1 /* linux/drivers/mtd/nand/s3c2410.c
2  *
3  * Copyright © 2004-2008 Simtec Electronics
4  *	http://armlinux.simtec.co.uk/
5  *	Ben Dooks <ben@simtec.co.uk>
6  *
7  * Samsung S3C2410/S3C2440/S3C2412 NAND driver
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22 */
23 
24 #ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
25 #define DEBUG
26 #endif
27 
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/string.h>
33 #include <linux/ioport.h>
34 #include <linux/platform_device.h>
35 #include <linux/delay.h>
36 #include <linux/err.h>
37 #include <linux/slab.h>
38 #include <linux/clk.h>
39 #include <linux/cpufreq.h>
40 
41 #include <linux/mtd/mtd.h>
42 #include <linux/mtd/nand.h>
43 #include <linux/mtd/nand_ecc.h>
44 #include <linux/mtd/partitions.h>
45 
46 #include <asm/io.h>
47 
48 #include <plat/regs-nand.h>
49 #include <plat/nand.h>
50 
51 #ifdef CONFIG_MTD_NAND_S3C2410_HWECC
52 static int hardware_ecc = 1;
53 #else
54 static int hardware_ecc = 0;
55 #endif
56 
57 #ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
58 static const int clock_stop = 1;
59 #else
60 static const int clock_stop = 0;
61 #endif
62 
63 
64 /* new oob placement block for use with hardware ecc generation
65  */
66 
67 static struct nand_ecclayout nand_hw_eccoob = {
68 	.eccbytes = 3,
69 	.eccpos = {0, 1, 2},
70 	.oobfree = {{8, 8}}
71 };
72 
73 /* controller and mtd information */
74 
75 struct s3c2410_nand_info;
76 
77 /**
78  * struct s3c2410_nand_mtd - driver MTD structure
79  * @mtd: The MTD instance to pass to the MTD layer.
80  * @chip: The NAND chip information.
81  * @set: The platform information supplied for this set of NAND chips.
82  * @info: Link back to the hardware information.
83  * @scan_res: The result from calling nand_scan_ident().
84 */
85 struct s3c2410_nand_mtd {
86 	struct mtd_info			mtd;
87 	struct nand_chip		chip;
88 	struct s3c2410_nand_set		*set;
89 	struct s3c2410_nand_info	*info;
90 	int				scan_res;
91 };
92 
93 enum s3c_cpu_type {
94 	TYPE_S3C2410,
95 	TYPE_S3C2412,
96 	TYPE_S3C2440,
97 };
98 
99 enum s3c_nand_clk_state {
100 	CLOCK_DISABLE	= 0,
101 	CLOCK_ENABLE,
102 	CLOCK_SUSPEND,
103 };
104 
105 /* overview of the s3c2410 nand state */
106 
107 /**
108  * struct s3c2410_nand_info - NAND controller state.
109  * @mtds: An array of MTD instances on this controoler.
110  * @platform: The platform data for this board.
111  * @device: The platform device we bound to.
112  * @area: The IO area resource that came from request_mem_region().
113  * @clk: The clock resource for this controller.
114  * @regs: The area mapped for the hardware registers described by @area.
115  * @sel_reg: Pointer to the register controlling the NAND selection.
116  * @sel_bit: The bit in @sel_reg to select the NAND chip.
117  * @mtd_count: The number of MTDs created from this controller.
118  * @save_sel: The contents of @sel_reg to be saved over suspend.
119  * @clk_rate: The clock rate from @clk.
120  * @clk_state: The current clock state.
121  * @cpu_type: The exact type of this controller.
122  */
123 struct s3c2410_nand_info {
124 	/* mtd info */
125 	struct nand_hw_control		controller;
126 	struct s3c2410_nand_mtd		*mtds;
127 	struct s3c2410_platform_nand	*platform;
128 
129 	/* device info */
130 	struct device			*device;
131 	struct resource			*area;
132 	struct clk			*clk;
133 	void __iomem			*regs;
134 	void __iomem			*sel_reg;
135 	int				sel_bit;
136 	int				mtd_count;
137 	unsigned long			save_sel;
138 	unsigned long			clk_rate;
139 	enum s3c_nand_clk_state		clk_state;
140 
141 	enum s3c_cpu_type		cpu_type;
142 
143 #ifdef CONFIG_CPU_FREQ
144 	struct notifier_block	freq_transition;
145 #endif
146 };
147 
148 /* conversion functions */
149 
s3c2410_nand_mtd_toours(struct mtd_info * mtd)150 static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
151 {
152 	return container_of(mtd, struct s3c2410_nand_mtd, mtd);
153 }
154 
s3c2410_nand_mtd_toinfo(struct mtd_info * mtd)155 static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
156 {
157 	return s3c2410_nand_mtd_toours(mtd)->info;
158 }
159 
to_nand_info(struct platform_device * dev)160 static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev)
161 {
162 	return platform_get_drvdata(dev);
163 }
164 
to_nand_plat(struct platform_device * dev)165 static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev)
166 {
167 	return dev->dev.platform_data;
168 }
169 
allow_clk_suspend(struct s3c2410_nand_info * info)170 static inline int allow_clk_suspend(struct s3c2410_nand_info *info)
171 {
172 	return clock_stop;
173 }
174 
175 /**
176  * s3c2410_nand_clk_set_state - Enable, disable or suspend NAND clock.
177  * @info: The controller instance.
178  * @new_state: State to which clock should be set.
179  */
s3c2410_nand_clk_set_state(struct s3c2410_nand_info * info,enum s3c_nand_clk_state new_state)180 static void s3c2410_nand_clk_set_state(struct s3c2410_nand_info *info,
181 		enum s3c_nand_clk_state new_state)
182 {
183 	if (!allow_clk_suspend(info) && new_state == CLOCK_SUSPEND)
184 		return;
185 
186 	if (info->clk_state == CLOCK_ENABLE) {
187 		if (new_state != CLOCK_ENABLE)
188 			clk_disable(info->clk);
189 	} else {
190 		if (new_state == CLOCK_ENABLE)
191 			clk_enable(info->clk);
192 	}
193 
194 	info->clk_state = new_state;
195 }
196 
197 /* timing calculations */
198 
199 #define NS_IN_KHZ 1000000
200 
201 /**
202  * s3c_nand_calc_rate - calculate timing data.
203  * @wanted: The cycle time in nanoseconds.
204  * @clk: The clock rate in kHz.
205  * @max: The maximum divider value.
206  *
207  * Calculate the timing value from the given parameters.
208  */
s3c_nand_calc_rate(int wanted,unsigned long clk,int max)209 static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max)
210 {
211 	int result;
212 
213 	result = DIV_ROUND_UP((wanted * clk), NS_IN_KHZ);
214 
215 	pr_debug("result %d from %ld, %d\n", result, clk, wanted);
216 
217 	if (result > max) {
218 		printk("%d ns is too big for current clock rate %ld\n", wanted, clk);
219 		return -1;
220 	}
221 
222 	if (result < 1)
223 		result = 1;
224 
225 	return result;
226 }
227 
228 #define to_ns(ticks,clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
229 
230 /* controller setup */
231 
232 /**
233  * s3c2410_nand_setrate - setup controller timing information.
234  * @info: The controller instance.
235  *
236  * Given the information supplied by the platform, calculate and set
237  * the necessary timing registers in the hardware to generate the
238  * necessary timing cycles to the hardware.
239  */
s3c2410_nand_setrate(struct s3c2410_nand_info * info)240 static int s3c2410_nand_setrate(struct s3c2410_nand_info *info)
241 {
242 	struct s3c2410_platform_nand *plat = info->platform;
243 	int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4;
244 	int tacls, twrph0, twrph1;
245 	unsigned long clkrate = clk_get_rate(info->clk);
246 	unsigned long uninitialized_var(set), cfg, uninitialized_var(mask);
247 	unsigned long flags;
248 
249 	/* calculate the timing information for the controller */
250 
251 	info->clk_rate = clkrate;
252 	clkrate /= 1000;	/* turn clock into kHz for ease of use */
253 
254 	if (plat != NULL) {
255 		tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max);
256 		twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8);
257 		twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8);
258 	} else {
259 		/* default timings */
260 		tacls = tacls_max;
261 		twrph0 = 8;
262 		twrph1 = 8;
263 	}
264 
265 	if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
266 		dev_err(info->device, "cannot get suitable timings\n");
267 		return -EINVAL;
268 	}
269 
270 	dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
271 	       tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate), twrph1, to_ns(twrph1, clkrate));
272 
273 	switch (info->cpu_type) {
274 	case TYPE_S3C2410:
275 		mask = (S3C2410_NFCONF_TACLS(3) |
276 			S3C2410_NFCONF_TWRPH0(7) |
277 			S3C2410_NFCONF_TWRPH1(7));
278 		set = S3C2410_NFCONF_EN;
279 		set |= S3C2410_NFCONF_TACLS(tacls - 1);
280 		set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
281 		set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
282 		break;
283 
284 	case TYPE_S3C2440:
285 	case TYPE_S3C2412:
286 		mask = (S3C2440_NFCONF_TACLS(tacls_max - 1) |
287 			S3C2440_NFCONF_TWRPH0(7) |
288 			S3C2440_NFCONF_TWRPH1(7));
289 
290 		set = S3C2440_NFCONF_TACLS(tacls - 1);
291 		set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1);
292 		set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1);
293 		break;
294 
295 	default:
296 		BUG();
297 	}
298 
299 	local_irq_save(flags);
300 
301 	cfg = readl(info->regs + S3C2410_NFCONF);
302 	cfg &= ~mask;
303 	cfg |= set;
304 	writel(cfg, info->regs + S3C2410_NFCONF);
305 
306 	local_irq_restore(flags);
307 
308 	dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg);
309 
310 	return 0;
311 }
312 
313 /**
314  * s3c2410_nand_inithw - basic hardware initialisation
315  * @info: The hardware state.
316  *
317  * Do the basic initialisation of the hardware, using s3c2410_nand_setrate()
318  * to setup the hardware access speeds and set the controller to be enabled.
319 */
s3c2410_nand_inithw(struct s3c2410_nand_info * info)320 static int s3c2410_nand_inithw(struct s3c2410_nand_info *info)
321 {
322 	int ret;
323 
324 	ret = s3c2410_nand_setrate(info);
325 	if (ret < 0)
326 		return ret;
327 
328  	switch (info->cpu_type) {
329  	case TYPE_S3C2410:
330 	default:
331 		break;
332 
333  	case TYPE_S3C2440:
334  	case TYPE_S3C2412:
335 		/* enable the controller and de-assert nFCE */
336 
337 		writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT);
338 	}
339 
340 	return 0;
341 }
342 
343 /**
344  * s3c2410_nand_select_chip - select the given nand chip
345  * @mtd: The MTD instance for this chip.
346  * @chip: The chip number.
347  *
348  * This is called by the MTD layer to either select a given chip for the
349  * @mtd instance, or to indicate that the access has finished and the
350  * chip can be de-selected.
351  *
352  * The routine ensures that the nFCE line is correctly setup, and any
353  * platform specific selection code is called to route nFCE to the specific
354  * chip.
355  */
s3c2410_nand_select_chip(struct mtd_info * mtd,int chip)356 static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip)
357 {
358 	struct s3c2410_nand_info *info;
359 	struct s3c2410_nand_mtd *nmtd;
360 	struct nand_chip *this = mtd->priv;
361 	unsigned long cur;
362 
363 	nmtd = this->priv;
364 	info = nmtd->info;
365 
366 	if (chip != -1)
367 		s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
368 
369 	cur = readl(info->sel_reg);
370 
371 	if (chip == -1) {
372 		cur |= info->sel_bit;
373 	} else {
374 		if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
375 			dev_err(info->device, "invalid chip %d\n", chip);
376 			return;
377 		}
378 
379 		if (info->platform != NULL) {
380 			if (info->platform->select_chip != NULL)
381 				(info->platform->select_chip) (nmtd->set, chip);
382 		}
383 
384 		cur &= ~info->sel_bit;
385 	}
386 
387 	writel(cur, info->sel_reg);
388 
389 	if (chip == -1)
390 		s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
391 }
392 
393 /* s3c2410_nand_hwcontrol
394  *
395  * Issue command and address cycles to the chip
396 */
397 
s3c2410_nand_hwcontrol(struct mtd_info * mtd,int cmd,unsigned int ctrl)398 static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd,
399 				   unsigned int ctrl)
400 {
401 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
402 
403 	if (cmd == NAND_CMD_NONE)
404 		return;
405 
406 	if (ctrl & NAND_CLE)
407 		writeb(cmd, info->regs + S3C2410_NFCMD);
408 	else
409 		writeb(cmd, info->regs + S3C2410_NFADDR);
410 }
411 
412 /* command and control functions */
413 
s3c2440_nand_hwcontrol(struct mtd_info * mtd,int cmd,unsigned int ctrl)414 static void s3c2440_nand_hwcontrol(struct mtd_info *mtd, int cmd,
415 				   unsigned int ctrl)
416 {
417 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
418 
419 	if (cmd == NAND_CMD_NONE)
420 		return;
421 
422 	if (ctrl & NAND_CLE)
423 		writeb(cmd, info->regs + S3C2440_NFCMD);
424 	else
425 		writeb(cmd, info->regs + S3C2440_NFADDR);
426 }
427 
428 /* s3c2410_nand_devready()
429  *
430  * returns 0 if the nand is busy, 1 if it is ready
431 */
432 
s3c2410_nand_devready(struct mtd_info * mtd)433 static int s3c2410_nand_devready(struct mtd_info *mtd)
434 {
435 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
436 	return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
437 }
438 
s3c2440_nand_devready(struct mtd_info * mtd)439 static int s3c2440_nand_devready(struct mtd_info *mtd)
440 {
441 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
442 	return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
443 }
444 
s3c2412_nand_devready(struct mtd_info * mtd)445 static int s3c2412_nand_devready(struct mtd_info *mtd)
446 {
447 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
448 	return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY;
449 }
450 
451 /* ECC handling functions */
452 
s3c2410_nand_correct_data(struct mtd_info * mtd,u_char * dat,u_char * read_ecc,u_char * calc_ecc)453 static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat,
454 				     u_char *read_ecc, u_char *calc_ecc)
455 {
456 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
457 	unsigned int diff0, diff1, diff2;
458 	unsigned int bit, byte;
459 
460 	pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc);
461 
462 	diff0 = read_ecc[0] ^ calc_ecc[0];
463 	diff1 = read_ecc[1] ^ calc_ecc[1];
464 	diff2 = read_ecc[2] ^ calc_ecc[2];
465 
466 	pr_debug("%s: rd %02x%02x%02x calc %02x%02x%02x diff %02x%02x%02x\n",
467 		 __func__,
468 		 read_ecc[0], read_ecc[1], read_ecc[2],
469 		 calc_ecc[0], calc_ecc[1], calc_ecc[2],
470 		 diff0, diff1, diff2);
471 
472 	if (diff0 == 0 && diff1 == 0 && diff2 == 0)
473 		return 0;		/* ECC is ok */
474 
475 	/* sometimes people do not think about using the ECC, so check
476 	 * to see if we have an 0xff,0xff,0xff read ECC and then ignore
477 	 * the error, on the assumption that this is an un-eccd page.
478 	 */
479 	if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff
480 	    && info->platform->ignore_unset_ecc)
481 		return 0;
482 
483 	/* Can we correct this ECC (ie, one row and column change).
484 	 * Note, this is similar to the 256 error code on smartmedia */
485 
486 	if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 &&
487 	    ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 &&
488 	    ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) {
489 		/* calculate the bit position of the error */
490 
491 		bit  = ((diff2 >> 3) & 1) |
492 		       ((diff2 >> 4) & 2) |
493 		       ((diff2 >> 5) & 4);
494 
495 		/* calculate the byte position of the error */
496 
497 		byte = ((diff2 << 7) & 0x100) |
498 		       ((diff1 << 0) & 0x80)  |
499 		       ((diff1 << 1) & 0x40)  |
500 		       ((diff1 << 2) & 0x20)  |
501 		       ((diff1 << 3) & 0x10)  |
502 		       ((diff0 >> 4) & 0x08)  |
503 		       ((diff0 >> 3) & 0x04)  |
504 		       ((diff0 >> 2) & 0x02)  |
505 		       ((diff0 >> 1) & 0x01);
506 
507 		dev_dbg(info->device, "correcting error bit %d, byte %d\n",
508 			bit, byte);
509 
510 		dat[byte] ^= (1 << bit);
511 		return 1;
512 	}
513 
514 	/* if there is only one bit difference in the ECC, then
515 	 * one of only a row or column parity has changed, which
516 	 * means the error is most probably in the ECC itself */
517 
518 	diff0 |= (diff1 << 8);
519 	diff0 |= (diff2 << 16);
520 
521 	if ((diff0 & ~(1<<fls(diff0))) == 0)
522 		return 1;
523 
524 	return -1;
525 }
526 
527 /* ECC functions
528  *
529  * These allow the s3c2410 and s3c2440 to use the controller's ECC
530  * generator block to ECC the data as it passes through]
531 */
532 
s3c2410_nand_enable_hwecc(struct mtd_info * mtd,int mode)533 static void s3c2410_nand_enable_hwecc(struct mtd_info *mtd, int mode)
534 {
535 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
536 	unsigned long ctrl;
537 
538 	ctrl = readl(info->regs + S3C2410_NFCONF);
539 	ctrl |= S3C2410_NFCONF_INITECC;
540 	writel(ctrl, info->regs + S3C2410_NFCONF);
541 }
542 
s3c2412_nand_enable_hwecc(struct mtd_info * mtd,int mode)543 static void s3c2412_nand_enable_hwecc(struct mtd_info *mtd, int mode)
544 {
545 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
546 	unsigned long ctrl;
547 
548 	ctrl = readl(info->regs + S3C2440_NFCONT);
549 	writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC, info->regs + S3C2440_NFCONT);
550 }
551 
s3c2440_nand_enable_hwecc(struct mtd_info * mtd,int mode)552 static void s3c2440_nand_enable_hwecc(struct mtd_info *mtd, int mode)
553 {
554 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
555 	unsigned long ctrl;
556 
557 	ctrl = readl(info->regs + S3C2440_NFCONT);
558 	writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
559 }
560 
s3c2410_nand_calculate_ecc(struct mtd_info * mtd,const u_char * dat,u_char * ecc_code)561 static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
562 {
563 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
564 
565 	ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
566 	ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
567 	ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
568 
569 	pr_debug("%s: returning ecc %02x%02x%02x\n", __func__,
570 		 ecc_code[0], ecc_code[1], ecc_code[2]);
571 
572 	return 0;
573 }
574 
s3c2412_nand_calculate_ecc(struct mtd_info * mtd,const u_char * dat,u_char * ecc_code)575 static int s3c2412_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
576 {
577 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
578 	unsigned long ecc = readl(info->regs + S3C2412_NFMECC0);
579 
580 	ecc_code[0] = ecc;
581 	ecc_code[1] = ecc >> 8;
582 	ecc_code[2] = ecc >> 16;
583 
584 	pr_debug("calculate_ecc: returning ecc %02x,%02x,%02x\n", ecc_code[0], ecc_code[1], ecc_code[2]);
585 
586 	return 0;
587 }
588 
s3c2440_nand_calculate_ecc(struct mtd_info * mtd,const u_char * dat,u_char * ecc_code)589 static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
590 {
591 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
592 	unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
593 
594 	ecc_code[0] = ecc;
595 	ecc_code[1] = ecc >> 8;
596 	ecc_code[2] = ecc >> 16;
597 
598 	pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff);
599 
600 	return 0;
601 }
602 
603 /* over-ride the standard functions for a little more speed. We can
604  * use read/write block to move the data buffers to/from the controller
605 */
606 
s3c2410_nand_read_buf(struct mtd_info * mtd,u_char * buf,int len)607 static void s3c2410_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
608 {
609 	struct nand_chip *this = mtd->priv;
610 	readsb(this->IO_ADDR_R, buf, len);
611 }
612 
s3c2440_nand_read_buf(struct mtd_info * mtd,u_char * buf,int len)613 static void s3c2440_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
614 {
615 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
616 
617 	readsl(info->regs + S3C2440_NFDATA, buf, len >> 2);
618 
619 	/* cleanup if we've got less than a word to do */
620 	if (len & 3) {
621 		buf += len & ~3;
622 
623 		for (; len & 3; len--)
624 			*buf++ = readb(info->regs + S3C2440_NFDATA);
625 	}
626 }
627 
s3c2410_nand_write_buf(struct mtd_info * mtd,const u_char * buf,int len)628 static void s3c2410_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
629 {
630 	struct nand_chip *this = mtd->priv;
631 	writesb(this->IO_ADDR_W, buf, len);
632 }
633 
s3c2440_nand_write_buf(struct mtd_info * mtd,const u_char * buf,int len)634 static void s3c2440_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
635 {
636 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
637 
638 	writesl(info->regs + S3C2440_NFDATA, buf, len >> 2);
639 
640 	/* cleanup any fractional write */
641 	if (len & 3) {
642 		buf += len & ~3;
643 
644 		for (; len & 3; len--, buf++)
645 			writeb(*buf, info->regs + S3C2440_NFDATA);
646 	}
647 }
648 
649 /* cpufreq driver support */
650 
651 #ifdef CONFIG_CPU_FREQ
652 
s3c2410_nand_cpufreq_transition(struct notifier_block * nb,unsigned long val,void * data)653 static int s3c2410_nand_cpufreq_transition(struct notifier_block *nb,
654 					  unsigned long val, void *data)
655 {
656 	struct s3c2410_nand_info *info;
657 	unsigned long newclk;
658 
659 	info = container_of(nb, struct s3c2410_nand_info, freq_transition);
660 	newclk = clk_get_rate(info->clk);
661 
662 	if ((val == CPUFREQ_POSTCHANGE && newclk < info->clk_rate) ||
663 	    (val == CPUFREQ_PRECHANGE && newclk > info->clk_rate)) {
664 		s3c2410_nand_setrate(info);
665 	}
666 
667 	return 0;
668 }
669 
s3c2410_nand_cpufreq_register(struct s3c2410_nand_info * info)670 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
671 {
672 	info->freq_transition.notifier_call = s3c2410_nand_cpufreq_transition;
673 
674 	return cpufreq_register_notifier(&info->freq_transition,
675 					 CPUFREQ_TRANSITION_NOTIFIER);
676 }
677 
s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info * info)678 static inline void s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
679 {
680 	cpufreq_unregister_notifier(&info->freq_transition,
681 				    CPUFREQ_TRANSITION_NOTIFIER);
682 }
683 
684 #else
s3c2410_nand_cpufreq_register(struct s3c2410_nand_info * info)685 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
686 {
687 	return 0;
688 }
689 
s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info * info)690 static inline void s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
691 {
692 }
693 #endif
694 
695 /* device management functions */
696 
s3c24xx_nand_remove(struct platform_device * pdev)697 static int s3c24xx_nand_remove(struct platform_device *pdev)
698 {
699 	struct s3c2410_nand_info *info = to_nand_info(pdev);
700 
701 	platform_set_drvdata(pdev, NULL);
702 
703 	if (info == NULL)
704 		return 0;
705 
706 	s3c2410_nand_cpufreq_deregister(info);
707 
708 	/* Release all our mtds  and their partitions, then go through
709 	 * freeing the resources used
710 	 */
711 
712 	if (info->mtds != NULL) {
713 		struct s3c2410_nand_mtd *ptr = info->mtds;
714 		int mtdno;
715 
716 		for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
717 			pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
718 			nand_release(&ptr->mtd);
719 		}
720 
721 		kfree(info->mtds);
722 	}
723 
724 	/* free the common resources */
725 
726 	if (!IS_ERR(info->clk)) {
727 		s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
728 		clk_put(info->clk);
729 	}
730 
731 	if (info->regs != NULL) {
732 		iounmap(info->regs);
733 		info->regs = NULL;
734 	}
735 
736 	if (info->area != NULL) {
737 		release_resource(info->area);
738 		kfree(info->area);
739 		info->area = NULL;
740 	}
741 
742 	kfree(info);
743 
744 	return 0;
745 }
746 
s3c2410_nand_add_partition(struct s3c2410_nand_info * info,struct s3c2410_nand_mtd * mtd,struct s3c2410_nand_set * set)747 static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
748 				      struct s3c2410_nand_mtd *mtd,
749 				      struct s3c2410_nand_set *set)
750 {
751 	if (set)
752 		mtd->mtd.name = set->name;
753 
754 	return mtd_device_parse_register(&mtd->mtd, NULL, NULL,
755 					 set->partitions, set->nr_partitions);
756 }
757 
758 /**
759  * s3c2410_nand_init_chip - initialise a single instance of an chip
760  * @info: The base NAND controller the chip is on.
761  * @nmtd: The new controller MTD instance to fill in.
762  * @set: The information passed from the board specific platform data.
763  *
764  * Initialise the given @nmtd from the information in @info and @set. This
765  * readies the structure for use with the MTD layer functions by ensuring
766  * all pointers are setup and the necessary control routines selected.
767  */
s3c2410_nand_init_chip(struct s3c2410_nand_info * info,struct s3c2410_nand_mtd * nmtd,struct s3c2410_nand_set * set)768 static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
769 				   struct s3c2410_nand_mtd *nmtd,
770 				   struct s3c2410_nand_set *set)
771 {
772 	struct nand_chip *chip = &nmtd->chip;
773 	void __iomem *regs = info->regs;
774 
775 	chip->write_buf    = s3c2410_nand_write_buf;
776 	chip->read_buf     = s3c2410_nand_read_buf;
777 	chip->select_chip  = s3c2410_nand_select_chip;
778 	chip->chip_delay   = 50;
779 	chip->priv	   = nmtd;
780 	chip->options	   = set->options;
781 	chip->controller   = &info->controller;
782 
783 	switch (info->cpu_type) {
784 	case TYPE_S3C2410:
785 		chip->IO_ADDR_W = regs + S3C2410_NFDATA;
786 		info->sel_reg   = regs + S3C2410_NFCONF;
787 		info->sel_bit	= S3C2410_NFCONF_nFCE;
788 		chip->cmd_ctrl  = s3c2410_nand_hwcontrol;
789 		chip->dev_ready = s3c2410_nand_devready;
790 		break;
791 
792 	case TYPE_S3C2440:
793 		chip->IO_ADDR_W = regs + S3C2440_NFDATA;
794 		info->sel_reg   = regs + S3C2440_NFCONT;
795 		info->sel_bit	= S3C2440_NFCONT_nFCE;
796 		chip->cmd_ctrl  = s3c2440_nand_hwcontrol;
797 		chip->dev_ready = s3c2440_nand_devready;
798 		chip->read_buf  = s3c2440_nand_read_buf;
799 		chip->write_buf	= s3c2440_nand_write_buf;
800 		break;
801 
802 	case TYPE_S3C2412:
803 		chip->IO_ADDR_W = regs + S3C2440_NFDATA;
804 		info->sel_reg   = regs + S3C2440_NFCONT;
805 		info->sel_bit	= S3C2412_NFCONT_nFCE0;
806 		chip->cmd_ctrl  = s3c2440_nand_hwcontrol;
807 		chip->dev_ready = s3c2412_nand_devready;
808 
809 		if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT)
810 			dev_info(info->device, "System booted from NAND\n");
811 
812 		break;
813   	}
814 
815 	chip->IO_ADDR_R = chip->IO_ADDR_W;
816 
817 	nmtd->info	   = info;
818 	nmtd->mtd.priv	   = chip;
819 	nmtd->mtd.owner    = THIS_MODULE;
820 	nmtd->set	   = set;
821 
822 	if (hardware_ecc) {
823 		chip->ecc.calculate = s3c2410_nand_calculate_ecc;
824 		chip->ecc.correct   = s3c2410_nand_correct_data;
825 		chip->ecc.mode	    = NAND_ECC_HW;
826 		chip->ecc.strength  = 1;
827 
828 		switch (info->cpu_type) {
829 		case TYPE_S3C2410:
830 			chip->ecc.hwctl	    = s3c2410_nand_enable_hwecc;
831 			chip->ecc.calculate = s3c2410_nand_calculate_ecc;
832 			break;
833 
834 		case TYPE_S3C2412:
835   			chip->ecc.hwctl     = s3c2412_nand_enable_hwecc;
836   			chip->ecc.calculate = s3c2412_nand_calculate_ecc;
837 			break;
838 
839 		case TYPE_S3C2440:
840   			chip->ecc.hwctl     = s3c2440_nand_enable_hwecc;
841   			chip->ecc.calculate = s3c2440_nand_calculate_ecc;
842 			break;
843 
844 		}
845 	} else {
846 		chip->ecc.mode	    = NAND_ECC_SOFT;
847 	}
848 
849 	if (set->ecc_layout != NULL)
850 		chip->ecc.layout = set->ecc_layout;
851 
852 	if (set->disable_ecc)
853 		chip->ecc.mode	= NAND_ECC_NONE;
854 
855 	switch (chip->ecc.mode) {
856 	case NAND_ECC_NONE:
857 		dev_info(info->device, "NAND ECC disabled\n");
858 		break;
859 	case NAND_ECC_SOFT:
860 		dev_info(info->device, "NAND soft ECC\n");
861 		break;
862 	case NAND_ECC_HW:
863 		dev_info(info->device, "NAND hardware ECC\n");
864 		break;
865 	default:
866 		dev_info(info->device, "NAND ECC UNKNOWN\n");
867 		break;
868 	}
869 
870 	/* If you use u-boot BBT creation code, specifying this flag will
871 	 * let the kernel fish out the BBT from the NAND, and also skip the
872 	 * full NAND scan that can take 1/2s or so. Little things... */
873 	if (set->flash_bbt) {
874 		chip->bbt_options |= NAND_BBT_USE_FLASH;
875 		chip->options |= NAND_SKIP_BBTSCAN;
876 	}
877 }
878 
879 /**
880  * s3c2410_nand_update_chip - post probe update
881  * @info: The controller instance.
882  * @nmtd: The driver version of the MTD instance.
883  *
884  * This routine is called after the chip probe has successfully completed
885  * and the relevant per-chip information updated. This call ensure that
886  * we update the internal state accordingly.
887  *
888  * The internal state is currently limited to the ECC state information.
889 */
s3c2410_nand_update_chip(struct s3c2410_nand_info * info,struct s3c2410_nand_mtd * nmtd)890 static void s3c2410_nand_update_chip(struct s3c2410_nand_info *info,
891 				     struct s3c2410_nand_mtd *nmtd)
892 {
893 	struct nand_chip *chip = &nmtd->chip;
894 
895 	dev_dbg(info->device, "chip %p => page shift %d\n",
896 		chip, chip->page_shift);
897 
898 	if (chip->ecc.mode != NAND_ECC_HW)
899 		return;
900 
901 		/* change the behaviour depending on wether we are using
902 		 * the large or small page nand device */
903 
904 	if (chip->page_shift > 10) {
905 		chip->ecc.size	    = 256;
906 		chip->ecc.bytes	    = 3;
907 	} else {
908 		chip->ecc.size	    = 512;
909 		chip->ecc.bytes	    = 3;
910 		chip->ecc.layout    = &nand_hw_eccoob;
911 	}
912 }
913 
914 /* s3c24xx_nand_probe
915  *
916  * called by device layer when it finds a device matching
917  * one our driver can handled. This code checks to see if
918  * it can allocate all necessary resources then calls the
919  * nand layer to look for devices
920 */
s3c24xx_nand_probe(struct platform_device * pdev)921 static int s3c24xx_nand_probe(struct platform_device *pdev)
922 {
923 	struct s3c2410_platform_nand *plat = to_nand_plat(pdev);
924 	enum s3c_cpu_type cpu_type;
925 	struct s3c2410_nand_info *info;
926 	struct s3c2410_nand_mtd *nmtd;
927 	struct s3c2410_nand_set *sets;
928 	struct resource *res;
929 	int err = 0;
930 	int size;
931 	int nr_sets;
932 	int setno;
933 
934 	cpu_type = platform_get_device_id(pdev)->driver_data;
935 
936 	pr_debug("s3c2410_nand_probe(%p)\n", pdev);
937 
938 	info = kzalloc(sizeof(*info), GFP_KERNEL);
939 	if (info == NULL) {
940 		dev_err(&pdev->dev, "no memory for flash info\n");
941 		err = -ENOMEM;
942 		goto exit_error;
943 	}
944 
945 	platform_set_drvdata(pdev, info);
946 
947 	spin_lock_init(&info->controller.lock);
948 	init_waitqueue_head(&info->controller.wq);
949 
950 	/* get the clock source and enable it */
951 
952 	info->clk = clk_get(&pdev->dev, "nand");
953 	if (IS_ERR(info->clk)) {
954 		dev_err(&pdev->dev, "failed to get clock\n");
955 		err = -ENOENT;
956 		goto exit_error;
957 	}
958 
959 	s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
960 
961 	/* allocate and map the resource */
962 
963 	/* currently we assume we have the one resource */
964 	res  = pdev->resource;
965 	size = resource_size(res);
966 
967 	info->area = request_mem_region(res->start, size, pdev->name);
968 
969 	if (info->area == NULL) {
970 		dev_err(&pdev->dev, "cannot reserve register region\n");
971 		err = -ENOENT;
972 		goto exit_error;
973 	}
974 
975 	info->device     = &pdev->dev;
976 	info->platform   = plat;
977 	info->regs       = ioremap(res->start, size);
978 	info->cpu_type   = cpu_type;
979 
980 	if (info->regs == NULL) {
981 		dev_err(&pdev->dev, "cannot reserve register region\n");
982 		err = -EIO;
983 		goto exit_error;
984 	}
985 
986 	dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs);
987 
988 	/* initialise the hardware */
989 
990 	err = s3c2410_nand_inithw(info);
991 	if (err != 0)
992 		goto exit_error;
993 
994 	sets = (plat != NULL) ? plat->sets : NULL;
995 	nr_sets = (plat != NULL) ? plat->nr_sets : 1;
996 
997 	info->mtd_count = nr_sets;
998 
999 	/* allocate our information */
1000 
1001 	size = nr_sets * sizeof(*info->mtds);
1002 	info->mtds = kzalloc(size, GFP_KERNEL);
1003 	if (info->mtds == NULL) {
1004 		dev_err(&pdev->dev, "failed to allocate mtd storage\n");
1005 		err = -ENOMEM;
1006 		goto exit_error;
1007 	}
1008 
1009 	/* initialise all possible chips */
1010 
1011 	nmtd = info->mtds;
1012 
1013 	for (setno = 0; setno < nr_sets; setno++, nmtd++) {
1014 		pr_debug("initialising set %d (%p, info %p)\n", setno, nmtd, info);
1015 
1016 		s3c2410_nand_init_chip(info, nmtd, sets);
1017 
1018 		nmtd->scan_res = nand_scan_ident(&nmtd->mtd,
1019 						 (sets) ? sets->nr_chips : 1,
1020 						 NULL);
1021 
1022 		if (nmtd->scan_res == 0) {
1023 			s3c2410_nand_update_chip(info, nmtd);
1024 			nand_scan_tail(&nmtd->mtd);
1025 			s3c2410_nand_add_partition(info, nmtd, sets);
1026 		}
1027 
1028 		if (sets != NULL)
1029 			sets++;
1030 	}
1031 
1032 	err = s3c2410_nand_cpufreq_register(info);
1033 	if (err < 0) {
1034 		dev_err(&pdev->dev, "failed to init cpufreq support\n");
1035 		goto exit_error;
1036 	}
1037 
1038 	if (allow_clk_suspend(info)) {
1039 		dev_info(&pdev->dev, "clock idle support enabled\n");
1040 		s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1041 	}
1042 
1043 	pr_debug("initialised ok\n");
1044 	return 0;
1045 
1046  exit_error:
1047 	s3c24xx_nand_remove(pdev);
1048 
1049 	if (err == 0)
1050 		err = -EINVAL;
1051 	return err;
1052 }
1053 
1054 /* PM Support */
1055 #ifdef CONFIG_PM
1056 
s3c24xx_nand_suspend(struct platform_device * dev,pm_message_t pm)1057 static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm)
1058 {
1059 	struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1060 
1061 	if (info) {
1062 		info->save_sel = readl(info->sel_reg);
1063 
1064 		/* For the moment, we must ensure nFCE is high during
1065 		 * the time we are suspended. This really should be
1066 		 * handled by suspending the MTDs we are using, but
1067 		 * that is currently not the case. */
1068 
1069 		writel(info->save_sel | info->sel_bit, info->sel_reg);
1070 
1071 		s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
1072 	}
1073 
1074 	return 0;
1075 }
1076 
s3c24xx_nand_resume(struct platform_device * dev)1077 static int s3c24xx_nand_resume(struct platform_device *dev)
1078 {
1079 	struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1080 	unsigned long sel;
1081 
1082 	if (info) {
1083 		s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
1084 		s3c2410_nand_inithw(info);
1085 
1086 		/* Restore the state of the nFCE line. */
1087 
1088 		sel = readl(info->sel_reg);
1089 		sel &= ~info->sel_bit;
1090 		sel |= info->save_sel & info->sel_bit;
1091 		writel(sel, info->sel_reg);
1092 
1093 		s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1094 	}
1095 
1096 	return 0;
1097 }
1098 
1099 #else
1100 #define s3c24xx_nand_suspend NULL
1101 #define s3c24xx_nand_resume NULL
1102 #endif
1103 
1104 /* driver device registration */
1105 
1106 static struct platform_device_id s3c24xx_driver_ids[] = {
1107 	{
1108 		.name		= "s3c2410-nand",
1109 		.driver_data	= TYPE_S3C2410,
1110 	}, {
1111 		.name		= "s3c2440-nand",
1112 		.driver_data	= TYPE_S3C2440,
1113 	}, {
1114 		.name		= "s3c2412-nand",
1115 		.driver_data	= TYPE_S3C2412,
1116 	}, {
1117 		.name		= "s3c6400-nand",
1118 		.driver_data	= TYPE_S3C2412, /* compatible with 2412 */
1119 	},
1120 	{ }
1121 };
1122 
1123 MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids);
1124 
1125 static struct platform_driver s3c24xx_nand_driver = {
1126 	.probe		= s3c24xx_nand_probe,
1127 	.remove		= s3c24xx_nand_remove,
1128 	.suspend	= s3c24xx_nand_suspend,
1129 	.resume		= s3c24xx_nand_resume,
1130 	.id_table	= s3c24xx_driver_ids,
1131 	.driver		= {
1132 		.name	= "s3c24xx-nand",
1133 		.owner	= THIS_MODULE,
1134 	},
1135 };
1136 
s3c2410_nand_init(void)1137 static int __init s3c2410_nand_init(void)
1138 {
1139 	printk("S3C24XX NAND Driver, (c) 2004 Simtec Electronics\n");
1140 
1141 	return platform_driver_register(&s3c24xx_nand_driver);
1142 }
1143 
s3c2410_nand_exit(void)1144 static void __exit s3c2410_nand_exit(void)
1145 {
1146 	platform_driver_unregister(&s3c24xx_nand_driver);
1147 }
1148 
1149 module_init(s3c2410_nand_init);
1150 module_exit(s3c2410_nand_exit);
1151 
1152 MODULE_LICENSE("GPL");
1153 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1154 MODULE_DESCRIPTION("S3C24XX MTD NAND driver");
1155