1 /* bnx2x_cmn.h: Broadcom Everest network driver.
2  *
3  * Copyright (c) 2007-2012 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10  * Written by: Eliezer Tamir
11  * Based on code from Michael Chan's bnx2 driver
12  * UDP CSUM errata workaround by Arik Gendelman
13  * Slowpath and fastpath rework by Vladislav Zolotarov
14  * Statistics and Link management by Yitchak Gertner
15  *
16  */
17 #ifndef BNX2X_CMN_H
18 #define BNX2X_CMN_H
19 
20 #include <linux/types.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 
25 
26 #include "bnx2x.h"
27 
28 /* This is used as a replacement for an MCP if it's not present */
29 extern int load_count[2][3]; /* per-path: 0-common, 1-port0, 2-port1 */
30 
31 extern int num_queues;
32 
33 /************************ Macros ********************************/
34 #define BNX2X_PCI_FREE(x, y, size) \
35 	do { \
36 		if (x) { \
37 			dma_free_coherent(&bp->pdev->dev, size, (void *)x, y); \
38 			x = NULL; \
39 			y = 0; \
40 		} \
41 	} while (0)
42 
43 #define BNX2X_FREE(x) \
44 	do { \
45 		if (x) { \
46 			kfree((void *)x); \
47 			x = NULL; \
48 		} \
49 	} while (0)
50 
51 #define BNX2X_PCI_ALLOC(x, y, size) \
52 	do { \
53 		x = dma_alloc_coherent(&bp->pdev->dev, size, y, GFP_KERNEL); \
54 		if (x == NULL) \
55 			goto alloc_mem_err; \
56 		memset((void *)x, 0, size); \
57 	} while (0)
58 
59 #define BNX2X_ALLOC(x, size) \
60 	do { \
61 		x = kzalloc(size, GFP_KERNEL); \
62 		if (x == NULL) \
63 			goto alloc_mem_err; \
64 	} while (0)
65 
66 /*********************** Interfaces ****************************
67  *  Functions that need to be implemented by each driver version
68  */
69 /* Init */
70 
71 /**
72  * bnx2x_send_unload_req - request unload mode from the MCP.
73  *
74  * @bp:			driver handle
75  * @unload_mode:	requested function's unload mode
76  *
77  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
78  */
79 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode);
80 
81 /**
82  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
83  *
84  * @bp:		driver handle
85  */
86 void bnx2x_send_unload_done(struct bnx2x *bp);
87 
88 /**
89  * bnx2x_config_rss_pf - configure RSS parameters.
90  *
91  * @bp:			driver handle
92  * @ind_table:		indirection table to configure
93  * @config_hash:	re-configure RSS hash keys configuration
94  */
95 int bnx2x_config_rss_pf(struct bnx2x *bp, u8 *ind_table, bool config_hash);
96 
97 /**
98  * bnx2x__init_func_obj - init function object
99  *
100  * @bp:			driver handle
101  *
102  * Initializes the Function Object with the appropriate
103  * parameters which include a function slow path driver
104  * interface.
105  */
106 void bnx2x__init_func_obj(struct bnx2x *bp);
107 
108 /**
109  * bnx2x_setup_queue - setup eth queue.
110  *
111  * @bp:		driver handle
112  * @fp:		pointer to the fastpath structure
113  * @leading:	boolean
114  *
115  */
116 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
117 		       bool leading);
118 
119 /**
120  * bnx2x_setup_leading - bring up a leading eth queue.
121  *
122  * @bp:		driver handle
123  */
124 int bnx2x_setup_leading(struct bnx2x *bp);
125 
126 /**
127  * bnx2x_fw_command - send the MCP a request
128  *
129  * @bp:		driver handle
130  * @command:	request
131  * @param:	request's parameter
132  *
133  * block until there is a reply
134  */
135 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param);
136 
137 /**
138  * bnx2x_initial_phy_init - initialize link parameters structure variables.
139  *
140  * @bp:		driver handle
141  * @load_mode:	current mode
142  */
143 u8 bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode);
144 
145 /**
146  * bnx2x_link_set - configure hw according to link parameters structure.
147  *
148  * @bp:		driver handle
149  */
150 void bnx2x_link_set(struct bnx2x *bp);
151 
152 /**
153  * bnx2x_link_test - query link status.
154  *
155  * @bp:		driver handle
156  * @is_serdes:	bool
157  *
158  * Returns 0 if link is UP.
159  */
160 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes);
161 
162 /**
163  * bnx2x_drv_pulse - write driver pulse to shmem
164  *
165  * @bp:		driver handle
166  *
167  * writes the value in bp->fw_drv_pulse_wr_seq to drv_pulse mbox
168  * in the shmem.
169  */
170 void bnx2x_drv_pulse(struct bnx2x *bp);
171 
172 /**
173  * bnx2x_igu_ack_sb - update IGU with current SB value
174  *
175  * @bp:		driver handle
176  * @igu_sb_id:	SB id
177  * @segment:	SB segment
178  * @index:	SB index
179  * @op:		SB operation
180  * @update:	is HW update required
181  */
182 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
183 		      u16 index, u8 op, u8 update);
184 
185 /* Disable transactions from chip to host */
186 void bnx2x_pf_disable(struct bnx2x *bp);
187 
188 /**
189  * bnx2x__link_status_update - handles link status change.
190  *
191  * @bp:		driver handle
192  */
193 void bnx2x__link_status_update(struct bnx2x *bp);
194 
195 /**
196  * bnx2x_link_report - report link status to upper layer.
197  *
198  * @bp:		driver handle
199  */
200 void bnx2x_link_report(struct bnx2x *bp);
201 
202 /* None-atomic version of bnx2x_link_report() */
203 void __bnx2x_link_report(struct bnx2x *bp);
204 
205 /**
206  * bnx2x_get_mf_speed - calculate MF speed.
207  *
208  * @bp:		driver handle
209  *
210  * Takes into account current linespeed and MF configuration.
211  */
212 u16 bnx2x_get_mf_speed(struct bnx2x *bp);
213 
214 /**
215  * bnx2x_msix_sp_int - MSI-X slowpath interrupt handler
216  *
217  * @irq:		irq number
218  * @dev_instance:	private instance
219  */
220 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance);
221 
222 /**
223  * bnx2x_interrupt - non MSI-X interrupt handler
224  *
225  * @irq:		irq number
226  * @dev_instance:	private instance
227  */
228 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance);
229 #ifdef BCM_CNIC
230 
231 /**
232  * bnx2x_cnic_notify - send command to cnic driver
233  *
234  * @bp:		driver handle
235  * @cmd:	command
236  */
237 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd);
238 
239 /**
240  * bnx2x_setup_cnic_irq_info - provides cnic with IRQ information
241  *
242  * @bp:		driver handle
243  */
244 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp);
245 #endif
246 
247 /**
248  * bnx2x_int_enable - enable HW interrupts.
249  *
250  * @bp:		driver handle
251  */
252 void bnx2x_int_enable(struct bnx2x *bp);
253 
254 /**
255  * bnx2x_int_disable_sync - disable interrupts.
256  *
257  * @bp:		driver handle
258  * @disable_hw:	true, disable HW interrupts.
259  *
260  * This function ensures that there are no
261  * ISRs or SP DPCs (sp_task) are running after it returns.
262  */
263 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw);
264 
265 /**
266  * bnx2x_nic_init - init driver internals.
267  *
268  * @bp:		driver handle
269  * @load_code:	COMMON, PORT or FUNCTION
270  *
271  * Initializes:
272  *  - rings
273  *  - status blocks
274  *  - etc.
275  */
276 void bnx2x_nic_init(struct bnx2x *bp, u32 load_code);
277 
278 /**
279  * bnx2x_alloc_mem - allocate driver's memory.
280  *
281  * @bp:		driver handle
282  */
283 int bnx2x_alloc_mem(struct bnx2x *bp);
284 
285 /**
286  * bnx2x_free_mem - release driver's memory.
287  *
288  * @bp:		driver handle
289  */
290 void bnx2x_free_mem(struct bnx2x *bp);
291 
292 /**
293  * bnx2x_set_num_queues - set number of queues according to mode.
294  *
295  * @bp:		driver handle
296  */
297 void bnx2x_set_num_queues(struct bnx2x *bp);
298 
299 /**
300  * bnx2x_chip_cleanup - cleanup chip internals.
301  *
302  * @bp:			driver handle
303  * @unload_mode:	COMMON, PORT, FUNCTION
304  *
305  * - Cleanup MAC configuration.
306  * - Closes clients.
307  * - etc.
308  */
309 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode);
310 
311 /**
312  * bnx2x_acquire_hw_lock - acquire HW lock.
313  *
314  * @bp:		driver handle
315  * @resource:	resource bit which was locked
316  */
317 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource);
318 
319 /**
320  * bnx2x_release_hw_lock - release HW lock.
321  *
322  * @bp:		driver handle
323  * @resource:	resource bit which was locked
324  */
325 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource);
326 
327 /**
328  * bnx2x_release_leader_lock - release recovery leader lock
329  *
330  * @bp:		driver handle
331  */
332 int bnx2x_release_leader_lock(struct bnx2x *bp);
333 
334 /**
335  * bnx2x_set_eth_mac - configure eth MAC address in the HW
336  *
337  * @bp:		driver handle
338  * @set:	set or clear
339  *
340  * Configures according to the value in netdev->dev_addr.
341  */
342 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set);
343 
344 /**
345  * bnx2x_set_rx_mode - set MAC filtering configurations.
346  *
347  * @dev:	netdevice
348  *
349  * called with netif_tx_lock from dev_mcast.c
350  * If bp->state is OPEN, should be called with
351  * netif_addr_lock_bh()
352  */
353 void bnx2x_set_rx_mode(struct net_device *dev);
354 
355 /**
356  * bnx2x_set_storm_rx_mode - configure MAC filtering rules in a FW.
357  *
358  * @bp:		driver handle
359  *
360  * If bp->state is OPEN, should be called with
361  * netif_addr_lock_bh().
362  */
363 void bnx2x_set_storm_rx_mode(struct bnx2x *bp);
364 
365 /**
366  * bnx2x_set_q_rx_mode - configures rx_mode for a single queue.
367  *
368  * @bp:			driver handle
369  * @cl_id:		client id
370  * @rx_mode_flags:	rx mode configuration
371  * @rx_accept_flags:	rx accept configuration
372  * @tx_accept_flags:	tx accept configuration (tx switch)
373  * @ramrod_flags:	ramrod configuration
374  */
375 void bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
376 			 unsigned long rx_mode_flags,
377 			 unsigned long rx_accept_flags,
378 			 unsigned long tx_accept_flags,
379 			 unsigned long ramrod_flags);
380 
381 /* Parity errors related */
382 void bnx2x_set_pf_load(struct bnx2x *bp);
383 bool bnx2x_clear_pf_load(struct bnx2x *bp);
384 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print);
385 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine);
386 void bnx2x_set_reset_in_progress(struct bnx2x *bp);
387 void bnx2x_set_reset_global(struct bnx2x *bp);
388 void bnx2x_disable_close_the_gate(struct bnx2x *bp);
389 
390 /**
391  * bnx2x_sp_event - handle ramrods completion.
392  *
393  * @fp:		fastpath handle for the event
394  * @rr_cqe:	eth_rx_cqe
395  */
396 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe);
397 
398 /**
399  * bnx2x_ilt_set_info - prepare ILT configurations.
400  *
401  * @bp:		driver handle
402  */
403 void bnx2x_ilt_set_info(struct bnx2x *bp);
404 
405 /**
406  * bnx2x_dcbx_init - initialize dcbx protocol.
407  *
408  * @bp:		driver handle
409  */
410 void bnx2x_dcbx_init(struct bnx2x *bp);
411 
412 /**
413  * bnx2x_set_power_state - set power state to the requested value.
414  *
415  * @bp:		driver handle
416  * @state:	required state D0 or D3hot
417  *
418  * Currently only D0 and D3hot are supported.
419  */
420 int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state);
421 
422 /**
423  * bnx2x_update_max_mf_config - update MAX part of MF configuration in HW.
424  *
425  * @bp:		driver handle
426  * @value:	new value
427  */
428 void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value);
429 /* Error handling */
430 void bnx2x_panic_dump(struct bnx2x *bp);
431 
432 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl);
433 
434 /* validate currect fw is loaded */
435 bool bnx2x_test_firmware_version(struct bnx2x *bp, bool is_err);
436 
437 /* dev_close main block */
438 int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode);
439 
440 /* dev_open main block */
441 int bnx2x_nic_load(struct bnx2x *bp, int load_mode);
442 
443 /* hard_xmit callback */
444 netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev);
445 
446 /* setup_tc callback */
447 int bnx2x_setup_tc(struct net_device *dev, u8 num_tc);
448 
449 /* select_queue callback */
450 u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb);
451 
452 /* reload helper */
453 int bnx2x_reload_if_running(struct net_device *dev);
454 
455 int bnx2x_change_mac_addr(struct net_device *dev, void *p);
456 
457 /* NAPI poll Rx part */
458 int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget);
459 
460 void bnx2x_update_rx_prod(struct bnx2x *bp, struct bnx2x_fastpath *fp,
461 			u16 bd_prod, u16 rx_comp_prod, u16 rx_sge_prod);
462 
463 /* NAPI poll Tx part */
464 int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata);
465 
466 /* suspend/resume callbacks */
467 int bnx2x_suspend(struct pci_dev *pdev, pm_message_t state);
468 int bnx2x_resume(struct pci_dev *pdev);
469 
470 /* Release IRQ vectors */
471 void bnx2x_free_irq(struct bnx2x *bp);
472 
473 void bnx2x_free_fp_mem(struct bnx2x *bp);
474 int bnx2x_alloc_fp_mem(struct bnx2x *bp);
475 void bnx2x_init_rx_rings(struct bnx2x *bp);
476 void bnx2x_free_skbs(struct bnx2x *bp);
477 void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw);
478 void bnx2x_netif_start(struct bnx2x *bp);
479 
480 /**
481  * bnx2x_enable_msix - set msix configuration.
482  *
483  * @bp:		driver handle
484  *
485  * fills msix_table, requests vectors, updates num_queues
486  * according to number of available vectors.
487  */
488 int bnx2x_enable_msix(struct bnx2x *bp);
489 
490 /**
491  * bnx2x_enable_msi - request msi mode from OS, updated internals accordingly
492  *
493  * @bp:		driver handle
494  */
495 int bnx2x_enable_msi(struct bnx2x *bp);
496 
497 /**
498  * bnx2x_poll - NAPI callback
499  *
500  * @napi:	napi structure
501  * @budget:
502  *
503  */
504 int bnx2x_poll(struct napi_struct *napi, int budget);
505 
506 /**
507  * bnx2x_alloc_mem_bp - allocate memories outsize main driver structure
508  *
509  * @bp:		driver handle
510  */
511 int __devinit bnx2x_alloc_mem_bp(struct bnx2x *bp);
512 
513 /**
514  * bnx2x_free_mem_bp - release memories outsize main driver structure
515  *
516  * @bp:		driver handle
517  */
518 void bnx2x_free_mem_bp(struct bnx2x *bp);
519 
520 /**
521  * bnx2x_change_mtu - change mtu netdev callback
522  *
523  * @dev:	net device
524  * @new_mtu:	requested mtu
525  *
526  */
527 int bnx2x_change_mtu(struct net_device *dev, int new_mtu);
528 
529 #if defined(NETDEV_FCOE_WWNN) && defined(BCM_CNIC)
530 /**
531  * bnx2x_fcoe_get_wwn - return the requested WWN value for this port
532  *
533  * @dev:	net_device
534  * @wwn:	output buffer
535  * @type:	WWN type: NETDEV_FCOE_WWNN (node) or NETDEV_FCOE_WWPN (port)
536  *
537  */
538 int bnx2x_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type);
539 #endif
540 
541 netdev_features_t bnx2x_fix_features(struct net_device *dev,
542 				     netdev_features_t features);
543 int bnx2x_set_features(struct net_device *dev, netdev_features_t features);
544 
545 /**
546  * bnx2x_tx_timeout - tx timeout netdev callback
547  *
548  * @dev:	net device
549  */
550 void bnx2x_tx_timeout(struct net_device *dev);
551 
552 /*********************** Inlines **********************************/
553 /*********************** Fast path ********************************/
bnx2x_update_fpsb_idx(struct bnx2x_fastpath * fp)554 static inline void bnx2x_update_fpsb_idx(struct bnx2x_fastpath *fp)
555 {
556 	barrier(); /* status block is written to by the chip */
557 	fp->fp_hc_idx = fp->sb_running_index[SM_RX_ID];
558 }
559 
bnx2x_update_rx_prod_gen(struct bnx2x * bp,struct bnx2x_fastpath * fp,u16 bd_prod,u16 rx_comp_prod,u16 rx_sge_prod,u32 start)560 static inline void bnx2x_update_rx_prod_gen(struct bnx2x *bp,
561 			struct bnx2x_fastpath *fp, u16 bd_prod,
562 			u16 rx_comp_prod, u16 rx_sge_prod, u32 start)
563 {
564 	struct ustorm_eth_rx_producers rx_prods = {0};
565 	u32 i;
566 
567 	/* Update producers */
568 	rx_prods.bd_prod = bd_prod;
569 	rx_prods.cqe_prod = rx_comp_prod;
570 	rx_prods.sge_prod = rx_sge_prod;
571 
572 	/*
573 	 * Make sure that the BD and SGE data is updated before updating the
574 	 * producers since FW might read the BD/SGE right after the producer
575 	 * is updated.
576 	 * This is only applicable for weak-ordered memory model archs such
577 	 * as IA-64. The following barrier is also mandatory since FW will
578 	 * assumes BDs must have buffers.
579 	 */
580 	wmb();
581 
582 	for (i = 0; i < sizeof(rx_prods)/4; i++)
583 		REG_WR(bp, start + i*4, ((u32 *)&rx_prods)[i]);
584 
585 	mmiowb(); /* keep prod updates ordered */
586 
587 	DP(NETIF_MSG_RX_STATUS,
588 	   "queue[%d]:  wrote  bd_prod %u  cqe_prod %u  sge_prod %u\n",
589 	   fp->index, bd_prod, rx_comp_prod, rx_sge_prod);
590 }
591 
bnx2x_igu_ack_sb_gen(struct bnx2x * bp,u8 igu_sb_id,u8 segment,u16 index,u8 op,u8 update,u32 igu_addr)592 static inline void bnx2x_igu_ack_sb_gen(struct bnx2x *bp, u8 igu_sb_id,
593 					u8 segment, u16 index, u8 op,
594 					u8 update, u32 igu_addr)
595 {
596 	struct igu_regular cmd_data = {0};
597 
598 	cmd_data.sb_id_and_flags =
599 			((index << IGU_REGULAR_SB_INDEX_SHIFT) |
600 			 (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) |
601 			 (update << IGU_REGULAR_BUPDATE_SHIFT) |
602 			 (op << IGU_REGULAR_ENABLE_INT_SHIFT));
603 
604 	DP(NETIF_MSG_INTR, "write 0x%08x to IGU addr 0x%x\n",
605 	   cmd_data.sb_id_and_flags, igu_addr);
606 	REG_WR(bp, igu_addr, cmd_data.sb_id_and_flags);
607 
608 	/* Make sure that ACK is written */
609 	mmiowb();
610 	barrier();
611 }
612 
bnx2x_igu_clear_sb_gen(struct bnx2x * bp,u8 func,u8 idu_sb_id,bool is_Pf)613 static inline void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func,
614 					  u8 idu_sb_id, bool is_Pf)
615 {
616 	u32 data, ctl, cnt = 100;
617 	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
618 	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
619 	u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
620 	u32 sb_bit =  1 << (idu_sb_id%32);
621 	u32 func_encode = func | (is_Pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
622 	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
623 
624 	/* Not supported in BC mode */
625 	if (CHIP_INT_MODE_IS_BC(bp))
626 		return;
627 
628 	data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
629 			<< IGU_REGULAR_CLEANUP_TYPE_SHIFT)	|
630 		IGU_REGULAR_CLEANUP_SET				|
631 		IGU_REGULAR_BCLEANUP;
632 
633 	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
634 	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
635 	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
636 
637 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
638 			 data, igu_addr_data);
639 	REG_WR(bp, igu_addr_data, data);
640 	mmiowb();
641 	barrier();
642 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
643 			  ctl, igu_addr_ctl);
644 	REG_WR(bp, igu_addr_ctl, ctl);
645 	mmiowb();
646 	barrier();
647 
648 	/* wait for clean up to finish */
649 	while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
650 		msleep(20);
651 
652 
653 	if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
654 		DP(NETIF_MSG_HW,
655 		   "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
656 			  idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
657 	}
658 }
659 
bnx2x_hc_ack_sb(struct bnx2x * bp,u8 sb_id,u8 storm,u16 index,u8 op,u8 update)660 static inline void bnx2x_hc_ack_sb(struct bnx2x *bp, u8 sb_id,
661 				   u8 storm, u16 index, u8 op, u8 update)
662 {
663 	u32 hc_addr = (HC_REG_COMMAND_REG + BP_PORT(bp)*32 +
664 		       COMMAND_REG_INT_ACK);
665 	struct igu_ack_register igu_ack;
666 
667 	igu_ack.status_block_index = index;
668 	igu_ack.sb_id_and_flags =
669 			((sb_id << IGU_ACK_REGISTER_STATUS_BLOCK_ID_SHIFT) |
670 			 (storm << IGU_ACK_REGISTER_STORM_ID_SHIFT) |
671 			 (update << IGU_ACK_REGISTER_UPDATE_INDEX_SHIFT) |
672 			 (op << IGU_ACK_REGISTER_INTERRUPT_MODE_SHIFT));
673 
674 	REG_WR(bp, hc_addr, (*(u32 *)&igu_ack));
675 
676 	/* Make sure that ACK is written */
677 	mmiowb();
678 	barrier();
679 }
680 
bnx2x_ack_sb(struct bnx2x * bp,u8 igu_sb_id,u8 storm,u16 index,u8 op,u8 update)681 static inline void bnx2x_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 storm,
682 				u16 index, u8 op, u8 update)
683 {
684 	if (bp->common.int_block == INT_BLOCK_HC)
685 		bnx2x_hc_ack_sb(bp, igu_sb_id, storm, index, op, update);
686 	else {
687 		u8 segment;
688 
689 		if (CHIP_INT_MODE_IS_BC(bp))
690 			segment = storm;
691 		else if (igu_sb_id != bp->igu_dsb_id)
692 			segment = IGU_SEG_ACCESS_DEF;
693 		else if (storm == ATTENTION_ID)
694 			segment = IGU_SEG_ACCESS_ATTN;
695 		else
696 			segment = IGU_SEG_ACCESS_DEF;
697 		bnx2x_igu_ack_sb(bp, igu_sb_id, segment, index, op, update);
698 	}
699 }
700 
bnx2x_hc_ack_int(struct bnx2x * bp)701 static inline u16 bnx2x_hc_ack_int(struct bnx2x *bp)
702 {
703 	u32 hc_addr = (HC_REG_COMMAND_REG + BP_PORT(bp)*32 +
704 		       COMMAND_REG_SIMD_MASK);
705 	u32 result = REG_RD(bp, hc_addr);
706 
707 	barrier();
708 	return result;
709 }
710 
bnx2x_igu_ack_int(struct bnx2x * bp)711 static inline u16 bnx2x_igu_ack_int(struct bnx2x *bp)
712 {
713 	u32 igu_addr = (BAR_IGU_INTMEM + IGU_REG_SISR_MDPC_WMASK_LSB_UPPER*8);
714 	u32 result = REG_RD(bp, igu_addr);
715 
716 	DP(NETIF_MSG_INTR, "read 0x%08x from IGU addr 0x%x\n",
717 	   result, igu_addr);
718 
719 	barrier();
720 	return result;
721 }
722 
bnx2x_ack_int(struct bnx2x * bp)723 static inline u16 bnx2x_ack_int(struct bnx2x *bp)
724 {
725 	barrier();
726 	if (bp->common.int_block == INT_BLOCK_HC)
727 		return bnx2x_hc_ack_int(bp);
728 	else
729 		return bnx2x_igu_ack_int(bp);
730 }
731 
bnx2x_has_tx_work_unload(struct bnx2x_fp_txdata * txdata)732 static inline int bnx2x_has_tx_work_unload(struct bnx2x_fp_txdata *txdata)
733 {
734 	/* Tell compiler that consumer and producer can change */
735 	barrier();
736 	return txdata->tx_pkt_prod != txdata->tx_pkt_cons;
737 }
738 
bnx2x_tx_avail(struct bnx2x * bp,struct bnx2x_fp_txdata * txdata)739 static inline u16 bnx2x_tx_avail(struct bnx2x *bp,
740 				 struct bnx2x_fp_txdata *txdata)
741 {
742 	s16 used;
743 	u16 prod;
744 	u16 cons;
745 
746 	prod = txdata->tx_bd_prod;
747 	cons = txdata->tx_bd_cons;
748 
749 	/* NUM_TX_RINGS = number of "next-page" entries
750 	   It will be used as a threshold */
751 	used = SUB_S16(prod, cons) + (s16)NUM_TX_RINGS;
752 
753 #ifdef BNX2X_STOP_ON_ERROR
754 	WARN_ON(used < 0);
755 	WARN_ON(used > bp->tx_ring_size);
756 	WARN_ON((bp->tx_ring_size - used) > MAX_TX_AVAIL);
757 #endif
758 
759 	return (s16)(bp->tx_ring_size) - used;
760 }
761 
bnx2x_tx_queue_has_work(struct bnx2x_fp_txdata * txdata)762 static inline int bnx2x_tx_queue_has_work(struct bnx2x_fp_txdata *txdata)
763 {
764 	u16 hw_cons;
765 
766 	/* Tell compiler that status block fields can change */
767 	barrier();
768 	hw_cons = le16_to_cpu(*txdata->tx_cons_sb);
769 	return hw_cons != txdata->tx_pkt_cons;
770 }
771 
bnx2x_has_tx_work(struct bnx2x_fastpath * fp)772 static inline bool bnx2x_has_tx_work(struct bnx2x_fastpath *fp)
773 {
774 	u8 cos;
775 	for_each_cos_in_tx_queue(fp, cos)
776 		if (bnx2x_tx_queue_has_work(&fp->txdata[cos]))
777 			return true;
778 	return false;
779 }
780 
bnx2x_has_rx_work(struct bnx2x_fastpath * fp)781 static inline int bnx2x_has_rx_work(struct bnx2x_fastpath *fp)
782 {
783 	u16 rx_cons_sb;
784 
785 	/* Tell compiler that status block fields can change */
786 	barrier();
787 	rx_cons_sb = le16_to_cpu(*fp->rx_cons_sb);
788 	if ((rx_cons_sb & MAX_RCQ_DESC_CNT) == MAX_RCQ_DESC_CNT)
789 		rx_cons_sb++;
790 	return (fp->rx_comp_cons != rx_cons_sb);
791 }
792 
793 /**
794  * bnx2x_tx_disable - disables tx from stack point of view
795  *
796  * @bp:		driver handle
797  */
bnx2x_tx_disable(struct bnx2x * bp)798 static inline void bnx2x_tx_disable(struct bnx2x *bp)
799 {
800 	netif_tx_disable(bp->dev);
801 	netif_carrier_off(bp->dev);
802 }
803 
bnx2x_free_rx_sge(struct bnx2x * bp,struct bnx2x_fastpath * fp,u16 index)804 static inline void bnx2x_free_rx_sge(struct bnx2x *bp,
805 				     struct bnx2x_fastpath *fp, u16 index)
806 {
807 	struct sw_rx_page *sw_buf = &fp->rx_page_ring[index];
808 	struct page *page = sw_buf->page;
809 	struct eth_rx_sge *sge = &fp->rx_sge_ring[index];
810 
811 	/* Skip "next page" elements */
812 	if (!page)
813 		return;
814 
815 	dma_unmap_page(&bp->pdev->dev, dma_unmap_addr(sw_buf, mapping),
816 		       SGE_PAGE_SIZE*PAGES_PER_SGE, DMA_FROM_DEVICE);
817 	__free_pages(page, PAGES_PER_SGE_SHIFT);
818 
819 	sw_buf->page = NULL;
820 	sge->addr_hi = 0;
821 	sge->addr_lo = 0;
822 }
823 
bnx2x_add_all_napi(struct bnx2x * bp)824 static inline void bnx2x_add_all_napi(struct bnx2x *bp)
825 {
826 	int i;
827 
828 	/* Add NAPI objects */
829 	for_each_rx_queue(bp, i)
830 		netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
831 			       bnx2x_poll, BNX2X_NAPI_WEIGHT);
832 }
833 
bnx2x_del_all_napi(struct bnx2x * bp)834 static inline void bnx2x_del_all_napi(struct bnx2x *bp)
835 {
836 	int i;
837 
838 	for_each_rx_queue(bp, i)
839 		netif_napi_del(&bnx2x_fp(bp, i, napi));
840 }
841 
bnx2x_disable_msi(struct bnx2x * bp)842 static inline void bnx2x_disable_msi(struct bnx2x *bp)
843 {
844 	if (bp->flags & USING_MSIX_FLAG) {
845 		pci_disable_msix(bp->pdev);
846 		bp->flags &= ~USING_MSIX_FLAG;
847 	} else if (bp->flags & USING_MSI_FLAG) {
848 		pci_disable_msi(bp->pdev);
849 		bp->flags &= ~USING_MSI_FLAG;
850 	}
851 }
852 
bnx2x_calc_num_queues(struct bnx2x * bp)853 static inline int bnx2x_calc_num_queues(struct bnx2x *bp)
854 {
855 	return  num_queues ?
856 		 min_t(int, num_queues, BNX2X_MAX_QUEUES(bp)) :
857 		 min_t(int, num_online_cpus(), BNX2X_MAX_QUEUES(bp));
858 }
859 
bnx2x_clear_sge_mask_next_elems(struct bnx2x_fastpath * fp)860 static inline void bnx2x_clear_sge_mask_next_elems(struct bnx2x_fastpath *fp)
861 {
862 	int i, j;
863 
864 	for (i = 1; i <= NUM_RX_SGE_PAGES; i++) {
865 		int idx = RX_SGE_CNT * i - 1;
866 
867 		for (j = 0; j < 2; j++) {
868 			BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx);
869 			idx--;
870 		}
871 	}
872 }
873 
bnx2x_init_sge_ring_bit_mask(struct bnx2x_fastpath * fp)874 static inline void bnx2x_init_sge_ring_bit_mask(struct bnx2x_fastpath *fp)
875 {
876 	/* Set the mask to all 1-s: it's faster to compare to 0 than to 0xf-s */
877 	memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask));
878 
879 	/* Clear the two last indices in the page to 1:
880 	   these are the indices that correspond to the "next" element,
881 	   hence will never be indicated and should be removed from
882 	   the calculations. */
883 	bnx2x_clear_sge_mask_next_elems(fp);
884 }
885 
bnx2x_alloc_rx_sge(struct bnx2x * bp,struct bnx2x_fastpath * fp,u16 index)886 static inline int bnx2x_alloc_rx_sge(struct bnx2x *bp,
887 				     struct bnx2x_fastpath *fp, u16 index)
888 {
889 	struct page *page = alloc_pages(GFP_ATOMIC, PAGES_PER_SGE_SHIFT);
890 	struct sw_rx_page *sw_buf = &fp->rx_page_ring[index];
891 	struct eth_rx_sge *sge = &fp->rx_sge_ring[index];
892 	dma_addr_t mapping;
893 
894 	if (unlikely(page == NULL)) {
895 		BNX2X_ERR("Can't alloc sge\n");
896 		return -ENOMEM;
897 	}
898 
899 	mapping = dma_map_page(&bp->pdev->dev, page, 0,
900 			       SGE_PAGE_SIZE*PAGES_PER_SGE, DMA_FROM_DEVICE);
901 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
902 		__free_pages(page, PAGES_PER_SGE_SHIFT);
903 		BNX2X_ERR("Can't map sge\n");
904 		return -ENOMEM;
905 	}
906 
907 	sw_buf->page = page;
908 	dma_unmap_addr_set(sw_buf, mapping, mapping);
909 
910 	sge->addr_hi = cpu_to_le32(U64_HI(mapping));
911 	sge->addr_lo = cpu_to_le32(U64_LO(mapping));
912 
913 	return 0;
914 }
915 
bnx2x_alloc_rx_data(struct bnx2x * bp,struct bnx2x_fastpath * fp,u16 index)916 static inline int bnx2x_alloc_rx_data(struct bnx2x *bp,
917 				      struct bnx2x_fastpath *fp, u16 index)
918 {
919 	u8 *data;
920 	struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index];
921 	struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index];
922 	dma_addr_t mapping;
923 
924 	data = kmalloc(fp->rx_buf_size + NET_SKB_PAD, GFP_ATOMIC);
925 	if (unlikely(data == NULL))
926 		return -ENOMEM;
927 
928 	mapping = dma_map_single(&bp->pdev->dev, data + NET_SKB_PAD,
929 				 fp->rx_buf_size,
930 				 DMA_FROM_DEVICE);
931 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
932 		kfree(data);
933 		BNX2X_ERR("Can't map rx data\n");
934 		return -ENOMEM;
935 	}
936 
937 	rx_buf->data = data;
938 	dma_unmap_addr_set(rx_buf, mapping, mapping);
939 
940 	rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
941 	rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
942 
943 	return 0;
944 }
945 
946 /* note that we are not allocating a new buffer,
947  * we are just moving one from cons to prod
948  * we are not creating a new mapping,
949  * so there is no need to check for dma_mapping_error().
950  */
bnx2x_reuse_rx_data(struct bnx2x_fastpath * fp,u16 cons,u16 prod)951 static inline void bnx2x_reuse_rx_data(struct bnx2x_fastpath *fp,
952 				      u16 cons, u16 prod)
953 {
954 	struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons];
955 	struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod];
956 	struct eth_rx_bd *cons_bd = &fp->rx_desc_ring[cons];
957 	struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod];
958 
959 	dma_unmap_addr_set(prod_rx_buf, mapping,
960 			   dma_unmap_addr(cons_rx_buf, mapping));
961 	prod_rx_buf->data = cons_rx_buf->data;
962 	*prod_bd = *cons_bd;
963 }
964 
965 /************************* Init ******************************************/
966 
967 /**
968  * bnx2x_func_start - init function
969  *
970  * @bp:		driver handle
971  *
972  * Must be called before sending CLIENT_SETUP for the first client.
973  */
bnx2x_func_start(struct bnx2x * bp)974 static inline int bnx2x_func_start(struct bnx2x *bp)
975 {
976 	struct bnx2x_func_state_params func_params = {NULL};
977 	struct bnx2x_func_start_params *start_params =
978 		&func_params.params.start;
979 
980 	/* Prepare parameters for function state transitions */
981 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
982 
983 	func_params.f_obj = &bp->func_obj;
984 	func_params.cmd = BNX2X_F_CMD_START;
985 
986 	/* Function parameters */
987 	start_params->mf_mode = bp->mf_mode;
988 	start_params->sd_vlan_tag = bp->mf_ov;
989 
990 	if (CHIP_IS_E2(bp) || CHIP_IS_E3(bp))
991 		start_params->network_cos_mode = STATIC_COS;
992 	else /* CHIP_IS_E1X */
993 		start_params->network_cos_mode = FW_WRR;
994 
995 	return bnx2x_func_state_change(bp, &func_params);
996 }
997 
998 
999 /**
1000  * bnx2x_set_fw_mac_addr - fill in a MAC address in FW format
1001  *
1002  * @fw_hi:	pointer to upper part
1003  * @fw_mid:	pointer to middle part
1004  * @fw_lo:	pointer to lower part
1005  * @mac:	pointer to MAC address
1006  */
bnx2x_set_fw_mac_addr(u16 * fw_hi,u16 * fw_mid,u16 * fw_lo,u8 * mac)1007 static inline void bnx2x_set_fw_mac_addr(u16 *fw_hi, u16 *fw_mid, u16 *fw_lo,
1008 					 u8 *mac)
1009 {
1010 	((u8 *)fw_hi)[0]  = mac[1];
1011 	((u8 *)fw_hi)[1]  = mac[0];
1012 	((u8 *)fw_mid)[0] = mac[3];
1013 	((u8 *)fw_mid)[1] = mac[2];
1014 	((u8 *)fw_lo)[0]  = mac[5];
1015 	((u8 *)fw_lo)[1]  = mac[4];
1016 }
1017 
bnx2x_free_rx_sge_range(struct bnx2x * bp,struct bnx2x_fastpath * fp,int last)1018 static inline void bnx2x_free_rx_sge_range(struct bnx2x *bp,
1019 					   struct bnx2x_fastpath *fp, int last)
1020 {
1021 	int i;
1022 
1023 	if (fp->disable_tpa)
1024 		return;
1025 
1026 	for (i = 0; i < last; i++)
1027 		bnx2x_free_rx_sge(bp, fp, i);
1028 }
1029 
bnx2x_free_tpa_pool(struct bnx2x * bp,struct bnx2x_fastpath * fp,int last)1030 static inline void bnx2x_free_tpa_pool(struct bnx2x *bp,
1031 				       struct bnx2x_fastpath *fp, int last)
1032 {
1033 	int i;
1034 
1035 	for (i = 0; i < last; i++) {
1036 		struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i];
1037 		struct sw_rx_bd *first_buf = &tpa_info->first_buf;
1038 		u8 *data = first_buf->data;
1039 
1040 		if (data == NULL) {
1041 			DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i);
1042 			continue;
1043 		}
1044 		if (tpa_info->tpa_state == BNX2X_TPA_START)
1045 			dma_unmap_single(&bp->pdev->dev,
1046 					 dma_unmap_addr(first_buf, mapping),
1047 					 fp->rx_buf_size, DMA_FROM_DEVICE);
1048 		kfree(data);
1049 		first_buf->data = NULL;
1050 	}
1051 }
1052 
bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata * txdata)1053 static inline void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
1054 {
1055 	int i;
1056 
1057 	for (i = 1; i <= NUM_TX_RINGS; i++) {
1058 		struct eth_tx_next_bd *tx_next_bd =
1059 			&txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
1060 
1061 		tx_next_bd->addr_hi =
1062 			cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
1063 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
1064 		tx_next_bd->addr_lo =
1065 			cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
1066 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
1067 	}
1068 
1069 	SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
1070 	txdata->tx_db.data.zero_fill1 = 0;
1071 	txdata->tx_db.data.prod = 0;
1072 
1073 	txdata->tx_pkt_prod = 0;
1074 	txdata->tx_pkt_cons = 0;
1075 	txdata->tx_bd_prod = 0;
1076 	txdata->tx_bd_cons = 0;
1077 	txdata->tx_pkt = 0;
1078 }
1079 
bnx2x_init_tx_rings(struct bnx2x * bp)1080 static inline void bnx2x_init_tx_rings(struct bnx2x *bp)
1081 {
1082 	int i;
1083 	u8 cos;
1084 
1085 	for_each_tx_queue(bp, i)
1086 		for_each_cos_in_tx_queue(&bp->fp[i], cos)
1087 			bnx2x_init_tx_ring_one(&bp->fp[i].txdata[cos]);
1088 }
1089 
bnx2x_set_next_page_rx_bd(struct bnx2x_fastpath * fp)1090 static inline void bnx2x_set_next_page_rx_bd(struct bnx2x_fastpath *fp)
1091 {
1092 	int i;
1093 
1094 	for (i = 1; i <= NUM_RX_RINGS; i++) {
1095 		struct eth_rx_bd *rx_bd;
1096 
1097 		rx_bd = &fp->rx_desc_ring[RX_DESC_CNT * i - 2];
1098 		rx_bd->addr_hi =
1099 			cpu_to_le32(U64_HI(fp->rx_desc_mapping +
1100 				    BCM_PAGE_SIZE*(i % NUM_RX_RINGS)));
1101 		rx_bd->addr_lo =
1102 			cpu_to_le32(U64_LO(fp->rx_desc_mapping +
1103 				    BCM_PAGE_SIZE*(i % NUM_RX_RINGS)));
1104 	}
1105 }
1106 
bnx2x_set_next_page_sgl(struct bnx2x_fastpath * fp)1107 static inline void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp)
1108 {
1109 	int i;
1110 
1111 	for (i = 1; i <= NUM_RX_SGE_PAGES; i++) {
1112 		struct eth_rx_sge *sge;
1113 
1114 		sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2];
1115 		sge->addr_hi =
1116 			cpu_to_le32(U64_HI(fp->rx_sge_mapping +
1117 			BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1118 
1119 		sge->addr_lo =
1120 			cpu_to_le32(U64_LO(fp->rx_sge_mapping +
1121 			BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1122 	}
1123 }
1124 
bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath * fp)1125 static inline void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp)
1126 {
1127 	int i;
1128 	for (i = 1; i <= NUM_RCQ_RINGS; i++) {
1129 		struct eth_rx_cqe_next_page *nextpg;
1130 
1131 		nextpg = (struct eth_rx_cqe_next_page *)
1132 			&fp->rx_comp_ring[RCQ_DESC_CNT * i - 1];
1133 		nextpg->addr_hi =
1134 			cpu_to_le32(U64_HI(fp->rx_comp_mapping +
1135 				   BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
1136 		nextpg->addr_lo =
1137 			cpu_to_le32(U64_LO(fp->rx_comp_mapping +
1138 				   BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
1139 	}
1140 }
1141 
1142 /* Returns the number of actually allocated BDs */
bnx2x_alloc_rx_bds(struct bnx2x_fastpath * fp,int rx_ring_size)1143 static inline int bnx2x_alloc_rx_bds(struct bnx2x_fastpath *fp,
1144 				      int rx_ring_size)
1145 {
1146 	struct bnx2x *bp = fp->bp;
1147 	u16 ring_prod, cqe_ring_prod;
1148 	int i, failure_cnt = 0;
1149 
1150 	fp->rx_comp_cons = 0;
1151 	cqe_ring_prod = ring_prod = 0;
1152 
1153 	/* This routine is called only during fo init so
1154 	 * fp->eth_q_stats.rx_skb_alloc_failed = 0
1155 	 */
1156 	for (i = 0; i < rx_ring_size; i++) {
1157 		if (bnx2x_alloc_rx_data(bp, fp, ring_prod) < 0) {
1158 			failure_cnt++;
1159 			continue;
1160 		}
1161 		ring_prod = NEXT_RX_IDX(ring_prod);
1162 		cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod);
1163 		WARN_ON(ring_prod <= (i - failure_cnt));
1164 	}
1165 
1166 	if (failure_cnt)
1167 		BNX2X_ERR("was only able to allocate %d rx skbs on queue[%d]\n",
1168 			  i - failure_cnt, fp->index);
1169 
1170 	fp->rx_bd_prod = ring_prod;
1171 	/* Limit the CQE producer by the CQE ring size */
1172 	fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT,
1173 			       cqe_ring_prod);
1174 	fp->rx_pkt = fp->rx_calls = 0;
1175 
1176 	fp->eth_q_stats.rx_skb_alloc_failed += failure_cnt;
1177 
1178 	return i - failure_cnt;
1179 }
1180 
1181 /* Statistics ID are global per chip/path, while Client IDs for E1x are per
1182  * port.
1183  */
bnx2x_stats_id(struct bnx2x_fastpath * fp)1184 static inline u8 bnx2x_stats_id(struct bnx2x_fastpath *fp)
1185 {
1186 	struct bnx2x *bp = fp->bp;
1187 	if (!CHIP_IS_E1x(bp)) {
1188 #ifdef BCM_CNIC
1189 		/* there are special statistics counters for FCoE 136..140 */
1190 		if (IS_FCOE_FP(fp))
1191 			return bp->cnic_base_cl_id + (bp->pf_num >> 1);
1192 #endif
1193 		return fp->cl_id;
1194 	}
1195 	return fp->cl_id + BP_PORT(bp) * FP_SB_MAX_E1x;
1196 }
1197 
bnx2x_init_vlan_mac_fp_objs(struct bnx2x_fastpath * fp,bnx2x_obj_type obj_type)1198 static inline void bnx2x_init_vlan_mac_fp_objs(struct bnx2x_fastpath *fp,
1199 					       bnx2x_obj_type obj_type)
1200 {
1201 	struct bnx2x *bp = fp->bp;
1202 
1203 	/* Configure classification DBs */
1204 	bnx2x_init_mac_obj(bp, &fp->mac_obj, fp->cl_id, fp->cid,
1205 			   BP_FUNC(bp), bnx2x_sp(bp, mac_rdata),
1206 			   bnx2x_sp_mapping(bp, mac_rdata),
1207 			   BNX2X_FILTER_MAC_PENDING,
1208 			   &bp->sp_state, obj_type,
1209 			   &bp->macs_pool);
1210 }
1211 
1212 /**
1213  * bnx2x_get_path_func_num - get number of active functions
1214  *
1215  * @bp:		driver handle
1216  *
1217  * Calculates the number of active (not hidden) functions on the
1218  * current path.
1219  */
bnx2x_get_path_func_num(struct bnx2x * bp)1220 static inline u8 bnx2x_get_path_func_num(struct bnx2x *bp)
1221 {
1222 	u8 func_num = 0, i;
1223 
1224 	/* 57710 has only one function per-port */
1225 	if (CHIP_IS_E1(bp))
1226 		return 1;
1227 
1228 	/* Calculate a number of functions enabled on the current
1229 	 * PATH/PORT.
1230 	 */
1231 	if (CHIP_REV_IS_SLOW(bp)) {
1232 		if (IS_MF(bp))
1233 			func_num = 4;
1234 		else
1235 			func_num = 2;
1236 	} else {
1237 		for (i = 0; i < E1H_FUNC_MAX / 2; i++) {
1238 			u32 func_config =
1239 				MF_CFG_RD(bp,
1240 					  func_mf_config[BP_PORT(bp) + 2 * i].
1241 					  config);
1242 			func_num +=
1243 				((func_config & FUNC_MF_CFG_FUNC_HIDE) ? 0 : 1);
1244 		}
1245 	}
1246 
1247 	WARN_ON(!func_num);
1248 
1249 	return func_num;
1250 }
1251 
bnx2x_init_bp_objs(struct bnx2x * bp)1252 static inline void bnx2x_init_bp_objs(struct bnx2x *bp)
1253 {
1254 	/* RX_MODE controlling object */
1255 	bnx2x_init_rx_mode_obj(bp, &bp->rx_mode_obj);
1256 
1257 	/* multicast configuration controlling object */
1258 	bnx2x_init_mcast_obj(bp, &bp->mcast_obj, bp->fp->cl_id, bp->fp->cid,
1259 			     BP_FUNC(bp), BP_FUNC(bp),
1260 			     bnx2x_sp(bp, mcast_rdata),
1261 			     bnx2x_sp_mapping(bp, mcast_rdata),
1262 			     BNX2X_FILTER_MCAST_PENDING, &bp->sp_state,
1263 			     BNX2X_OBJ_TYPE_RX);
1264 
1265 	/* Setup CAM credit pools */
1266 	bnx2x_init_mac_credit_pool(bp, &bp->macs_pool, BP_FUNC(bp),
1267 				   bnx2x_get_path_func_num(bp));
1268 
1269 	/* RSS configuration object */
1270 	bnx2x_init_rss_config_obj(bp, &bp->rss_conf_obj, bp->fp->cl_id,
1271 				  bp->fp->cid, BP_FUNC(bp), BP_FUNC(bp),
1272 				  bnx2x_sp(bp, rss_rdata),
1273 				  bnx2x_sp_mapping(bp, rss_rdata),
1274 				  BNX2X_FILTER_RSS_CONF_PENDING, &bp->sp_state,
1275 				  BNX2X_OBJ_TYPE_RX);
1276 }
1277 
bnx2x_fp_qzone_id(struct bnx2x_fastpath * fp)1278 static inline u8 bnx2x_fp_qzone_id(struct bnx2x_fastpath *fp)
1279 {
1280 	if (CHIP_IS_E1x(fp->bp))
1281 		return fp->cl_id + BP_PORT(fp->bp) * ETH_MAX_RX_CLIENTS_E1H;
1282 	else
1283 		return fp->cl_id;
1284 }
1285 
bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath * fp)1286 static inline u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
1287 {
1288 	struct bnx2x *bp = fp->bp;
1289 
1290 	if (!CHIP_IS_E1x(bp))
1291 		return USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
1292 	else
1293 		return USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
1294 }
1295 
bnx2x_init_txdata(struct bnx2x * bp,struct bnx2x_fp_txdata * txdata,u32 cid,int txq_index,__le16 * tx_cons_sb)1296 static inline void bnx2x_init_txdata(struct bnx2x *bp,
1297 	struct bnx2x_fp_txdata *txdata, u32 cid, int txq_index,
1298 	__le16 *tx_cons_sb)
1299 {
1300 	txdata->cid = cid;
1301 	txdata->txq_index = txq_index;
1302 	txdata->tx_cons_sb = tx_cons_sb;
1303 
1304 	DP(NETIF_MSG_IFUP, "created tx data cid %d, txq %d\n",
1305 	   txdata->cid, txdata->txq_index);
1306 }
1307 
1308 #ifdef BCM_CNIC
bnx2x_cnic_eth_cl_id(struct bnx2x * bp,u8 cl_idx)1309 static inline u8 bnx2x_cnic_eth_cl_id(struct bnx2x *bp, u8 cl_idx)
1310 {
1311 	return bp->cnic_base_cl_id + cl_idx +
1312 		(bp->pf_num >> 1) * BNX2X_MAX_CNIC_ETH_CL_ID_IDX;
1313 }
1314 
bnx2x_cnic_fw_sb_id(struct bnx2x * bp)1315 static inline u8 bnx2x_cnic_fw_sb_id(struct bnx2x *bp)
1316 {
1317 
1318 	/* the 'first' id is allocated for the cnic */
1319 	return bp->base_fw_ndsb;
1320 }
1321 
bnx2x_cnic_igu_sb_id(struct bnx2x * bp)1322 static inline u8 bnx2x_cnic_igu_sb_id(struct bnx2x *bp)
1323 {
1324 	return bp->igu_base_sb;
1325 }
1326 
1327 
bnx2x_init_fcoe_fp(struct bnx2x * bp)1328 static inline void bnx2x_init_fcoe_fp(struct bnx2x *bp)
1329 {
1330 	struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
1331 	unsigned long q_type = 0;
1332 
1333 	bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
1334 	bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
1335 						     BNX2X_FCOE_ETH_CL_ID_IDX);
1336 	/** Current BNX2X_FCOE_ETH_CID deffinition implies not more than
1337 	 *  16 ETH clients per function when CNIC is enabled!
1338 	 *
1339 	 *  Fix it ASAP!!!
1340 	 */
1341 	bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID;
1342 	bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
1343 	bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
1344 	bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
1345 
1346 	bnx2x_init_txdata(bp, &bnx2x_fcoe(bp, txdata[0]),
1347 			  fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX);
1348 
1349 	DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
1350 
1351 	/* qZone id equals to FW (per path) client id */
1352 	bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
1353 	/* init shortcut */
1354 	bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
1355 		bnx2x_rx_ustorm_prods_offset(fp);
1356 
1357 	/* Configure Queue State object */
1358 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
1359 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
1360 
1361 	/* No multi-CoS for FCoE L2 client */
1362 	BUG_ON(fp->max_cos != 1);
1363 
1364 	bnx2x_init_queue_obj(bp, &fp->q_obj, fp->cl_id, &fp->cid, 1,
1365 			     BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
1366 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
1367 
1368 	DP(NETIF_MSG_IFUP,
1369 	   "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
1370 	   fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
1371 	   fp->igu_sb_id);
1372 }
1373 #endif
1374 
bnx2x_clean_tx_queue(struct bnx2x * bp,struct bnx2x_fp_txdata * txdata)1375 static inline int bnx2x_clean_tx_queue(struct bnx2x *bp,
1376 				       struct bnx2x_fp_txdata *txdata)
1377 {
1378 	int cnt = 1000;
1379 
1380 	while (bnx2x_has_tx_work_unload(txdata)) {
1381 		if (!cnt) {
1382 			BNX2X_ERR("timeout waiting for queue[%d]: txdata->tx_pkt_prod(%d) != txdata->tx_pkt_cons(%d)\n",
1383 				  txdata->txq_index, txdata->tx_pkt_prod,
1384 				  txdata->tx_pkt_cons);
1385 #ifdef BNX2X_STOP_ON_ERROR
1386 			bnx2x_panic();
1387 			return -EBUSY;
1388 #else
1389 			break;
1390 #endif
1391 		}
1392 		cnt--;
1393 		usleep_range(1000, 1000);
1394 	}
1395 
1396 	return 0;
1397 }
1398 
1399 int bnx2x_get_link_cfg_idx(struct bnx2x *bp);
1400 
__storm_memset_struct(struct bnx2x * bp,u32 addr,size_t size,u32 * data)1401 static inline void __storm_memset_struct(struct bnx2x *bp,
1402 					 u32 addr, size_t size, u32 *data)
1403 {
1404 	int i;
1405 	for (i = 0; i < size/4; i++)
1406 		REG_WR(bp, addr + (i * 4), data[i]);
1407 }
1408 
storm_memset_func_cfg(struct bnx2x * bp,struct tstorm_eth_function_common_config * tcfg,u16 abs_fid)1409 static inline void storm_memset_func_cfg(struct bnx2x *bp,
1410 				struct tstorm_eth_function_common_config *tcfg,
1411 				u16 abs_fid)
1412 {
1413 	size_t size = sizeof(struct tstorm_eth_function_common_config);
1414 
1415 	u32 addr = BAR_TSTRORM_INTMEM +
1416 			TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
1417 
1418 	__storm_memset_struct(bp, addr, size, (u32 *)tcfg);
1419 }
1420 
storm_memset_cmng(struct bnx2x * bp,struct cmng_struct_per_port * cmng,u8 port)1421 static inline void storm_memset_cmng(struct bnx2x *bp,
1422 				struct cmng_struct_per_port *cmng,
1423 				u8 port)
1424 {
1425 	size_t size = sizeof(struct cmng_struct_per_port);
1426 
1427 	u32 addr = BAR_XSTRORM_INTMEM +
1428 			XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
1429 
1430 	__storm_memset_struct(bp, addr, size, (u32 *)cmng);
1431 }
1432 
1433 /**
1434  * bnx2x_wait_sp_comp - wait for the outstanding SP commands.
1435  *
1436  * @bp:		driver handle
1437  * @mask:	bits that need to be cleared
1438  */
bnx2x_wait_sp_comp(struct bnx2x * bp,unsigned long mask)1439 static inline bool bnx2x_wait_sp_comp(struct bnx2x *bp, unsigned long mask)
1440 {
1441 	int tout = 5000; /* Wait for 5 secs tops */
1442 
1443 	while (tout--) {
1444 		smp_mb();
1445 		netif_addr_lock_bh(bp->dev);
1446 		if (!(bp->sp_state & mask)) {
1447 			netif_addr_unlock_bh(bp->dev);
1448 			return true;
1449 		}
1450 		netif_addr_unlock_bh(bp->dev);
1451 
1452 		usleep_range(1000, 1000);
1453 	}
1454 
1455 	smp_mb();
1456 
1457 	netif_addr_lock_bh(bp->dev);
1458 	if (bp->sp_state & mask) {
1459 		BNX2X_ERR("Filtering completion timed out. sp_state 0x%lx, mask 0x%lx\n",
1460 			  bp->sp_state, mask);
1461 		netif_addr_unlock_bh(bp->dev);
1462 		return false;
1463 	}
1464 	netif_addr_unlock_bh(bp->dev);
1465 
1466 	return true;
1467 }
1468 
1469 /**
1470  * bnx2x_set_ctx_validation - set CDU context validation values
1471  *
1472  * @bp:		driver handle
1473  * @cxt:	context of the connection on the host memory
1474  * @cid:	SW CID of the connection to be configured
1475  */
1476 void bnx2x_set_ctx_validation(struct bnx2x *bp, struct eth_context *cxt,
1477 			      u32 cid);
1478 
1479 void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u8 fw_sb_id,
1480 				    u8 sb_index, u8 disable, u16 usec);
1481 void bnx2x_acquire_phy_lock(struct bnx2x *bp);
1482 void bnx2x_release_phy_lock(struct bnx2x *bp);
1483 
1484 /**
1485  * bnx2x_extract_max_cfg - extract MAX BW part from MF configuration.
1486  *
1487  * @bp:		driver handle
1488  * @mf_cfg:	MF configuration
1489  *
1490  */
bnx2x_extract_max_cfg(struct bnx2x * bp,u32 mf_cfg)1491 static inline u16 bnx2x_extract_max_cfg(struct bnx2x *bp, u32 mf_cfg)
1492 {
1493 	u16 max_cfg = (mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
1494 			      FUNC_MF_CFG_MAX_BW_SHIFT;
1495 	if (!max_cfg) {
1496 		DP(NETIF_MSG_IFUP | BNX2X_MSG_ETHTOOL,
1497 		   "Max BW configured to 0 - using 100 instead\n");
1498 		max_cfg = 100;
1499 	}
1500 	return max_cfg;
1501 }
1502 
1503 /* checks if HW supports GRO for given MTU */
bnx2x_mtu_allows_gro(int mtu)1504 static inline bool bnx2x_mtu_allows_gro(int mtu)
1505 {
1506 	/* gro frags per page */
1507 	int fpp = SGE_PAGE_SIZE / (mtu - ETH_MAX_TPA_HEADER_SIZE);
1508 
1509 	/*
1510 	 * 1. number of frags should not grow above MAX_SKB_FRAGS
1511 	 * 2. frag must fit the page
1512 	 */
1513 	return mtu <= SGE_PAGE_SIZE && (U_ETH_SGL_SIZE * fpp) <= MAX_SKB_FRAGS;
1514 }
1515 
bnx2x_need_gro_check(int mtu)1516 static inline bool bnx2x_need_gro_check(int mtu)
1517 {
1518 	return (SGE_PAGES / (mtu - ETH_MAX_TPA_HEADER_SIZE - 1)) !=
1519 		(SGE_PAGES / (mtu - ETH_MIN_TPA_HEADER_SIZE + 1));
1520 }
1521 
1522 /**
1523  * bnx2x_bz_fp - zero content of the fastpath structure.
1524  *
1525  * @bp:		driver handle
1526  * @index:	fastpath index to be zeroed
1527  *
1528  * Makes sure the contents of the bp->fp[index].napi is kept
1529  * intact.
1530  */
bnx2x_bz_fp(struct bnx2x * bp,int index)1531 static inline void bnx2x_bz_fp(struct bnx2x *bp, int index)
1532 {
1533 	struct bnx2x_fastpath *fp = &bp->fp[index];
1534 	struct napi_struct orig_napi = fp->napi;
1535 	/* bzero bnx2x_fastpath contents */
1536 	if (bp->stats_init)
1537 		memset(fp, 0, sizeof(*fp));
1538 	else {
1539 		/* Keep Queue statistics */
1540 		struct bnx2x_eth_q_stats *tmp_eth_q_stats;
1541 		struct bnx2x_eth_q_stats_old *tmp_eth_q_stats_old;
1542 
1543 		tmp_eth_q_stats = kzalloc(sizeof(struct bnx2x_eth_q_stats),
1544 					  GFP_KERNEL);
1545 		if (tmp_eth_q_stats)
1546 			memcpy(tmp_eth_q_stats, &fp->eth_q_stats,
1547 			       sizeof(struct bnx2x_eth_q_stats));
1548 
1549 		tmp_eth_q_stats_old =
1550 			kzalloc(sizeof(struct bnx2x_eth_q_stats_old),
1551 				GFP_KERNEL);
1552 		if (tmp_eth_q_stats_old)
1553 			memcpy(tmp_eth_q_stats_old, &fp->eth_q_stats_old,
1554 			       sizeof(struct bnx2x_eth_q_stats_old));
1555 
1556 		memset(fp, 0, sizeof(*fp));
1557 
1558 		if (tmp_eth_q_stats) {
1559 			memcpy(&fp->eth_q_stats, tmp_eth_q_stats,
1560 				   sizeof(struct bnx2x_eth_q_stats));
1561 			kfree(tmp_eth_q_stats);
1562 		}
1563 
1564 		if (tmp_eth_q_stats_old) {
1565 			memcpy(&fp->eth_q_stats_old, tmp_eth_q_stats_old,
1566 			       sizeof(struct bnx2x_eth_q_stats_old));
1567 			kfree(tmp_eth_q_stats_old);
1568 		}
1569 
1570 	}
1571 
1572 	/* Restore the NAPI object as it has been already initialized */
1573 	fp->napi = orig_napi;
1574 
1575 	fp->bp = bp;
1576 	fp->index = index;
1577 	if (IS_ETH_FP(fp))
1578 		fp->max_cos = bp->max_cos;
1579 	else
1580 		/* Special queues support only one CoS */
1581 		fp->max_cos = 1;
1582 
1583 	/*
1584 	 * set the tpa flag for each queue. The tpa flag determines the queue
1585 	 * minimal size so it must be set prior to queue memory allocation
1586 	 */
1587 	fp->disable_tpa = !(bp->flags & TPA_ENABLE_FLAG ||
1588 				  (bp->flags & GRO_ENABLE_FLAG &&
1589 				   bnx2x_mtu_allows_gro(bp->dev->mtu)));
1590 	if (bp->flags & TPA_ENABLE_FLAG)
1591 		fp->mode = TPA_MODE_LRO;
1592 	else if (bp->flags & GRO_ENABLE_FLAG)
1593 		fp->mode = TPA_MODE_GRO;
1594 
1595 #ifdef BCM_CNIC
1596 	/* We don't want TPA on an FCoE L2 ring */
1597 	if (IS_FCOE_FP(fp))
1598 		fp->disable_tpa = 1;
1599 #endif
1600 }
1601 
1602 #ifdef BCM_CNIC
1603 /**
1604  * bnx2x_get_iscsi_info - update iSCSI params according to licensing info.
1605  *
1606  * @bp:		driver handle
1607  *
1608  */
1609 void bnx2x_get_iscsi_info(struct bnx2x *bp);
1610 #endif
1611 /* returns func by VN for current port */
func_by_vn(struct bnx2x * bp,int vn)1612 static inline int func_by_vn(struct bnx2x *bp, int vn)
1613 {
1614 	return 2 * vn + BP_PORT(bp);
1615 }
1616 
1617 /**
1618  * bnx2x_link_sync_notify - send notification to other functions.
1619  *
1620  * @bp:		driver handle
1621  *
1622  */
bnx2x_link_sync_notify(struct bnx2x * bp)1623 static inline void bnx2x_link_sync_notify(struct bnx2x *bp)
1624 {
1625 	int func;
1626 	int vn;
1627 
1628 	/* Set the attention towards other drivers on the same port */
1629 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
1630 		if (vn == BP_VN(bp))
1631 			continue;
1632 
1633 		func = func_by_vn(bp, vn);
1634 		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_0 +
1635 		       (LINK_SYNC_ATTENTION_BIT_FUNC_0 + func)*4, 1);
1636 	}
1637 }
1638 
1639 /**
1640  * bnx2x_update_drv_flags - update flags in shmem
1641  *
1642  * @bp:		driver handle
1643  * @flags:	flags to update
1644  * @set:	set or clear
1645  *
1646  */
bnx2x_update_drv_flags(struct bnx2x * bp,u32 flags,u32 set)1647 static inline void bnx2x_update_drv_flags(struct bnx2x *bp, u32 flags, u32 set)
1648 {
1649 	if (SHMEM2_HAS(bp, drv_flags)) {
1650 		u32 drv_flags;
1651 		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_DRV_FLAGS);
1652 		drv_flags = SHMEM2_RD(bp, drv_flags);
1653 
1654 		if (set)
1655 			SET_FLAGS(drv_flags, flags);
1656 		else
1657 			RESET_FLAGS(drv_flags, flags);
1658 
1659 		SHMEM2_WR(bp, drv_flags, drv_flags);
1660 		DP(NETIF_MSG_IFUP, "drv_flags 0x%08x\n", drv_flags);
1661 		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_DRV_FLAGS);
1662 	}
1663 }
1664 
bnx2x_is_valid_ether_addr(struct bnx2x * bp,u8 * addr)1665 static inline bool bnx2x_is_valid_ether_addr(struct bnx2x *bp, u8 *addr)
1666 {
1667 	if (is_valid_ether_addr(addr))
1668 		return true;
1669 #ifdef BCM_CNIC
1670 	if (is_zero_ether_addr(addr) && IS_MF_STORAGE_SD(bp))
1671 		return true;
1672 #endif
1673 	return false;
1674 }
1675 
1676 #endif /* BNX2X_CMN_H */
1677