the error counts. */
780 if (inw(ioaddr + COMMAND) != 0xffff) {
781 dev->stats.rx_missed_errors += inb(ioaddr + MPCNT);
782 dev->stats.rx_frame_errors += inb(ioaddr + ALICNT);
783 dev->stats.rx_crc_errors += inb(ioaddr + CRCCNT);
784 }
785
786 /* Remove the packets on the Rx queue. */
787 epic_rx(dev, RX_RING_SIZE);
788 }
789
epic_restart(struct net_device * dev)790 static void epic_restart(struct net_device *dev)
791 {
792 long ioaddr = dev->base_addr;
793 struct epic_private *ep = netdev_priv(dev);
794 int i;
795
796 /* Soft reset the chip. */
797 outl(0x4001, ioaddr + GENCTL);
798
799 printk(KERN_DEBUG "%s: Restarting the EPIC chip, Rx %d/%d Tx %d/%d.\n",
800 dev->name, ep->cur_rx, ep->dirty_rx, ep->dirty_tx, ep->cur_tx);
801 udelay(1);
802
803 /* This magic is documented in SMSC app note 7.15 */
804 for (i = 16; i > 0; i--)
805 outl(0x0008, ioaddr + TEST1);
806
807 #ifdef __BIG_ENDIAN
808 outl(0x0432 | (RX_FIFO_THRESH<<8), ioaddr + GENCTL);
809 #else
810 outl(0x0412 | (RX_FIFO_THRESH<<8), ioaddr + GENCTL);
811 #endif
812 outl(dev->if_port == 1 ? 0x13 : 0x12, ioaddr + MIICfg);
813 if (ep->chip_flags & MII_PWRDWN)
814 outl((inl(ioaddr + NVCTL) & ~0x003C) | 0x4800, ioaddr + NVCTL);
815
816 for (i = 0; i < 3; i++)
817 outl(le16_to_cpu(((__le16*)dev->dev_addr)[i]), ioaddr + LAN0 + i*4);
818
819 ep->tx_threshold = TX_FIFO_THRESH;
820 outl(ep->tx_threshold, ioaddr + TxThresh);
821 outl(ep->mii.full_duplex ? 0x7F : 0x79, ioaddr + TxCtrl);
822 outl(ep->rx_ring_dma + (ep->cur_rx%RX_RING_SIZE)*
823 sizeof(struct epic_rx_desc), ioaddr + PRxCDAR);
824 outl(ep->tx_ring_dma + (ep->dirty_tx%TX_RING_SIZE)*
825 sizeof(struct epic_tx_desc), ioaddr + PTxCDAR);
826
827 /* Start the chip's Rx process. */
828 set_rx_mode(dev);
829 outl(StartRx | RxQueued, ioaddr + COMMAND);
830
831 /* Enable interrupts by setting the interrupt mask. */
832 outl((ep->chip_flags & TYPE2_INTR ? PCIBusErr175 : PCIBusErr170)
833 | CntFull | TxUnderrun
834 | RxError | RxHeader | EpicNapiEvent, ioaddr + INTMASK);
835
836 printk(KERN_DEBUG "%s: epic_restart() done, cmd status %4.4x, ctl %4.4x"
837 " interrupt %4.4x.\n",
838 dev->name, (int)inl(ioaddr + COMMAND), (int)inl(ioaddr + GENCTL),
839 (int)inl(ioaddr + INTSTAT));
840 }
841
check_media(struct net_device * dev)842 static void check_media(struct net_device *dev)
843 {
844 struct epic_private *ep = netdev_priv(dev);
845 long ioaddr = dev->base_addr;
846 int mii_lpa = ep->mii_phy_cnt ? mdio_read(dev, ep->phys[0], MII_LPA) : 0;
847 int negotiated = mii_lpa & ep->mii.advertising;
848 int duplex = (negotiated & 0x0100) || (negotiated & 0x01C0) == 0x0040;
849
850 if (ep->mii.force_media)
851 return;
852 if (mii_lpa == 0xffff) /* Bogus read */
853 return;
854 if (ep->mii.full_duplex != duplex) {
855 ep->mii.full_duplex = duplex;
856 printk(KERN_INFO "%s: Setting %s-duplex based on MII #%d link"
857 " partner capability of %4.4x.\n", dev->name,
858 ep->mii.full_duplex ? "full" : "half", ep->phys[0], mii_lpa);
859 outl(ep->mii.full_duplex ? 0x7F : 0x79, ioaddr + TxCtrl);
860 }
861 }
862
epic_timer(unsigned long data)863 static void epic_timer(unsigned long data)
864 {
865 struct net_device *dev = (struct net_device *)data;
866 struct epic_private *ep = netdev_priv(dev);
867 long ioaddr = dev->base_addr;
868 int next_tick = 5*HZ;
869
870 if (debug > 3) {
871 printk(KERN_DEBUG "%s: Media monitor tick, Tx status %8.8x.\n",
872 dev->name, (int)inl(ioaddr + TxSTAT));
873 printk(KERN_DEBUG "%s: Other registers are IntMask %4.4x "
874 "IntStatus %4.4x RxStatus %4.4x.\n",
875 dev->name, (int)inl(ioaddr + INTMASK),
876 (int)inl(ioaddr + INTSTAT), (int)inl(ioaddr + RxSTAT));
877 }
878
879 check_media(dev);
880
881 ep->timer.expires = jiffies + next_tick;
882 add_timer(&ep->timer);
883 }
884
epic_tx_timeout(struct net_device * dev)885 static void epic_tx_timeout(struct net_device *dev)
886 {
887 struct epic_private *ep = netdev_priv(dev);
888 long ioaddr = dev->base_addr;
889
890 if (debug > 0) {
891 printk(KERN_WARNING "%s: Transmit timeout using MII device, "
892 "Tx status %4.4x.\n",
893 dev->name, (int)inw(ioaddr + TxSTAT));
894 if (debug > 1) {
895 printk(KERN_DEBUG "%s: Tx indices: dirty_tx %d, cur_tx %d.\n",
896 dev->name, ep->dirty_tx, ep->cur_tx);
897 }
898 }
899 if (inw(ioaddr + TxSTAT) & 0x10) { /* Tx FIFO underflow. */
900 dev->stats.tx_fifo_errors++;
901 outl(RestartTx, ioaddr + COMMAND);
902 } else {
903 epic_restart(dev);
904 outl(TxQueued, dev->base_addr + COMMAND);
905 }
906
907 dev->trans_start = jiffies; /* prevent tx timeout */
908 dev->stats.tx_errors++;
909 if (!ep->tx_full)
910 netif_wake_queue(dev);
911 }
912
913 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
epic_init_ring(struct net_device * dev)914 static void epic_init_ring(struct net_device *dev)
915 {
916 struct epic_private *ep = netdev_priv(dev);
917 int i;
918
919 ep->tx_full = 0;
920 ep->dirty_tx = ep->cur_tx = 0;
921 ep->cur_rx = ep->dirty_rx = 0;
922 ep->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
923
924 /* Initialize all Rx descriptors. */
925 for (i = 0; i < RX_RING_SIZE; i++) {
926 ep->rx_ring[i].rxstatus = 0;
927 ep->rx_ring[i].buflength = ep->rx_buf_sz;
928 ep->rx_ring[i].next = ep->rx_ring_dma +
929 (i+1)*sizeof(struct epic_rx_desc);
930 ep->rx_skbuff[i] = NULL;
931 }
932 /* Mark the last entry as wrapping the ring. */
933 ep->rx_ring[i-1].next = ep->rx_ring_dma;
934
935 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
936 for (i = 0; i < RX_RING_SIZE; i++) {
937 struct sk_buff *skb = netdev_alloc_skb(dev, ep->rx_buf_sz + 2);
938 ep->rx_skbuff[i] = skb;
939 if (skb == NULL)
940 break;
941 skb_reserve(skb, 2); /* 16 byte align the IP header. */
942 ep->rx_ring[i].bufaddr = pci_map_single(ep->pci_dev,
943 skb->data, ep->rx_buf_sz, PCI_DMA_FROMDEVICE);
944 ep->rx_ring[i].rxstatus = DescOwn;
945 }
946 ep->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
947
948 /* The Tx buffer descriptor is filled in as needed, but we
949 do need to clear the ownership bit. */
950 for (i = 0; i < TX_RING_SIZE; i++) {
951 ep->tx_skbuff[i] = NULL;
952 ep->tx_ring[i].txstatus = 0x0000;
953 ep->tx_ring[i].next = ep->tx_ring_dma +
954 (i+1)*sizeof(struct epic_tx_desc);
955 }
956 ep->tx_ring[i-1].next = ep->tx_ring_dma;
957 }
958
epic_start_xmit(struct sk_buff * skb,struct net_device * dev)959 static netdev_tx_t epic_start_xmit(struct sk_buff *skb, struct net_device *dev)
960 {
961 struct epic_private *ep = netdev_priv(dev);
962 int entry, free_count;
963 u32 ctrl_word;
964 unsigned long flags;
965
966 if (skb_padto(skb, ETH_ZLEN))
967 return NETDEV_TX_OK;
968
969 /* Caution: the write order is important here, set the field with the
970 "ownership" bit last. */
971
972 /* Calculate the next Tx descriptor entry. */
973 spin_lock_irqsave(&ep->lock, flags);
974 free_count = ep->cur_tx - ep->dirty_tx;
975 entry = ep->cur_tx % TX_RING_SIZE;
976
977 ep->tx_skbuff[entry] = skb;
978 ep->tx_ring[entry].bufaddr = pci_map_single(ep->pci_dev, skb->data,
979 skb->len, PCI_DMA_TODEVICE);
980 if (free_count < TX_QUEUE_LEN/2) {/* Typical path */
981 ctrl_word = 0x100000; /* No interrupt */
982 } else if (free_count == TX_QUEUE_LEN/2) {
983 ctrl_word = 0x140000; /* Tx-done intr. */
984 } else if (free_count < TX_QUEUE_LEN - 1) {
985 ctrl_word = 0x100000; /* No Tx-done intr. */
986 } else {
987 /* Leave room for an additional entry. */
988 ctrl_word = 0x140000; /* Tx-done intr. */
989 ep->tx_full = 1;
990 }
991 ep->tx_ring[entry].buflength = ctrl_word | skb->len;
992 ep->tx_ring[entry].txstatus =
993 ((skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN) << 16)
994 | DescOwn;
995
996 ep->cur_tx++;
997 if (ep->tx_full)
998 netif_stop_queue(dev);
999
1000 spin_unlock_irqrestore(&ep->lock, flags);
1001 /* Trigger an immediate transmit demand. */
1002 outl(TxQueued, dev->base_addr + COMMAND);
1003
1004 if (debug > 4)
1005 printk(KERN_DEBUG "%s: Queued Tx packet size %d to slot %d, "
1006 "flag %2.2x Tx status %8.8x.\n",
1007 dev->name, (int)skb->len, entry, ctrl_word,
1008 (int)inl(dev->base_addr + TxSTAT));
1009
1010 return NETDEV_TX_OK;
1011 }
1012
epic_tx_error(struct net_device * dev,struct epic_private * ep,int status)1013 static void epic_tx_error(struct net_device *dev, struct epic_private *ep,
1014 int status)
1015 {
1016 struct net_device_stats *stats = &dev->stats;
1017
1018 #ifndef final_version
1019 /* There was an major error, log it. */
1020 if (debug > 1)
1021 printk(KERN_DEBUG "%s: Transmit error, Tx status %8.8x.\n",
1022 dev->name, status);
1023 #endif
1024 stats->tx_errors++;
1025 if (status & 0x1050)
1026 stats->tx_aborted_errors++;
1027 if (status & 0x0008)
1028 stats->tx_carrier_errors++;
1029 if (status & 0x0040)
1030 stats->tx_window_errors++;
1031 if (status & 0x0010)
1032 stats->tx_fifo_errors++;
1033 }
1034
epic_tx(struct net_device * dev,struct epic_private * ep)1035 static void epic_tx(struct net_device *dev, struct epic_private *ep)
1036 {
1037 unsigned int dirty_tx, cur_tx;
1038
1039 /*
1040 * Note: if this lock becomes a problem we can narrow the locked
1041 * region at the cost of occasionally grabbing the lock more times.
1042 */
1043 cur_tx = ep->cur_tx;
1044 for (dirty_tx = ep->dirty_tx; cur_tx - dirty_tx > 0; dirty_tx++) {
1045 struct sk_buff *skb;
1046 int entry = dirty_tx % TX_RING_SIZE;
1047 int txstatus = ep->tx_ring[entry].txstatus;
1048
1049 if (txstatus & DescOwn)
1050 break; /* It still hasn't been Txed */
1051
1052 if (likely(txstatus & 0x0001)) {
1053 dev->stats.collisions += (txstatus >> 8) & 15;
1054 dev->stats.tx_packets++;
1055 dev->stats.tx_bytes += ep->tx_skbuff[entry]->len;
1056 } else
1057 epic_tx_error(dev, ep, txstatus);
1058
1059 /* Free the original skb. */
1060 skb = ep->tx_skbuff[entry];
1061 pci_unmap_single(ep->pci_dev, ep->tx_ring[entry].bufaddr,
1062 skb->len, PCI_DMA_TODEVICE);
1063 dev_kfree_skb_irq(skb);
1064 ep->tx_skbuff[entry] = NULL;
1065 }
1066
1067 #ifndef final_version
1068 if (cur_tx - dirty_tx > TX_RING_SIZE) {
1069 printk(KERN_WARNING
1070 "%s: Out-of-sync dirty pointer, %d vs. %d, full=%d.\n",
1071 dev->name, dirty_tx, cur_tx, ep->tx_full);
1072 dirty_tx += TX_RING_SIZE;
1073 }
1074 #endif
1075 ep->dirty_tx = dirty_tx;
1076 if (ep->tx_full && cur_tx - dirty_tx < TX_QUEUE_LEN - 4) {
1077 /* The ring is no longer full, allow new TX entries. */
1078 ep->tx_full = 0;
1079 netif_wake_queue(dev);
1080 }
1081 }
1082
1083 /* The interrupt handler does all of the Rx thread work and cleans up
1084 after the Tx thread. */
epic_interrupt(int irq,void * dev_instance)1085 static irqreturn_t epic_interrupt(int irq, void *dev_instance)
1086 {
1087 struct net_device *dev = dev_instance;
1088 struct epic_private *ep = netdev_priv(dev);
1089 long ioaddr = dev->base_addr;
1090 unsigned int handled = 0;
1091 int status;
1092
1093 status = inl(ioaddr + INTSTAT);
1094 /* Acknowledge all of the current interrupt sources ASAP. */
1095 outl(status & EpicNormalEvent, ioaddr + INTSTAT);
1096
1097 if (debug > 4) {
1098 printk(KERN_DEBUG "%s: Interrupt, status=%#8.8x new "
1099 "intstat=%#8.8x.\n", dev->name, status,
1100 (int)inl(ioaddr + INTSTAT));
1101 }
1102
1103 if ((status & IntrSummary) == 0)
1104 goto out;
1105
1106 handled = 1;
1107
1108 if ((status & EpicNapiEvent) && !ep->reschedule_in_poll) {
1109 spin_lock(&ep->napi_lock);
1110 if (napi_schedule_prep(&ep->napi)) {
1111 epic_napi_irq_off(dev, ep);
1112 __napi_schedule(&ep->napi);
1113 } else
1114 ep->reschedule_in_poll++;
1115 spin_unlock(&ep->napi_lock);
1116 }
1117 status &= ~EpicNapiEvent;
1118
1119 /* Check uncommon events all at once. */
1120 if (status & (CntFull | TxUnderrun | PCIBusErr170 | PCIBusErr175)) {
1121 if (status == EpicRemoved)
1122 goto out;
1123
1124 /* Always update the error counts to avoid overhead later. */
1125 dev->stats.rx_missed_errors += inb(ioaddr + MPCNT);
1126 dev->stats.rx_frame_errors += inb(ioaddr + ALICNT);
1127 dev->stats.rx_crc_errors += inb(ioaddr + CRCCNT);
1128
1129 if (status & TxUnderrun) { /* Tx FIFO underflow. */
1130 dev->stats.tx_fifo_errors++;
1131 outl(ep->tx_threshold += 128, ioaddr + TxThresh);
1132 /* Restart the transmit process. */
1133 outl(RestartTx, ioaddr + COMMAND);
1134 }
1135 if (status & PCIBusErr170) {
1136 printk(KERN_ERR "%s: PCI Bus Error! status %4.4x.\n",
1137 dev->name, status);
1138 epic_pause(dev);
1139 epic_restart(dev);
1140 }
1141 /* Clear all error sources. */
1142 outl(status & 0x7f18, ioaddr + INTSTAT);
1143 }
1144
1145 out:
1146 if (debug > 3) {
1147 printk(KERN_DEBUG "%s: exit interrupt, intr_status=%#4.4x.\n",
1148 dev->name, status);
1149 }
1150
1151 return IRQ_RETVAL(handled);
1152 }
1153
epic_rx(struct net_device * dev,int budget)1154 static int epic_rx(struct net_device *dev, int budget)
1155 {
1156 struct epic_private *ep = netdev_priv(dev);
1157 int entry = ep->cur_rx % RX_RING_SIZE;
1158 int rx_work_limit = ep->dirty_rx + RX_RING_SIZE - ep->cur_rx;
1159 int work_done = 0;
1160
1161 if (debug > 4)
1162 printk(KERN_DEBUG " In epic_rx(), entry %d %8.8x.\n", entry,
1163 ep->rx_ring[entry].rxstatus);
1164
1165 if (rx_work_limit > budget)
1166 rx_work_limit = budget;
1167
1168 /* If we own the next entry, it's a new packet. Send it up. */
1169 while ((ep->rx_ring[entry].rxstatus & DescOwn) == 0) {
1170 int status = ep->rx_ring[entry].rxstatus;
1171
1172 if (debug > 4)
1173 printk(KERN_DEBUG " epic_rx() status was %8.8x.\n", status);
1174 if (--rx_work_limit < 0)
1175 break;
1176 if (status & 0x2006) {
1177 if (debug > 2)
1178 printk(KERN_DEBUG "%s: epic_rx() error status was %8.8x.\n",
1179 dev->name, status);
1180 if (status & 0x2000) {
1181 printk(KERN_WARNING "%s: Oversized Ethernet frame spanned "
1182 "multiple buffers, status %4.4x!\n", dev->name, status);
1183 dev->stats.rx_length_errors++;
1184 } else if (status & 0x0006)
1185 /* Rx Frame errors are counted in hardware. */
1186 dev->stats.rx_errors++;
1187 } else {
1188 /* Malloc up new buffer, compatible with net-2e. */
1189 /* Omit the four octet CRC from the length. */
1190 short pkt_len = (status >> 16) - 4;
1191 struct sk_buff *skb;
1192
1193 if (pkt_len > PKT_BUF_SZ - 4) {
1194 printk(KERN_ERR "%s: Oversized Ethernet frame, status %x "
1195 "%d bytes.\n",
1196 dev->name, status, pkt_len);
1197 pkt_len = 1514;
1198 }
1199 /* Check if the packet is long enough to accept without copying
1200 to a minimally-sized skbuff. */
1201 if (pkt_len < rx_copybreak &&
1202 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1203 skb_reserve(skb, 2); /* 16 byte align the IP header */
1204 pci_dma_sync_single_for_cpu(ep->pci_dev,
1205 ep->rx_ring[entry].bufaddr,
1206 ep->rx_buf_sz,
1207 PCI_DMA_FROMDEVICE);
1208 skb_copy_to_linear_data(skb, ep->rx_skbuff[entry]->data, pkt_len);
1209 skb_put(skb, pkt_len);
1210 pci_dma_sync_single_for_device(ep->pci_dev,
1211 ep->rx_ring[entry].bufaddr,
1212 ep->rx_buf_sz,
1213 PCI_DMA_FROMDEVICE);
1214 } else {
1215 pci_unmap_single(ep->pci_dev,
1216 ep->rx_ring[entry].bufaddr,
1217 ep->rx_buf_sz, PCI_DMA_FROMDEVICE);
1218 skb_put(skb = ep->rx_skbuff[entry], pkt_len);
1219 ep->rx_skbuff[entry] = NULL;
1220 }
1221 skb->protocol = eth_type_trans(skb, dev);
1222 netif_receive_skb(skb);
1223 dev->stats.rx_packets++;
1224 dev->stats.rx_bytes += pkt_len;
1225 }
1226 work_done++;
1227 entry = (++ep->cur_rx) % RX_RING_SIZE;
1228 }
1229
1230 /* Refill the Rx ring buffers. */
1231 for (; ep->cur_rx - ep->dirty_rx > 0; ep->dirty_rx++) {
1232 entry = ep->dirty_rx % RX_RING_SIZE;
1233 if (ep->rx_skbuff[entry] == NULL) {
1234 struct sk_buff *skb;
1235 skb = ep->rx_skbuff[entry] = netdev_alloc_skb(dev, ep->rx_buf_sz + 2);
1236 if (skb == NULL)
1237 break;
1238 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1239 ep->rx_ring[entry].bufaddr = pci_map_single(ep->pci_dev,
1240 skb->data, ep->rx_buf_sz, PCI_DMA_FROMDEVICE);
1241 work_done++;
1242 }
1243 /* AV: shouldn't we add a barrier here? */
1244 ep->rx_ring[entry].rxstatus = DescOwn;
1245 }
1246 return work_done;
1247 }
1248
epic_rx_err(struct net_device * dev,struct epic_private * ep)1249 static void epic_rx_err(struct net_device *dev, struct epic_private *ep)
1250 {
1251 long ioaddr = dev->base_addr;
1252 int status;
1253
1254 status = inl(ioaddr + INTSTAT);
1255
1256 if (status == EpicRemoved)
1257 return;
1258 if (status & RxOverflow) /* Missed a Rx frame. */
1259 dev->stats.rx_errors++;
1260 if (status & (RxOverflow | RxFull))
1261 outw(RxQueued, ioaddr + COMMAND);
1262 }
1263
epic_poll(struct napi_struct * napi,int budget)1264 static int epic_poll(struct napi_struct *napi, int budget)
1265 {
1266 struct epic_private *ep = container_of(napi, struct epic_private, napi);
1267 struct net_device *dev = ep->mii.dev;
1268 int work_done = 0;
1269 long ioaddr = dev->base_addr;
1270
1271 rx_action:
1272
1273 epic_tx(dev, ep);
1274
1275 work_done += epic_rx(dev, budget);
1276
1277 epic_rx_err(dev, ep);
1278
1279 if (work_done < budget) {
1280 unsigned long flags;
1281 int more;
1282
1283 /* A bit baroque but it avoids a (space hungry) spin_unlock */
1284
1285 spin_lock_irqsave(&ep->napi_lock, flags);
1286
1287 more = ep->reschedule_in_poll;
1288 if (!more) {
1289 __napi_complete(napi);
1290 outl(EpicNapiEvent, ioaddr + INTSTAT);
1291 epic_napi_irq_on(dev, ep);
1292 } else
1293 ep->reschedule_in_poll--;
1294
1295 spin_unlock_irqrestore(&ep->napi_lock, flags);
1296
1297 if (more)
1298 goto rx_action;
1299 }
1300
1301 return work_done;
1302 }
1303
epic_close(struct net_device * dev)1304 static int epic_close(struct net_device *dev)
1305 {
1306 long ioaddr = dev->base_addr;
1307 struct epic_private *ep = netdev_priv(dev);
1308 struct sk_buff *skb;
1309 int i;
1310
1311 netif_stop_queue(dev);
1312 napi_disable(&ep->napi);
1313
1314 if (debug > 1)
1315 printk(KERN_DEBUG "%s: Shutting down ethercard, status was %2.2x.\n",
1316 dev->name, (int)inl(ioaddr + INTSTAT));
1317
1318 del_timer_sync(&ep->timer);
1319
1320 epic_disable_int(dev, ep);
1321
1322 free_irq(dev->irq, dev);
1323
1324 epic_pause(dev);
1325
1326 /* Free all the skbuffs in the Rx queue. */
1327 for (i = 0; i < RX_RING_SIZE; i++) {
1328 skb = ep->rx_skbuff[i];
1329 ep->rx_skbuff[i] = NULL;
1330 ep->rx_ring[i].rxstatus = 0; /* Not owned by Epic chip. */
1331 ep->rx_ring[i].buflength = 0;
1332 if (skb) {
1333 pci_unmap_single(ep->pci_dev, ep->rx_ring[i].bufaddr,
1334 ep->rx_buf_sz, PCI_DMA_FROMDEVICE);
1335 dev_kfree_skb(skb);
1336 }
1337 ep->rx_ring[i].bufaddr = 0xBADF00D0; /* An invalid address. */
1338 }
1339 for (i = 0; i < TX_RING_SIZE; i++) {
1340 skb = ep->tx_skbuff[i];
1341 ep->tx_skbuff[i] = NULL;
1342 if (!skb)
1343 continue;
1344 pci_unmap_single(ep->pci_dev, ep->tx_ring[i].bufaddr,
1345 skb->len, PCI_DMA_TODEVICE);
1346 dev_kfree_skb(skb);
1347 }
1348
1349 /* Green! Leave the chip in low-power mode. */
1350 outl(0x0008, ioaddr + GENCTL);
1351
1352 return 0;
1353 }
1354
epic_get_stats(struct net_device * dev)1355 static struct net_device_stats *epic_get_stats(struct net_device *dev)
1356 {
1357 long ioaddr = dev->base_addr;
1358
1359 if (netif_running(dev)) {
1360 /* Update the error counts. */
1361 dev->stats.rx_missed_errors += inb(ioaddr + MPCNT);
1362 dev->stats.rx_frame_errors += inb(ioaddr + ALICNT);
1363 dev->stats.rx_crc_errors += inb(ioaddr + CRCCNT);
1364 }
1365
1366 return &dev->stats;
1367 }
1368
1369 /* Set or clear the multicast filter for this adaptor.
1370 Note that we only use exclusion around actually queueing the
1371 new frame, not around filling ep->setup_frame. This is non-deterministic
1372 when re-entered but still correct. */
1373
set_rx_mode(struct net_device * dev)1374 static void set_rx_mode(struct net_device *dev)
1375 {
1376 long ioaddr = dev->base_addr;
1377 struct epic_private *ep = netdev_priv(dev);
1378 unsigned char mc_filter[8]; /* Multicast hash filter */
1379 int i;
1380
1381 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1382 outl(0x002C, ioaddr + RxCtrl);
1383 /* Unconditionally log net taps. */
1384 memset(mc_filter, 0xff, sizeof(mc_filter));
1385 } else if ((!netdev_mc_empty(dev)) || (dev->flags & IFF_ALLMULTI)) {
1386 /* There is apparently a chip bug, so the multicast filter
1387 is never enabled. */
1388 /* Too many to filter perfectly -- accept all multicasts. */
1389 memset(mc_filter, 0xff, sizeof(mc_filter));
1390 outl(0x000C, ioaddr + RxCtrl);
1391 } else if (netdev_mc_empty(dev)) {
1392 outl(0x0004, ioaddr + RxCtrl);
1393 return;
1394 } else { /* Never executed, for now. */
1395 struct netdev_hw_addr *ha;
1396
1397 memset(mc_filter, 0, sizeof(mc_filter));
1398 netdev_for_each_mc_addr(ha, dev) {
1399 unsigned int bit_nr =
1400 ether_crc_le(ETH_ALEN, ha->addr) & 0x3f;
1401 mc_filter[bit_nr >> 3] |= (1 << bit_nr);
1402 }
1403 }
1404 /* ToDo: perhaps we need to stop the Tx and Rx process here? */
1405 if (memcmp(mc_filter, ep->mc_filter, sizeof(mc_filter))) {
1406 for (i = 0; i < 4; i++)
1407 outw(((u16 *)mc_filter)[i], ioaddr + MC0 + i*4);
1408 memcpy(ep->mc_filter, mc_filter, sizeof(mc_filter));
1409 }
1410 }
1411
netdev_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1412 static void netdev_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1413 {
1414 struct epic_private *np = netdev_priv(dev);
1415
1416 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1417 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1418 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1419 }
1420
netdev_get_settings(struct net_device * dev,struct ethtool_cmd * cmd)1421 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1422 {
1423 struct epic_private *np = netdev_priv(dev);
1424 int rc;
1425
1426 spin_lock_irq(&np->lock);
1427 rc = mii_ethtool_gset(&np->mii, cmd);
1428 spin_unlock_irq(&np->lock);
1429
1430 return rc;
1431 }
1432
netdev_set_settings(struct net_device * dev,struct ethtool_cmd * cmd)1433 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1434 {
1435 struct epic_private *np = netdev_priv(dev);
1436 int rc;
1437
1438 spin_lock_irq(&np->lock);
1439 rc = mii_ethtool_sset(&np->mii, cmd);
1440 spin_unlock_irq(&np->lock);
1441
1442 return rc;
1443 }
1444
netdev_nway_reset(struct net_device * dev)1445 static int netdev_nway_reset(struct net_device *dev)
1446 {
1447 struct epic_private *np = netdev_priv(dev);
1448 return mii_nway_restart(&np->mii);
1449 }
1450
netdev_get_link(struct net_device * dev)1451 static u32 netdev_get_link(struct net_device *dev)
1452 {
1453 struct epic_private *np = netdev_priv(dev);
1454 return mii_link_ok(&np->mii);
1455 }
1456
netdev_get_msglevel(struct net_device * dev)1457 static u32 netdev_get_msglevel(struct net_device *dev)
1458 {
1459 return debug;
1460 }
1461
netdev_set_msglevel(struct net_device * dev,u32 value)1462 static void netdev_set_msglevel(struct net_device *dev, u32 value)
1463 {
1464 debug = value;
1465 }
1466
ethtool_begin(struct net_device * dev)1467 static int ethtool_begin(struct net_device *dev)
1468 {
1469 unsigned long ioaddr = dev->base_addr;
1470 /* power-up, if interface is down */
1471 if (! netif_running(dev)) {
1472 outl(0x0200, ioaddr + GENCTL);
1473 outl((inl(ioaddr + NVCTL) & ~0x003C) | 0x4800, ioaddr + NVCTL);
1474 }
1475 return 0;
1476 }
1477
ethtool_complete(struct net_device * dev)1478 static void ethtool_complete(struct net_device *dev)
1479 {
1480 unsigned long ioaddr = dev->base_addr;
1481 /* power-down, if interface is down */
1482 if (! netif_running(dev)) {
1483 outl(0x0008, ioaddr + GENCTL);
1484 outl((inl(ioaddr + NVCTL) & ~0x483C) | 0x0000, ioaddr + NVCTL);
1485 }
1486 }
1487
1488 static const struct ethtool_ops netdev_ethtool_ops = {
1489 .get_drvinfo = netdev_get_drvinfo,
1490 .get_settings = netdev_get_settings,
1491 .set_settings = netdev_set_settings,
1492 .nway_reset = netdev_nway_reset,
1493 .get_link = netdev_get_link,
1494 .get_msglevel = netdev_get_msglevel,
1495 .set_msglevel = netdev_set_msglevel,
1496 .begin = ethtool_begin,
1497 .complete = ethtool_complete
1498 };
1499
netdev_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1500 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1501 {
1502 struct epic_private *np = netdev_priv(dev);
1503 long ioaddr = dev->base_addr;
1504 struct mii_ioctl_data *data = if_mii(rq);
1505 int rc;
1506
1507 /* power-up, if interface is down */
1508 if (! netif_running(dev)) {
1509 outl(0x0200, ioaddr + GENCTL);
1510 outl((inl(ioaddr + NVCTL) & ~0x003C) | 0x4800, ioaddr + NVCTL);
1511 }
1512
1513 /* all non-ethtool ioctls (the SIOC[GS]MIIxxx ioctls) */
1514 spin_lock_irq(&np->lock);
1515 rc = generic_mii_ioctl(&np->mii, data, cmd, NULL);
1516 spin_unlock_irq(&np->lock);
1517
1518 /* power-down, if interface is down */
1519 if (! netif_running(dev)) {
1520 outl(0x0008, ioaddr + GENCTL);
1521 outl((inl(ioaddr + NVCTL) & ~0x483C) | 0x0000, ioaddr + NVCTL);
1522 }
1523 return rc;
1524 }
1525
1526
epic_remove_one(struct pci_dev * pdev)1527 static void __devexit epic_remove_one (struct pci_dev *pdev)
1528 {
1529 struct net_device *dev = pci_get_drvdata(pdev);
1530 struct epic_private *ep = netdev_priv(dev);
1531
1532 pci_free_consistent(pdev, TX_TOTAL_SIZE, ep->tx_ring, ep->tx_ring_dma);
1533 pci_free_consistent(pdev, RX_TOTAL_SIZE, ep->rx_ring, ep->rx_ring_dma);
1534 unregister_netdev(dev);
1535 #ifndef USE_IO_OPS
1536 iounmap((void*) dev->base_addr);
1537 #endif
1538 pci_release_regions(pdev);
1539 free_netdev(dev);
1540 pci_disable_device(pdev);
1541 pci_set_drvdata(pdev, NULL);
1542 /* pci_power_off(pdev, -1); */
1543 }
1544
1545
1546 #ifdef CONFIG_PM
1547
epic_suspend(struct pci_dev * pdev,pm_message_t state)1548 static int epic_suspend (struct pci_dev *pdev, pm_message_t state)
1549 {
1550 struct net_device *dev = pci_get_drvdata(pdev);
1551 long ioaddr = dev->base_addr;
1552
1553 if (!netif_running(dev))
1554 return 0;
1555 epic_pause(dev);
1556 /* Put the chip into low-power mode. */
1557 outl(0x0008, ioaddr + GENCTL);
1558 /* pci_power_off(pdev, -1); */
1559 return 0;
1560 }
1561
1562
epic_resume(struct pci_dev * pdev)1563 static int epic_resume (struct pci_dev *pdev)
1564 {
1565 struct net_device *dev = pci_get_drvdata(pdev);
1566
1567 if (!netif_running(dev))
1568 return 0;
1569 epic_restart(dev);
1570 /* pci_power_on(pdev); */
1571 return 0;
1572 }
1573
1574 #endif /* CONFIG_PM */
1575
1576
1577 static struct pci_driver epic_driver = {
1578 .name = DRV_NAME,
1579 .id_table = epic_pci_tbl,
1580 .probe = epic_init_one,
1581 .remove = __devexit_p(epic_remove_one),
1582 #ifdef CONFIG_PM
1583 .suspend = epic_suspend,
1584 .resume = epic_resume,
1585 #endif /* CONFIG_PM */
1586 };
1587
1588
epic_init(void)1589 static int __init epic_init (void)
1590 {
1591 /* when a module, this is printed whether or not devices are found in probe */
1592 #ifdef MODULE
1593 printk (KERN_INFO "%s%s",
1594 version, version2);
1595 #endif
1596
1597 return pci_register_driver(&epic_driver);
1598 }
1599
1600
epic_cleanup(void)1601 static void __exit epic_cleanup (void)
1602 {
1603 pci_unregister_driver (&epic_driver);
1604 }
1605
1606
1607 module_init(epic_init);
1608 module_exit(epic_cleanup);
1609