1 /*
2  * CAN bus driver for Bosch C_CAN controller
3  *
4  * Copyright (C) 2010 ST Microelectronics
5  * Bhupesh Sharma <bhupesh.sharma@st.com>
6  *
7  * Borrowed heavily from the C_CAN driver originally written by:
8  * Copyright (C) 2007
9  * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
10  * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
11  *
12  * TX and RX NAPI implementation has been borrowed from at91 CAN driver
13  * written by:
14  * Copyright
15  * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
16  * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
17  *
18  * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
19  * Bosch C_CAN user manual can be obtained from:
20  * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
21  * users_manual_c_can.pdf
22  *
23  * This file is licensed under the terms of the GNU General Public
24  * License version 2. This program is licensed "as is" without any
25  * warranty of any kind, whether express or implied.
26  */
27 
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/interrupt.h>
31 #include <linux/delay.h>
32 #include <linux/netdevice.h>
33 #include <linux/if_arp.h>
34 #include <linux/if_ether.h>
35 #include <linux/list.h>
36 #include <linux/io.h>
37 
38 #include <linux/can.h>
39 #include <linux/can/dev.h>
40 #include <linux/can/error.h>
41 
42 #include "c_can.h"
43 
44 /* control register */
45 #define CONTROL_TEST		BIT(7)
46 #define CONTROL_CCE		BIT(6)
47 #define CONTROL_DISABLE_AR	BIT(5)
48 #define CONTROL_ENABLE_AR	(0 << 5)
49 #define CONTROL_EIE		BIT(3)
50 #define CONTROL_SIE		BIT(2)
51 #define CONTROL_IE		BIT(1)
52 #define CONTROL_INIT		BIT(0)
53 
54 /* test register */
55 #define TEST_RX			BIT(7)
56 #define TEST_TX1		BIT(6)
57 #define TEST_TX2		BIT(5)
58 #define TEST_LBACK		BIT(4)
59 #define TEST_SILENT		BIT(3)
60 #define TEST_BASIC		BIT(2)
61 
62 /* status register */
63 #define STATUS_BOFF		BIT(7)
64 #define STATUS_EWARN		BIT(6)
65 #define STATUS_EPASS		BIT(5)
66 #define STATUS_RXOK		BIT(4)
67 #define STATUS_TXOK		BIT(3)
68 
69 /* error counter register */
70 #define ERR_CNT_TEC_MASK	0xff
71 #define ERR_CNT_TEC_SHIFT	0
72 #define ERR_CNT_REC_SHIFT	8
73 #define ERR_CNT_REC_MASK	(0x7f << ERR_CNT_REC_SHIFT)
74 #define ERR_CNT_RP_SHIFT	15
75 #define ERR_CNT_RP_MASK		(0x1 << ERR_CNT_RP_SHIFT)
76 
77 /* bit-timing register */
78 #define BTR_BRP_MASK		0x3f
79 #define BTR_BRP_SHIFT		0
80 #define BTR_SJW_SHIFT		6
81 #define BTR_SJW_MASK		(0x3 << BTR_SJW_SHIFT)
82 #define BTR_TSEG1_SHIFT		8
83 #define BTR_TSEG1_MASK		(0xf << BTR_TSEG1_SHIFT)
84 #define BTR_TSEG2_SHIFT		12
85 #define BTR_TSEG2_MASK		(0x7 << BTR_TSEG2_SHIFT)
86 
87 /* brp extension register */
88 #define BRP_EXT_BRPE_MASK	0x0f
89 #define BRP_EXT_BRPE_SHIFT	0
90 
91 /* IFx command request */
92 #define IF_COMR_BUSY		BIT(15)
93 
94 /* IFx command mask */
95 #define IF_COMM_WR		BIT(7)
96 #define IF_COMM_MASK		BIT(6)
97 #define IF_COMM_ARB		BIT(5)
98 #define IF_COMM_CONTROL		BIT(4)
99 #define IF_COMM_CLR_INT_PND	BIT(3)
100 #define IF_COMM_TXRQST		BIT(2)
101 #define IF_COMM_DATAA		BIT(1)
102 #define IF_COMM_DATAB		BIT(0)
103 #define IF_COMM_ALL		(IF_COMM_MASK | IF_COMM_ARB | \
104 				IF_COMM_CONTROL | IF_COMM_TXRQST | \
105 				IF_COMM_DATAA | IF_COMM_DATAB)
106 
107 /* IFx arbitration */
108 #define IF_ARB_MSGVAL		BIT(15)
109 #define IF_ARB_MSGXTD		BIT(14)
110 #define IF_ARB_TRANSMIT		BIT(13)
111 
112 /* IFx message control */
113 #define IF_MCONT_NEWDAT		BIT(15)
114 #define IF_MCONT_MSGLST		BIT(14)
115 #define IF_MCONT_CLR_MSGLST	(0 << 14)
116 #define IF_MCONT_INTPND		BIT(13)
117 #define IF_MCONT_UMASK		BIT(12)
118 #define IF_MCONT_TXIE		BIT(11)
119 #define IF_MCONT_RXIE		BIT(10)
120 #define IF_MCONT_RMTEN		BIT(9)
121 #define IF_MCONT_TXRQST		BIT(8)
122 #define IF_MCONT_EOB		BIT(7)
123 #define IF_MCONT_DLC_MASK	0xf
124 
125 /*
126  * IFx register masks:
127  * allow easy operation on 16-bit registers when the
128  * argument is 32-bit instead
129  */
130 #define IFX_WRITE_LOW_16BIT(x)	((x) & 0xFFFF)
131 #define IFX_WRITE_HIGH_16BIT(x)	(((x) & 0xFFFF0000) >> 16)
132 
133 /* message object split */
134 #define C_CAN_NO_OF_OBJECTS	32
135 #define C_CAN_MSG_OBJ_RX_NUM	16
136 #define C_CAN_MSG_OBJ_TX_NUM	16
137 
138 #define C_CAN_MSG_OBJ_RX_FIRST	1
139 #define C_CAN_MSG_OBJ_RX_LAST	(C_CAN_MSG_OBJ_RX_FIRST + \
140 				C_CAN_MSG_OBJ_RX_NUM - 1)
141 
142 #define C_CAN_MSG_OBJ_TX_FIRST	(C_CAN_MSG_OBJ_RX_LAST + 1)
143 #define C_CAN_MSG_OBJ_TX_LAST	(C_CAN_MSG_OBJ_TX_FIRST + \
144 				C_CAN_MSG_OBJ_TX_NUM - 1)
145 
146 #define C_CAN_MSG_OBJ_RX_SPLIT	9
147 #define C_CAN_MSG_RX_LOW_LAST	(C_CAN_MSG_OBJ_RX_SPLIT - 1)
148 
149 #define C_CAN_NEXT_MSG_OBJ_MASK	(C_CAN_MSG_OBJ_TX_NUM - 1)
150 #define RECEIVE_OBJECT_BITS	0x0000ffff
151 
152 /* status interrupt */
153 #define STATUS_INTERRUPT	0x8000
154 
155 /* global interrupt masks */
156 #define ENABLE_ALL_INTERRUPTS	1
157 #define DISABLE_ALL_INTERRUPTS	0
158 
159 /* minimum timeout for checking BUSY status */
160 #define MIN_TIMEOUT_VALUE	6
161 
162 /* napi related */
163 #define C_CAN_NAPI_WEIGHT	C_CAN_MSG_OBJ_RX_NUM
164 
165 /* c_can lec values */
166 enum c_can_lec_type {
167 	LEC_NO_ERROR = 0,
168 	LEC_STUFF_ERROR,
169 	LEC_FORM_ERROR,
170 	LEC_ACK_ERROR,
171 	LEC_BIT1_ERROR,
172 	LEC_BIT0_ERROR,
173 	LEC_CRC_ERROR,
174 	LEC_UNUSED,
175 };
176 
177 /*
178  * c_can error types:
179  * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
180  */
181 enum c_can_bus_error_types {
182 	C_CAN_NO_ERROR = 0,
183 	C_CAN_BUS_OFF,
184 	C_CAN_ERROR_WARNING,
185 	C_CAN_ERROR_PASSIVE,
186 };
187 
188 static struct can_bittiming_const c_can_bittiming_const = {
189 	.name = KBUILD_MODNAME,
190 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
191 	.tseg1_max = 16,
192 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
193 	.tseg2_max = 8,
194 	.sjw_max = 4,
195 	.brp_min = 1,
196 	.brp_max = 1024,	/* 6-bit BRP field + 4-bit BRPE field*/
197 	.brp_inc = 1,
198 };
199 
get_tx_next_msg_obj(const struct c_can_priv * priv)200 static inline int get_tx_next_msg_obj(const struct c_can_priv *priv)
201 {
202 	return (priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) +
203 			C_CAN_MSG_OBJ_TX_FIRST;
204 }
205 
get_tx_echo_msg_obj(const struct c_can_priv * priv)206 static inline int get_tx_echo_msg_obj(const struct c_can_priv *priv)
207 {
208 	return (priv->tx_echo & C_CAN_NEXT_MSG_OBJ_MASK) +
209 			C_CAN_MSG_OBJ_TX_FIRST;
210 }
211 
c_can_read_reg32(struct c_can_priv * priv,void * reg)212 static u32 c_can_read_reg32(struct c_can_priv *priv, void *reg)
213 {
214 	u32 val = priv->read_reg(priv, reg);
215 	val |= ((u32) priv->read_reg(priv, reg + 2)) << 16;
216 	return val;
217 }
218 
c_can_enable_all_interrupts(struct c_can_priv * priv,int enable)219 static void c_can_enable_all_interrupts(struct c_can_priv *priv,
220 						int enable)
221 {
222 	unsigned int cntrl_save = priv->read_reg(priv,
223 						&priv->regs->control);
224 
225 	if (enable)
226 		cntrl_save |= (CONTROL_SIE | CONTROL_EIE | CONTROL_IE);
227 	else
228 		cntrl_save &= ~(CONTROL_EIE | CONTROL_IE | CONTROL_SIE);
229 
230 	priv->write_reg(priv, &priv->regs->control, cntrl_save);
231 }
232 
c_can_msg_obj_is_busy(struct c_can_priv * priv,int iface)233 static inline int c_can_msg_obj_is_busy(struct c_can_priv *priv, int iface)
234 {
235 	int count = MIN_TIMEOUT_VALUE;
236 
237 	while (count && priv->read_reg(priv,
238 				&priv->regs->ifregs[iface].com_req) &
239 				IF_COMR_BUSY) {
240 		count--;
241 		udelay(1);
242 	}
243 
244 	if (!count)
245 		return 1;
246 
247 	return 0;
248 }
249 
c_can_object_get(struct net_device * dev,int iface,int objno,int mask)250 static inline void c_can_object_get(struct net_device *dev,
251 					int iface, int objno, int mask)
252 {
253 	struct c_can_priv *priv = netdev_priv(dev);
254 
255 	/*
256 	 * As per specs, after writting the message object number in the
257 	 * IF command request register the transfer b/w interface
258 	 * register and message RAM must be complete in 6 CAN-CLK
259 	 * period.
260 	 */
261 	priv->write_reg(priv, &priv->regs->ifregs[iface].com_mask,
262 			IFX_WRITE_LOW_16BIT(mask));
263 	priv->write_reg(priv, &priv->regs->ifregs[iface].com_req,
264 			IFX_WRITE_LOW_16BIT(objno));
265 
266 	if (c_can_msg_obj_is_busy(priv, iface))
267 		netdev_err(dev, "timed out in object get\n");
268 }
269 
c_can_object_put(struct net_device * dev,int iface,int objno,int mask)270 static inline void c_can_object_put(struct net_device *dev,
271 					int iface, int objno, int mask)
272 {
273 	struct c_can_priv *priv = netdev_priv(dev);
274 
275 	/*
276 	 * As per specs, after writting the message object number in the
277 	 * IF command request register the transfer b/w interface
278 	 * register and message RAM must be complete in 6 CAN-CLK
279 	 * period.
280 	 */
281 	priv->write_reg(priv, &priv->regs->ifregs[iface].com_mask,
282 			(IF_COMM_WR | IFX_WRITE_LOW_16BIT(mask)));
283 	priv->write_reg(priv, &priv->regs->ifregs[iface].com_req,
284 			IFX_WRITE_LOW_16BIT(objno));
285 
286 	if (c_can_msg_obj_is_busy(priv, iface))
287 		netdev_err(dev, "timed out in object put\n");
288 }
289 
c_can_write_msg_object(struct net_device * dev,int iface,struct can_frame * frame,int objno)290 static void c_can_write_msg_object(struct net_device *dev,
291 			int iface, struct can_frame *frame, int objno)
292 {
293 	int i;
294 	u16 flags = 0;
295 	unsigned int id;
296 	struct c_can_priv *priv = netdev_priv(dev);
297 
298 	if (!(frame->can_id & CAN_RTR_FLAG))
299 		flags |= IF_ARB_TRANSMIT;
300 
301 	if (frame->can_id & CAN_EFF_FLAG) {
302 		id = frame->can_id & CAN_EFF_MASK;
303 		flags |= IF_ARB_MSGXTD;
304 	} else
305 		id = ((frame->can_id & CAN_SFF_MASK) << 18);
306 
307 	flags |= IF_ARB_MSGVAL;
308 
309 	priv->write_reg(priv, &priv->regs->ifregs[iface].arb1,
310 				IFX_WRITE_LOW_16BIT(id));
311 	priv->write_reg(priv, &priv->regs->ifregs[iface].arb2, flags |
312 				IFX_WRITE_HIGH_16BIT(id));
313 
314 	for (i = 0; i < frame->can_dlc; i += 2) {
315 		priv->write_reg(priv, &priv->regs->ifregs[iface].data[i / 2],
316 				frame->data[i] | (frame->data[i + 1] << 8));
317 	}
318 
319 	/* enable interrupt for this message object */
320 	priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl,
321 			IF_MCONT_TXIE | IF_MCONT_TXRQST | IF_MCONT_EOB |
322 			frame->can_dlc);
323 	c_can_object_put(dev, iface, objno, IF_COMM_ALL);
324 }
325 
c_can_mark_rx_msg_obj(struct net_device * dev,int iface,int ctrl_mask,int obj)326 static inline void c_can_mark_rx_msg_obj(struct net_device *dev,
327 						int iface, int ctrl_mask,
328 						int obj)
329 {
330 	struct c_can_priv *priv = netdev_priv(dev);
331 
332 	priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl,
333 			ctrl_mask & ~(IF_MCONT_MSGLST | IF_MCONT_INTPND));
334 	c_can_object_put(dev, iface, obj, IF_COMM_CONTROL);
335 
336 }
337 
c_can_activate_all_lower_rx_msg_obj(struct net_device * dev,int iface,int ctrl_mask)338 static inline void c_can_activate_all_lower_rx_msg_obj(struct net_device *dev,
339 						int iface,
340 						int ctrl_mask)
341 {
342 	int i;
343 	struct c_can_priv *priv = netdev_priv(dev);
344 
345 	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_MSG_RX_LOW_LAST; i++) {
346 		priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl,
347 				ctrl_mask & ~(IF_MCONT_MSGLST |
348 					IF_MCONT_INTPND | IF_MCONT_NEWDAT));
349 		c_can_object_put(dev, iface, i, IF_COMM_CONTROL);
350 	}
351 }
352 
c_can_activate_rx_msg_obj(struct net_device * dev,int iface,int ctrl_mask,int obj)353 static inline void c_can_activate_rx_msg_obj(struct net_device *dev,
354 						int iface, int ctrl_mask,
355 						int obj)
356 {
357 	struct c_can_priv *priv = netdev_priv(dev);
358 
359 	priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl,
360 			ctrl_mask & ~(IF_MCONT_MSGLST |
361 				IF_MCONT_INTPND | IF_MCONT_NEWDAT));
362 	c_can_object_put(dev, iface, obj, IF_COMM_CONTROL);
363 }
364 
c_can_handle_lost_msg_obj(struct net_device * dev,int iface,int objno)365 static void c_can_handle_lost_msg_obj(struct net_device *dev,
366 					int iface, int objno)
367 {
368 	struct c_can_priv *priv = netdev_priv(dev);
369 	struct net_device_stats *stats = &dev->stats;
370 	struct sk_buff *skb;
371 	struct can_frame *frame;
372 
373 	netdev_err(dev, "msg lost in buffer %d\n", objno);
374 
375 	c_can_object_get(dev, iface, objno, IF_COMM_ALL & ~IF_COMM_TXRQST);
376 
377 	priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl,
378 			IF_MCONT_CLR_MSGLST);
379 
380 	c_can_object_put(dev, 0, objno, IF_COMM_CONTROL);
381 
382 	/* create an error msg */
383 	skb = alloc_can_err_skb(dev, &frame);
384 	if (unlikely(!skb))
385 		return;
386 
387 	frame->can_id |= CAN_ERR_CRTL;
388 	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
389 	stats->rx_errors++;
390 	stats->rx_over_errors++;
391 
392 	netif_receive_skb(skb);
393 }
394 
c_can_read_msg_object(struct net_device * dev,int iface,int ctrl)395 static int c_can_read_msg_object(struct net_device *dev, int iface, int ctrl)
396 {
397 	u16 flags, data;
398 	int i;
399 	unsigned int val;
400 	struct c_can_priv *priv = netdev_priv(dev);
401 	struct net_device_stats *stats = &dev->stats;
402 	struct sk_buff *skb;
403 	struct can_frame *frame;
404 
405 	skb = alloc_can_skb(dev, &frame);
406 	if (!skb) {
407 		stats->rx_dropped++;
408 		return -ENOMEM;
409 	}
410 
411 	frame->can_dlc = get_can_dlc(ctrl & 0x0F);
412 
413 	flags =	priv->read_reg(priv, &priv->regs->ifregs[iface].arb2);
414 	val = priv->read_reg(priv, &priv->regs->ifregs[iface].arb1) |
415 		(flags << 16);
416 
417 	if (flags & IF_ARB_MSGXTD)
418 		frame->can_id = (val & CAN_EFF_MASK) | CAN_EFF_FLAG;
419 	else
420 		frame->can_id = (val >> 18) & CAN_SFF_MASK;
421 
422 	if (flags & IF_ARB_TRANSMIT)
423 		frame->can_id |= CAN_RTR_FLAG;
424 	else {
425 		for (i = 0; i < frame->can_dlc; i += 2) {
426 			data = priv->read_reg(priv,
427 				&priv->regs->ifregs[iface].data[i / 2]);
428 			frame->data[i] = data;
429 			frame->data[i + 1] = data >> 8;
430 		}
431 	}
432 
433 	netif_receive_skb(skb);
434 
435 	stats->rx_packets++;
436 	stats->rx_bytes += frame->can_dlc;
437 
438 	return 0;
439 }
440 
c_can_setup_receive_object(struct net_device * dev,int iface,int objno,unsigned int mask,unsigned int id,unsigned int mcont)441 static void c_can_setup_receive_object(struct net_device *dev, int iface,
442 					int objno, unsigned int mask,
443 					unsigned int id, unsigned int mcont)
444 {
445 	struct c_can_priv *priv = netdev_priv(dev);
446 
447 	priv->write_reg(priv, &priv->regs->ifregs[iface].mask1,
448 			IFX_WRITE_LOW_16BIT(mask));
449 
450 	/* According to C_CAN documentation, the reserved bit
451 	 * in IFx_MASK2 register is fixed 1
452 	 */
453 	priv->write_reg(priv, &priv->regs->ifregs[iface].mask2,
454 			IFX_WRITE_HIGH_16BIT(mask) | BIT(13));
455 
456 	priv->write_reg(priv, &priv->regs->ifregs[iface].arb1,
457 			IFX_WRITE_LOW_16BIT(id));
458 	priv->write_reg(priv, &priv->regs->ifregs[iface].arb2,
459 			(IF_ARB_MSGVAL | IFX_WRITE_HIGH_16BIT(id)));
460 
461 	priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl, mcont);
462 	c_can_object_put(dev, iface, objno, IF_COMM_ALL & ~IF_COMM_TXRQST);
463 
464 	netdev_dbg(dev, "obj no:%d, msgval:0x%08x\n", objno,
465 			c_can_read_reg32(priv, &priv->regs->msgval1));
466 }
467 
c_can_inval_msg_object(struct net_device * dev,int iface,int objno)468 static void c_can_inval_msg_object(struct net_device *dev, int iface, int objno)
469 {
470 	struct c_can_priv *priv = netdev_priv(dev);
471 
472 	priv->write_reg(priv, &priv->regs->ifregs[iface].arb1, 0);
473 	priv->write_reg(priv, &priv->regs->ifregs[iface].arb2, 0);
474 	priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl, 0);
475 
476 	c_can_object_put(dev, iface, objno, IF_COMM_ARB | IF_COMM_CONTROL);
477 
478 	netdev_dbg(dev, "obj no:%d, msgval:0x%08x\n", objno,
479 			c_can_read_reg32(priv, &priv->regs->msgval1));
480 }
481 
c_can_is_next_tx_obj_busy(struct c_can_priv * priv,int objno)482 static inline int c_can_is_next_tx_obj_busy(struct c_can_priv *priv, int objno)
483 {
484 	int val = c_can_read_reg32(priv, &priv->regs->txrqst1);
485 
486 	/*
487 	 * as transmission request register's bit n-1 corresponds to
488 	 * message object n, we need to handle the same properly.
489 	 */
490 	if (val & (1 << (objno - 1)))
491 		return 1;
492 
493 	return 0;
494 }
495 
c_can_start_xmit(struct sk_buff * skb,struct net_device * dev)496 static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
497 					struct net_device *dev)
498 {
499 	u32 msg_obj_no;
500 	struct c_can_priv *priv = netdev_priv(dev);
501 	struct can_frame *frame = (struct can_frame *)skb->data;
502 
503 	if (can_dropped_invalid_skb(dev, skb))
504 		return NETDEV_TX_OK;
505 
506 	msg_obj_no = get_tx_next_msg_obj(priv);
507 
508 	/* prepare message object for transmission */
509 	c_can_write_msg_object(dev, 0, frame, msg_obj_no);
510 	can_put_echo_skb(skb, dev, msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST);
511 
512 	/*
513 	 * we have to stop the queue in case of a wrap around or
514 	 * if the next TX message object is still in use
515 	 */
516 	priv->tx_next++;
517 	if (c_can_is_next_tx_obj_busy(priv, get_tx_next_msg_obj(priv)) ||
518 			(priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) == 0)
519 		netif_stop_queue(dev);
520 
521 	return NETDEV_TX_OK;
522 }
523 
c_can_set_bittiming(struct net_device * dev)524 static int c_can_set_bittiming(struct net_device *dev)
525 {
526 	unsigned int reg_btr, reg_brpe, ctrl_save;
527 	u8 brp, brpe, sjw, tseg1, tseg2;
528 	u32 ten_bit_brp;
529 	struct c_can_priv *priv = netdev_priv(dev);
530 	const struct can_bittiming *bt = &priv->can.bittiming;
531 
532 	/* c_can provides a 6-bit brp and 4-bit brpe fields */
533 	ten_bit_brp = bt->brp - 1;
534 	brp = ten_bit_brp & BTR_BRP_MASK;
535 	brpe = ten_bit_brp >> 6;
536 
537 	sjw = bt->sjw - 1;
538 	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
539 	tseg2 = bt->phase_seg2 - 1;
540 	reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
541 			(tseg2 << BTR_TSEG2_SHIFT);
542 	reg_brpe = brpe & BRP_EXT_BRPE_MASK;
543 
544 	netdev_info(dev,
545 		"setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);
546 
547 	ctrl_save = priv->read_reg(priv, &priv->regs->control);
548 	priv->write_reg(priv, &priv->regs->control,
549 			ctrl_save | CONTROL_CCE | CONTROL_INIT);
550 	priv->write_reg(priv, &priv->regs->btr, reg_btr);
551 	priv->write_reg(priv, &priv->regs->brp_ext, reg_brpe);
552 	priv->write_reg(priv, &priv->regs->control, ctrl_save);
553 
554 	return 0;
555 }
556 
557 /*
558  * Configure C_CAN message objects for Tx and Rx purposes:
559  * C_CAN provides a total of 32 message objects that can be configured
560  * either for Tx or Rx purposes. Here the first 16 message objects are used as
561  * a reception FIFO. The end of reception FIFO is signified by the EoB bit
562  * being SET. The remaining 16 message objects are kept aside for Tx purposes.
563  * See user guide document for further details on configuring message
564  * objects.
565  */
c_can_configure_msg_objects(struct net_device * dev)566 static void c_can_configure_msg_objects(struct net_device *dev)
567 {
568 	int i;
569 
570 	/* first invalidate all message objects */
571 	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_NO_OF_OBJECTS; i++)
572 		c_can_inval_msg_object(dev, 0, i);
573 
574 	/* setup receive message objects */
575 	for (i = C_CAN_MSG_OBJ_RX_FIRST; i < C_CAN_MSG_OBJ_RX_LAST; i++)
576 		c_can_setup_receive_object(dev, 0, i, 0, 0,
577 			(IF_MCONT_RXIE | IF_MCONT_UMASK) & ~IF_MCONT_EOB);
578 
579 	c_can_setup_receive_object(dev, 0, C_CAN_MSG_OBJ_RX_LAST, 0, 0,
580 			IF_MCONT_EOB | IF_MCONT_RXIE | IF_MCONT_UMASK);
581 }
582 
583 /*
584  * Configure C_CAN chip:
585  * - enable/disable auto-retransmission
586  * - set operating mode
587  * - configure message objects
588  */
c_can_chip_config(struct net_device * dev)589 static void c_can_chip_config(struct net_device *dev)
590 {
591 	struct c_can_priv *priv = netdev_priv(dev);
592 
593 	/* enable automatic retransmission */
594 	priv->write_reg(priv, &priv->regs->control,
595 			CONTROL_ENABLE_AR);
596 
597 	if ((priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) &&
598 	    (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)) {
599 		/* loopback + silent mode : useful for hot self-test */
600 		priv->write_reg(priv, &priv->regs->control, CONTROL_EIE |
601 				CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
602 		priv->write_reg(priv, &priv->regs->test,
603 				TEST_LBACK | TEST_SILENT);
604 	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
605 		/* loopback mode : useful for self-test function */
606 		priv->write_reg(priv, &priv->regs->control, CONTROL_EIE |
607 				CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
608 		priv->write_reg(priv, &priv->regs->test, TEST_LBACK);
609 	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
610 		/* silent mode : bus-monitoring mode */
611 		priv->write_reg(priv, &priv->regs->control, CONTROL_EIE |
612 				CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
613 		priv->write_reg(priv, &priv->regs->test, TEST_SILENT);
614 	} else
615 		/* normal mode*/
616 		priv->write_reg(priv, &priv->regs->control,
617 				CONTROL_EIE | CONTROL_SIE | CONTROL_IE);
618 
619 	/* configure message objects */
620 	c_can_configure_msg_objects(dev);
621 
622 	/* set a `lec` value so that we can check for updates later */
623 	priv->write_reg(priv, &priv->regs->status, LEC_UNUSED);
624 
625 	/* set bittiming params */
626 	c_can_set_bittiming(dev);
627 }
628 
c_can_start(struct net_device * dev)629 static void c_can_start(struct net_device *dev)
630 {
631 	struct c_can_priv *priv = netdev_priv(dev);
632 
633 	/* basic c_can configuration */
634 	c_can_chip_config(dev);
635 
636 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
637 
638 	/* reset tx helper pointers */
639 	priv->tx_next = priv->tx_echo = 0;
640 
641 	/* enable status change, error and module interrupts */
642 	c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
643 }
644 
c_can_stop(struct net_device * dev)645 static void c_can_stop(struct net_device *dev)
646 {
647 	struct c_can_priv *priv = netdev_priv(dev);
648 
649 	/* disable all interrupts */
650 	c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
651 
652 	/* set the state as STOPPED */
653 	priv->can.state = CAN_STATE_STOPPED;
654 }
655 
c_can_set_mode(struct net_device * dev,enum can_mode mode)656 static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
657 {
658 	switch (mode) {
659 	case CAN_MODE_START:
660 		c_can_start(dev);
661 		netif_wake_queue(dev);
662 		break;
663 	default:
664 		return -EOPNOTSUPP;
665 	}
666 
667 	return 0;
668 }
669 
c_can_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)670 static int c_can_get_berr_counter(const struct net_device *dev,
671 					struct can_berr_counter *bec)
672 {
673 	unsigned int reg_err_counter;
674 	struct c_can_priv *priv = netdev_priv(dev);
675 
676 	reg_err_counter = priv->read_reg(priv, &priv->regs->err_cnt);
677 	bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
678 				ERR_CNT_REC_SHIFT;
679 	bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;
680 
681 	return 0;
682 }
683 
684 /*
685  * theory of operation:
686  *
687  * priv->tx_echo holds the number of the oldest can_frame put for
688  * transmission into the hardware, but not yet ACKed by the CAN tx
689  * complete IRQ.
690  *
691  * We iterate from priv->tx_echo to priv->tx_next and check if the
692  * packet has been transmitted, echo it back to the CAN framework.
693  * If we discover a not yet transmitted packet, stop looking for more.
694  */
c_can_do_tx(struct net_device * dev)695 static void c_can_do_tx(struct net_device *dev)
696 {
697 	u32 val;
698 	u32 msg_obj_no;
699 	struct c_can_priv *priv = netdev_priv(dev);
700 	struct net_device_stats *stats = &dev->stats;
701 
702 	for (/* nix */; (priv->tx_next - priv->tx_echo) > 0; priv->tx_echo++) {
703 		msg_obj_no = get_tx_echo_msg_obj(priv);
704 		val = c_can_read_reg32(priv, &priv->regs->txrqst1);
705 		if (!(val & (1 << (msg_obj_no - 1)))) {
706 			can_get_echo_skb(dev,
707 					msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST);
708 			stats->tx_bytes += priv->read_reg(priv,
709 					&priv->regs->ifregs[0].msg_cntrl)
710 					& IF_MCONT_DLC_MASK;
711 			stats->tx_packets++;
712 			c_can_inval_msg_object(dev, 0, msg_obj_no);
713 		} else {
714 			break;
715 		}
716 	}
717 
718 	/* restart queue if wrap-up or if queue stalled on last pkt */
719 	if (((priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) != 0) ||
720 			((priv->tx_echo & C_CAN_NEXT_MSG_OBJ_MASK) == 0))
721 		netif_wake_queue(dev);
722 }
723 
724 /*
725  * theory of operation:
726  *
727  * c_can core saves a received CAN message into the first free message
728  * object it finds free (starting with the lowest). Bits NEWDAT and
729  * INTPND are set for this message object indicating that a new message
730  * has arrived. To work-around this issue, we keep two groups of message
731  * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
732  *
733  * To ensure in-order frame reception we use the following
734  * approach while re-activating a message object to receive further
735  * frames:
736  * - if the current message object number is lower than
737  *   C_CAN_MSG_RX_LOW_LAST, do not clear the NEWDAT bit while clearing
738  *   the INTPND bit.
739  * - if the current message object number is equal to
740  *   C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of all lower
741  *   receive message objects.
742  * - if the current message object number is greater than
743  *   C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of
744  *   only this message object.
745  */
c_can_do_rx_poll(struct net_device * dev,int quota)746 static int c_can_do_rx_poll(struct net_device *dev, int quota)
747 {
748 	u32 num_rx_pkts = 0;
749 	unsigned int msg_obj, msg_ctrl_save;
750 	struct c_can_priv *priv = netdev_priv(dev);
751 	u32 val = c_can_read_reg32(priv, &priv->regs->intpnd1);
752 
753 	for (msg_obj = C_CAN_MSG_OBJ_RX_FIRST;
754 			msg_obj <= C_CAN_MSG_OBJ_RX_LAST && quota > 0;
755 			val = c_can_read_reg32(priv, &priv->regs->intpnd1),
756 			msg_obj++) {
757 		/*
758 		 * as interrupt pending register's bit n-1 corresponds to
759 		 * message object n, we need to handle the same properly.
760 		 */
761 		if (val & (1 << (msg_obj - 1))) {
762 			c_can_object_get(dev, 0, msg_obj, IF_COMM_ALL &
763 					~IF_COMM_TXRQST);
764 			msg_ctrl_save = priv->read_reg(priv,
765 					&priv->regs->ifregs[0].msg_cntrl);
766 
767 			if (msg_ctrl_save & IF_MCONT_MSGLST) {
768 				c_can_handle_lost_msg_obj(dev, 0, msg_obj);
769 				num_rx_pkts++;
770 				quota--;
771 				continue;
772 			}
773 
774 			if (msg_ctrl_save & IF_MCONT_EOB)
775 				return num_rx_pkts;
776 
777 			if (!(msg_ctrl_save & IF_MCONT_NEWDAT))
778 				continue;
779 
780 			/* read the data from the message object */
781 			c_can_read_msg_object(dev, 0, msg_ctrl_save);
782 
783 			if (msg_obj < C_CAN_MSG_RX_LOW_LAST)
784 				c_can_mark_rx_msg_obj(dev, 0,
785 						msg_ctrl_save, msg_obj);
786 			else if (msg_obj > C_CAN_MSG_RX_LOW_LAST)
787 				/* activate this msg obj */
788 				c_can_activate_rx_msg_obj(dev, 0,
789 						msg_ctrl_save, msg_obj);
790 			else if (msg_obj == C_CAN_MSG_RX_LOW_LAST)
791 				/* activate all lower message objects */
792 				c_can_activate_all_lower_rx_msg_obj(dev,
793 						0, msg_ctrl_save);
794 
795 			num_rx_pkts++;
796 			quota--;
797 		}
798 	}
799 
800 	return num_rx_pkts;
801 }
802 
c_can_has_and_handle_berr(struct c_can_priv * priv)803 static inline int c_can_has_and_handle_berr(struct c_can_priv *priv)
804 {
805 	return (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
806 		(priv->current_status & LEC_UNUSED);
807 }
808 
c_can_handle_state_change(struct net_device * dev,enum c_can_bus_error_types error_type)809 static int c_can_handle_state_change(struct net_device *dev,
810 				enum c_can_bus_error_types error_type)
811 {
812 	unsigned int reg_err_counter;
813 	unsigned int rx_err_passive;
814 	struct c_can_priv *priv = netdev_priv(dev);
815 	struct net_device_stats *stats = &dev->stats;
816 	struct can_frame *cf;
817 	struct sk_buff *skb;
818 	struct can_berr_counter bec;
819 
820 	/* propagate the error condition to the CAN stack */
821 	skb = alloc_can_err_skb(dev, &cf);
822 	if (unlikely(!skb))
823 		return 0;
824 
825 	c_can_get_berr_counter(dev, &bec);
826 	reg_err_counter = priv->read_reg(priv, &priv->regs->err_cnt);
827 	rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
828 				ERR_CNT_RP_SHIFT;
829 
830 	switch (error_type) {
831 	case C_CAN_ERROR_WARNING:
832 		/* error warning state */
833 		priv->can.can_stats.error_warning++;
834 		priv->can.state = CAN_STATE_ERROR_WARNING;
835 		cf->can_id |= CAN_ERR_CRTL;
836 		cf->data[1] = (bec.txerr > bec.rxerr) ?
837 			CAN_ERR_CRTL_TX_WARNING :
838 			CAN_ERR_CRTL_RX_WARNING;
839 		cf->data[6] = bec.txerr;
840 		cf->data[7] = bec.rxerr;
841 
842 		break;
843 	case C_CAN_ERROR_PASSIVE:
844 		/* error passive state */
845 		priv->can.can_stats.error_passive++;
846 		priv->can.state = CAN_STATE_ERROR_PASSIVE;
847 		cf->can_id |= CAN_ERR_CRTL;
848 		if (rx_err_passive)
849 			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
850 		if (bec.txerr > 127)
851 			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
852 
853 		cf->data[6] = bec.txerr;
854 		cf->data[7] = bec.rxerr;
855 		break;
856 	case C_CAN_BUS_OFF:
857 		/* bus-off state */
858 		priv->can.state = CAN_STATE_BUS_OFF;
859 		cf->can_id |= CAN_ERR_BUSOFF;
860 		/*
861 		 * disable all interrupts in bus-off mode to ensure that
862 		 * the CPU is not hogged down
863 		 */
864 		c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
865 		can_bus_off(dev);
866 		break;
867 	default:
868 		break;
869 	}
870 
871 	netif_receive_skb(skb);
872 	stats->rx_packets++;
873 	stats->rx_bytes += cf->can_dlc;
874 
875 	return 1;
876 }
877 
c_can_handle_bus_err(struct net_device * dev,enum c_can_lec_type lec_type)878 static int c_can_handle_bus_err(struct net_device *dev,
879 				enum c_can_lec_type lec_type)
880 {
881 	struct c_can_priv *priv = netdev_priv(dev);
882 	struct net_device_stats *stats = &dev->stats;
883 	struct can_frame *cf;
884 	struct sk_buff *skb;
885 
886 	/*
887 	 * early exit if no lec update or no error.
888 	 * no lec update means that no CAN bus event has been detected
889 	 * since CPU wrote 0x7 value to status reg.
890 	 */
891 	if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
892 		return 0;
893 
894 	/* propagate the error condition to the CAN stack */
895 	skb = alloc_can_err_skb(dev, &cf);
896 	if (unlikely(!skb))
897 		return 0;
898 
899 	/*
900 	 * check for 'last error code' which tells us the
901 	 * type of the last error to occur on the CAN bus
902 	 */
903 
904 	/* common for all type of bus errors */
905 	priv->can.can_stats.bus_error++;
906 	stats->rx_errors++;
907 	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
908 	cf->data[2] |= CAN_ERR_PROT_UNSPEC;
909 
910 	switch (lec_type) {
911 	case LEC_STUFF_ERROR:
912 		netdev_dbg(dev, "stuff error\n");
913 		cf->data[2] |= CAN_ERR_PROT_STUFF;
914 		break;
915 	case LEC_FORM_ERROR:
916 		netdev_dbg(dev, "form error\n");
917 		cf->data[2] |= CAN_ERR_PROT_FORM;
918 		break;
919 	case LEC_ACK_ERROR:
920 		netdev_dbg(dev, "ack error\n");
921 		cf->data[3] |= (CAN_ERR_PROT_LOC_ACK |
922 				CAN_ERR_PROT_LOC_ACK_DEL);
923 		break;
924 	case LEC_BIT1_ERROR:
925 		netdev_dbg(dev, "bit1 error\n");
926 		cf->data[2] |= CAN_ERR_PROT_BIT1;
927 		break;
928 	case LEC_BIT0_ERROR:
929 		netdev_dbg(dev, "bit0 error\n");
930 		cf->data[2] |= CAN_ERR_PROT_BIT0;
931 		break;
932 	case LEC_CRC_ERROR:
933 		netdev_dbg(dev, "CRC error\n");
934 		cf->data[3] |= (CAN_ERR_PROT_LOC_CRC_SEQ |
935 				CAN_ERR_PROT_LOC_CRC_DEL);
936 		break;
937 	default:
938 		break;
939 	}
940 
941 	/* set a `lec` value so that we can check for updates later */
942 	priv->write_reg(priv, &priv->regs->status, LEC_UNUSED);
943 
944 	netif_receive_skb(skb);
945 	stats->rx_packets++;
946 	stats->rx_bytes += cf->can_dlc;
947 
948 	return 1;
949 }
950 
c_can_poll(struct napi_struct * napi,int quota)951 static int c_can_poll(struct napi_struct *napi, int quota)
952 {
953 	u16 irqstatus;
954 	int lec_type = 0;
955 	int work_done = 0;
956 	struct net_device *dev = napi->dev;
957 	struct c_can_priv *priv = netdev_priv(dev);
958 
959 	irqstatus = priv->irqstatus;
960 	if (!irqstatus)
961 		goto end;
962 
963 	/* status events have the highest priority */
964 	if (irqstatus == STATUS_INTERRUPT) {
965 		priv->current_status = priv->read_reg(priv,
966 					&priv->regs->status);
967 
968 		/* handle Tx/Rx events */
969 		if (priv->current_status & STATUS_TXOK)
970 			priv->write_reg(priv, &priv->regs->status,
971 					priv->current_status & ~STATUS_TXOK);
972 
973 		if (priv->current_status & STATUS_RXOK)
974 			priv->write_reg(priv, &priv->regs->status,
975 					priv->current_status & ~STATUS_RXOK);
976 
977 		/* handle state changes */
978 		if ((priv->current_status & STATUS_EWARN) &&
979 				(!(priv->last_status & STATUS_EWARN))) {
980 			netdev_dbg(dev, "entered error warning state\n");
981 			work_done += c_can_handle_state_change(dev,
982 						C_CAN_ERROR_WARNING);
983 		}
984 		if ((priv->current_status & STATUS_EPASS) &&
985 				(!(priv->last_status & STATUS_EPASS))) {
986 			netdev_dbg(dev, "entered error passive state\n");
987 			work_done += c_can_handle_state_change(dev,
988 						C_CAN_ERROR_PASSIVE);
989 		}
990 		if ((priv->current_status & STATUS_BOFF) &&
991 				(!(priv->last_status & STATUS_BOFF))) {
992 			netdev_dbg(dev, "entered bus off state\n");
993 			work_done += c_can_handle_state_change(dev,
994 						C_CAN_BUS_OFF);
995 		}
996 
997 		/* handle bus recovery events */
998 		if ((!(priv->current_status & STATUS_BOFF)) &&
999 				(priv->last_status & STATUS_BOFF)) {
1000 			netdev_dbg(dev, "left bus off state\n");
1001 			priv->can.state = CAN_STATE_ERROR_ACTIVE;
1002 		}
1003 		if ((!(priv->current_status & STATUS_EPASS)) &&
1004 				(priv->last_status & STATUS_EPASS)) {
1005 			netdev_dbg(dev, "left error passive state\n");
1006 			priv->can.state = CAN_STATE_ERROR_ACTIVE;
1007 		}
1008 
1009 		priv->last_status = priv->current_status;
1010 
1011 		/* handle lec errors on the bus */
1012 		lec_type = c_can_has_and_handle_berr(priv);
1013 		if (lec_type)
1014 			work_done += c_can_handle_bus_err(dev, lec_type);
1015 	} else if ((irqstatus >= C_CAN_MSG_OBJ_RX_FIRST) &&
1016 			(irqstatus <= C_CAN_MSG_OBJ_RX_LAST)) {
1017 		/* handle events corresponding to receive message objects */
1018 		work_done += c_can_do_rx_poll(dev, (quota - work_done));
1019 	} else if ((irqstatus >= C_CAN_MSG_OBJ_TX_FIRST) &&
1020 			(irqstatus <= C_CAN_MSG_OBJ_TX_LAST)) {
1021 		/* handle events corresponding to transmit message objects */
1022 		c_can_do_tx(dev);
1023 	}
1024 
1025 end:
1026 	if (work_done < quota) {
1027 		napi_complete(napi);
1028 		/* enable all IRQs */
1029 		c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
1030 	}
1031 
1032 	return work_done;
1033 }
1034 
c_can_isr(int irq,void * dev_id)1035 static irqreturn_t c_can_isr(int irq, void *dev_id)
1036 {
1037 	struct net_device *dev = (struct net_device *)dev_id;
1038 	struct c_can_priv *priv = netdev_priv(dev);
1039 
1040 	priv->irqstatus = priv->read_reg(priv, &priv->regs->interrupt);
1041 	if (!priv->irqstatus)
1042 		return IRQ_NONE;
1043 
1044 	/* disable all interrupts and schedule the NAPI */
1045 	c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
1046 	napi_schedule(&priv->napi);
1047 
1048 	return IRQ_HANDLED;
1049 }
1050 
c_can_open(struct net_device * dev)1051 static int c_can_open(struct net_device *dev)
1052 {
1053 	int err;
1054 	struct c_can_priv *priv = netdev_priv(dev);
1055 
1056 	/* open the can device */
1057 	err = open_candev(dev);
1058 	if (err) {
1059 		netdev_err(dev, "failed to open can device\n");
1060 		return err;
1061 	}
1062 
1063 	/* register interrupt handler */
1064 	err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
1065 				dev);
1066 	if (err < 0) {
1067 		netdev_err(dev, "failed to request interrupt\n");
1068 		goto exit_irq_fail;
1069 	}
1070 
1071 	napi_enable(&priv->napi);
1072 
1073 	/* start the c_can controller */
1074 	c_can_start(dev);
1075 
1076 	netif_start_queue(dev);
1077 
1078 	return 0;
1079 
1080 exit_irq_fail:
1081 	close_candev(dev);
1082 	return err;
1083 }
1084 
c_can_close(struct net_device * dev)1085 static int c_can_close(struct net_device *dev)
1086 {
1087 	struct c_can_priv *priv = netdev_priv(dev);
1088 
1089 	netif_stop_queue(dev);
1090 	napi_disable(&priv->napi);
1091 	c_can_stop(dev);
1092 	free_irq(dev->irq, dev);
1093 	close_candev(dev);
1094 
1095 	return 0;
1096 }
1097 
alloc_c_can_dev(void)1098 struct net_device *alloc_c_can_dev(void)
1099 {
1100 	struct net_device *dev;
1101 	struct c_can_priv *priv;
1102 
1103 	dev = alloc_candev(sizeof(struct c_can_priv), C_CAN_MSG_OBJ_TX_NUM);
1104 	if (!dev)
1105 		return NULL;
1106 
1107 	priv = netdev_priv(dev);
1108 	netif_napi_add(dev, &priv->napi, c_can_poll, C_CAN_NAPI_WEIGHT);
1109 
1110 	priv->dev = dev;
1111 	priv->can.bittiming_const = &c_can_bittiming_const;
1112 	priv->can.do_set_mode = c_can_set_mode;
1113 	priv->can.do_get_berr_counter = c_can_get_berr_counter;
1114 	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1115 					CAN_CTRLMODE_LISTENONLY |
1116 					CAN_CTRLMODE_BERR_REPORTING;
1117 
1118 	return dev;
1119 }
1120 EXPORT_SYMBOL_GPL(alloc_c_can_dev);
1121 
free_c_can_dev(struct net_device * dev)1122 void free_c_can_dev(struct net_device *dev)
1123 {
1124 	free_candev(dev);
1125 }
1126 EXPORT_SYMBOL_GPL(free_c_can_dev);
1127 
1128 static const struct net_device_ops c_can_netdev_ops = {
1129 	.ndo_open = c_can_open,
1130 	.ndo_stop = c_can_close,
1131 	.ndo_start_xmit = c_can_start_xmit,
1132 };
1133 
register_c_can_dev(struct net_device * dev)1134 int register_c_can_dev(struct net_device *dev)
1135 {
1136 	dev->flags |= IFF_ECHO;	/* we support local echo */
1137 	dev->netdev_ops = &c_can_netdev_ops;
1138 
1139 	return register_candev(dev);
1140 }
1141 EXPORT_SYMBOL_GPL(register_c_can_dev);
1142 
unregister_c_can_dev(struct net_device * dev)1143 void unregister_c_can_dev(struct net_device *dev)
1144 {
1145 	struct c_can_priv *priv = netdev_priv(dev);
1146 
1147 	/* disable all interrupts */
1148 	c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
1149 
1150 	unregister_candev(dev);
1151 }
1152 EXPORT_SYMBOL_GPL(unregister_c_can_dev);
1153 
1154 MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
1155 MODULE_LICENSE("GPL v2");
1156 MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");
1157