1 /*
2  * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
3  *
4  * The data sheet for this device can be found at:
5  *    http://wiki.laptop.org/go/Datasheets
6  *
7  * Copyright © 2006 Red Hat, Inc.
8  * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
9  */
10 
11 #define DEBUG
12 
13 #include <linux/device.h>
14 #undef DEBUG
15 #include <linux/mtd/mtd.h>
16 #include <linux/mtd/nand.h>
17 #include <linux/mtd/partitions.h>
18 #include <linux/rslib.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/slab.h>
24 #include <linux/module.h>
25 #include <asm/io.h>
26 
27 #define CAFE_NAND_CTRL1		0x00
28 #define CAFE_NAND_CTRL2		0x04
29 #define CAFE_NAND_CTRL3		0x08
30 #define CAFE_NAND_STATUS	0x0c
31 #define CAFE_NAND_IRQ		0x10
32 #define CAFE_NAND_IRQ_MASK	0x14
33 #define CAFE_NAND_DATA_LEN	0x18
34 #define CAFE_NAND_ADDR1		0x1c
35 #define CAFE_NAND_ADDR2		0x20
36 #define CAFE_NAND_TIMING1	0x24
37 #define CAFE_NAND_TIMING2	0x28
38 #define CAFE_NAND_TIMING3	0x2c
39 #define CAFE_NAND_NONMEM	0x30
40 #define CAFE_NAND_ECC_RESULT	0x3C
41 #define CAFE_NAND_DMA_CTRL	0x40
42 #define CAFE_NAND_DMA_ADDR0	0x44
43 #define CAFE_NAND_DMA_ADDR1	0x48
44 #define CAFE_NAND_ECC_SYN01	0x50
45 #define CAFE_NAND_ECC_SYN23	0x54
46 #define CAFE_NAND_ECC_SYN45	0x58
47 #define CAFE_NAND_ECC_SYN67	0x5c
48 #define CAFE_NAND_READ_DATA	0x1000
49 #define CAFE_NAND_WRITE_DATA	0x2000
50 
51 #define CAFE_GLOBAL_CTRL	0x3004
52 #define CAFE_GLOBAL_IRQ		0x3008
53 #define CAFE_GLOBAL_IRQ_MASK	0x300c
54 #define CAFE_NAND_RESET		0x3034
55 
56 /* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */
57 #define CTRL1_CHIPSELECT	(1<<19)
58 
59 struct cafe_priv {
60 	struct nand_chip nand;
61 	struct pci_dev *pdev;
62 	void __iomem *mmio;
63 	struct rs_control *rs;
64 	uint32_t ctl1;
65 	uint32_t ctl2;
66 	int datalen;
67 	int nr_data;
68 	int data_pos;
69 	int page_addr;
70 	dma_addr_t dmaaddr;
71 	unsigned char *dmabuf;
72 };
73 
74 static int usedma = 1;
75 module_param(usedma, int, 0644);
76 
77 static int skipbbt = 0;
78 module_param(skipbbt, int, 0644);
79 
80 static int debug = 0;
81 module_param(debug, int, 0644);
82 
83 static int regdebug = 0;
84 module_param(regdebug, int, 0644);
85 
86 static int checkecc = 1;
87 module_param(checkecc, int, 0644);
88 
89 static unsigned int numtimings;
90 static int timing[3];
91 module_param_array(timing, int, &numtimings, 0644);
92 
93 static const char *part_probes[] = { "cmdlinepart", "RedBoot", NULL };
94 
95 /* Hrm. Why isn't this already conditional on something in the struct device? */
96 #define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
97 
98 /* Make it easier to switch to PIO if we need to */
99 #define cafe_readl(cafe, addr)			readl((cafe)->mmio + CAFE_##addr)
100 #define cafe_writel(cafe, datum, addr)		writel(datum, (cafe)->mmio + CAFE_##addr)
101 
cafe_device_ready(struct mtd_info * mtd)102 static int cafe_device_ready(struct mtd_info *mtd)
103 {
104 	struct cafe_priv *cafe = mtd->priv;
105 	int result = !!(cafe_readl(cafe, NAND_STATUS) & 0x40000000);
106 	uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
107 
108 	cafe_writel(cafe, irqs, NAND_IRQ);
109 
110 	cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
111 		result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ),
112 		cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK));
113 
114 	return result;
115 }
116 
117 
cafe_write_buf(struct mtd_info * mtd,const uint8_t * buf,int len)118 static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
119 {
120 	struct cafe_priv *cafe = mtd->priv;
121 
122 	if (usedma)
123 		memcpy(cafe->dmabuf + cafe->datalen, buf, len);
124 	else
125 		memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
126 
127 	cafe->datalen += len;
128 
129 	cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
130 		len, cafe->datalen);
131 }
132 
cafe_read_buf(struct mtd_info * mtd,uint8_t * buf,int len)133 static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
134 {
135 	struct cafe_priv *cafe = mtd->priv;
136 
137 	if (usedma)
138 		memcpy(buf, cafe->dmabuf + cafe->datalen, len);
139 	else
140 		memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);
141 
142 	cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
143 		  len, cafe->datalen);
144 	cafe->datalen += len;
145 }
146 
cafe_read_byte(struct mtd_info * mtd)147 static uint8_t cafe_read_byte(struct mtd_info *mtd)
148 {
149 	struct cafe_priv *cafe = mtd->priv;
150 	uint8_t d;
151 
152 	cafe_read_buf(mtd, &d, 1);
153 	cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
154 
155 	return d;
156 }
157 
cafe_nand_cmdfunc(struct mtd_info * mtd,unsigned command,int column,int page_addr)158 static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
159 			      int column, int page_addr)
160 {
161 	struct cafe_priv *cafe = mtd->priv;
162 	int adrbytes = 0;
163 	uint32_t ctl1;
164 	uint32_t doneint = 0x80000000;
165 
166 	cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
167 		command, column, page_addr);
168 
169 	if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
170 		/* Second half of a command we already calculated */
171 		cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2);
172 		ctl1 = cafe->ctl1;
173 		cafe->ctl2 &= ~(1<<30);
174 		cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
175 			  cafe->ctl1, cafe->nr_data);
176 		goto do_command;
177 	}
178 	/* Reset ECC engine */
179 	cafe_writel(cafe, 0, NAND_CTRL2);
180 
181 	/* Emulate NAND_CMD_READOOB on large-page chips */
182 	if (mtd->writesize > 512 &&
183 	    command == NAND_CMD_READOOB) {
184 		column += mtd->writesize;
185 		command = NAND_CMD_READ0;
186 	}
187 
188 	/* FIXME: Do we need to send read command before sending data
189 	   for small-page chips, to position the buffer correctly? */
190 
191 	if (column != -1) {
192 		cafe_writel(cafe, column, NAND_ADDR1);
193 		adrbytes = 2;
194 		if (page_addr != -1)
195 			goto write_adr2;
196 	} else if (page_addr != -1) {
197 		cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1);
198 		page_addr >>= 16;
199 	write_adr2:
200 		cafe_writel(cafe, page_addr, NAND_ADDR2);
201 		adrbytes += 2;
202 		if (mtd->size > mtd->writesize << 16)
203 			adrbytes++;
204 	}
205 
206 	cafe->data_pos = cafe->datalen = 0;
207 
208 	/* Set command valid bit, mask in the chip select bit  */
209 	ctl1 = 0x80000000 | command | (cafe->ctl1 & CTRL1_CHIPSELECT);
210 
211 	/* Set RD or WR bits as appropriate */
212 	if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
213 		ctl1 |= (1<<26); /* rd */
214 		/* Always 5 bytes, for now */
215 		cafe->datalen = 4;
216 		/* And one address cycle -- even for STATUS, since the controller doesn't work without */
217 		adrbytes = 1;
218 	} else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
219 		   command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
220 		ctl1 |= 1<<26; /* rd */
221 		/* For now, assume just read to end of page */
222 		cafe->datalen = mtd->writesize + mtd->oobsize - column;
223 	} else if (command == NAND_CMD_SEQIN)
224 		ctl1 |= 1<<25; /* wr */
225 
226 	/* Set number of address bytes */
227 	if (adrbytes)
228 		ctl1 |= ((adrbytes-1)|8) << 27;
229 
230 	if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
231 		/* Ignore the first command of a pair; the hardware
232 		   deals with them both at once, later */
233 		cafe->ctl1 = ctl1;
234 		cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
235 			  cafe->ctl1, cafe->datalen);
236 		return;
237 	}
238 	/* RNDOUT and READ0 commands need a following byte */
239 	if (command == NAND_CMD_RNDOUT)
240 		cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2);
241 	else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
242 		cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2);
243 
244  do_command:
245 	cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
246 		cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2));
247 
248 	/* NB: The datasheet lies -- we really should be subtracting 1 here */
249 	cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN);
250 	cafe_writel(cafe, 0x90000000, NAND_IRQ);
251 	if (usedma && (ctl1 & (3<<25))) {
252 		uint32_t dmactl = 0xc0000000 + cafe->datalen;
253 		/* If WR or RD bits set, set up DMA */
254 		if (ctl1 & (1<<26)) {
255 			/* It's a read */
256 			dmactl |= (1<<29);
257 			/* ... so it's done when the DMA is done, not just
258 			   the command. */
259 			doneint = 0x10000000;
260 		}
261 		cafe_writel(cafe, dmactl, NAND_DMA_CTRL);
262 	}
263 	cafe->datalen = 0;
264 
265 	if (unlikely(regdebug)) {
266 		int i;
267 		printk("About to write command %08x to register 0\n", ctl1);
268 		for (i=4; i< 0x5c; i+=4)
269 			printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
270 	}
271 
272 	cafe_writel(cafe, ctl1, NAND_CTRL1);
273 	/* Apply this short delay always to ensure that we do wait tWB in
274 	 * any case on any machine. */
275 	ndelay(100);
276 
277 	if (1) {
278 		int c;
279 		uint32_t irqs;
280 
281 		for (c = 500000; c != 0; c--) {
282 			irqs = cafe_readl(cafe, NAND_IRQ);
283 			if (irqs & doneint)
284 				break;
285 			udelay(1);
286 			if (!(c % 100000))
287 				cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
288 			cpu_relax();
289 		}
290 		cafe_writel(cafe, doneint, NAND_IRQ);
291 		cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n",
292 			     command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ));
293 	}
294 
295 	WARN_ON(cafe->ctl2 & (1<<30));
296 
297 	switch (command) {
298 
299 	case NAND_CMD_CACHEDPROG:
300 	case NAND_CMD_PAGEPROG:
301 	case NAND_CMD_ERASE1:
302 	case NAND_CMD_ERASE2:
303 	case NAND_CMD_SEQIN:
304 	case NAND_CMD_RNDIN:
305 	case NAND_CMD_STATUS:
306 	case NAND_CMD_DEPLETE1:
307 	case NAND_CMD_RNDOUT:
308 	case NAND_CMD_STATUS_ERROR:
309 	case NAND_CMD_STATUS_ERROR0:
310 	case NAND_CMD_STATUS_ERROR1:
311 	case NAND_CMD_STATUS_ERROR2:
312 	case NAND_CMD_STATUS_ERROR3:
313 		cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
314 		return;
315 	}
316 	nand_wait_ready(mtd);
317 	cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
318 }
319 
cafe_select_chip(struct mtd_info * mtd,int chipnr)320 static void cafe_select_chip(struct mtd_info *mtd, int chipnr)
321 {
322 	struct cafe_priv *cafe = mtd->priv;
323 
324 	cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
325 
326 	/* Mask the appropriate bit into the stored value of ctl1
327 	   which will be used by cafe_nand_cmdfunc() */
328 	if (chipnr)
329 		cafe->ctl1 |= CTRL1_CHIPSELECT;
330 	else
331 		cafe->ctl1 &= ~CTRL1_CHIPSELECT;
332 }
333 
cafe_nand_interrupt(int irq,void * id)334 static irqreturn_t cafe_nand_interrupt(int irq, void *id)
335 {
336 	struct mtd_info *mtd = id;
337 	struct cafe_priv *cafe = mtd->priv;
338 	uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
339 	cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ);
340 	if (!irqs)
341 		return IRQ_NONE;
342 
343 	cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ));
344 	return IRQ_HANDLED;
345 }
346 
cafe_nand_bug(struct mtd_info * mtd)347 static void cafe_nand_bug(struct mtd_info *mtd)
348 {
349 	BUG();
350 }
351 
cafe_nand_write_oob(struct mtd_info * mtd,struct nand_chip * chip,int page)352 static int cafe_nand_write_oob(struct mtd_info *mtd,
353 			       struct nand_chip *chip, int page)
354 {
355 	int status = 0;
356 
357 	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
358 	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
359 	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
360 	status = chip->waitfunc(mtd, chip);
361 
362 	return status & NAND_STATUS_FAIL ? -EIO : 0;
363 }
364 
365 /* Don't use -- use nand_read_oob_std for now */
cafe_nand_read_oob(struct mtd_info * mtd,struct nand_chip * chip,int page,int sndcmd)366 static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
367 			      int page, int sndcmd)
368 {
369 	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
370 	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
371 	return 1;
372 }
373 /**
374  * cafe_nand_read_page_syndrome - [REPLACEABLE] hardware ecc syndrome based page read
375  * @mtd:	mtd info structure
376  * @chip:	nand chip info structure
377  * @buf:	buffer to store read data
378  *
379  * The hw generator calculates the error syndrome automatically. Therefor
380  * we need a special oob layout and handling.
381  */
cafe_nand_read_page(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int page)382 static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
383 			       uint8_t *buf, int page)
384 {
385 	struct cafe_priv *cafe = mtd->priv;
386 
387 	cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
388 		     cafe_readl(cafe, NAND_ECC_RESULT),
389 		     cafe_readl(cafe, NAND_ECC_SYN01));
390 
391 	chip->read_buf(mtd, buf, mtd->writesize);
392 	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
393 
394 	if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) {
395 		unsigned short syn[8], pat[4];
396 		int pos[4];
397 		u8 *oob = chip->oob_poi;
398 		int i, n;
399 
400 		for (i=0; i<8; i+=2) {
401 			uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2));
402 			syn[i] = cafe->rs->index_of[tmp & 0xfff];
403 			syn[i+1] = cafe->rs->index_of[(tmp >> 16) & 0xfff];
404 		}
405 
406 		n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0,
407 		                pat);
408 
409 		for (i = 0; i < n; i++) {
410 			int p = pos[i];
411 
412 			/* The 12-bit symbols are mapped to bytes here */
413 
414 			if (p > 1374) {
415 				/* out of range */
416 				n = -1374;
417 			} else if (p == 0) {
418 				/* high four bits do not correspond to data */
419 				if (pat[i] > 0xff)
420 					n = -2048;
421 				else
422 					buf[0] ^= pat[i];
423 			} else if (p == 1365) {
424 				buf[2047] ^= pat[i] >> 4;
425 				oob[0] ^= pat[i] << 4;
426 			} else if (p > 1365) {
427 				if ((p & 1) == 1) {
428 					oob[3*p/2 - 2048] ^= pat[i] >> 4;
429 					oob[3*p/2 - 2047] ^= pat[i] << 4;
430 				} else {
431 					oob[3*p/2 - 2049] ^= pat[i] >> 8;
432 					oob[3*p/2 - 2048] ^= pat[i];
433 				}
434 			} else if ((p & 1) == 1) {
435 				buf[3*p/2] ^= pat[i] >> 4;
436 				buf[3*p/2 + 1] ^= pat[i] << 4;
437 			} else {
438 				buf[3*p/2 - 1] ^= pat[i] >> 8;
439 				buf[3*p/2] ^= pat[i];
440 			}
441 		}
442 
443 		if (n < 0) {
444 			dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n",
445 				cafe_readl(cafe, NAND_ADDR2) * 2048);
446 			for (i = 0; i < 0x5c; i += 4)
447 				printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
448 			mtd->ecc_stats.failed++;
449 		} else {
450 			dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n);
451 			mtd->ecc_stats.corrected += n;
452 		}
453 	}
454 
455 	return 0;
456 }
457 
458 static struct nand_ecclayout cafe_oobinfo_2048 = {
459 	.eccbytes = 14,
460 	.eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
461 	.oobfree = {{14, 50}}
462 };
463 
464 /* Ick. The BBT code really ought to be able to work this bit out
465    for itself from the above, at least for the 2KiB case */
466 static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' };
467 static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' };
468 
469 static uint8_t cafe_bbt_pattern_512[] = { 0xBB };
470 static uint8_t cafe_mirror_pattern_512[] = { 0xBC };
471 
472 
473 static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
474 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
475 		| NAND_BBT_2BIT | NAND_BBT_VERSION,
476 	.offs =	14,
477 	.len = 4,
478 	.veroffs = 18,
479 	.maxblocks = 4,
480 	.pattern = cafe_bbt_pattern_2048
481 };
482 
483 static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
484 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
485 		| NAND_BBT_2BIT | NAND_BBT_VERSION,
486 	.offs =	14,
487 	.len = 4,
488 	.veroffs = 18,
489 	.maxblocks = 4,
490 	.pattern = cafe_mirror_pattern_2048
491 };
492 
493 static struct nand_ecclayout cafe_oobinfo_512 = {
494 	.eccbytes = 14,
495 	.eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
496 	.oobfree = {{14, 2}}
497 };
498 
499 static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
500 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
501 		| NAND_BBT_2BIT | NAND_BBT_VERSION,
502 	.offs =	14,
503 	.len = 1,
504 	.veroffs = 15,
505 	.maxblocks = 4,
506 	.pattern = cafe_bbt_pattern_512
507 };
508 
509 static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
510 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
511 		| NAND_BBT_2BIT | NAND_BBT_VERSION,
512 	.offs =	14,
513 	.len = 1,
514 	.veroffs = 15,
515 	.maxblocks = 4,
516 	.pattern = cafe_mirror_pattern_512
517 };
518 
519 
cafe_nand_write_page_lowlevel(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf)520 static void cafe_nand_write_page_lowlevel(struct mtd_info *mtd,
521 					  struct nand_chip *chip, const uint8_t *buf)
522 {
523 	struct cafe_priv *cafe = mtd->priv;
524 
525 	chip->write_buf(mtd, buf, mtd->writesize);
526 	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
527 
528 	/* Set up ECC autogeneration */
529 	cafe->ctl2 |= (1<<30);
530 }
531 
cafe_nand_write_page(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int page,int cached,int raw)532 static int cafe_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
533 				const uint8_t *buf, int page, int cached, int raw)
534 {
535 	int status;
536 
537 	chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
538 
539 	if (unlikely(raw))
540 		chip->ecc.write_page_raw(mtd, chip, buf);
541 	else
542 		chip->ecc.write_page(mtd, chip, buf);
543 
544 	/*
545 	 * Cached progamming disabled for now, Not sure if its worth the
546 	 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
547 	 */
548 	cached = 0;
549 
550 	if (!cached || !(chip->options & NAND_CACHEPRG)) {
551 
552 		chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
553 		status = chip->waitfunc(mtd, chip);
554 		/*
555 		 * See if operation failed and additional status checks are
556 		 * available
557 		 */
558 		if ((status & NAND_STATUS_FAIL) && (chip->errstat))
559 			status = chip->errstat(mtd, chip, FL_WRITING, status,
560 					       page);
561 
562 		if (status & NAND_STATUS_FAIL)
563 			return -EIO;
564 	} else {
565 		chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
566 		status = chip->waitfunc(mtd, chip);
567 	}
568 
569 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
570 	/* Send command to read back the data */
571 	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
572 
573 	if (chip->verify_buf(mtd, buf, mtd->writesize))
574 		return -EIO;
575 #endif
576 	return 0;
577 }
578 
cafe_nand_block_bad(struct mtd_info * mtd,loff_t ofs,int getchip)579 static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
580 {
581 	return 0;
582 }
583 
584 /* F_2[X]/(X**6+X+1)  */
gf64_mul(u8 a,u8 b)585 static unsigned short __devinit gf64_mul(u8 a, u8 b)
586 {
587 	u8 c;
588 	unsigned int i;
589 
590 	c = 0;
591 	for (i = 0; i < 6; i++) {
592 		if (a & 1)
593 			c ^= b;
594 		a >>= 1;
595 		b <<= 1;
596 		if ((b & 0x40) != 0)
597 			b ^= 0x43;
598 	}
599 
600 	return c;
601 }
602 
603 /* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X]  */
gf4096_mul(u16 a,u16 b)604 static u16 __devinit gf4096_mul(u16 a, u16 b)
605 {
606 	u8 ah, al, bh, bl, ch, cl;
607 
608 	ah = a >> 6;
609 	al = a & 0x3f;
610 	bh = b >> 6;
611 	bl = b & 0x3f;
612 
613 	ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl);
614 	cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl);
615 
616 	return (ch << 6) ^ cl;
617 }
618 
cafe_mul(int x)619 static int __devinit cafe_mul(int x)
620 {
621 	if (x == 0)
622 		return 1;
623 	return gf4096_mul(x, 0xe01);
624 }
625 
cafe_nand_probe(struct pci_dev * pdev,const struct pci_device_id * ent)626 static int __devinit cafe_nand_probe(struct pci_dev *pdev,
627 				     const struct pci_device_id *ent)
628 {
629 	struct mtd_info *mtd;
630 	struct cafe_priv *cafe;
631 	uint32_t ctrl;
632 	int err = 0;
633 
634 	/* Very old versions shared the same PCI ident for all three
635 	   functions on the chip. Verify the class too... */
636 	if ((pdev->class >> 8) != PCI_CLASS_MEMORY_FLASH)
637 		return -ENODEV;
638 
639 	err = pci_enable_device(pdev);
640 	if (err)
641 		return err;
642 
643 	pci_set_master(pdev);
644 
645 	mtd = kzalloc(sizeof(*mtd) + sizeof(struct cafe_priv), GFP_KERNEL);
646 	if (!mtd) {
647 		dev_warn(&pdev->dev, "failed to alloc mtd_info\n");
648 		return  -ENOMEM;
649 	}
650 	cafe = (void *)(&mtd[1]);
651 
652 	mtd->dev.parent = &pdev->dev;
653 	mtd->priv = cafe;
654 	mtd->owner = THIS_MODULE;
655 
656 	cafe->pdev = pdev;
657 	cafe->mmio = pci_iomap(pdev, 0, 0);
658 	if (!cafe->mmio) {
659 		dev_warn(&pdev->dev, "failed to iomap\n");
660 		err = -ENOMEM;
661 		goto out_free_mtd;
662 	}
663 	cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112 + sizeof(struct nand_buffers),
664 					  &cafe->dmaaddr, GFP_KERNEL);
665 	if (!cafe->dmabuf) {
666 		err = -ENOMEM;
667 		goto out_ior;
668 	}
669 	cafe->nand.buffers = (void *)cafe->dmabuf + 2112;
670 
671 	cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8);
672 	if (!cafe->rs) {
673 		err = -ENOMEM;
674 		goto out_ior;
675 	}
676 
677 	cafe->nand.cmdfunc = cafe_nand_cmdfunc;
678 	cafe->nand.dev_ready = cafe_device_ready;
679 	cafe->nand.read_byte = cafe_read_byte;
680 	cafe->nand.read_buf = cafe_read_buf;
681 	cafe->nand.write_buf = cafe_write_buf;
682 	cafe->nand.select_chip = cafe_select_chip;
683 
684 	cafe->nand.chip_delay = 0;
685 
686 	/* Enable the following for a flash based bad block table */
687 	cafe->nand.bbt_options = NAND_BBT_USE_FLASH;
688 	cafe->nand.options = NAND_NO_AUTOINCR | NAND_OWN_BUFFERS;
689 
690 	if (skipbbt) {
691 		cafe->nand.options |= NAND_SKIP_BBTSCAN;
692 		cafe->nand.block_bad = cafe_nand_block_bad;
693 	}
694 
695 	if (numtimings && numtimings != 3) {
696 		dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings);
697 	}
698 
699 	if (numtimings == 3) {
700 		cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n",
701 			     timing[0], timing[1], timing[2]);
702 	} else {
703 		timing[0] = cafe_readl(cafe, NAND_TIMING1);
704 		timing[1] = cafe_readl(cafe, NAND_TIMING2);
705 		timing[2] = cafe_readl(cafe, NAND_TIMING3);
706 
707 		if (timing[0] | timing[1] | timing[2]) {
708 			cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n",
709 				     timing[0], timing[1], timing[2]);
710 		} else {
711 			dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n");
712 			timing[0] = timing[1] = timing[2] = 0xffffffff;
713 		}
714 	}
715 
716 	/* Start off by resetting the NAND controller completely */
717 	cafe_writel(cafe, 1, NAND_RESET);
718 	cafe_writel(cafe, 0, NAND_RESET);
719 
720 	cafe_writel(cafe, timing[0], NAND_TIMING1);
721 	cafe_writel(cafe, timing[1], NAND_TIMING2);
722 	cafe_writel(cafe, timing[2], NAND_TIMING3);
723 
724 	cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
725 	err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED,
726 			  "CAFE NAND", mtd);
727 	if (err) {
728 		dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
729 		goto out_free_dma;
730 	}
731 
732 	/* Disable master reset, enable NAND clock */
733 	ctrl = cafe_readl(cafe, GLOBAL_CTRL);
734 	ctrl &= 0xffffeff0;
735 	ctrl |= 0x00007000;
736 	cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
737 	cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
738 	cafe_writel(cafe, 0, NAND_DMA_CTRL);
739 
740 	cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
741 	cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
742 
743 	/* Set up DMA address */
744 	cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
745 	if (sizeof(cafe->dmaaddr) > 4)
746 		/* Shift in two parts to shut the compiler up */
747 		cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
748 	else
749 		cafe_writel(cafe, 0, NAND_DMA_ADDR1);
750 
751 	cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
752 		cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf);
753 
754 	/* Enable NAND IRQ in global IRQ mask register */
755 	cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
756 	cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
757 		cafe_readl(cafe, GLOBAL_CTRL), cafe_readl(cafe, GLOBAL_IRQ_MASK));
758 
759 	/* Scan to find existence of the device */
760 	if (nand_scan_ident(mtd, 2, NULL)) {
761 		err = -ENXIO;
762 		goto out_irq;
763 	}
764 
765 	cafe->ctl2 = 1<<27; /* Reed-Solomon ECC */
766 	if (mtd->writesize == 2048)
767 		cafe->ctl2 |= 1<<29; /* 2KiB page size */
768 
769 	/* Set up ECC according to the type of chip we found */
770 	if (mtd->writesize == 2048) {
771 		cafe->nand.ecc.layout = &cafe_oobinfo_2048;
772 		cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
773 		cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
774 	} else if (mtd->writesize == 512) {
775 		cafe->nand.ecc.layout = &cafe_oobinfo_512;
776 		cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
777 		cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
778 	} else {
779 		printk(KERN_WARNING "Unexpected NAND flash writesize %d. Aborting\n",
780 		       mtd->writesize);
781 		goto out_irq;
782 	}
783 	cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
784 	cafe->nand.ecc.size = mtd->writesize;
785 	cafe->nand.ecc.bytes = 14;
786 	cafe->nand.ecc.strength = 4;
787 	cafe->nand.ecc.hwctl  = (void *)cafe_nand_bug;
788 	cafe->nand.ecc.calculate = (void *)cafe_nand_bug;
789 	cafe->nand.ecc.correct  = (void *)cafe_nand_bug;
790 	cafe->nand.write_page = cafe_nand_write_page;
791 	cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
792 	cafe->nand.ecc.write_oob = cafe_nand_write_oob;
793 	cafe->nand.ecc.read_page = cafe_nand_read_page;
794 	cafe->nand.ecc.read_oob = cafe_nand_read_oob;
795 
796 	err = nand_scan_tail(mtd);
797 	if (err)
798 		goto out_irq;
799 
800 	pci_set_drvdata(pdev, mtd);
801 
802 	mtd->name = "cafe_nand";
803 	mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
804 
805 	goto out;
806 
807  out_irq:
808 	/* Disable NAND IRQ in global IRQ mask register */
809 	cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
810 	free_irq(pdev->irq, mtd);
811  out_free_dma:
812 	dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
813  out_ior:
814 	pci_iounmap(pdev, cafe->mmio);
815  out_free_mtd:
816 	kfree(mtd);
817  out:
818 	return err;
819 }
820 
cafe_nand_remove(struct pci_dev * pdev)821 static void __devexit cafe_nand_remove(struct pci_dev *pdev)
822 {
823 	struct mtd_info *mtd = pci_get_drvdata(pdev);
824 	struct cafe_priv *cafe = mtd->priv;
825 
826 	/* Disable NAND IRQ in global IRQ mask register */
827 	cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
828 	free_irq(pdev->irq, mtd);
829 	nand_release(mtd);
830 	free_rs(cafe->rs);
831 	pci_iounmap(pdev, cafe->mmio);
832 	dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
833 	kfree(mtd);
834 }
835 
836 static const struct pci_device_id cafe_nand_tbl[] = {
837 	{ PCI_VENDOR_ID_MARVELL, PCI_DEVICE_ID_MARVELL_88ALP01_NAND,
838 	  PCI_ANY_ID, PCI_ANY_ID },
839 	{ }
840 };
841 
842 MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
843 
cafe_nand_resume(struct pci_dev * pdev)844 static int cafe_nand_resume(struct pci_dev *pdev)
845 {
846 	uint32_t ctrl;
847 	struct mtd_info *mtd = pci_get_drvdata(pdev);
848 	struct cafe_priv *cafe = mtd->priv;
849 
850        /* Start off by resetting the NAND controller completely */
851 	cafe_writel(cafe, 1, NAND_RESET);
852 	cafe_writel(cafe, 0, NAND_RESET);
853 	cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
854 
855 	/* Restore timing configuration */
856 	cafe_writel(cafe, timing[0], NAND_TIMING1);
857 	cafe_writel(cafe, timing[1], NAND_TIMING2);
858 	cafe_writel(cafe, timing[2], NAND_TIMING3);
859 
860         /* Disable master reset, enable NAND clock */
861 	ctrl = cafe_readl(cafe, GLOBAL_CTRL);
862 	ctrl &= 0xffffeff0;
863 	ctrl |= 0x00007000;
864 	cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
865 	cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
866 	cafe_writel(cafe, 0, NAND_DMA_CTRL);
867 	cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
868 	cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
869 
870 	/* Set up DMA address */
871 	cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
872 	if (sizeof(cafe->dmaaddr) > 4)
873 	/* Shift in two parts to shut the compiler up */
874 		cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
875 	else
876 		cafe_writel(cafe, 0, NAND_DMA_ADDR1);
877 
878 	/* Enable NAND IRQ in global IRQ mask register */
879 	cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
880 	return 0;
881 }
882 
883 static struct pci_driver cafe_nand_pci_driver = {
884 	.name = "CAFÉ NAND",
885 	.id_table = cafe_nand_tbl,
886 	.probe = cafe_nand_probe,
887 	.remove = __devexit_p(cafe_nand_remove),
888 	.resume = cafe_nand_resume,
889 };
890 
cafe_nand_init(void)891 static int __init cafe_nand_init(void)
892 {
893 	return pci_register_driver(&cafe_nand_pci_driver);
894 }
895 
cafe_nand_exit(void)896 static void __exit cafe_nand_exit(void)
897 {
898 	pci_unregister_driver(&cafe_nand_pci_driver);
899 }
900 module_init(cafe_nand_init);
901 module_exit(cafe_nand_exit);
902 
903 MODULE_LICENSE("GPL");
904 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
905 MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");
906