1 /*
2 * CAN bus driver for Bosch C_CAN controller
3 *
4 * Copyright (C) 2010 ST Microelectronics
5 * Bhupesh Sharma <bhupesh.sharma@st.com>
6 *
7 * Borrowed heavily from the C_CAN driver originally written by:
8 * Copyright (C) 2007
9 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
10 * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
11 *
12 * TX and RX NAPI implementation has been borrowed from at91 CAN driver
13 * written by:
14 * Copyright
15 * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
16 * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
17 *
18 * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
19 * Bosch C_CAN user manual can be obtained from:
20 * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
21 * users_manual_c_can.pdf
22 *
23 * This file is licensed under the terms of the GNU General Public
24 * License version 2. This program is licensed "as is" without any
25 * warranty of any kind, whether express or implied.
26 */
27
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/interrupt.h>
31 #include <linux/delay.h>
32 #include <linux/netdevice.h>
33 #include <linux/if_arp.h>
34 #include <linux/if_ether.h>
35 #include <linux/list.h>
36 #include <linux/io.h>
37
38 #include <linux/can.h>
39 #include <linux/can/dev.h>
40 #include <linux/can/error.h>
41
42 #include "c_can.h"
43
44 /* control register */
45 #define CONTROL_TEST BIT(7)
46 #define CONTROL_CCE BIT(6)
47 #define CONTROL_DISABLE_AR BIT(5)
48 #define CONTROL_ENABLE_AR (0 << 5)
49 #define CONTROL_EIE BIT(3)
50 #define CONTROL_SIE BIT(2)
51 #define CONTROL_IE BIT(1)
52 #define CONTROL_INIT BIT(0)
53
54 /* test register */
55 #define TEST_RX BIT(7)
56 #define TEST_TX1 BIT(6)
57 #define TEST_TX2 BIT(5)
58 #define TEST_LBACK BIT(4)
59 #define TEST_SILENT BIT(3)
60 #define TEST_BASIC BIT(2)
61
62 /* status register */
63 #define STATUS_BOFF BIT(7)
64 #define STATUS_EWARN BIT(6)
65 #define STATUS_EPASS BIT(5)
66 #define STATUS_RXOK BIT(4)
67 #define STATUS_TXOK BIT(3)
68
69 /* error counter register */
70 #define ERR_CNT_TEC_MASK 0xff
71 #define ERR_CNT_TEC_SHIFT 0
72 #define ERR_CNT_REC_SHIFT 8
73 #define ERR_CNT_REC_MASK (0x7f << ERR_CNT_REC_SHIFT)
74 #define ERR_CNT_RP_SHIFT 15
75 #define ERR_CNT_RP_MASK (0x1 << ERR_CNT_RP_SHIFT)
76
77 /* bit-timing register */
78 #define BTR_BRP_MASK 0x3f
79 #define BTR_BRP_SHIFT 0
80 #define BTR_SJW_SHIFT 6
81 #define BTR_SJW_MASK (0x3 << BTR_SJW_SHIFT)
82 #define BTR_TSEG1_SHIFT 8
83 #define BTR_TSEG1_MASK (0xf << BTR_TSEG1_SHIFT)
84 #define BTR_TSEG2_SHIFT 12
85 #define BTR_TSEG2_MASK (0x7 << BTR_TSEG2_SHIFT)
86
87 /* brp extension register */
88 #define BRP_EXT_BRPE_MASK 0x0f
89 #define BRP_EXT_BRPE_SHIFT 0
90
91 /* IFx command request */
92 #define IF_COMR_BUSY BIT(15)
93
94 /* IFx command mask */
95 #define IF_COMM_WR BIT(7)
96 #define IF_COMM_MASK BIT(6)
97 #define IF_COMM_ARB BIT(5)
98 #define IF_COMM_CONTROL BIT(4)
99 #define IF_COMM_CLR_INT_PND BIT(3)
100 #define IF_COMM_TXRQST BIT(2)
101 #define IF_COMM_DATAA BIT(1)
102 #define IF_COMM_DATAB BIT(0)
103 #define IF_COMM_ALL (IF_COMM_MASK | IF_COMM_ARB | \
104 IF_COMM_CONTROL | IF_COMM_TXRQST | \
105 IF_COMM_DATAA | IF_COMM_DATAB)
106
107 /* IFx arbitration */
108 #define IF_ARB_MSGVAL BIT(15)
109 #define IF_ARB_MSGXTD BIT(14)
110 #define IF_ARB_TRANSMIT BIT(13)
111
112 /* IFx message control */
113 #define IF_MCONT_NEWDAT BIT(15)
114 #define IF_MCONT_MSGLST BIT(14)
115 #define IF_MCONT_CLR_MSGLST (0 << 14)
116 #define IF_MCONT_INTPND BIT(13)
117 #define IF_MCONT_UMASK BIT(12)
118 #define IF_MCONT_TXIE BIT(11)
119 #define IF_MCONT_RXIE BIT(10)
120 #define IF_MCONT_RMTEN BIT(9)
121 #define IF_MCONT_TXRQST BIT(8)
122 #define IF_MCONT_EOB BIT(7)
123 #define IF_MCONT_DLC_MASK 0xf
124
125 /*
126 * IFx register masks:
127 * allow easy operation on 16-bit registers when the
128 * argument is 32-bit instead
129 */
130 #define IFX_WRITE_LOW_16BIT(x) ((x) & 0xFFFF)
131 #define IFX_WRITE_HIGH_16BIT(x) (((x) & 0xFFFF0000) >> 16)
132
133 /* message object split */
134 #define C_CAN_NO_OF_OBJECTS 32
135 #define C_CAN_MSG_OBJ_RX_NUM 16
136 #define C_CAN_MSG_OBJ_TX_NUM 16
137
138 #define C_CAN_MSG_OBJ_RX_FIRST 1
139 #define C_CAN_MSG_OBJ_RX_LAST (C_CAN_MSG_OBJ_RX_FIRST + \
140 C_CAN_MSG_OBJ_RX_NUM - 1)
141
142 #define C_CAN_MSG_OBJ_TX_FIRST (C_CAN_MSG_OBJ_RX_LAST + 1)
143 #define C_CAN_MSG_OBJ_TX_LAST (C_CAN_MSG_OBJ_TX_FIRST + \
144 C_CAN_MSG_OBJ_TX_NUM - 1)
145
146 #define C_CAN_MSG_OBJ_RX_SPLIT 9
147 #define C_CAN_MSG_RX_LOW_LAST (C_CAN_MSG_OBJ_RX_SPLIT - 1)
148
149 #define C_CAN_NEXT_MSG_OBJ_MASK (C_CAN_MSG_OBJ_TX_NUM - 1)
150 #define RECEIVE_OBJECT_BITS 0x0000ffff
151
152 /* status interrupt */
153 #define STATUS_INTERRUPT 0x8000
154
155 /* global interrupt masks */
156 #define ENABLE_ALL_INTERRUPTS 1
157 #define DISABLE_ALL_INTERRUPTS 0
158
159 /* minimum timeout for checking BUSY status */
160 #define MIN_TIMEOUT_VALUE 6
161
162 /* napi related */
163 #define C_CAN_NAPI_WEIGHT C_CAN_MSG_OBJ_RX_NUM
164
165 /* c_can lec values */
166 enum c_can_lec_type {
167 LEC_NO_ERROR = 0,
168 LEC_STUFF_ERROR,
169 LEC_FORM_ERROR,
170 LEC_ACK_ERROR,
171 LEC_BIT1_ERROR,
172 LEC_BIT0_ERROR,
173 LEC_CRC_ERROR,
174 LEC_UNUSED,
175 };
176
177 /*
178 * c_can error types:
179 * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
180 */
181 enum c_can_bus_error_types {
182 C_CAN_NO_ERROR = 0,
183 C_CAN_BUS_OFF,
184 C_CAN_ERROR_WARNING,
185 C_CAN_ERROR_PASSIVE,
186 };
187
188 static struct can_bittiming_const c_can_bittiming_const = {
189 .name = KBUILD_MODNAME,
190 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
191 .tseg1_max = 16,
192 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
193 .tseg2_max = 8,
194 .sjw_max = 4,
195 .brp_min = 1,
196 .brp_max = 1024, /* 6-bit BRP field + 4-bit BRPE field*/
197 .brp_inc = 1,
198 };
199
get_tx_next_msg_obj(const struct c_can_priv * priv)200 static inline int get_tx_next_msg_obj(const struct c_can_priv *priv)
201 {
202 return (priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) +
203 C_CAN_MSG_OBJ_TX_FIRST;
204 }
205
get_tx_echo_msg_obj(const struct c_can_priv * priv)206 static inline int get_tx_echo_msg_obj(const struct c_can_priv *priv)
207 {
208 return (priv->tx_echo & C_CAN_NEXT_MSG_OBJ_MASK) +
209 C_CAN_MSG_OBJ_TX_FIRST;
210 }
211
c_can_read_reg32(struct c_can_priv * priv,void * reg)212 static u32 c_can_read_reg32(struct c_can_priv *priv, void *reg)
213 {
214 u32 val = priv->read_reg(priv, reg);
215 val |= ((u32) priv->read_reg(priv, reg + 2)) << 16;
216 return val;
217 }
218
c_can_enable_all_interrupts(struct c_can_priv * priv,int enable)219 static void c_can_enable_all_interrupts(struct c_can_priv *priv,
220 int enable)
221 {
222 unsigned int cntrl_save = priv->read_reg(priv,
223 &priv->regs->control);
224
225 if (enable)
226 cntrl_save |= (CONTROL_SIE | CONTROL_EIE | CONTROL_IE);
227 else
228 cntrl_save &= ~(CONTROL_EIE | CONTROL_IE | CONTROL_SIE);
229
230 priv->write_reg(priv, &priv->regs->control, cntrl_save);
231 }
232
c_can_msg_obj_is_busy(struct c_can_priv * priv,int iface)233 static inline int c_can_msg_obj_is_busy(struct c_can_priv *priv, int iface)
234 {
235 int count = MIN_TIMEOUT_VALUE;
236
237 while (count && priv->read_reg(priv,
238 &priv->regs->ifregs[iface].com_req) &
239 IF_COMR_BUSY) {
240 count--;
241 udelay(1);
242 }
243
244 if (!count)
245 return 1;
246
247 return 0;
248 }
249
c_can_object_get(struct net_device * dev,int iface,int objno,int mask)250 static inline void c_can_object_get(struct net_device *dev,
251 int iface, int objno, int mask)
252 {
253 struct c_can_priv *priv = netdev_priv(dev);
254
255 /*
256 * As per specs, after writting the message object number in the
257 * IF command request register the transfer b/w interface
258 * register and message RAM must be complete in 6 CAN-CLK
259 * period.
260 */
261 priv->write_reg(priv, &priv->regs->ifregs[iface].com_mask,
262 IFX_WRITE_LOW_16BIT(mask));
263 priv->write_reg(priv, &priv->regs->ifregs[iface].com_req,
264 IFX_WRITE_LOW_16BIT(objno));
265
266 if (c_can_msg_obj_is_busy(priv, iface))
267 netdev_err(dev, "timed out in object get\n");
268 }
269
c_can_object_put(struct net_device * dev,int iface,int objno,int mask)270 static inline void c_can_object_put(struct net_device *dev,
271 int iface, int objno, int mask)
272 {
273 struct c_can_priv *priv = netdev_priv(dev);
274
275 /*
276 * As per specs, after writting the message object number in the
277 * IF command request register the transfer b/w interface
278 * register and message RAM must be complete in 6 CAN-CLK
279 * period.
280 */
281 priv->write_reg(priv, &priv->regs->ifregs[iface].com_mask,
282 (IF_COMM_WR | IFX_WRITE_LOW_16BIT(mask)));
283 priv->write_reg(priv, &priv->regs->ifregs[iface].com_req,
284 IFX_WRITE_LOW_16BIT(objno));
285
286 if (c_can_msg_obj_is_busy(priv, iface))
287 netdev_err(dev, "timed out in object put\n");
288 }
289
c_can_write_msg_object(struct net_device * dev,int iface,struct can_frame * frame,int objno)290 static void c_can_write_msg_object(struct net_device *dev,
291 int iface, struct can_frame *frame, int objno)
292 {
293 int i;
294 u16 flags = 0;
295 unsigned int id;
296 struct c_can_priv *priv = netdev_priv(dev);
297
298 if (!(frame->can_id & CAN_RTR_FLAG))
299 flags |= IF_ARB_TRANSMIT;
300
301 if (frame->can_id & CAN_EFF_FLAG) {
302 id = frame->can_id & CAN_EFF_MASK;
303 flags |= IF_ARB_MSGXTD;
304 } else
305 id = ((frame->can_id & CAN_SFF_MASK) << 18);
306
307 flags |= IF_ARB_MSGVAL;
308
309 priv->write_reg(priv, &priv->regs->ifregs[iface].arb1,
310 IFX_WRITE_LOW_16BIT(id));
311 priv->write_reg(priv, &priv->regs->ifregs[iface].arb2, flags |
312 IFX_WRITE_HIGH_16BIT(id));
313
314 for (i = 0; i < frame->can_dlc; i += 2) {
315 priv->write_reg(priv, &priv->regs->ifregs[iface].data[i / 2],
316 frame->data[i] | (frame->data[i + 1] << 8));
317 }
318
319 /* enable interrupt for this message object */
320 priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl,
321 IF_MCONT_TXIE | IF_MCONT_TXRQST | IF_MCONT_EOB |
322 frame->can_dlc);
323 c_can_object_put(dev, iface, objno, IF_COMM_ALL);
324 }
325
c_can_mark_rx_msg_obj(struct net_device * dev,int iface,int ctrl_mask,int obj)326 static inline void c_can_mark_rx_msg_obj(struct net_device *dev,
327 int iface, int ctrl_mask,
328 int obj)
329 {
330 struct c_can_priv *priv = netdev_priv(dev);
331
332 priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl,
333 ctrl_mask & ~(IF_MCONT_MSGLST | IF_MCONT_INTPND));
334 c_can_object_put(dev, iface, obj, IF_COMM_CONTROL);
335
336 }
337
c_can_activate_all_lower_rx_msg_obj(struct net_device * dev,int iface,int ctrl_mask)338 static inline void c_can_activate_all_lower_rx_msg_obj(struct net_device *dev,
339 int iface,
340 int ctrl_mask)
341 {
342 int i;
343 struct c_can_priv *priv = netdev_priv(dev);
344
345 for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_MSG_RX_LOW_LAST; i++) {
346 priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl,
347 ctrl_mask & ~(IF_MCONT_MSGLST |
348 IF_MCONT_INTPND | IF_MCONT_NEWDAT));
349 c_can_object_put(dev, iface, i, IF_COMM_CONTROL);
350 }
351 }
352
c_can_activate_rx_msg_obj(struct net_device * dev,int iface,int ctrl_mask,int obj)353 static inline void c_can_activate_rx_msg_obj(struct net_device *dev,
354 int iface, int ctrl_mask,
355 int obj)
356 {
357 struct c_can_priv *priv = netdev_priv(dev);
358
359 priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl,
360 ctrl_mask & ~(IF_MCONT_MSGLST |
361 IF_MCONT_INTPND | IF_MCONT_NEWDAT));
362 c_can_object_put(dev, iface, obj, IF_COMM_CONTROL);
363 }
364
c_can_handle_lost_msg_obj(struct net_device * dev,int iface,int objno)365 static void c_can_handle_lost_msg_obj(struct net_device *dev,
366 int iface, int objno)
367 {
368 struct c_can_priv *priv = netdev_priv(dev);
369 struct net_device_stats *stats = &dev->stats;
370 struct sk_buff *skb;
371 struct can_frame *frame;
372
373 netdev_err(dev, "msg lost in buffer %d\n", objno);
374
375 c_can_object_get(dev, iface, objno, IF_COMM_ALL & ~IF_COMM_TXRQST);
376
377 priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl,
378 IF_MCONT_CLR_MSGLST);
379
380 c_can_object_put(dev, 0, objno, IF_COMM_CONTROL);
381
382 /* create an error msg */
383 skb = alloc_can_err_skb(dev, &frame);
384 if (unlikely(!skb))
385 return;
386
387 frame->can_id |= CAN_ERR_CRTL;
388 frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
389 stats->rx_errors++;
390 stats->rx_over_errors++;
391
392 netif_receive_skb(skb);
393 }
394
c_can_read_msg_object(struct net_device * dev,int iface,int ctrl)395 static int c_can_read_msg_object(struct net_device *dev, int iface, int ctrl)
396 {
397 u16 flags, data;
398 int i;
399 unsigned int val;
400 struct c_can_priv *priv = netdev_priv(dev);
401 struct net_device_stats *stats = &dev->stats;
402 struct sk_buff *skb;
403 struct can_frame *frame;
404
405 skb = alloc_can_skb(dev, &frame);
406 if (!skb) {
407 stats->rx_dropped++;
408 return -ENOMEM;
409 }
410
411 frame->can_dlc = get_can_dlc(ctrl & 0x0F);
412
413 flags = priv->read_reg(priv, &priv->regs->ifregs[iface].arb2);
414 val = priv->read_reg(priv, &priv->regs->ifregs[iface].arb1) |
415 (flags << 16);
416
417 if (flags & IF_ARB_MSGXTD)
418 frame->can_id = (val & CAN_EFF_MASK) | CAN_EFF_FLAG;
419 else
420 frame->can_id = (val >> 18) & CAN_SFF_MASK;
421
422 if (flags & IF_ARB_TRANSMIT)
423 frame->can_id |= CAN_RTR_FLAG;
424 else {
425 for (i = 0; i < frame->can_dlc; i += 2) {
426 data = priv->read_reg(priv,
427 &priv->regs->ifregs[iface].data[i / 2]);
428 frame->data[i] = data;
429 frame->data[i + 1] = data >> 8;
430 }
431 }
432
433 netif_receive_skb(skb);
434
435 stats->rx_packets++;
436 stats->rx_bytes += frame->can_dlc;
437
438 return 0;
439 }
440
c_can_setup_receive_object(struct net_device * dev,int iface,int objno,unsigned int mask,unsigned int id,unsigned int mcont)441 static void c_can_setup_receive_object(struct net_device *dev, int iface,
442 int objno, unsigned int mask,
443 unsigned int id, unsigned int mcont)
444 {
445 struct c_can_priv *priv = netdev_priv(dev);
446
447 priv->write_reg(priv, &priv->regs->ifregs[iface].mask1,
448 IFX_WRITE_LOW_16BIT(mask));
449
450 /* According to C_CAN documentation, the reserved bit
451 * in IFx_MASK2 register is fixed 1
452 */
453 priv->write_reg(priv, &priv->regs->ifregs[iface].mask2,
454 IFX_WRITE_HIGH_16BIT(mask) | BIT(13));
455
456 priv->write_reg(priv, &priv->regs->ifregs[iface].arb1,
457 IFX_WRITE_LOW_16BIT(id));
458 priv->write_reg(priv, &priv->regs->ifregs[iface].arb2,
459 (IF_ARB_MSGVAL | IFX_WRITE_HIGH_16BIT(id)));
460
461 priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl, mcont);
462 c_can_object_put(dev, iface, objno, IF_COMM_ALL & ~IF_COMM_TXRQST);
463
464 netdev_dbg(dev, "obj no:%d, msgval:0x%08x\n", objno,
465 c_can_read_reg32(priv, &priv->regs->msgval1));
466 }
467
c_can_inval_msg_object(struct net_device * dev,int iface,int objno)468 static void c_can_inval_msg_object(struct net_device *dev, int iface, int objno)
469 {
470 struct c_can_priv *priv = netdev_priv(dev);
471
472 priv->write_reg(priv, &priv->regs->ifregs[iface].arb1, 0);
473 priv->write_reg(priv, &priv->regs->ifregs[iface].arb2, 0);
474 priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl, 0);
475
476 c_can_object_put(dev, iface, objno, IF_COMM_ARB | IF_COMM_CONTROL);
477
478 netdev_dbg(dev, "obj no:%d, msgval:0x%08x\n", objno,
479 c_can_read_reg32(priv, &priv->regs->msgval1));
480 }
481
c_can_is_next_tx_obj_busy(struct c_can_priv * priv,int objno)482 static inline int c_can_is_next_tx_obj_busy(struct c_can_priv *priv, int objno)
483 {
484 int val = c_can_read_reg32(priv, &priv->regs->txrqst1);
485
486 /*
487 * as transmission request register's bit n-1 corresponds to
488 * message object n, we need to handle the same properly.
489 */
490 if (val & (1 << (objno - 1)))
491 return 1;
492
493 return 0;
494 }
495
c_can_start_xmit(struct sk_buff * skb,struct net_device * dev)496 static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
497 struct net_device *dev)
498 {
499 u32 msg_obj_no;
500 struct c_can_priv *priv = netdev_priv(dev);
501 struct can_frame *frame = (struct can_frame *)skb->data;
502
503 if (can_dropped_invalid_skb(dev, skb))
504 return NETDEV_TX_OK;
505
506 msg_obj_no = get_tx_next_msg_obj(priv);
507
508 /* prepare message object for transmission */
509 c_can_write_msg_object(dev, 0, frame, msg_obj_no);
510 can_put_echo_skb(skb, dev, msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST);
511
512 /*
513 * we have to stop the queue in case of a wrap around or
514 * if the next TX message object is still in use
515 */
516 priv->tx_next++;
517 if (c_can_is_next_tx_obj_busy(priv, get_tx_next_msg_obj(priv)) ||
518 (priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) == 0)
519 netif_stop_queue(dev);
520
521 return NETDEV_TX_OK;
522 }
523
c_can_set_bittiming(struct net_device * dev)524 static int c_can_set_bittiming(struct net_device *dev)
525 {
526 unsigned int reg_btr, reg_brpe, ctrl_save;
527 u8 brp, brpe, sjw, tseg1, tseg2;
528 u32 ten_bit_brp;
529 struct c_can_priv *priv = netdev_priv(dev);
530 const struct can_bittiming *bt = &priv->can.bittiming;
531
532 /* c_can provides a 6-bit brp and 4-bit brpe fields */
533 ten_bit_brp = bt->brp - 1;
534 brp = ten_bit_brp & BTR_BRP_MASK;
535 brpe = ten_bit_brp >> 6;
536
537 sjw = bt->sjw - 1;
538 tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
539 tseg2 = bt->phase_seg2 - 1;
540 reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
541 (tseg2 << BTR_TSEG2_SHIFT);
542 reg_brpe = brpe & BRP_EXT_BRPE_MASK;
543
544 netdev_info(dev,
545 "setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);
546
547 ctrl_save = priv->read_reg(priv, &priv->regs->control);
548 priv->write_reg(priv, &priv->regs->control,
549 ctrl_save | CONTROL_CCE | CONTROL_INIT);
550 priv->write_reg(priv, &priv->regs->btr, reg_btr);
551 priv->write_reg(priv, &priv->regs->brp_ext, reg_brpe);
552 priv->write_reg(priv, &priv->regs->control, ctrl_save);
553
554 return 0;
555 }
556
557 /*
558 * Configure C_CAN message objects for Tx and Rx purposes:
559 * C_CAN provides a total of 32 message objects that can be configured
560 * either for Tx or Rx purposes. Here the first 16 message objects are used as
561 * a reception FIFO. The end of reception FIFO is signified by the EoB bit
562 * being SET. The remaining 16 message objects are kept aside for Tx purposes.
563 * See user guide document for further details on configuring message
564 * objects.
565 */
c_can_configure_msg_objects(struct net_device * dev)566 static void c_can_configure_msg_objects(struct net_device *dev)
567 {
568 int i;
569
570 /* first invalidate all message objects */
571 for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_NO_OF_OBJECTS; i++)
572 c_can_inval_msg_object(dev, 0, i);
573
574 /* setup receive message objects */
575 for (i = C_CAN_MSG_OBJ_RX_FIRST; i < C_CAN_MSG_OBJ_RX_LAST; i++)
576 c_can_setup_receive_object(dev, 0, i, 0, 0,
577 (IF_MCONT_RXIE | IF_MCONT_UMASK) & ~IF_MCONT_EOB);
578
579 c_can_setup_receive_object(dev, 0, C_CAN_MSG_OBJ_RX_LAST, 0, 0,
580 IF_MCONT_EOB | IF_MCONT_RXIE | IF_MCONT_UMASK);
581 }
582
583 /*
584 * Configure C_CAN chip:
585 * - enable/disable auto-retransmission
586 * - set operating mode
587 * - configure message objects
588 */
c_can_chip_config(struct net_device * dev)589 static void c_can_chip_config(struct net_device *dev)
590 {
591 struct c_can_priv *priv = netdev_priv(dev);
592
593 /* enable automatic retransmission */
594 priv->write_reg(priv, &priv->regs->control,
595 CONTROL_ENABLE_AR);
596
597 if ((priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) &&
598 (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)) {
599 /* loopback + silent mode : useful for hot self-test */
600 priv->write_reg(priv, &priv->regs->control, CONTROL_EIE |
601 CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
602 priv->write_reg(priv, &priv->regs->test,
603 TEST_LBACK | TEST_SILENT);
604 } else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
605 /* loopback mode : useful for self-test function */
606 priv->write_reg(priv, &priv->regs->control, CONTROL_EIE |
607 CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
608 priv->write_reg(priv, &priv->regs->test, TEST_LBACK);
609 } else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
610 /* silent mode : bus-monitoring mode */
611 priv->write_reg(priv, &priv->regs->control, CONTROL_EIE |
612 CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
613 priv->write_reg(priv, &priv->regs->test, TEST_SILENT);
614 } else
615 /* normal mode*/
616 priv->write_reg(priv, &priv->regs->control,
617 CONTROL_EIE | CONTROL_SIE | CONTROL_IE);
618
619 /* configure message objects */
620 c_can_configure_msg_objects(dev);
621
622 /* set a `lec` value so that we can check for updates later */
623 priv->write_reg(priv, &priv->regs->status, LEC_UNUSED);
624
625 /* set bittiming params */
626 c_can_set_bittiming(dev);
627 }
628
c_can_start(struct net_device * dev)629 static void c_can_start(struct net_device *dev)
630 {
631 struct c_can_priv *priv = netdev_priv(dev);
632
633 /* basic c_can configuration */
634 c_can_chip_config(dev);
635
636 priv->can.state = CAN_STATE_ERROR_ACTIVE;
637
638 /* reset tx helper pointers */
639 priv->tx_next = priv->tx_echo = 0;
640
641 /* enable status change, error and module interrupts */
642 c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
643 }
644
c_can_stop(struct net_device * dev)645 static void c_can_stop(struct net_device *dev)
646 {
647 struct c_can_priv *priv = netdev_priv(dev);
648
649 /* disable all interrupts */
650 c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
651
652 /* set the state as STOPPED */
653 priv->can.state = CAN_STATE_STOPPED;
654 }
655
c_can_set_mode(struct net_device * dev,enum can_mode mode)656 static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
657 {
658 switch (mode) {
659 case CAN_MODE_START:
660 c_can_start(dev);
661 netif_wake_queue(dev);
662 break;
663 default:
664 return -EOPNOTSUPP;
665 }
666
667 return 0;
668 }
669
c_can_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)670 static int c_can_get_berr_counter(const struct net_device *dev,
671 struct can_berr_counter *bec)
672 {
673 unsigned int reg_err_counter;
674 struct c_can_priv *priv = netdev_priv(dev);
675
676 reg_err_counter = priv->read_reg(priv, &priv->regs->err_cnt);
677 bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
678 ERR_CNT_REC_SHIFT;
679 bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;
680
681 return 0;
682 }
683
684 /*
685 * theory of operation:
686 *
687 * priv->tx_echo holds the number of the oldest can_frame put for
688 * transmission into the hardware, but not yet ACKed by the CAN tx
689 * complete IRQ.
690 *
691 * We iterate from priv->tx_echo to priv->tx_next and check if the
692 * packet has been transmitted, echo it back to the CAN framework.
693 * If we discover a not yet transmitted packet, stop looking for more.
694 */
c_can_do_tx(struct net_device * dev)695 static void c_can_do_tx(struct net_device *dev)
696 {
697 u32 val;
698 u32 msg_obj_no;
699 struct c_can_priv *priv = netdev_priv(dev);
700 struct net_device_stats *stats = &dev->stats;
701
702 for (/* nix */; (priv->tx_next - priv->tx_echo) > 0; priv->tx_echo++) {
703 msg_obj_no = get_tx_echo_msg_obj(priv);
704 val = c_can_read_reg32(priv, &priv->regs->txrqst1);
705 if (!(val & (1 << (msg_obj_no - 1)))) {
706 can_get_echo_skb(dev,
707 msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST);
708 stats->tx_bytes += priv->read_reg(priv,
709 &priv->regs->ifregs[0].msg_cntrl)
710 & IF_MCONT_DLC_MASK;
711 stats->tx_packets++;
712 c_can_inval_msg_object(dev, 0, msg_obj_no);
713 } else {
714 break;
715 }
716 }
717
718 /* restart queue if wrap-up or if queue stalled on last pkt */
719 if (((priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) != 0) ||
720 ((priv->tx_echo & C_CAN_NEXT_MSG_OBJ_MASK) == 0))
721 netif_wake_queue(dev);
722 }
723
724 /*
725 * theory of operation:
726 *
727 * c_can core saves a received CAN message into the first free message
728 * object it finds free (starting with the lowest). Bits NEWDAT and
729 * INTPND are set for this message object indicating that a new message
730 * has arrived. To work-around this issue, we keep two groups of message
731 * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
732 *
733 * To ensure in-order frame reception we use the following
734 * approach while re-activating a message object to receive further
735 * frames:
736 * - if the current message object number is lower than
737 * C_CAN_MSG_RX_LOW_LAST, do not clear the NEWDAT bit while clearing
738 * the INTPND bit.
739 * - if the current message object number is equal to
740 * C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of all lower
741 * receive message objects.
742 * - if the current message object number is greater than
743 * C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of
744 * only this message object.
745 */
c_can_do_rx_poll(struct net_device * dev,int quota)746 static int c_can_do_rx_poll(struct net_device *dev, int quota)
747 {
748 u32 num_rx_pkts = 0;
749 unsigned int msg_obj, msg_ctrl_save;
750 struct c_can_priv *priv = netdev_priv(dev);
751 u32 val = c_can_read_reg32(priv, &priv->regs->intpnd1);
752
753 for (msg_obj = C_CAN_MSG_OBJ_RX_FIRST;
754 msg_obj <= C_CAN_MSG_OBJ_RX_LAST && quota > 0;
755 val = c_can_read_reg32(priv, &priv->regs->intpnd1),
756 msg_obj++) {
757 /*
758 * as interrupt pending register's bit n-1 corresponds to
759 * message object n, we need to handle the same properly.
760 */
761 if (val & (1 << (msg_obj - 1))) {
762 c_can_object_get(dev, 0, msg_obj, IF_COMM_ALL &
763 ~IF_COMM_TXRQST);
764 msg_ctrl_save = priv->read_reg(priv,
765 &priv->regs->ifregs[0].msg_cntrl);
766
767 if (msg_ctrl_save & IF_MCONT_MSGLST) {
768 c_can_handle_lost_msg_obj(dev, 0, msg_obj);
769 num_rx_pkts++;
770 quota--;
771 continue;
772 }
773
774 if (msg_ctrl_save & IF_MCONT_EOB)
775 return num_rx_pkts;
776
777 if (!(msg_ctrl_save & IF_MCONT_NEWDAT))
778 continue;
779
780 /* read the data from the message object */
781 c_can_read_msg_object(dev, 0, msg_ctrl_save);
782
783 if (msg_obj < C_CAN_MSG_RX_LOW_LAST)
784 c_can_mark_rx_msg_obj(dev, 0,
785 msg_ctrl_save, msg_obj);
786 else if (msg_obj > C_CAN_MSG_RX_LOW_LAST)
787 /* activate this msg obj */
788 c_can_activate_rx_msg_obj(dev, 0,
789 msg_ctrl_save, msg_obj);
790 else if (msg_obj == C_CAN_MSG_RX_LOW_LAST)
791 /* activate all lower message objects */
792 c_can_activate_all_lower_rx_msg_obj(dev,
793 0, msg_ctrl_save);
794
795 num_rx_pkts++;
796 quota--;
797 }
798 }
799
800 return num_rx_pkts;
801 }
802
c_can_has_and_handle_berr(struct c_can_priv * priv)803 static inline int c_can_has_and_handle_berr(struct c_can_priv *priv)
804 {
805 return (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
806 (priv->current_status & LEC_UNUSED);
807 }
808
c_can_handle_state_change(struct net_device * dev,enum c_can_bus_error_types error_type)809 static int c_can_handle_state_change(struct net_device *dev,
810 enum c_can_bus_error_types error_type)
811 {
812 unsigned int reg_err_counter;
813 unsigned int rx_err_passive;
814 struct c_can_priv *priv = netdev_priv(dev);
815 struct net_device_stats *stats = &dev->stats;
816 struct can_frame *cf;
817 struct sk_buff *skb;
818 struct can_berr_counter bec;
819
820 /* propagate the error condition to the CAN stack */
821 skb = alloc_can_err_skb(dev, &cf);
822 if (unlikely(!skb))
823 return 0;
824
825 c_can_get_berr_counter(dev, &bec);
826 reg_err_counter = priv->read_reg(priv, &priv->regs->err_cnt);
827 rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
828 ERR_CNT_RP_SHIFT;
829
830 switch (error_type) {
831 case C_CAN_ERROR_WARNING:
832 /* error warning state */
833 priv->can.can_stats.error_warning++;
834 priv->can.state = CAN_STATE_ERROR_WARNING;
835 cf->can_id |= CAN_ERR_CRTL;
836 cf->data[1] = (bec.txerr > bec.rxerr) ?
837 CAN_ERR_CRTL_TX_WARNING :
838 CAN_ERR_CRTL_RX_WARNING;
839 cf->data[6] = bec.txerr;
840 cf->data[7] = bec.rxerr;
841
842 break;
843 case C_CAN_ERROR_PASSIVE:
844 /* error passive state */
845 priv->can.can_stats.error_passive++;
846 priv->can.state = CAN_STATE_ERROR_PASSIVE;
847 cf->can_id |= CAN_ERR_CRTL;
848 if (rx_err_passive)
849 cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
850 if (bec.txerr > 127)
851 cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
852
853 cf->data[6] = bec.txerr;
854 cf->data[7] = bec.rxerr;
855 break;
856 case C_CAN_BUS_OFF:
857 /* bus-off state */
858 priv->can.state = CAN_STATE_BUS_OFF;
859 cf->can_id |= CAN_ERR_BUSOFF;
860 /*
861 * disable all interrupts in bus-off mode to ensure that
862 * the CPU is not hogged down
863 */
864 c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
865 can_bus_off(dev);
866 break;
867 default:
868 break;
869 }
870
871 netif_receive_skb(skb);
872 stats->rx_packets++;
873 stats->rx_bytes += cf->can_dlc;
874
875 return 1;
876 }
877
c_can_handle_bus_err(struct net_device * dev,enum c_can_lec_type lec_type)878 static int c_can_handle_bus_err(struct net_device *dev,
879 enum c_can_lec_type lec_type)
880 {
881 struct c_can_priv *priv = netdev_priv(dev);
882 struct net_device_stats *stats = &dev->stats;
883 struct can_frame *cf;
884 struct sk_buff *skb;
885
886 /*
887 * early exit if no lec update or no error.
888 * no lec update means that no CAN bus event has been detected
889 * since CPU wrote 0x7 value to status reg.
890 */
891 if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
892 return 0;
893
894 /* propagate the error condition to the CAN stack */
895 skb = alloc_can_err_skb(dev, &cf);
896 if (unlikely(!skb))
897 return 0;
898
899 /*
900 * check for 'last error code' which tells us the
901 * type of the last error to occur on the CAN bus
902 */
903
904 /* common for all type of bus errors */
905 priv->can.can_stats.bus_error++;
906 stats->rx_errors++;
907 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
908 cf->data[2] |= CAN_ERR_PROT_UNSPEC;
909
910 switch (lec_type) {
911 case LEC_STUFF_ERROR:
912 netdev_dbg(dev, "stuff error\n");
913 cf->data[2] |= CAN_ERR_PROT_STUFF;
914 break;
915 case LEC_FORM_ERROR:
916 netdev_dbg(dev, "form error\n");
917 cf->data[2] |= CAN_ERR_PROT_FORM;
918 break;
919 case LEC_ACK_ERROR:
920 netdev_dbg(dev, "ack error\n");
921 cf->data[3] |= (CAN_ERR_PROT_LOC_ACK |
922 CAN_ERR_PROT_LOC_ACK_DEL);
923 break;
924 case LEC_BIT1_ERROR:
925 netdev_dbg(dev, "bit1 error\n");
926 cf->data[2] |= CAN_ERR_PROT_BIT1;
927 break;
928 case LEC_BIT0_ERROR:
929 netdev_dbg(dev, "bit0 error\n");
930 cf->data[2] |= CAN_ERR_PROT_BIT0;
931 break;
932 case LEC_CRC_ERROR:
933 netdev_dbg(dev, "CRC error\n");
934 cf->data[3] |= (CAN_ERR_PROT_LOC_CRC_SEQ |
935 CAN_ERR_PROT_LOC_CRC_DEL);
936 break;
937 default:
938 break;
939 }
940
941 /* set a `lec` value so that we can check for updates later */
942 priv->write_reg(priv, &priv->regs->status, LEC_UNUSED);
943
944 netif_receive_skb(skb);
945 stats->rx_packets++;
946 stats->rx_bytes += cf->can_dlc;
947
948 return 1;
949 }
950
c_can_poll(struct napi_struct * napi,int quota)951 static int c_can_poll(struct napi_struct *napi, int quota)
952 {
953 u16 irqstatus;
954 int lec_type = 0;
955 int work_done = 0;
956 struct net_device *dev = napi->dev;
957 struct c_can_priv *priv = netdev_priv(dev);
958
959 irqstatus = priv->irqstatus;
960 if (!irqstatus)
961 goto end;
962
963 /* status events have the highest priority */
964 if (irqstatus == STATUS_INTERRUPT) {
965 priv->current_status = priv->read_reg(priv,
966 &priv->regs->status);
967
968 /* handle Tx/Rx events */
969 if (priv->current_status & STATUS_TXOK)
970 priv->write_reg(priv, &priv->regs->status,
971 priv->current_status & ~STATUS_TXOK);
972
973 if (priv->current_status & STATUS_RXOK)
974 priv->write_reg(priv, &priv->regs->status,
975 priv->current_status & ~STATUS_RXOK);
976
977 /* handle state changes */
978 if ((priv->current_status & STATUS_EWARN) &&
979 (!(priv->last_status & STATUS_EWARN))) {
980 netdev_dbg(dev, "entered error warning state\n");
981 work_done += c_can_handle_state_change(dev,
982 C_CAN_ERROR_WARNING);
983 }
984 if ((priv->current_status & STATUS_EPASS) &&
985 (!(priv->last_status & STATUS_EPASS))) {
986 netdev_dbg(dev, "entered error passive state\n");
987 work_done += c_can_handle_state_change(dev,
988 C_CAN_ERROR_PASSIVE);
989 }
990 if ((priv->current_status & STATUS_BOFF) &&
991 (!(priv->last_status & STATUS_BOFF))) {
992 netdev_dbg(dev, "entered bus off state\n");
993 work_done += c_can_handle_state_change(dev,
994 C_CAN_BUS_OFF);
995 }
996
997 /* handle bus recovery events */
998 if ((!(priv->current_status & STATUS_BOFF)) &&
999 (priv->last_status & STATUS_BOFF)) {
1000 netdev_dbg(dev, "left bus off state\n");
1001 priv->can.state = CAN_STATE_ERROR_ACTIVE;
1002 }
1003 if ((!(priv->current_status & STATUS_EPASS)) &&
1004 (priv->last_status & STATUS_EPASS)) {
1005 netdev_dbg(dev, "left error passive state\n");
1006 priv->can.state = CAN_STATE_ERROR_ACTIVE;
1007 }
1008
1009 priv->last_status = priv->current_status;
1010
1011 /* handle lec errors on the bus */
1012 lec_type = c_can_has_and_handle_berr(priv);
1013 if (lec_type)
1014 work_done += c_can_handle_bus_err(dev, lec_type);
1015 } else if ((irqstatus >= C_CAN_MSG_OBJ_RX_FIRST) &&
1016 (irqstatus <= C_CAN_MSG_OBJ_RX_LAST)) {
1017 /* handle events corresponding to receive message objects */
1018 work_done += c_can_do_rx_poll(dev, (quota - work_done));
1019 } else if ((irqstatus >= C_CAN_MSG_OBJ_TX_FIRST) &&
1020 (irqstatus <= C_CAN_MSG_OBJ_TX_LAST)) {
1021 /* handle events corresponding to transmit message objects */
1022 c_can_do_tx(dev);
1023 }
1024
1025 end:
1026 if (work_done < quota) {
1027 napi_complete(napi);
1028 /* enable all IRQs */
1029 c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
1030 }
1031
1032 return work_done;
1033 }
1034
c_can_isr(int irq,void * dev_id)1035 static irqreturn_t c_can_isr(int irq, void *dev_id)
1036 {
1037 struct net_device *dev = (struct net_device *)dev_id;
1038 struct c_can_priv *priv = netdev_priv(dev);
1039
1040 priv->irqstatus = priv->read_reg(priv, &priv->regs->interrupt);
1041 if (!priv->irqstatus)
1042 return IRQ_NONE;
1043
1044 /* disable all interrupts and schedule the NAPI */
1045 c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
1046 napi_schedule(&priv->napi);
1047
1048 return IRQ_HANDLED;
1049 }
1050
c_can_open(struct net_device * dev)1051 static int c_can_open(struct net_device *dev)
1052 {
1053 int err;
1054 struct c_can_priv *priv = netdev_priv(dev);
1055
1056 /* open the can device */
1057 err = open_candev(dev);
1058 if (err) {
1059 netdev_err(dev, "failed to open can device\n");
1060 return err;
1061 }
1062
1063 /* register interrupt handler */
1064 err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
1065 dev);
1066 if (err < 0) {
1067 netdev_err(dev, "failed to request interrupt\n");
1068 goto exit_irq_fail;
1069 }
1070
1071 napi_enable(&priv->napi);
1072
1073 /* start the c_can controller */
1074 c_can_start(dev);
1075
1076 netif_start_queue(dev);
1077
1078 return 0;
1079
1080 exit_irq_fail:
1081 close_candev(dev);
1082 return err;
1083 }
1084
c_can_close(struct net_device * dev)1085 static int c_can_close(struct net_device *dev)
1086 {
1087 struct c_can_priv *priv = netdev_priv(dev);
1088
1089 netif_stop_queue(dev);
1090 napi_disable(&priv->napi);
1091 c_can_stop(dev);
1092 free_irq(dev->irq, dev);
1093 close_candev(dev);
1094
1095 return 0;
1096 }
1097
alloc_c_can_dev(void)1098 struct net_device *alloc_c_can_dev(void)
1099 {
1100 struct net_device *dev;
1101 struct c_can_priv *priv;
1102
1103 dev = alloc_candev(sizeof(struct c_can_priv), C_CAN_MSG_OBJ_TX_NUM);
1104 if (!dev)
1105 return NULL;
1106
1107 priv = netdev_priv(dev);
1108 netif_napi_add(dev, &priv->napi, c_can_poll, C_CAN_NAPI_WEIGHT);
1109
1110 priv->dev = dev;
1111 priv->can.bittiming_const = &c_can_bittiming_const;
1112 priv->can.do_set_mode = c_can_set_mode;
1113 priv->can.do_get_berr_counter = c_can_get_berr_counter;
1114 priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1115 CAN_CTRLMODE_LISTENONLY |
1116 CAN_CTRLMODE_BERR_REPORTING;
1117
1118 return dev;
1119 }
1120 EXPORT_SYMBOL_GPL(alloc_c_can_dev);
1121
free_c_can_dev(struct net_device * dev)1122 void free_c_can_dev(struct net_device *dev)
1123 {
1124 free_candev(dev);
1125 }
1126 EXPORT_SYMBOL_GPL(free_c_can_dev);
1127
1128 static const struct net_device_ops c_can_netdev_ops = {
1129 .ndo_open = c_can_open,
1130 .ndo_stop = c_can_close,
1131 .ndo_start_xmit = c_can_start_xmit,
1132 };
1133
register_c_can_dev(struct net_device * dev)1134 int register_c_can_dev(struct net_device *dev)
1135 {
1136 dev->flags |= IFF_ECHO; /* we support local echo */
1137 dev->netdev_ops = &c_can_netdev_ops;
1138
1139 return register_candev(dev);
1140 }
1141 EXPORT_SYMBOL_GPL(register_c_can_dev);
1142
unregister_c_can_dev(struct net_device * dev)1143 void unregister_c_can_dev(struct net_device *dev)
1144 {
1145 struct c_can_priv *priv = netdev_priv(dev);
1146
1147 /* disable all interrupts */
1148 c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
1149
1150 unregister_candev(dev);
1151 }
1152 EXPORT_SYMBOL_GPL(unregister_c_can_dev);
1153
1154 MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
1155 MODULE_LICENSE("GPL v2");
1156 MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");
1157